
iSERVO: Implementing the International Solid Earth

Research Virtual Observatory

Andrea Donnellan(1), Geoffrey Fox(2), Robert Granat (3), Lisa

Grant(4), Greg Lyzenga(5), Dennis McLeod(6), Shrideep

Pallickara(7), Jay Parker(8), Marlon Pierce(9),*, John Rundle(10),

and Terry Tullis(11)

(1) NASA Jet Propulsion Laboratory, Mail Stop 183-335, 4800 Oak Grove Drive,
Pasadena, CA 91109-8099, USA (email: Donnellan@jpl.nasa.gov). (2) Community
Grids Laboratory, Departments of Computer Science, Physics, and School of
Informatics, Indiana University, Bloomington, Indiana 47404-3730, USA (email:
gcf@indiana.edu; phone +1 812-856-7977). (3) NASA JPL, Mail Stop 126-347, 4800
Oak Grove Drive, Pasadena, CA 91109-8099 (email: Robert.Granat@jpl.nasa.gov). (4)
Environmental Analysis and Design, University of California-Irvine, Irvine, California,
92697-7070, USA (email: lgrant@uci.edu) (5) NASA JPL, Mail Stop 126-347, 4800 Oak
Grove Drive, Pasadena, CA 91109-8099 (email: Gregory.Lyzenga@jpl.nasa.gov). (6)
University of Southern Califoria, Mail Code 0781, 3651 Trousdale Parkway, Los
Angeles, CA 90089-0742, USA (email: mcleod@pollux.usc.edu). (7) Community Grids
Laboratory, Indiana University, Bloomington, Indiana 47404-3730, USA (email:
spallick@cs.indiana.edu). (8) NASA Jet Propulsion Laboratory, Mail Stop 238-600,
4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA (email:
jay.w.parker@jpl.nasa.gov). (9) Community Grids Laboratory, Indiana University,
Bloomington, Indiana 47404-3730, USA (email: mpierce@cs.indiana.edu, phone: +1
812-856-1212). (10) Department of Physics, University of California-Davis, One
Shields Avenue, Davis, CA 95616-8677 USA (email: rundle@physics.ucdavis.edu).
(11) Department of Geological Sciences, Brown University, Providence, RI 02912-1846
USA (email: Terry_Tullis@brown.edu).

* Corresponding author

Abstract
We describe the goals and initial implementation of the International Solid Earth
Virtual Observatory (iSERVO). This system is built using a Web Services
approach to Grid computing infrastructure and is accessed via a component-
based Web portal user interface. We describe our implementations of services
used by this system, including Geographical Information Systems (GIS)-based
data grid services for accessing remote data repositories and job management
services for controlling multiple execution steps. iSERVO is an example of a
larger trend to build globally scalable scientific computing infrastructures using
the Service Oriented Architecture approach. Adoption of this approach raises a
number of research challenges in millisecond-latency message systems suitable

 1

for internet-enabled scientific applications. We review our research in these
areas.

Introduction

In this paper we describe the architecture and initial implementation of the
International Solid Earth Research Virtual Observatory (iSERVO) [1]. We base our
design on a globally scalable distributed computing infrastructure (often termed “cyber-
infrastructure” or simply “Grid infrastructure” [2][3]) that enables on-line data
repositories, modeling and simulation codes, data mining tools, and visualization
applications to be combined into a single cooperating system. We build this infrastructure
around Web Services-based approach.

Challenges for Solid Earth Research

The Solid Earth Science Working Group of the United States National Aeronautics and
Space Administration (NASA) has identified several challenges for Earth Science research
[4]. Particularly relevant for iSERVO are the following:

• How can the study of strongly correlated solid earth systems be enabled by space-
based data sets?

• What can numerical simulations reveal about the physical processes that
characterize these systems?

• How do the interactions in these systems lead to space-time correlations and
patterns?

• What are the important feedback loops that mode-lock the system behavior?
• How do processes on a multiplicity of different scales interact to produce the

emergent structures that are observed?
• Do the correlations allow for the capability to forecast the system behavior?
In order to investigate these questions, we need to couple numerical simulation codes

and data mining tools to observational data sets. This observational data (including crustal
fault data from the literature, GPS data, and seismic activity data) are now available on-
line in internet-accessible forms, and the quantity of this data is expected to grow
explosively over the next decade.

The challenges in solid earth modeling motivate a number of interesting research and
development issues in distributed computer science and informatics. Key among these are
providing programmatic access to distributed data sources; coupling remote data sources
to application codes, including automated searching and filtering; coupling of
complementary application codes that are deployed on geographically separated host
computers; and providing human level interfaces to these remote services.

The iSERVO team possesses a broad range of skills and tools that may be used to
investigate solid earth research challenges. Team expertise includes the development high
performance modeling and simulation applications for both the study of large, interacting
earthquake systems and the detailed study of individual fault properties; federated database
and ontology design; geological characterization of faults; and high performance

 2

visualization codes. Welding all of these components into a common distributed
computing infrastructure is the subject for the rest of this paper.

