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Abstract. We present a performance analysis of a scalable parallel data 
clustering algorithm with deterministic annealing for multicore systems that 
compares MPI and a new C# messaging runtime library CCR (Concurrency and 
Coordination Runtime) with Windows and Linux and using both threads and 
processes. We investigate effects of memory bandwidth and fluctuations of run 
times of loosely synchronized threads. We give results on message latency and 
bandwidth for two processor multicore systems based on AMD and Intel 
architectures with a total of four and eight cores. We compare our C# results 
with C using MPICH2 and Nemesis and Java with both mpiJava and MPJ 
Express. We show initial speedup results from Geographical Information 
Systems and Cheminformatics clustering problems. We abstract the key 
features of the algorithm and multicore systems that lead to the observed 
scalable parallel performance. 
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Threads, Windows 

1   Introduction 

Multicore architectures are of increasing importance and are impacting client, server 
and supercomputer systems [1-6]. They make parallel computing and its integration 
with large systems of great importance as “all” applications need good performance 
rather than just the relatively specialized areas covered by traditional high 
performance computing. In this paper we consider datamining as a class of 
applications that has broad applicability and could be important on tomorrow’s client 
systems. Such applications are likely to be written in managed code (C#, Java) and 
run on Windows (or equivalent client OS for Mac) and use threads. This scenario is 
suggested by the recent RMS (Recognition, Mining and Synthesis) analysis by Intel 
[5]. In our research, we are looking at some core datamining algorithms and their 
application to scientific areas including cheminformatics, bioinformatics and 
demographic studies using GIS (Geographical Information Systems). On the 
computer science side, we are looking at performance implications of both multicore 
architectures and use of managed code. Our close ties to science applications ensures 



that we understand important algorithms and parameter values and can generalize our 
initial results on a few algorithms to a broader set. 

In this paper we present new results on a powerful parallel data clustering 
algorithm that uses deterministic annealing [20] to avoid local minima. We explore in 
detail the sources of the observed synchronization overhead. We present the 
performance analysis for C# and Java on both Windows and Linux and identify new 
features that have not been well studied for parallel scientific applications. This 
research was performed on a set of multicore commodity PC’s summarized in table 1; 
each has two CPU chips and a total of 4 or 8 CPU cores. The results can be extended 
to computer clusters as we are using similar messaging runtime but we focus in this 
paper on the new results seen on the multicore systems. 

 
Table 1: Multicore PC’s used in paper 

AMD4: 4 core 2 Processor HPxw9300 workstation, 2 AMD Opteron CPUs Processor 
275 at 2.19GHz, L2 Cache 2x1MB (for each chip), Memory 4GB.  XP 64bit & Server 2003 

Intel4: 4 core 2 Processor Dell Precision PWS670, 2 Intel Xeon CPUs at 2.80GHz, L2 
Cache 2x2MB, Memory 4GB. XP Pro 64bit 

Intel8a: 8 core 2 Processor Dell Precision PWS690, 2 Intel Xeon CPUs E5320 at 
1.86GHz, L2 Cache 2x4M, Memory 8GB. XP Pro 64bit 

Intel8b: 8 core 2 Processor Dell Precision PWS690, 2 Intel Xeon CPUs x5355 at 
2.66GHz, L2 Cache 2X4M, Memory 4GB. Vista Ultimate 64bit and Fedora 7 

Intel8c: 8 core 2 Processor Dell Precision PWS690, 2 Intel Xeon CPUs x5345 at 
2.33GHz, L2 Cache 2X4M, Memory 8GB. Redhat 

 
Section 2 discusses the CCR and SALSA runtime described in more detail in [7-9]. 
Section 3 describes our motivating clustering application and explains how it 
illustrates a broader class of datamining algorithms [17]. These results identify some 
important benchmarks covering memory effects, runtime fluctuations and 
synchronization costs discussed in sections 4-6. There are interesting cache effects 
that will be discussed elsewhere [8]. Conclusions are in Section 8 while section 7 
briefly describes the key features of the algorithm and how they generalize to other 
datamining areas. All results and benchmark codes presented are available from 
http://www.infomall.org/salsa [16] 

