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Automatic Ice Boundary Detection in Radar
Echograms based on Charged Particles Concept

Maryam Rahnemoonfar1∗, Member, IEEE, John Paden2, Geoffrey C. Fox3

Accelerated loss of ice from Greenland and Antarctica has
been observed in recent decades. Ice thickness is a key factor
in making predictions about the future of massive ice reser-
voirs and can be estimated by calculating the exact location of
the ice surface and bottom in radar imagery. Identifying the
locations of ice boundaries is typically performed manually
which is a very time consuming procedure. Here we propose
a novel approach which automatically detects the complex
topology of ice surface and bottom boundaries based on
charged particle concept. Here we first applied anisotropic
diffusion to remove the noise and enhance the image. At the
second step, we detected the contours in the image based
on Coulomb’s electrostatic law and the assumption that each
pixel is an electrically charged particle. The final ice surface
and bottom are detected based on the projection profile of
the contours. The results are evaluated on a large dataset of
airborne radar imagery collected during IceBridge mission
over Antarctica and show promising results with respect to
hand-labeled ground truth and an state-of-the-art algorithm.

Index Terms—Remote sensing, image analysis, radar

I. INTRODUCTION

Serious damages have been caused to our environment by
global warming. In recent decades, accelerated loss of ice from
Greenland and Antarctica has been observed [1]. The melting
of polar ice sheets and mountain glaciers has a significant
influence on sea level rise and flooding of coastal regions. The
Intergovernmental Panel on Climate Change (IPCC) estimates
that sea level could increase by 26 − 98cm by the end of
this century. The large range in predicted sea-level rise can
be partially attributed to an incomplete understanding of bed
topography and basal conditions of fast-flowing regions of
the ice sheets in Greenland and Antarctica. Therefore precise
calculation of ice thickness is very important for sea level and
flood monitoring. Moreover the shape of the landscape hidden
beneath the thick ice sheets is a key factor in predicting ice
flow and their future contribution to sea level rise in response
to a changing climate. Therefore, it is important to develop
fully automatic techniques for detecting ice surface and sub-
glacial topography hidden beneath the thick ice sheets. To
provide important information about ice sheet thickness, the
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multichannel coherent radar depth sounder was used during the
IceBridge mission [2] . In this work the images are the CReSIS
standard output product [3] and by using pulse compression,
synthetic aperture radar (SAR) processing, and multi-looking
they are formed. The complete processing details are provided
in Gogineni et al. [4]. Figure 1 shows a sample radar echogram
gathered by the multichannel coherent radar depth sounder
where the top line is the boundary of ice and air, ice surface,
and the bottom line is the boundary between ice and the sub-
glacial topography, ice bottom. The horizontal axis is the flight
path and the vertical axis is the ice depth.

Fig. 1. Ice surface and bottom depicted in radar echograms.

As it can be seen in Figure 1 the ice bottom in radar
echogram suffer from low signal to interference and noise
ratios (SINR). Low SINR is caused by several factors such
as signal attenuation while traveling through ice, radar clutter
energy, and thermal noise and occasional electromagnetic
interference. Moreover, the ice bottom shape varies from flat
to mountainous. Finally, artifacts in the data, such as surface
multiples, can lead to false identification of the ice bottom
layer. These are all the challenging factors in automatic ice
and bottom detection.

In this paper a novel contour detection method is developed
to automatically identify the ice surface and bottom layers in a
large dataset of radar imagery. In this approach, an electrically
charged particle plays a role of a pixel that has electrostatic in-
teraction with other neighboring particles/pixels. The grayscale
intensity of the pixel will represent electrical charge of each
particle indirectly. After setting some rules to create similar
characteristics between electrical charges and image pixels, a
novel kernel and contour detection formula is developed based
on the interaction between charged particles and their electrical
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fileds . To improve the quality of counter detection, the images
were first enhanced by anisotropic diffusion [5] and the final
layers were extracted by calculating the local maxima in the
projection profile. After this introduction, related works will be
reviewed in section 2. The details of the proposed method will
be discussed in section 3. Experimental results and evaluation
will be discussed in section 4. Finally conclusion is drawn in
section 5.

