
Performance of Multicore Systems on Parallel Data
Clustering with Deterministic Annealing

Xiaohong Qiu1, Geoffrey C. Fox2, Huapeng Yuan2, Seung-Hee Bae2, George
Chrysanthakopoulos3, Henrik Frystyk Nielsen3

1Research Computing UITS, Indiana University Bloomington. xqiu@indiana.edu

2Community Grids Lab Indiana University Bloomington. (gcf,yuanh,sebae)@indiana.edu
3Microsoft Research Redmond WA. (georgioc, henrikn)@microsoft.com

Abstract. We present a performance analysis of a scalable parallel data
clustering algorithm with deterministic annealing for multicore systems that
compares MPI and a new C# messaging runtime library CCR (Concurrency and
Coordination Runtime) with Windows and Linux and using both threads and
processes. We investigate effects of memory bandwidth and fluctuations of run
times of loosely synchronized threads. We give results on message latency and
bandwidth for two processor multicore systems based on AMD and Intel
architectures with a total of four and eight cores. We compare our C# results
with C using MPICH2 and Nemesis and Java with both mpiJava and MPJ
Express. We show initial speedup results from Geographical Information
Systems and Cheminformatics clustering problems. We abstract the key
features of the algorithm and multicore systems that lead to the observed
scalable parallel performance.

Keywords: Datamining, MPI, Multicore, Parallel Computing, Performance,
Threads, Windows

1 Introduction

Multicore architectures are of increasing importance and are impacting client, server
and supercomputer systems [1-6]. They make parallel computing and its integration
with large systems of great importance as “all” applications need good performance
rather than just the relatively specialized areas covered by traditional high
performance computing. In this paper we consider datamining as a class of
applications that has broad applicability and could be important on tomorrow’s client
systems. Such applications are likely to be written in managed code (C#, Java) and
run on Windows (or equivalent client OS for Mac) and use threads. This scenario is
suggested by the recent RMS (Recognition, Mining and Synthesis) analysis by Intel
[5]. In our research, we are looking at some core datamining algorithms and their
application to scientific areas including cheminformatics, bioinformatics and
demographic studies using GIS (Geographical Information Systems). On the
computer science side, we are looking at performance implications of both multicore
architectures and use of managed code. Our close ties to science applications ensures

that we understand important algorithms and parameter values and can generalize our
initial results on a few algorithms to a broader set.

In this paper we present new results on a powerful parallel data clustering
algorithm that uses deterministic annealing [20] to avoid local minima. We explore in
detail the sources of the observed synchronization overhead. We present the
performance analysis for C# and Java on both Windows and Linux and identify new
features that have not been well studied for parallel scientific applications. This
research was performed on a set of multicore commodity PC’s summarized in table 1;
each has two CPU chips and a total of 4 or 8 CPU cores. The results can be extended
to computer clusters as we are using similar messaging runtime but we focus in this
paper on the new results seen on the multicore systems.

Table 1: Multicore PC’s used in paper

AMD4: 4 core 2 Processor HPxw9300 workstation, 2 AMD Opteron CPUs Processor
275 at 2.19GHz, L2 Cache 2x1MB (for each chip), Memory 4GB. XP 64bit & Server 2003

Intel4: 4 core 2 Processor Dell Precision PWS670, 2 Intel Xeon CPUs at 2.80GHz, L2
Cache 2x2MB, Memory 4GB. XP Pro 64bit

Intel8a: 8 core 2 Processor Dell Precision PWS690, 2 Intel Xeon CPUs E5320 at
1.86GHz, L2 Cache 2x4M, Memory 8GB. XP Pro 64bit

Intel8b: 8 core 2 Processor Dell Precision PWS690, 2 Intel Xeon CPUs x5355 at
2.66GHz, L2 Cache 2X4M, Memory 4GB. Vista Ultimate 64bit and Fedora 7

Intel8c: 8 core 2 Processor Dell Precision PWS690, 2 Intel Xeon CPUs x5345 at
2.33GHz, L2 Cache 2X4M, Memory 8GB. Redhat

