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Abstract

Deep learning-based methods have surpassed more tra-
ditional techniques on a wide range of problems, but nearly
all of this work has studied consumer photos, where pre-
cisely correct output is often not critical. It is less clear how
well these techniques may work on structured prediction
problems where finer-grained output with high precision is
required, such as in scientific imaging domains. Here we
consider the problem of segmenting echogram radar data
collected from the polar ice sheets, which is challenging
because segmentation boundaries are often very weak, and
there is a high degree of noise. We propose a multi-task spa-
tiotemporal neural network that combines 3D ConvNets and
Recurrent Neural Networks (RNNs) to estimate ice surface
boundaries from hundreds of sequences of tomographic
slices from radar, showing that: (a) 3D ConvNets and RNNs
are able to generate accurate well-structured outputs with-
out handmade pairwise potentials; (b) our model can ex-
tract ice-air and ice-bed surfaces simultaneously; and (c)
our model outperforms the state-of-the-art on this problem
but uses less non-visual evidence and is about 6 times faster.

1. Introduction

Three-dimensional imaging is widely used in scientific
research domains (e.g., biology, geology, medicine, and as-
tronomy) to measure the structure of objects and how they
change over time. Although the exact techniques differ de-
pending on the problem and materials involved, the com-
mon idea is that electromagnetic waves (e.g., X-ray, radar,
etc.) are sent into an object, and signal returns collected
in the form of sequences of topographic images are then
analyzed to estimate the object’s 3D structure. However,
analysis of these image sequences can be difficult even for
humans, since they are often full of noise and require inte-
grating evidence from multiple sources simultaneously.

As a particular example, an important part of modeling

Figure 1. A sample tomographic image taken by a ground-
penetrating radar system over a polar ice sheet. The image cap-
tures a vertical cross-section of the ice, where two material bound-
aries (the ice-air and ice-bedrock layer) are visible as bright curves
in the radar echogram.

and forecasting the effects of global climate change is to
understand polar ice. Hidden beneath the ice of the poles
is a rich and complex structure: the ice consists of multiple
layers that have accumulated over many thousands of years,
and the base is bedrock that has a complicated topography
just like any other place on Earth, with mountains, valleys,
and other features. Moreover, the ice sheets move over time,
and their movement is determined by a variety of factors, in-
cluding temperature changes, flows underneath the surface,
and the topography of the bedrock below and nearby. Ac-
curately estimating all of this rich structure is crucial for
understanding how ice will change over time, which in turn
is important for predicting the effects of melting ice associ-
ated with climate change.

Glaciologists traditionally had to drill ice cores to probe
the subsurface structure of polar ice, but advances in
ground-penetrating radar technology have revolutionized
this data collection process. But while these radar obser-
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vations can now be collected over very large areas, actually
analyzing the radar data to determine the structure of sub-
surface ice is typically done by hand [24]. This is because
the radar echograms produced by the data collection pro-
cess are very noisy: changes in atmospheric pressure, ice
composition, temperature, etc. affect radar signal returns in
complex ways. Relying on humans to interpret data not only
limits the rate at which datasets can be processed, but also
limits the type of analysis that can be performed: while a
human expert can readily mark ice sheet boundaries in a
single 2D radar echogram, doing this simultaneously over
thousands of echograms to produce a 3D model of an ice
bed, for example, is simply not feasible.

While several recent papers have proposed automated
techniques for segmenting layer boundaries in ice [5, 8,
12, 13, 17, 23, 25, 26, 35], none have approached the accu-
racy of even a quickly-trained undergraduate student anno-
tator [24], much less an expert. However, these techniques
have all relied on traditional image processing and computer
vision techniques, like edge detection, pixel template mod-
els, active contour models, etc. Most of these techniques
also rely on numerous parameters and thresholds that must
be tuned by hand. Some recent work reduces the number
of free parameters through graphical models that explicitly
model noise and uncertainty [8, 23, 26, 35], but still rely on
simple features.

In this paper, we apply deep networks to the problem of
ice boundary reconstruction in polar radar data. Deep net-
works have become the de facto standard technique across
a wide range of vision problems, including pixel labeling
problems. The majority of these successes have been on
consumer-style images, where there is substantial tolerance
for incorrect predictions. In contrast, for problems involv-
ing scientific datasets like ice layer finding, there is typically
only one “correct” answer, and it is important that the algo-
rithm’s output is as accurate as possible.