2 Overview of CCR and SALSA Runtime model 

We do not address possible high level interfaces such as OpenMP or parallel 
languages but rather focus on lower level runtime to which these could map. In other 
papers [7-9] we have explained our hybrid programming model SALSA (Service 
Aggregated Linked Sequential Activities) that builds libraries as a set of services and 
uses simple service composition to compose complete applications [10]. Each service 
then runs on parallel on any number of cores – either part of a single PC or spread out 
over a cluster. The performance requirements at the service layer are less severe than 
at the “microscopic” thread level for which MPI is designed and where this paper 
concentrates. We use DSS (Decentralized System Services) which offers good 
performance with messaging latencies of 35 µs between services on a single PC [9]. 
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Applications are built from services; services are built as parallel threads or processes 
that are synchronized with low latency by locks, MPI or a novel messaging runtime 
library CCR (Concurrency and Coordination Runtime) developed by Microsoft 
Research [11-15].  

CCR provides a framework for building general collective communication where 
threads can write to a general set of ports and read one or more messages from one or 
more ports. The framework manages both ports and threads with optimized 
dispatchers that can efficiently iterate over multiple threads. All primitives result in a 
task construct being posted on one or more queues, associated with a dispatcher. The 
dispatcher uses OS threads to load balance tasks. The current applications and 
provided primitives support a dynamic threading model with some 8 core capabilities 
given in more detail in [9]. CCR can spawn handlers that consume messages as is 
natural in a dynamic search application where handlers correspond to links in a tree. 
However one can also have long running handlers where messages are sent and 
consumed at a rendezvous points (yield points in CCR) as used in traditional MPI 
applications. Note that “active messages” correspond to the spawning model of CCR 
and can be straightforwardly supported. Further CCR takes care of all the needed 
queuing and asynchronous operations that avoid race conditions in complex 
messaging. CCR is attractive as it supports such a wide variety of messaging from 
dynamic threading, services (via DSS described in [9]) and MPI style collective 
operations discussed in this paper. 

For our performance comparisons with MPI, we needed rendezvous semantics 
which are fully supported by CCR and we chose to use the Exchange pattern 
corresponding to the MPI_SENDRECV interface where each process (thread) sends 
and receives two messages equivalent to a combination of a left and right shift with its 
two neighbors in a ring topology. Note that posting to a port in CCR corresponds to a 
MPISEND and the matching MPIRECV is achieved from arguments of handler 
invoked to process the port.  

3 Deterministic Annealing Clustering Algorithm 

We are building a suite of data mining services to test the runtime and two layer 
SALSA programming model. We start with data clustering which has many important 
applications including clustering of chemical properties which is an important tool 
[18] for finding for example a set of chemicals similar to each other and so likely 
candidates for a given drug. We are also looking at clustering of demographic 
information derived from the US Census data and other sources. Our software 
successfully scales to cluster the 10 million chemicals in NIH PubChem and the 6 
million people in the state of Indiana. Both applications will be published elsewhere 
and the results given here correspond to realistic applications and subsets designed to 
test scaling. We use a modification of the well known K-means algorithm [19], using 
deterministic annealing [20], that has much better convergence properties than K-
means and good parallelization properties.  

For a set of data points X(labeled by x) and cluster centers Y(labeled by k), one 
gradually lowers the annealing temperature T and iteratively calculates: 
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Fig. 1.  Parallel Overhead for GIS 2D Clustering on Intel8b 
using C# with 8 threads (cores) and CCR Synchronization. 
We use two values (10, 20) for the number of clusters and 
plot against the reciprocal of the number of data points 

Y(k) = ∑ x p(X(x),Y(k)) X(x) 
p(X(x),Y(k)) = exp(-d(X(x),Y(k))/T) p(x) / Zx                       (1) 
with Zx = ∑ k exp(-d(X(x),Y(k))/T) 