II. RELATED WORKS

For layer finding and ice thickness in radar images the
common practice is that human experts mark ice sheet layer
and bedrock by hand, which is a very time consuming and
tiresome task and may create errors. In recent years, several
semi-automated and automated methods have been introduced
in the literature [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23].

Freeman et al. [9] and Ferro & Bruzzone [8] extracted ice
layers from the shallow subsurface radar on NASA’s Mars
reconnaissance Orbiter (SHARAD). Crandall et al [6] used
probabilistic graphical models for detecting ice layer boundary
in echogram images from Greenland and Antarctica. The
extension of this work was presented in [14] where they
used Markov-Chain Monte Carlo to sample from the joint
distribution over all possible layers conditioned on an image. A
Gibbs sampling instead of dynamic programming based solver
was used for performing inference. The problem with using
graphical models is that it needs a lot of training samples
(around half of the actual dataset) which can be very time-
consuming to be labeled manually by a human. In another
work, Gifford [11] compared the performance of two methods,
edge based and active contour, for automating the task of
estimating polar ice and bedrock layers from airborne radar
data acquired over Greenland and Antarctica. They showed
that their edge-based approach offers faster processing but
suffers from lack of continuity and smoothness that active
contour provides. Mitchell et al [15] used a level set technique
for estimating bedrock and surface layers. However, for each
single image the user needs to re-initialize the curve manually
and as a result the method is quite slow and was applied
only to a small dataset. This problem was fixed in [21], [22]
where authors introduced a distance regularization term in
the level set approach to maintain the the regularity of level
set intrinsically. Therefore, it does not need any manual re-
initialization and was automatically applied on a large dataset.
However, their technique has a difficulty in detecting the ice
bottom when it is faint. Our proposed approach based on
electric charged particles address this issue efficiently.

Most of the pioneering methods in contour detection are
based on quantifying the presence of a boundary at a given
location in the image. The Roberts [24], Sobel, and Prewitt
[25] operators detect edges by convolving an image with given
operators. Marr and Hildreth [26] use zero crossings of the
Laplacian of Gaussian operator. The Canny method [27] uses
non-maximum suppression and hysteresis thresholding steps
to model sharp discontinuities in a given image. In recent
years, new contour detection approaches have been explored

such as methods based on statistical approaches [28] [29],
morphological gradients [30], [31], Contour saliency [32],
active contours [33] [34] [35] [36], neural networks [37]
[38], fuzzy logics [39] [40], rule base [41], gravity [42] [43],
supervised learning [44], hierarchal segmentation [45] and
sparse code gradient [46]. Although recent methods proved to
outperform the old methods, most common implementations
still concern the simple pioneering methods.

Our proposed method is inspired by the gravitational
method in [42]. The edge detection methodology in [42] is
based on theory of universal gravity. Here, we used Coulomb’s
Law of electrostatic force [47] to extract the image contours.
There are some differences between gravitational force and
electrostatic force. One major difference lies in the strength of
the forces. The gravitational attraction between two electrons
is only 8.22 × 10−37 of the electrostatic force of repulsion
at the same separation. Another difference is that the gravita-
tional force is concerned with large masses and always attracts,
while electrical forces are concerned with small particles and
attract when the electrical charges are opposite and repel if the
charges are similar. We believe having both attractive and re-
pulsive forces will improve the contour detection performance.

III. METHODOLOGY

Our method consists of three main steps: 1-anisotropic
diffusion to remove the noise and enhance the quality of the
image while preserving the edges. 2-ElFi method which is our
proposed contour detection algorithm based on the theory of
electrostatic and 3-projection profile to extract the layers of
ice surface and bottom from the output of contour image.

A. Anisotropic Diffusion

Radar imagery suffers from low signal to interference and
noise ratios (SINR). It is necessary to remove noise prior
to any contour detection algorithm. However most of the
enhancing techniques, in addition to removing noise will affect
the quality of edges and contours. Here we used anisotropic
diffusion technique[5] which remove the noise while preserv-
ing the contour’s quality.