Section 2 discusses the CCR and SALSA runtime described in more detail in [7-9].
Section 3 describes our motivating clustering application and explains how it
illustrates a broader class of datamining algorithms [17]. These results identify some
important benchmarks covering memory effects, runtime fluctuations and
synchronization costs discussed in sections 4-6. There are interesting cache effects
that will be discussed elsewhere [8]. Conclusions are in Section 8 while section 7
briefly describes the key features of the algorithm and how they generalize to other
datamining areas. All results and benchmark codes presented are available from
http://www.infomall.org/salsa [16]

2 Overview of CCR and SALSA Runtime model

We do not address possible high level interfaces such as OpenMP or parallel
languages but rather focus on lower level runtime to which these could map. In other
papers [7-9] we have explained our hybrid programming model SALSA (Service
Aggregated Linked Sequential Activities) that builds libraries as a set of services and
uses simple service composition to compose complete applications [10]. Each service
then runs on parallel on any number of cores – either part of a single PC or spread out
over a cluster. The performance requirements at the service layer are less severe than
at the “microscopic” thread level for which MPI is designed and where this paper
concentrates. We use DSS (Decentralized System Services) which offers good
performance with messaging latencies of 35 µs between services on a single PC [9].

 3

Applications are built from services; services are built as parallel threads or processes
that are synchronized with low latency by locks, MPI or a novel messaging runtime
library CCR (Concurrency and Coordination Runtime) developed by Microsoft
Research [11-15].

CCR provides a framework for building general collective communication where
threads can write to a general set of ports and read one or more messages from one or
more ports. The framework manages both ports and threads with optimized
dispatchers that can efficiently iterate over multiple threads. All primitives result in a
task construct being posted on one or more queues, associated with a dispatcher. The
dispatcher uses OS threads to load balance tasks. The current applications and
provided primitives support a dynamic threading model with some 8 core capabilities
given in more detail in [9]. CCR can spawn handlers that consume messages as is
natural in a dynamic search application where handlers correspond to links in a tree.
However one can also have long running handlers where messages are sent and
consumed at a rendezvous points (yield points in CCR) as used in traditional MPI
applications. Note that “active messages” correspond to the spawning model of CCR
and can be straightforwardly supported. Further CCR takes care of all the needed
queuing and asynchronous operations that avoid race conditions in complex
messaging. CCR is attractive as it supports such a wide variety of messaging from
dynamic threading, services (via DSS described in [9]) and MPI style collective
operations discussed in this paper.

For our performance comparisons with MPI, we needed rendezvous semantics
which are fully supported by CCR and we chose to use the Exchange pattern
corresponding to the MPI_SENDRECV interface where each process (thread) sends
and receives two messages equivalent to a combination of a left and right shift with its
two neighbors in a ring topology. Note that posting to a port in CCR corresponds to a
MPISEND and the matching MPIRECV is achieved from arguments of handler
invoked to process the port.

3 Deterministic Annealing Clustering Algorithm

We are building a suite of data mining services to test the runtime and two layer
SALSA programming model. We start with data clustering which has many important
applications including clustering of chemical properties which is an important tool
[18] for finding for example a set of chemicals similar to each other and so likely
candidates for a given drug. We are also looking at clustering of demographic
information derived from the US Census data and other sources. Our software
successfully scales to cluster the 10 million chemicals in NIH PubChem and the 6
million people in the state of Indiana. Both applications will be published elsewhere
and the results given here correspond to realistic applications and subsets designed to
test scaling. We use a modification of the well known K-means algorithm [19], using
deterministic annealing [20], that has much better convergence properties than K-
means and good parallelization properties.

For a set of data points X(labeled by x) and cluster centers Y(labeled by k), one
gradually lowers the annealing temperature T and iteratively calculates:

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4

Parallel Overhead

10 Clusters

20 Clusters

10000/Grain Size

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4

Parallel Overhead

10 Clusters

20 Clusters

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4

Parallel Overhead

10 Clusters

20 Clusters

10000/Grain Size

Fig. 1. Parallel Overhead for GIS 2D Clustering on Intel8b
using C# with 8 threads (cores) and CCR Synchronization.
We use two values (10, 20) for the number of clusters and
plot against the reciprocal of the number of data points

Y(k) = ∑ x p(X(x),Y(k)) X(x)
p(X(x),Y(k)) = exp(-d(X(x),Y(k))/T) p(x) / Zx (1)
with Zx = ∑ k exp(-d(X(x),Y(k))/T)

