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Abstract 
We describe the goals and initial implementation of the International Solid Earth 
Virtual Observatory (iSERVO).  This system is built using a Web Services 
approach to Grid computing infrastructure and is accessed via a component-
based Web portal user interface.  We describe our implementations of services 
used by this system, including Geographical Information Systems (GIS)-based 
data grid services for accessing remote data repositories and job management 
services for controlling multiple execution steps.   iSERVO is an example of a 
larger trend to build globally scalable scientific computing infrastructures using 
the Service Oriented Architecture approach.  Adoption of this approach raises a 
number of research challenges in millisecond-latency message systems suitable 
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for internet-enabled scientific applications.  We review our research in these 
areas. 

Introduction 

In this paper we describe the architecture and initial implementation of the 
International Solid Earth Research Virtual Observatory (iSERVO) [1].  We base our 
design on a globally scalable distributed computing infrastructure (often termed “cyber-
infrastructure” or simply “Grid infrastructure” [2][3]) that enables on-line data 
repositories, modeling and simulation codes, data mining tools, and visualization 
applications to be combined into a single cooperating system.  We build this infrastructure 
around Web Services-based approach.  

Challenges for Solid Earth Research 

The Solid Earth Science Working Group of the United States National Aeronautics and 
Space Administration (NASA) has identified several challenges for Earth Science research 
[4].  Particularly relevant for iSERVO are the following: 

• How can the study of strongly correlated solid earth systems be enabled by space-
based data sets? 

• What can numerical simulations reveal about the physical processes that 
characterize these systems? 

• How do the interactions in these systems lead to space-time correlations and 
patterns? 

• What are the important feedback loops that mode-lock the system behavior? 
• How do processes on a multiplicity of different scales interact to produce the 

emergent structures that are observed? 
• Do the correlations allow for the capability to forecast the system behavior? 
In order to investigate these questions, we need to couple numerical simulation codes 

and data mining tools to observational data sets.  This observational data (including crustal 
fault data from the literature, GPS data, and seismic activity data) are now available on-
line in internet-accessible forms, and the quantity of this data is expected to grow 
explosively over the next decade.   

The challenges in solid earth modeling motivate a number of interesting research and 
development issues in distributed computer science and informatics.  Key among these are 
providing programmatic access to distributed data sources; coupling remote data sources 
to application codes, including automated searching and filtering; coupling of 
complementary application codes that are deployed on geographically separated host 
computers; and providing human level interfaces to these remote services.  

The iSERVO team possesses a broad range of skills and tools that may be used to 
investigate solid earth research challenges.  Team expertise includes the development high 
performance modeling and simulation applications for both the study of large, interacting 
earthquake systems and the detailed study of individual fault properties; federated database 
and ontology design; geological characterization of faults; and high performance 
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visualization codes.  Welding all of these components into a common distributed 
computing infrastructure is the subject for the rest of this paper. 

A Web Service Grid Architecture 

Problems in managing distributed computing resources, applications, and data have 
been studied for many years (see [2], [3]).  Typical desired functionality in these systems 
includes remote command execution, data transfer, security, and high performance 
messaging. To scale globally, these systems must abandon tight coupling approaches such 
as distributed object systems and micro-second latency solutions such as MPI and adopt 
instead a Service Oriented Architecture (SOA) [5] that is compatible with millisecond (or 
longer) communication speeds.  SOAs are implemented around two basic components: 
service definition languages (which describe how to invoke the remote service) and 
message formats for over-the-wire transmissions.  In iSERVO, we have adopted the Web 
Service approach to building an SOA: we use WSDL (http://www.w3c.org/TR/wsdl) for 
service description and SOAP (http://www.w3.org/TR/soap/) for message formats.  

Web Service systems have an important design feature: services are decoupled from 
the user interface components.  This enables us to build (in principal) a number of different 
services that can interact with the same remote service.  Browser-based computing portals 
are typical of this sort of user interface and have been the subject of research and 
development work for a number of years [6].  Currently this field is undergoing a 
revolution as component-based portal systems are being widely adopted, and standard 
component programming interfaces have been released (for details, see 
http://jcp.org/aboutJava/communityprocess/final/jsr168/index.html). This approach so-
called “portlet” enables reusability of components: portals may be built out of standard 
parts that aggregate content and functionality from many different sources.   

SOA and portal standards are not the only relevant standards for building systems such 
as iSERVO.  The Open Geographical Information Systems (GIS) Consortium (OGC) 
(http://www.opengis.org) defines a number of standards for modeling earth surface feature 
data and services for interacting with this data.  The data models are expressed in the 
XML-based Geography Markup Language (GML), and the OGC service framework are 
being adapted to use the Web Service model. 

Implementing iSERVO 

We have implemented an initial set of services and portal components for addressing 
the problems described in the introduction.  We have followed a Web Service-based Grid 
design described above that uses Web Service standards.  The components of the system 
and their interactions are summarized in Figure 1.  Users interact with remote services 
through a Web browser portal that is run by the User Interface Server (UIS).  This portal 
generates dynamic web pages that collect input information from the user and deliver 
response messages.  The UIS does not directly implement services such as job submission 
and file transfer.  Instead, it maintains client proxies to these remote services.  These 
proxies are responsible for generating the SOAP messages appropriate to the particular 
services’ WSDL descriptions and for receiving the responses from the services.  The UIS 
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and most services are implemented in Java using the Apache Axis toolkit 
(http://ws.apache.org/axis/), but we have also implemented C++ services using gSOAP 
(http://www.cs.fsu.edu/~engelen/soap.html) for simple remote visualization.   