The anisotropic diffusion equation is defined as[5]:{
It = div (c (x, y, t)∇I)
It = c (x, y, t) ∆I +∇c.∇I (1)

where div is divergence operator, ∇ is the gradient operator
and ∆ is the Laplacian operator. Assuming c (x, y, t) as a
constant, the isotropic heat diffusion equation will be:

It = c∆I (2)

This method undergoes smoothing filter within a region as
opposed to smoothing across the boundaries by setting the
conduction coefficient in the interior to be 1 and 0 at the
boundaries of each region. Therefore, the blurring occurs
separately in each region with no interaction between regions,
which result in sharp boundaries.
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B. Contour detection based on electric field

To detect the boundary of ice surface and bottom layers,
we developed a novel contour detection technique based on
electric field (ElFi).

In the ElFi method, every pixel is assumed to be an
electrically charged particle that has electrostatic interaction
with other neighboring particles. As it can be seen from Figure
2, charges are either positive or negative and the electrical
force between them can be attractive or repulsive. The type of
the force, attractive or repulsive, determines the electric field
direction, which can be used for contour detection. Since our
goal is to find the effect of neighboring pixel on the central
pixel, we will use the concept of electrical field instead of
electrical force.

Fig. 2. Repulsive (a, b) and attractive (c) force between electrical charges

To be able to apply the electric field concept on pixel values,
first, we need to create similar conditions between charged
particles in the real world and the pixels in the image. By
comparing the pixel characteristic with particle characteristic,
it can be seen that each particle in the real world has two
characteristics: firstly, it has a small charge; secondly, the
charge can be positive or negative. The pixel values in grey
level image vary between 0 and 255 and they are always
positive value. Therefore, in the first step, pixel values will
be transferred to a range more similar to electrically charged
particles according to equation 3:

qi =
2pi − 2n + 1

2n+1 − 1
(3)

where pi is the grey level value of pixel i and qi is the
equivalent electrical charge for that pixel. n is the number of
bits in the image.

After making pixels resemble electrical charges, it is time
to calculate the electrostatic field a pixel exerts on every other
pixel around it. Figure 3 shows the interaction of a central
pixel with its eight neighbors. As is depicted in Figure 3 for
a 3× 3 kernel, each pixel has eight neighbors. For four main
neighbors (horizontal or vertical), the distance to the central
pixel is 1 while it is

√
2 for diagonal neighbors.

Fig. 3. Distance and relationship between the central pixel and its 8 neighbor
pixels

The electric field of a point charge, which is located in the
center, can be obtained from Coulomb’s law:

~E1 =
~F

q1
(4)

where E1 is electric field of q1 particle.
This equation is computed for every neighbor of central

pixel. Strong attractive or repulsive electric field is due to a
high amount of electric charge of a particle. To detect contours,
we used the gradient of pixels rather than the magnitude of
each pixel. Therefore, when we are designing our kernel,
we use the absolute differential electric field to be able to
extract contours. The differential electric field for two neighbor
particles is calculated according to equation 5:

∆Ei (Qi) =
|Qi − q1|
|ri|2

~ri
|ri|

(5)

where Qi is the electric charge of the neighbor i and q1 is
the electric charge of central pixel. Finally, the vector sum of
all electrical fields is used to calculate the magnitude of signal
variation and to detect image contours. For example, for a 3*3
kernel in the image, the equation 5 would be in the following
form:

~E =

i+1∑
s=i−1

j+1∑
t=j−1

|Q (s, t)−Q(i, j)|
d2Q(s,t),Q(i,j)

(6)

where Q (s, t) is the electric charge of the neighbor pixel
and Q (i, j) is the electric charge of central pixel and d is the
distance between two pixels.

This equation can be written in the form of a kernel (Figure
4). At any point in the image, the response of kernel is the
sum of products of the kernel coefficients and the image pixels
encompassed by the filter. Convolution is performed by sliding
the kernel over the image, starting at the top left corner, to
move the kernel through all the positions where the kernel fits
entirely within the boundaries of the image.
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Fig. 4. Electric field 3× 3 kernel

Figure 5.b shows the result of applying the ElFi technique
on the enhanced SAR image ( Figure 5.a) where the top layer
is the ice surface and bottom layer is the ice bottom which
can be a bedrock or sea surface.

(a)

(b)

Fig. 5. (a) Enhanced SAR image by Anisotropic diffusion, (b) the result of
ElFi technique

C. Projection profile

As it can be seen in Figure 5.b the image contours are
highlighted where the ice surface and bottom have brighter
values. To extract the exact ice surface and bottom boundaries,
we calculated the local horizontal projection profile on every
5 pixels’ column. The two local maximum in the projection
profile (Figure 6) depicts the location of ice surface and
bedrock.