Here d(X(x),Y(k)) is the distance defined in space where clustering is occurring. 
Parallelism can be implemented by dividing points X between the cores and there is a 
natural loosely synchronous barrier where the sums in each core are combined in a 
reduction collective to complete the calculation in (1). Rather than plot speed-up, we 
focus in more detail on the deviations from “perfect speed-up (of P)”. Such parallel 
applications have a well understood performance model that can be expressed in 
terms of a parallel overhead f(n,P) (roughly 1-efficiency) where different overhead 
effects are naturally additive. Putting T(n,P) as the execution time on P cores or more 
generally processes/threads, we can define 

Overhead f(n,P) = (PT(n,P)-T(Pn,1))/T(Pn,1)        (2)                
and efficiency ε = 1/(1+f) and Speed-up = εP 

For the algorithm of eqn. (1), f(n,P) should depend on the grain size n where each 
core handles n data points and in fact f(n,P) should decrease proportionally to the 
reciprocal of the grain size with a coefficient that depends on synchronization costs 

[6, 21-23]. This effect is 
clearly seen in fig. 1, which 
shows good speed-up on 8 
cores of around 7.5 (f(n,P )~ 
.05) for large problems.  
However we do not find 
f(n,P) going fully to zero as n 
increases. Rather it rather 
erratically wanders around a 
small number 0.02 to 0.1 as 
parameters are varied. The 
overhead also decreases as 
shown in fig. 1 as the number 
of clusters increases. This is 

expected from (1) as the ratio 
of computation to memory 
access is proportional to the 
number of clusters. In fig. 2 
we plot the parallel overhead 

as a function of the number of clusters for two large real problems coming from 
Census data and chemical property clustering. These clearly show the rather random 
behavior after f(n,8) decreases to a small value corresponding to quite good 
parallelism – speedups of over 7 on 8 core systems. The results in fig. 2(b) show 
lower asymptotic values which were determined to correspond to the binary data used 
in Chemistry clustering. This problem showed fluctuations similar in size to 2(a) if 
one used floating point representation for the Chemistry “fingerprint” data. Of course 
the binary choice shown in fig. 2(b) is fastest and the appropriate approach to use. 
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Looking at this performance in more detail we identified effects from memory 
bandwidth, fluctuations in thread run time and cache interference [24]. We present a 
summary of the first two areas here and will present cache effects and details 
elsewhere [7, 8]. 

4 Memory Bandwidth 

In fig. 3, we give typical results 
of a study of the impact of 
memory bandwidth in the 
different hardware and software 
configurations of Table 1. We 
isolate the kernel of the 
clustering algorithm of sec. 2 
and examine its performance as a 
function of grain size n, number 
of clusters and number of cores. 
We employ the scaled speed up 
strategy and measure thread 
dependence at three fixed values 
of grain size n (10,000, 50,000 
and 500,000). All results are 
divided by the number of 
clusters, the grain size, and the 
number of cores and scaled so 
the 10,000 data point, one 
cluster, one core result becomes 
1 and deviations from this value 
represent interesting 

performance effects. We display cases for 1 cluster where memory bandwidth effects 
could be important and also for 80 clusters where such effects are small as one 
performs 80 floating point steps on every variable fetched from memory. Although 
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Fig. 2.  Parallel Overhead defined in (2) as a function of the number of clusters for a) 2 dimensional GIS 
data for Indiana in over 200,000 blocks and 40,000 compounds each with 1052 binary properties 
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Fig. 3.   Scaled Run time on Intel8b using Vista and C# 
with CCR for synchronization on Clustering Kernel for 
three dataset sizes with 10,000 50,000 or 500,000 points 
per thread(core). Each measurement involved averaging 
over at least 1000 computations separated by 
synchronization whose small cost is not included in results 