A typical interaction involves the user selecting a code through the portal, setting up an 
input file in part through interactions with databases (such as the QuakeTables Fault 
Database [7]), invoking the code and monitoring its progress, and having the output 
visualized through various third party tools of varying sophistication.  These interactions 
are based on a dataflow model: services communicate by exchanging data files, which 
must be pulled from one server to another. 
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Figure 1 The architecture for the iSERO portal and services uses Web Service and portal standards. 

In building iSERVO, we have implemented a number of innovations on the standard 
model components.  The portlet component model normally assumes local portlets with 
content that navigates to other web sites (news portals such as Yahoo and CNN are 
examples).  We have built extensions to this simple model to allow portlet content to be 
managed remotely, have its display maintained within its component window through a 
series of navigations, maintain HTTP sessions state with remote content, pass HTTP GET 
and POST variables, and support SSL security.   

Basic iSERVO services include remote command execution, file upload and download, 
and host-to-host file transfer.  We do not directly alter the geophysical applications 
included in the portal but instead follow a “proxy wrapping” approach [8].  Typically, 
applications require preprocessing of input files, post processing, and in general require 
task executions that are distributed across many different hosts.  To support this sort of 
distributed service orchestration, we have developed a simple “workflow” service based on 
the Apache Ant project (http://ant.apache.org/).   This service uses Ant as an engine that 
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may be invoked remotely (as a service on Host 2 in Figure 1) and may also coordinate 
service invocations on remote hosts, as needed to complete its task. 

iSERVO couples typical “Execution Grid” services such as described above with “Data 
Grid” services.  iSERVO applications work with many different data sources, and we have 
developed services to automate the coupling of this data to application services.  A typical 
problem is as follows: the iSERVO application RDAHMM (a Hidden Markov Model 
application) needs as input either GPS or seismic activity records.  Both data sources are 
available online, but there is no programmatic way of working with this data.  Instead, it is 
typically downloaded and edited by hand.  To solve this problem, we have implemented 
GML-based services for describing these data records, and in the process we have unified 
several different data formats.  These services allow the application user to build search 
filters on the desired data set (for example, returning events larger than magnitude 5.0 on a 
particular region of interest since 1990).  Additional filters reformat the data into one 
suitable for RDAHMM, and the data is then shipped to the location of the remote 
executable.  We thus replace the process of downloading and hand-editing the entire 
catalog.  Implementation details are covered in a companion ACES abstract submission 
(G. Aydin, et al).  

iSERVO data service requirements represent an excellent opportunity for further work 
leveraging OGC services that will tie iSERVO to this larger community, allowing us to 
potentially incorporate many additional third party data sources and tools.  The NASA 
OnEarth project (http://onearth.jpl.nasa.gov/) is an excellent example of a GIS project that 
may be incorporated with iSERVO in the future.  As part of our GIS development work, 
we are currently re-implementing the OGC standard services Web Feature Service and 
Web Map Service as iSERVO-compatible Web Services.   

Future Directions for iSERVO 

Web Services in the SOA approach communicate with SOAP messages in a loosely 
coupled fashion.  Such systems demand a number of features: fault tolerance, reliable 
messaging, message level security (such as authorization and encryption), and message 
virtualization for firewall tunneling.  We term this general class of messages as the Web 
Service “Internet-On-Internet” (IOI) problem: many Web Service standards reimplement 
common TCP/IP features within the SOAP message.  We see this as an interesting 
development, as it allows us to use a messaging system infrastructure (which we do 
control) to provide quality of service that is independent of the underlying network (which 
we do not control). We have implemented such a messaging system infrastructure, 
NaradaBrokering (http://www.naradabrokering.org), and are extending it to support Web 
Service invocations natively. 

A common objection to the Web Service approach is that it is too slow.  Message 
speeds across network connections are on the order of milliseconds at best, and so 
unsuitable for classic metacomputing.  For typical iSERVO applications, this is not an 
issue: model runs may take several hours or days to complete. The applications themselves 
may be deployed on clusters or supercomputers and may be parallelized by traditional 
techniques; we treat such applications as a single service component [8].  However, there 
are classes of problems, particularly in interactive remote visualization and high 
performance transfers of large data sets, in which maximum network performance is 

 5 



needed.  We are currently researching this within the NaradaBrokering system.  The IOI 
approach for Web Services will allow us to replace TCP/IP with much more efficient UDP 
transmissions, while retaining desirable TCP/IP features in the SOAP messages. 

On top of the IOI infrastructure, we must provide information services: how can one 
encode in machine readable way what a particular service in Figure 1 actually does?  What 
data does the service provide or require?  How do other components in the system discover 
it?  How can it be classified? How can complicated service interactions be coordinated?  
We term the higher level information Grid that manages this sort of information as the 
“Context and Information Environment” (CIE).   All the information requirements that we 
have enumerated are part of a larger problem in metadata management.  In Web and Grid 
Services, this is an open problem with many competing solutions. iSERVO represents a 
excellent test case of a real Grid with real information system requirements that can be 
used to validate the competing solutions. 
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