Here d(X(x),Y(k)) is the distance defined in space where clustering is occurring.
Parallelism can be implemented by dividing points X between the cores and there is a
natural loosely synchronous barrier where the sums in each core are combined in a
reduction collective to complete the calculation in (1). Rather than plot speed-up, we
focus in more detail on the deviations from “perfect speed-up (of P)”. Such parallel
applications have a well understood performance model that can be expressed in
terms of a parallel overhead f(n,P) (roughly 1-efficiency) where different overhead
effects are naturally additive. Putting T(n,P) as the execution time on P cores or more
generally processes/threads, we can define

Overhead f(n,P) = (PT(n,P)-T(Pn,1))/T(Pn,1) (2)
and efficiency ε = 1/(1+f) and Speed-up = εP

For the algorithm of eqn. (1), f(n,P) should depend on the grain size n where each
core handles n data points and in fact f(n,P) should decrease proportionally to the
reciprocal of the grain size with a coefficient that depends on synchronization costs

[6, 21-23]. This effect is
clearly seen in fig. 1, which
shows good speed-up on 8
cores of around 7.5 (f(n,P)~
.05) for large problems.
However we do not find
f(n,P) going fully to zero as n
increases. Rather it rather
erratically wanders around a
small number 0.02 to 0.1 as
parameters are varied. The
overhead also decreases as
shown in fig. 1 as the number
of clusters increases. This is

expected from (1) as the ratio
of computation to memory
access is proportional to the
number of clusters. In fig. 2
we plot the parallel overhead

as a function of the number of clusters for two large real problems coming from
Census data and chemical property clustering. These clearly show the rather random
behavior after f(n,8) decreases to a small value corresponding to quite good
parallelism – speedups of over 7 on 8 core systems. The results in fig. 2(b) show
lower asymptotic values which were determined to correspond to the binary data used
in Chemistry clustering. This problem showed fluctuations similar in size to 2(a) if
one used floating point representation for the Chemistry “fingerprint” data. Of course
the binary choice shown in fig. 2(b) is fastest and the appropriate approach to use.

 5

Looking at this performance in more detail we identified effects from memory
bandwidth, fluctuations in thread run time and cache interference [24]. We present a
summary of the first two areas here and will present cache effects and details
elsewhere [7, 8].

4 Memory Bandwidth

In fig. 3, we give typical results
of a study of the impact of
memory bandwidth in the
different hardware and software
configurations of Table 1. We
isolate the kernel of the
clustering algorithm of sec. 2
and examine its performance as a
function of grain size n, number
of clusters and number of cores.
We employ the scaled speed up
strategy and measure thread
dependence at three fixed values
of grain size n (10,000, 50,000
and 500,000). All results are
divided by the number of
clusters, the grain size, and the
number of cores and scaled so
the 10,000 data point, one
cluster, one core result becomes
1 and deviations from this value
represent interesting

performance effects. We display cases for 1 cluster where memory bandwidth effects
could be important and also for 80 clusters where such effects are small as one
performs 80 floating point steps on every variable fetched from memory. Although

0.000

0.050

0.100

0.150

0.200

0 5 10 15 20 25 30

Parallel Overhead

Number of Clusters

2D GIS Census Data

a)
0.000

0.050

0.100

0.150

0.200

0 5 10 15 20 25 30

Parallel Overhead

Number of Clusters

2D GIS Census Data

0.000

0.050

0.100

0.150

0.200

0 5 10 15 20 25 30

Parallel Overhead

Number of Clusters

2D GIS Census Data

a)

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0 2 4 6 8 10 12 14 16

PubChem
1052 Binary Chemical Properties

Parallel Overhead

Number of Clusters
b)
0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0 2 4 6 8 10 12 14 16

PubChem
1052 Binary Chemical Properties

Parallel Overhead

Number of Clusters
b)

Fig. 2. Parallel Overhead defined in (2) as a function of the number of clusters for a) 2 dimensional GIS
data for Indiana in over 200,000 blocks and 40,000 compounds each with 1052 binary properties