A Web Service Grid Architecture

Problems in managing distributed computing resources, applications, and data have
been studied for many years (see [2], [3]). Typical desired functionality in these systems
includes remote command execution, data transfer, security, and high performance
messaging. To scale globally, these systems must abandon tight coupling approaches such
as distributed object systems and micro-second latency solutions such as MPI and adopt
instead a Service Oriented Architecture (SOA) [5] that is compatible with millisecond (or
longer) communication speeds. SOAs are implemented around two basic components:
service definition languages (which describe how to invoke the remote service) and
message formats for over-the-wire transmissions. In iSERVO, we have adopted the Web
Service approach to building an SOA: we use WSDL (http://www.w3c.org/TR/wsdl) for
service description and SOAP (http://www.w3.org/TR/soap/) for message formats.

Web Service systems have an important design feature: services are decoupled from
the user interface components. This enables us to build (in principal) a number of different
services that can interact with the same remote service. Browser-based computing portals
are typical of this sort of user interface and have been the subject of research and
development work for a number of years [6]. Currently this field is undergoing a
revolution as component-based portal systems are being widely adopted, and standard
component programming interfaces have been released (for details, see
http://jcp.org/aboutJava/communityprocess/final/jsr168/index.html). This approach so-
called “portlet” enables reusability of components: portals may be built out of standard
parts that aggregate content and functionality from many different sources.

SOA and portal standards are not the only relevant standards for building systems such
as iSERVO. The Open Geographical Information Systems (GIS) Consortium (OGC)
(http://www.opengis.org) defines a number of standards for modeling earth surface feature
data and services for interacting with this data. The data models are expressed in the
XML-based Geography Markup Language (GML), and the OGC service framework are
being adapted to use the Web Service model.

Implementing iSERVO

We have implemented an initial set of services and portal components for addressing
the problems described in the introduction. We have followed a Web Service-based Grid
design described above that uses Web Service standards. The components of the system
and their interactions are summarized in Figure 1. Users interact with remote services
through a Web browser portal that is run by the User Interface Server (UIS). This portal
generates dynamic web pages that collect input information from the user and deliver
response messages. The UIS does not directly implement services such as job submission
and file transfer. Instead, it maintains client proxies to these remote services. These
proxies are responsible for generating the SOAP messages appropriate to the particular
services’ WSDL descriptions and for receiving the responses from the services. The UIS

 3

and most services are implemented in Java using the Apache Axis toolkit
(http://ws.apache.org/axis/), but we have also implemented C++ services using gSOAP
(http://www.cs.fsu.edu/~engelen/soap.html) for simple remote visualization.

A typical interaction involves the user selecting a code through the portal, setting up an
input file in part through interactions with databases (such as the QuakeTables Fault
Database [7]), invoking the code and monitoring its progress, and having the output
visualized through various third party tools of varying sophistication. These interactions
are based on a dataflow model: services communicate by exchanging data files, which
must be pulled from one server to another.

Aggregating Portal

QuakeTables

JDBC

DB

Job Sub/Mon
And File
Services

Operating and
Queuing
Systems

WSDLWSDL

Browser Interface

Portlet

WSDL

PortletPortlet Portlet

Viz Service

WSDL

Host 1 Host 2 Host 3

RIVA

User Interface Server
HTTP

SOAP SOAP

Figure 1 The architecture for the iSERO portal and services uses Web Service and portal standards.

In building iSERVO, we have implemented a number of innovations on the standard
model components. The portlet component model normally assumes local portlets with
content that navigates to other web sites (news portals such as Yahoo and CNN are
examples). We have built extensions to this simple model to allow portlet content to be
managed remotely, have its display maintained within its component window through a
series of navigations, maintain HTTP sessions state with remote content, pass HTTP GET
and POST variables, and support SSL security.

Basic iSERVO services include remote command execution, file upload and download,
and host-to-host file transfer. We do not directly alter the geophysical applications
included in the portal but instead follow a “proxy wrapping” approach [8]. Typically,
applications require preprocessing of input files, post processing, and in general require
task executions that are distributed across many different hosts. To support this sort of
distributed service orchestration, we have developed a simple “workflow” service based on
the Apache Ant project (http://ant.apache.org/). This service uses Ant as an engine that

 4

may be invoked remotely (as a service on Host 2 in Figure 1) and may also coordinate
service invocations on remote hosts, as needed to complete its task.

iSERVO couples typical “Execution Grid” services such as described above with “Data
Grid” services. iSERVO applications work with many different data sources, and we have
developed services to automate the coupling of this data to application services. A typical
problem is as follows: the iSERVO application RDAHMM (a Hidden Markov Model
application) needs as input either GPS or seismic activity records. Both data sources are
available online, but there is no programmatic way of working with this data. Instead, it is
typically downloaded and edited by hand. To solve this problem, we have implemented
GML-based services for describing these data records, and in the process we have unified
several different data formats. These services allow the application user to build search
filters on the desired data set (for example, returning events larger than magnitude 5.0 on a
particular region of interest since 1990). Additional filters reformat the data into one
suitable for RDAHMM, and the data is then shipped to the location of the remote
executable. We thus replace the process of downloading and hand-editing the entire
catalog. Implementation details are covered in a companion ACES abstract submission
(G. Aydin, et al).