we studied C, C#, Windows and Linux, we only present Windows C# results in fig. 3. 
C with Windows shows similar effects but of smaller magnitude while Linux shows 
small effects (the results for all n and cluster counts are near 1). Always we use 
threads not processes and C uses locks and C# uses CCR synchronization. Data is 
stored so as to avoid any cache line (false sharing) effects [8, 24]. The results for one 
cluster in fig. 3(a) clearly show the effect of memory bandwidth with scaled run time 
increasing significantly as one increases the number of cores used. The performance 
improves in fig. 3(b) (scaled runtime < 1) with more clusters when the memory 
demands are small. In this benchmark the memory demands scale directly with 
number of cores and inversely with number of clusters. A major concern with 
multicore system is the need for a memory bandwidth that increases linearly with the 
number of cores. In fig. 3(a) we see a 50% increase in the run time for a grain size of 
10,000 and 1 cluster. This is for C# and Windows and the overhead is reduced to 22% 
for C on Windows and 13% for C on Linux. Further we note that one expect the 
10,000 data point case to get excellent performance as the dataset can easily fit in 
cache and minimize memory bandwidth needs. However we see similar results 
whether or not dataset fits into cache. This must be due to the complex memory 
structure leading to cache conflicts. We get excellent cache performance for the 
simple data structures of matrix multiplication. 

In all cases, we get small overheads for 80 clusters (and in fact for cluster counts 
greater than 4) which explains why the applications of sec. 2 run well. There are no 
serious memory bandwidth issues in cases with several clusters and in this case that 
dominates the computation. This is usual parallel computing wisdom; real size 
problems run with good efficiency as long as there is plenty of computation. [6, 21-
23] The datamining cases we are studying satisfy this and we expect them to run well 
on multicore machines expected over the next 5 years. 

5 Synchronization Performance 

The synchronization performance has been discussed in detail previously [9] for CCR 
where we discussed dynamic threading in detail showing it had an approximate 5µs 
overhead. Here we expand the previous brief discussion of the rendezvous (MPI) style 
performance with table 2 giving some comparisons between C, C# and Java for the 
MPI Exchange operation (defined in section 2) running on the maximum number of 
cores (4 or 8) available on the systems of table 1. Results for the older Intel8a are 
available online [16]. In these tests we use a zero size message. Note that the CCR 
Exchange operation timed in table 2 has the full messaging transfer semantics of the 
MPI standards but avoids the complexity of some MPI capabilities like tags [25-27]. 
We expect that future simplified messaging systems that like CCR span from 
concurrent threads to collective rendezvous’s will chose such simpler 
implementations. Nevertheless we think that table 2 is a fair comparison.  Note that in 
the “Grains” column, we list number of concurrent activities and if they are threads or 
processes. These measurements correspond to synchronizations occuring roughly 
every 30µs and were averaged over 500,000 such synchronizations in a single run. 
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The optimized Nemesis version of MPICH2 gives best performance while CCR with 
for example 20µs latency on Intel8b, outperforms “vanilla MPICH2”. We can expect 
CCR and C# to improve and compete in performance with systems like Nemesis 
using the better optimized (older) languages. 

Table 2: MPI Exchange Latency 
Machine OS Runtime Grains Latency µs 

Intel8c 
 Redhat 

MPJE 8 Procs 181 
MPICH2 8 Procs 40.0 

MPICH2 Fast Option 8 Procs 39.3 
Nemesis 8 Procs 4.21 

Intel8c 
 Fedora 

MPJE 8 Procs 157 
mpiJava 8 Procs 111 
MPICH2 8 Procs 64.2 

Intel8b 

Vista MPJE 8 Procs 170 

Fedora MPJE 8 Procs 142 
mpiJava 8 Procs 100 

Vista CCR 8 Thrds 20.2 

AMD4 

XP MPJE 4 Procs 185 

Redhat 
MPJE 4 Procs 152 

mpiJava 4 Procs 99.4 
MPICH2 4 Procs 39.3 

XP CCR 4 Thrds 16.3 
Intel4 XP CCR 4 Thrds 25.8 

We were surprised by the uniformly poor performance of MPI with Java. Here the old 
mpiJava invokes MPICH2 from a Java-C binding while MPJ Express [27] is pure 
Java., It appears threads in Java currently are not competitive in performance with 
those in C#. Perhaps we need to revisit the goals of the  old Java Grande activity [29]. 
As discussed earlier we expect managed code (Java and C#) to be of growing 
importance as client multicores prolifergate so good parallel multicore Java 
performance is important.  