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 1 Cluster

500,000

50,000

10,000
Scaled

Runtime

Datapoints
per thread

a)
1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 1 Cluster

500,000

50,000

10,000
Scaled

Runtime

Datapoints
per thread

a)

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 80 Clusters

500,000

50,000
10,000

Scaled
Runtime

Datapoints
per thread

b)
0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 80 Clusters

500,000

50,000
10,000

Scaled
Runtime

Datapoints
per thread

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 80 Clusters

500,000

50,000
10,000

500,000

50,000
10,000

Scaled
Runtime

Datapoints
per thread

b)

Fig. 3. Scaled Run time on Intel8b using Vista and C#
with CCR for synchronization on Clustering Kernel for
three dataset sizes with 10,000 50,000 or 500,000 points
per thread(core). Each measurement involved averaging
over at least 1000 computations separated by
synchronization whose small cost is not included in results

we studied C, C#, Windows and Linux, we only present Windows C# results in fig. 3.
C with Windows shows similar effects but of smaller magnitude while Linux shows
small effects (the results for all n and cluster counts are near 1). Always we use
threads not processes and C uses locks and C# uses CCR synchronization. Data is
stored so as to avoid any cache line (false sharing) effects [8, 24]. The results for one
cluster in fig. 3(a) clearly show the effect of memory bandwidth with scaled run time
increasing significantly as one increases the number of cores used. The performance
improves in fig. 3(b) (scaled runtime < 1) with more clusters when the memory
demands are small. In this benchmark the memory demands scale directly with
number of cores and inversely with number of clusters. A major concern with
multicore system is the need for a memory bandwidth that increases linearly with the
number of cores. In fig. 3(a) we see a 50% increase in the run time for a grain size of
10,000 and 1 cluster. This is for C# and Windows and the overhead is reduced to 22%
for C on Windows and 13% for C on Linux. Further we note that one expect the
10,000 data point case to get excellent performance as the dataset can easily fit in
cache and minimize memory bandwidth needs. However we see similar results
whether or not dataset fits into cache. This must be due to the complex memory
structure leading to cache conflicts. We get excellent cache performance for the
simple data structures of matrix multiplication.

In all cases, we get small overheads for 80 clusters (and in fact for cluster counts
greater than 4) which explains why the applications of sec. 2 run well. There are no
serious memory bandwidth issues in cases with several clusters and in this case that
dominates the computation. This is usual parallel computing wisdom; real size
problems run with good efficiency as long as there is plenty of computation. [6, 21-
23] The datamining cases we are studying satisfy this and we expect them to run well
on multicore machines expected over the next 5 years.

5 Synchronization Performance

The synchronization performance has been discussed in detail previously [9] for CCR
where we discussed dynamic threading in detail showing it had an approximate 5µs
overhead. Here we expand the previous brief discussion of the rendezvous (MPI) style
performance with table 2 giving some comparisons between C, C# and Java for the
MPI Exchange operation (defined in section 2) running on the maximum number of
cores (4 or 8) available on the systems of table 1. Results for the older Intel8a are
available online [16]. In these tests we use a zero size message. Note that the CCR
Exchange operation timed in table 2 has the full messaging transfer semantics of the
MPI standards but avoids the complexity of some MPI capabilities like tags [25-27].
We expect that future simplified messaging systems that like CCR span from
concurrent threads to collective rendezvous’s will chose such simpler
implementations. Nevertheless we think that table 2 is a fair comparison. Note that in
the “Grains” column, we list number of concurrent activities and if they are threads or
processes. These measurements correspond to synchronizations occuring roughly
every 30µs and were averaged over 500,000 such synchronizations in a single run.

 7

The optimized Nemesis version of MPICH2 gives best performance while CCR with
for example 20µs latency on Intel8b, outperforms “vanilla MPICH2”. We can expect
CCR and C# to improve and compete in performance with systems like Nemesis
using the better optimized (older) languages.