iSERVO data service requirements represent an excellent opportunity for further work
leveraging OGC services that will tie iSERVO to this larger community, allowing us to
potentially incorporate many additional third party data sources and tools. The NASA
OnEarth project (http://onearth.jpl.nasa.gov/) is an excellent example of a GIS project that
may be incorporated with iSERVO in the future. As part of our GIS development work,
we are currently re-implementing the OGC standard services Web Feature Service and
Web Map Service as iSERVO-compatible Web Services.

Future Directions for iSERVO

Web Services in the SOA approach communicate with SOAP messages in a loosely
coupled fashion. Such systems demand a number of features: fault tolerance, reliable
messaging, message level security (such as authorization and encryption), and message
virtualization for firewall tunneling. We term this general class of messages as the Web
Service “Internet-On-Internet” (IOI) problem: many Web Service standards reimplement
common TCP/IP features within the SOAP message. We see this as an interesting
development, as it allows us to use a messaging system infrastructure (which we do
control) to provide quality of service that is independent of the underlying network (which
we do not control). We have implemented such a messaging system infrastructure,
NaradaBrokering (http://www.naradabrokering.org), and are extending it to support Web
Service invocations natively.

A common objection to the Web Service approach is that it is too slow. Message
speeds across network connections are on the order of milliseconds at best, and so
unsuitable for classic metacomputing. For typical iSERVO applications, this is not an
issue: model runs may take several hours or days to complete. The applications themselves
may be deployed on clusters or supercomputers and may be parallelized by traditional
techniques; we treat such applications as a single service component [8]. However, there
are classes of problems, particularly in interactive remote visualization and high
performance transfers of large data sets, in which maximum network performance is

 5

needed. We are currently researching this within the NaradaBrokering system. The IOI
approach for Web Services will allow us to replace TCP/IP with much more efficient UDP
transmissions, while retaining desirable TCP/IP features in the SOAP messages.

On top of the IOI infrastructure, we must provide information services: how can one
encode in machine readable way what a particular service in Figure 1 actually does? What
data does the service provide or require? How do other components in the system discover
it? How can it be classified? How can complicated service interactions be coordinated?
We term the higher level information Grid that manages this sort of information as the
“Context and Information Environment” (CIE). All the information requirements that we
have enumerated are part of a larger problem in metadata management. In Web and Grid
Services, this is an open problem with many competing solutions. iSERVO represents a
excellent test case of a real Grid with real information system requirements that can be
used to validate the competing solutions.

Acknowledgments

This work was funded by the Computational Technologies Program and the Advanced Information
Systems Technology Program, both of NASA’s Earth Science Technology Office. We gratefully
acknowledge Ms. Michele Judd for project management.

References

[1] QuakeSim Project Home Page: http://quakesim.jpl.nasa.gov/. For project
documentation, see http://quakesim.jpl.nasa.gov/milestones.html.

[2] Foster, I. and C. Kesselman, 2003, The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann.

[3] Berman, F., G. C. Fox, and T. Hey, eds., 2003, Grid Computing: Making the Global
Infrastructure a Reality John Wiley & Sons, Chichester, England, ISBN 0-470-
85319-0, March 2003. http://www.grid2002.org

[4] Solomon, S. C., (chair), 2002, “Living on a Restless Planet”, Solid Earth Science
Working Group Report. Available from
http://solidearth.jpl.nasa.gov/PDF/SESWG_final_combined.pdf.

[5] Booth, D., H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D.
Orchard, Web Services Architecture. W3C Working Group Note 11 February
2004. Available from http://www.w3.org/TR/ws-arch/.

[6] G. Fox and A. Hey, eds. Concurrency and Computation: Practice and Experience,
Vol. 14, No. 13-15 (2002).

[7] Chen, A. Y., S. Chung, S. Gao, D. McLeod, A. Donnellan, J. Parker, G. Fox, M.
Pierce, M. Gould, L. Grant, and J. Rundle, 2003. Interoperability and semantics
for heterogeneous earthquake science data. 2003 Semantic Web Technologies for
Searching and Retrieving Scientific Data Conference, October 20, 2003, Sanibel
Island, Florida.

[8] Youn, C., M. E. Pierce, and G. C. Fox., 2003 Building Problem Solving Environments
with Application Web Service Toolkits To be published in Future Generation
Computing Systems Magazine (in press).

 6

http://www.grid2002.org/
http://grids.ucs.indiana.edu/ptliupages/publications/GatewayFGCS.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/GatewayFGCS.pdf

	Introduction
	Challenges for Solid Earth Research
	A Web Service Grid Architecture
	Implementing iSERVO
	Future Directions for iSERVO
	Acknowledgments
	References