6  Performance Fluctuations 

We already noted in Sec. 3 that our performance was impacted by fluctuations in run 
time that were bigger than seen in most parallel computing studies that typically look 
at Linux and processes whereas our results are mainly for Windows and threads. In 
figs 4 and 5 we present some results quantifying this using the same “clustering 
kernel” introduced in Sec. 4.  We average results over 1000 synchronization points in 
a single run. In figs. 4 and 5 we calculate the standard deviation of the 1000P 
measured thread runtimes gotten if P cores are used. Our results show much larger 
run time fluctuations for Windows than for Linux and we believe this effect leads to 
the 2-10% parallel overheads seen already in fig. 2. These figures also show many of 
the same trends of earlier results. The smallest dataset (10,000) which should be 
contained in cache has the largest fluctuations. C and Linux show lower fluctutions 
than C# and Windows. Further turning to Linux, Redhat outperforms Fedora ( shown 
in [9]). C# in fig. 4 has rather large (5% or above) fluctuations in all cases considered.  



Note our results with Linux are all obtained with threads and so are not directly 
comparable with traditional MPI Linux measurements that use processes. Processes 

are better isolated from each other in both cache and system effects and so it is 
possible that these fluctuations are quite unimportant in past scientific programming 
studies but significant in our case. Although these fluctuations are important in the 
limit of large grain size when other overheads are small, they are never a large effect 
and do not stop us getting excellent speedup on large problems. 

7 Generalization to other Datamining Algorithms 

The deterministic annealing clustering algorithm has exactly the same structure as 
other important datamining problems including dimensional scaling and Gaussian 
mixture models with the addition of deterministic annealing to mitigate the local 
minima that are a well known difficulty with these algorithms [17]. One can show 
[17] that one gets these different algorithms by different choices for Y(k), a(x), g(k), T 
and s(k) in equation (3). As in section 2, X(x) are the data points to be modeled and F 
the objective function to be minimized. 

2
1

1
( ) ln ( )exp{ 0.5( ( ) ( )) / ( ( ))}  

N
K

k
x

F T a x g k X x Y k Ts k
=

=

⎡ ⎤= − − −⎣ ⎦∑ ∑      (3) 

Thus we can immediately deduce that our results imply that scalable parallel 
performance can be achieved for all algorithms given by Equation (3). Further it is 
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Fig. 5.   Ratio of Standard Deviation to mean of thread execution time using Redhat on Intel8c (a,b) 
Linux and C with locks for synchronization on Clustering Kernel for three dataset sizes with 10,000 
50,000 or 500,000 points per thread (core). Fedora shows larger effects than Redhat 
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Fig. 4.   Ratio of Standard Deviation to mean of thread execution time  averaged over 1000 instances 
using XP on Intel 8a and C# with CCR for synchronization on Clustering Kernel for three dataset sizes 
with 10,000 50,000 or 500,000 points per thread (core).  
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interesting that the parallel kernels of these datamining algorithms are similar to those 
well studied by the high performance (scientific) computing community and need the 
synchronization primitives supported by MPI. The algorithms use the well established 
SPMD (Single Program Multiple Data) style with the same decomposition for 
multicore and distributed execution. However clusters and multicore systems use 
different implementations of collective operations at synchronization points. We 
expect this structure is more general than the studied algorithm set. 

8 Conclusions 

Our results are very positive for both using C# and for getting good multicore 
performance on important applications. We have initial results that suggest a class of 
datamining applications run well on current multicore architectures with efficiencies 
on 8 cores of at least 95% for large realistic problems. We have looked in detail at 
overheads due to memory, run time fluctuation and synchronizations. Our results are 
reinforced in [8, 9] with a study of cache effects and further details of issues covered 
in this paper. Some overheads such as runtime fluctuations are surprisingly high in 
Windows/C# environments but further work is likely to address this problem by using 
lessons from Linux systems that show small effects. C# appears to have much better 
thread synchronization effects than Java and it seems interesting to investigate this.  
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