Table 2: MPI Exchange Latency
Machine OS Runtime Grains Latency µs

Intel8c
 Redhat

MPJE 8 Procs 181
MPICH2 8 Procs 40.0

MPICH2 Fast Option 8 Procs 39.3
Nemesis 8 Procs 4.21

Intel8c
 Fedora

MPJE 8 Procs 157
mpiJava 8 Procs 111
MPICH2 8 Procs 64.2

Intel8b

Vista MPJE 8 Procs 170

Fedora MPJE 8 Procs 142
mpiJava 8 Procs 100

Vista CCR 8 Thrds 20.2

AMD4

XP MPJE 4 Procs 185

Redhat
MPJE 4 Procs 152

mpiJava 4 Procs 99.4
MPICH2 4 Procs 39.3

XP CCR 4 Thrds 16.3
Intel4 XP CCR 4 Thrds 25.8

We were surprised by the uniformly poor performance of MPI with Java. Here the old
mpiJava invokes MPICH2 from a Java-C binding while MPJ Express [27] is pure
Java., It appears threads in Java currently are not competitive in performance with
those in C#. Perhaps we need to revisit the goals of the old Java Grande activity [29].
As discussed earlier we expect managed code (Java and C#) to be of growing
importance as client multicores prolifergate so good parallel multicore Java
performance is important.

6 Performance Fluctuations

We already noted in Sec. 3 that our performance was impacted by fluctuations in run
time that were bigger than seen in most parallel computing studies that typically look
at Linux and processes whereas our results are mainly for Windows and threads. In
figs 4 and 5 we present some results quantifying this using the same “clustering
kernel” introduced in Sec. 4. We average results over 1000 synchronization points in
a single run. In figs. 4 and 5 we calculate the standard deviation of the 1000P
measured thread runtimes gotten if P cores are used. Our results show much larger
run time fluctuations for Windows than for Linux and we believe this effect leads to
the 2-10% parallel overheads seen already in fig. 2. These figures also show many of
the same trends of earlier results. The smallest dataset (10,000) which should be
contained in cache has the largest fluctuations. C and Linux show lower fluctutions
than C# and Windows. Further turning to Linux, Redhat outperforms Fedora (shown
in [9]). C# in fig. 4 has rather large (5% or above) fluctuations in all cases considered.

Note our results with Linux are all obtained with threads and so are not directly
comparable with traditional MPI Linux measurements that use processes. Processes

are better isolated from each other in both cache and system effects and so it is
possible that these fluctuations are quite unimportant in past scientific programming
studies but significant in our case. Although these fluctuations are important in the
limit of large grain size when other overheads are small, they are never a large effect
and do not stop us getting excellent speedup on large problems.

7 Generalization to other Datamining Algorithms

The deterministic annealing clustering algorithm has exactly the same structure as
other important datamining problems including dimensional scaling and Gaussian
mixture models with the addition of deterministic annealing to mitigate the local
minima that are a well known difficulty with these algorithms [17]. One can show
[17] that one gets these different algorithms by different choices for Y(k), a(x), g(k), T
and s(k) in equation (3). As in section 2, X(x) are the data points to be modeled and F
the objective function to be minimized.

2
1

1
() ln ()exp{ 0.5(() ()) / (())}

N
K

k
x

F T a x g k X x Y k Ts k
=

=

⎡ ⎤= − − −⎣ ⎦∑ ∑ (3)

Thus we can immediately deduce that our results imply that scalable parallel
performance can be achieved for all algorithms given by Equation (3). Further it is

0

0.002

0.004

0.006

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8c Redhat C Locks
80 Clusters

500,000

50,000

10,000

Datapoints
per thread

Std Dev
Runtime

b)
0

0.002

0.004

0.006

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8c Redhat C Locks
80 Clusters

500,000

50,000

10,000

Datapoints
per thread

Std Dev
Runtime

0

0.002

0.004

0.006

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8c Redhat C Locks
80 Clusters

500,000

50,000

10,000

Datapoints
per thread

Std Dev
Runtime
Std Dev
Runtime

b)
0

0.025

0.05

0.075

0.1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8c Redhat C Locks
1 Cluster

500,000

50,000

10,000
Datapoints
per thread

Std Dev
Runtime

a)
0

0.025

0.05

0.075

0.1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8c Redhat C Locks
1 Cluster

500,000

50,000

10,000
Datapoints
per thread

Std Dev
Runtime
Std Dev
Runtime

a)

Fig. 5. Ratio of Standard Deviation to mean of thread execution time using Redhat on Intel8c (a,b)
Linux and C with locks for synchronization on Clustering Kernel for three dataset sizes with 10,000
50,000 or 500,000 points per thread (core). Fedora shows larger effects than Redhat