IV. EXPERIMENTAL RESULTS

We applied the proposed approach on the 2009 NASA
Operation IceBridge Mission. The images have a resolution
of 900 pixels in the horizontal direction, which covers around
50km on the ground, and 700 pixels in the vertical direction,

Fig. 6. Horizontal projection profile for local vertical columns

which corresponds to 0 to 4km of ice thickness. We applied
our method on total of 323 images and compared the results
with the ground-truth. The ground-truth images have been
produced by human annotators. Figure 7 shows the results
of our approach with respect to the ground-truth. Figure 7.a
shows the original image. Figure 7.b shows the result after
anisotropic diffusion. As it can be seen in this figure, the image
is enhanced while the edges are preserved. This stage is neces-
sary for reducing the noise. At the next step, the ElFi method
was applied on the enhanced image. As it can be seen in Figure
7.c ElFi method detects contours in the image. To highlight
the ice surface and bottom boundaries, the projection profile of
the ElFi result was calculated. Figure Figure 7.d shows all of
the points extracted from local maxima of projection profile.
Figure 7.e shows the ground-truth results acquired by manually
picked layers. The output of our approach shows a satisfactory
results compared to the manually picked interfaces.

Figure 8 shows the result of our algorithm with respect to
the ground-truth in a diverse dataset which includes images
with clutter (all rows), large variability of ice bottom shape
from flat (second and last rows) to mountainous (first and third
rows), surface multiples (second, forth, and fifth rows), and
partially invisible ice bottoms (first and last rows). Left column
in Figure 8 shows our results while the right column is the
ground-truth (manually picked layers by human).

To evaluate the performance of our approach, we calculated
precision (P), recall (R), and F-measure as follow:

R =
TP

TP + FN
(7)

P =
TP

TP + FP
(8)

where TP is true positive or correct result, FP is false positive
or unexpected result, FN is false negative or missing results,
and TN is true negative. Precision measures the exactness of a
classifier and recall measures the completeness of a classifier.
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(a)

(b)

(c)

(d)

(d)

Fig. 7. The result of our approach. a) original image, b) the enhanced
image after anisotropic diffusion, c) detected contours with ElFi technique,
d) detected ice surface and bottom after projection profile, e) ground-truth

They can be combined to produce a single metric known as F-
measure, which is the weighted harmonic mean of precision
and recall. The F-measure defined as:

F =
1

α 1
P + (1− α) 1

R

(9)

captures the precision and recall tradeoff. The F-measure
is valued between 0 and 1, where larger values are more
desirable. Table I shows the average precision, recall, and
F-measure on our entire dataset in comparison to the state-
of-the-art method [22]. As it can be seen in Table I, we
reached a higher accuracy in comparison to the state-of-the-art
technique. Part of this is due to the fact that our method is
able to detect the faint part of ice bottoms more accurately. By
having a closer look at the ice bottom of the image in the first
row of Figure 8 we notice that our algorithm is able to detect
the ice bottom especially the invisible part more accurately
while the technique in [22] have difficulty in detecting the
faint part of the ice bottom (see Figure 9).

Precision Recall F-measure
Our results 0.84 0.79 0.81

Rahnemoonfar et.al [22] 0.74 0.77 0.75
TABLE I

THE RESULT OF OUR APPROACH ON 2009 NASA OPERATION ICEBRIDGE
MISSION

V. CONCLUSION

In this paper we developed a novel approach which automat-
ically detects the complex topology of ice surface and bottom
boundaries based on Electric field (ElFi). Here we first applied
anisotropic diffusion to nd enhance the image while preserving
the edges. At the second step, the contours were detected based
on Coulomb’s electrostatic law and the assumption that each
pixel is an electrically charged particle. The final ice surface
and bottom were detected based on the projection profile of
the contours. The results were evaluated on a large dataset
of airborne radar imagery collected during IceBridge mission
over Antarctica and we reached high accuracy of 81% with
respect to hand-labeled ground truth. Our proposed technique
could detect the invisible part of ice bottom more accurate
than the state-of-the-art technique.
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