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
1 Cluster

500,000
50,000

10,000

Datapoints
per thread

Std Dev
Runtime

a)
0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
1 Cluster

500,000
50,000

10,000

Datapoints
per thread

Std Dev
Runtime

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
1 Cluster

500,000
50,000

10,000

Datapoints
per thread

Std Dev
Runtime
Std Dev
Runtime

a)
0

0.025

0.05

0.075

0.1

0 1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
80 Clusters

500,000

50,000

10,000

Datapoints
per thread

Std Dev
Runtime

b)
0

0.025

0.05

0.075

0.1

0 1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
80 Clusters

500,000

50,000

10,000

Datapoints
per thread

Std Dev
Runtime

0

0.025

0.05

0.075

0.1

0 1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8a XP C# CCR
80 Clusters

500,000

50,000

10,000

Datapoints
per thread

Std Dev
Runtime
Std Dev
Runtime

b)

Fig. 4. Ratio of Standard Deviation to mean of thread execution time averaged over 1000 instances
using XP on Intel 8a and C# with CCR for synchronization on Clustering Kernel for three dataset sizes
with 10,000 50,000 or 500,000 points per thread (core).

 9

interesting that the parallel kernels of these datamining algorithms are similar to those
well studied by the high performance (scientific) computing community and need the
synchronization primitives supported by MPI. The algorithms use the well established
SPMD (Single Program Multiple Data) style with the same decomposition for
multicore and distributed execution. However clusters and multicore systems use
different implementations of collective operations at synchronization points. We
expect this structure is more general than the studied algorithm set.

8 Conclusions

Our results are very positive for both using C# and for getting good multicore
performance on important applications. We have initial results that suggest a class of
datamining applications run well on current multicore architectures with efficiencies
on 8 cores of at least 95% for large realistic problems. We have looked in detail at
overheads due to memory, run time fluctuation and synchronizations. Our results are
reinforced in [8, 9] with a study of cache effects and further details of issues covered
in this paper. Some overheads such as runtime fluctuations are surprisingly high in
Windows/C# environments but further work is likely to address this problem by using
lessons from Linux systems that show small effects. C# appears to have much better
thread synchronization effects than Java and it seems interesting to investigate this.

References
1. David Patterson The Landscape of Parallel Computing Research: A View from Berkeley

2.0 Presentation at Manycore Computing 2007 Seattle June 20 2007
http://science.officeisp.net/ManycoreComputingWorkshop07/Presentations/David%20Patterson.pdf

2. Jack Dongarra Editor The Promise and Perils of the Coming Multicore Revolution and Its
Impact, CTWatch Quarterly Vol 3 No. 1 February 07,
http://www.ctwatch.org/quarterly/archives/february-2007

3. Herb Sutter, The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software, Dr. Dobb's Journal, 30(3), March 2005.

4. Annotated list of multicore Internet sites http://www.connotea.org/user/crmc/
5. Pradeep Dubey Teraflops for the Masses: Killer Apps of Tomorrow Workshop on Edge

Computing Using New Commodity Architectures, UNC 23 May 2006
http://gamma.cs.unc.edu/EDGE/SLIDES/dubey.pdf

6. Geoffrey Fox tutorial at Microsoft Research Parallel Computing 2007: Lessons for a
Multicore Future from the Past February 26 to March 1 2007
http://grids.ucs.indiana.edu/ptliupages/presentations/PC2007/index.html

7. Xiaohong Qiu, Geoffrey Fox, and Alex Ho Analysis of Concurrency and Coordination
Runtime CCR and DSS, Technical Report January 21 2007
http://grids.ucs.indiana.edu/ptliupages/publications/CCRDSSanalysis_jan21-07.pdf

8. Xiaohong Qiu, Geoffrey Fox, H. Yuan, Seung-Hee Bae, George Chrysanthakopoulos,
Henrik Frystyk Nielsen Performance Measurements of CCR and MPI on Multicore
Systems Summary September 23 2007
http://grids.ucs.indiana.edu/ptliupages/presentations/MCPerformanceSept21-07.ppt and
http://grids.ucs.indiana.edu/ptliupages/publications/CCRPerformanceNov19-07.pdf

9. Xiaohong Qiu, Geoffrey Fox, H. Yuan, Seung-Hee Bae, George Chrysanthakopoulos,
Henrik Frystyk Nielsen High Performance Multi-Paradigm Messaging Runtime
Integrating Grids and Multicore Systems Proceedings of eScience 2007 Conference

Bangalore India December 10-13 2007
http://grids.ucs.indiana.edu/ptliupages/publications/CCRSept23-07eScience07.pdf

10. Dennis Gannon and Geoffrey Fox, Workflow in Grid Systems Concurrency and
Computation: Practice & Experience 18 (10), 1009-19 (Aug 2006),
http://grids.ucs.indiana.edu/ptliupages/publications/Workflow-overview.pdf

11. Henrik Frystyk Nielsen, George Chrysanthakopoulos, “Decentralized Software Services
Protocol – DSSP” http://msdn.microsoft.com/robotics/media/DSSP.pdf

12. “Concurrency Runtime: An Asynchronous Messaging Library for C# 2.0” George
Chrysanthakopoulos Channel9 Wiki Microsoft
http://channel9.msdn.com/wiki/default.aspx/Channel9.ConcurrencyRuntime

13. “Concurrent Affairs: Concurrent Affairs: Concurrency and Coordination Runtime”,
Jeffrey Richter Microsoft
http://msdn.microsoft.com/msdnmag/issues/06/09/ConcurrentAffairs/default.aspx

14. Microsoft Robotics Studio is a Windows-based environment that includes end-to-end
Robotics Development Platform, lightweight service-oriented runtime, and a scalable and
extensible platform. For details, see http://msdn.microsoft.com/robotics/

15. Georgio Chrysanthakopoulos and Satnam Singh “An Asynchronous Messaging Library
for C#”, Synchronization and Concurrency in Object-Oriented Languages (SCOOL) at
OOPSLA October 2005 Workshop, San Diego, CA.
http://urresearch.rochester.edu/handle/1802/2105

16. SALSA Multicore research Web site, http://www.infomall.org/salsa
17. Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae, George

Chrysanthakopoulos, Henrik Frystyk Nielsen Parallel Clustering and Dimensional
Scaling on Multicore Systems Technical Report February 21 2008
http://grids.ucs.indiana.edu/ptliupages/publications/SALSAtechreportfeb21-08.pdf

18. Geoff M. Downs, John M. Barnard Clustering Methods and Their Uses in Computational
Chemistry, Reviews in Computational Chemistry, Volume 18, 1-40 2003

19. K-means algorithm at Wikipedia http://en.wikipedia.org/wiki/K-means_algorithm
20. Rose, K. Deterministic annealing for clustering, compression, classification, regression,

and related optimization problems, Proceedings of the IEEE Vol. 86, pages 2210-2239,
Nov 1998

21. “The Sourcebook of Parallel Computing” edited by Jack Dongarra, Ian Foster, Geoffrey
Fox, William Gropp, Ken Kennedy, Linda Torczon, and Andy White, Morgan Kaufmann,
November 2002.

22. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. Walker Solving Problems in
Concurrent Processors-Volume 1, Prentice Hall, March 1988

23. Fox, G. C., Messina, P., Williams, R., “Parallel Computing Works!”, Morgan Kaufmann,
San Mateo Ca, 1994.

24. How to Align Data Structures on Cache Boundaries, Internet resource from Intel,
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/43837.htm

25. Message passing Interface MPI Forum http://www.mpi-forum.org/index.html
26. MPICH2 implementation of the Message-Passing Interface (MPI) http://www-

unix.mcs.anl.gov/mpi/mpich/
27. Mark Baker, Bryan Carpenter, and Aamir Shafi. MPJ Express: Towards Thread Safe Java

HPC, Submitted to the IEEE International Conference on Cluster Computing (Cluster
2006), Barcelona, Spain, 25-28 September, 2006. http://www.mpj-
express.org/docs/papers/mpj-clust06.pdf

28. mpiJava Java interface to the standard MPI runtime including MPICH and LAM-MPI
http://www.hpjava.org/mpiJava.html

29. Java Grande http://www.javagrande.org