Here we propose a technique for combining 3D convo-
lutions and Recurrent Neural Networks (RNNs) to perform
segmentation in 3D, borrowing techniques usually used for
video analysis to instead characterize sequences of tomo-
graphic slice images. In particular, since small pixel value
changes only affect a few adjacent images, we apply 3D
convolutional neural networks to efficiently capture cross-
slice features. We extract these spatial and temporal fea-
tures for small neighborhoods of slices, and then apply an
RNN for detailed structure labeling across the entire 2D im-
age. Finally, layers from multiple images are concatenated
to generate a 3D surface estimate. We test our model on
extracting 3D ice subsurfaces from sequences of radar to-
pographic images, and achieve the state-of-the-art results in
both accuracy and speed.

2. Related Work
A number of methods have been developed for detect-

ing layers or surfaces of material boundaries from sequen-
tial noisy radar images. For example, in echograms from
Mars, Freeman et al. [13] find layer boundaries by apply-
ing band-pass filters and thresholds to find linear subsur-
face structures, while Ferro and Bruzzone [11] identify sub-
terranean features using iterative region-growing. Crandall
et al. [8] detect the ice-air and ice-bed layers in individ-
ual radar echograms by combining a pre-trained template
model and a smoothness prior in a probabilistic graphical
model. In order to achieve more accurate and efficient re-
sults, Lee et al. [23] utilize Gibbs sampling from a joint dis-
tribution over all candidate layers, while Carrer and Bruz-
zone [5] reduce the computational complexity with a divide-
and-conquer strategy. Xu et al. [35] extend the work to the
3D domain to reconstruct 3D subsurfaces using a Markov
Random Field (MRF).

In contrast, we are not aware of any work that has stud-
ied this application using deep neural networks. In the case
of segmenting single radar echograms, perhaps the closest
analogue is segmentation in consumer images [32]. Most
of this work differs from the segmentation problem we con-
sider here, however, because our data is much noisier, our
“objects” are much harder to characterize (e.g., two lay-
ers of ice look virtually identical except for some subtle
changes in texture or intensity), our labeling problem has
greater structure, and our tolerance for errors in the output
is lower.

For segmenting 3D regions, perhaps the closest related
work is in deep networks for video analysis, where the
frames of video can be viewed as similar to our tomographic
slices. Papers that apply deep networks to video applica-
tions focus on efficient ways to combine spatial and tempo-
ral information, and can be roughly categorized into three
classes: (1) combining both RGB frames for spatial features
and optical flow images for temporal features in two-stream
networks [29], (2) explicitly learning 3D spatiotemporal fil-
ters on image spaces through techniques such as C3D [31],
and (3) various combinations of both [4]. In order to obtain
video representations from per-frame or per-video-segment
features, it is a common practice to apply temporal pool-
ing to abstract into fixed-length per-video features [20, 29].
These approaches achieve significantly better classification
accuracy on video classification compared to traditional ap-
proaches of using hand-crafted features.

Recurrent Neural Networks (RNNs) and the specific ver-
sion we consider here – Gated Recurrent Units (GRUs) –
have been proposed for learning sequential data, such as
natural language sentences [10,14], programming language
syntax [19], and video frames [37]. A popular applica-
tion of RNNs recently [18, 33] is to generate image cap-
tions in combination with CNNs. In this case, CNNs are
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Figure 2. Architecture of our model for predicting multiple ice layers in tomographic images. We extract and reconstruct structured 3D
surfaces from sequential data by combining C3D and RNN networks. A C3D network serves as a robust feature extractor to capture both
local within-slice and between-slice features in 3D space, and an RNN serves to capture longer-range structure both within individual
images and across the entire sequence.

used to recognize image content while RNNs are used as
language models to generate new sentences. Video frames
are also naturally sequential data as adjacent frames share
similar content while differences reveal motion and other
changes over time. A large variety of studies [9, 27, 37]
share the common idea of applying RNNs on deep features
for each video frame and pooling or summing over each
as the final video feature. Other successful applications
of RNNs to interesting vision and natural language tasks
include recognizing multiple objects by making guided
glimpses in different parts of images [3], answering visual
questions [2, 22, 34], generating new images with varia-
tions [15, 36], reading lips [7], etc.

We build on this existing work but apply to the novel
domain of extracting and reconstructing structured 3D sur-
faces from sequential data by combining C3D and RNN
networks. In particular, we use the C3D network as a ro-
bust feature extractor to capture local-scale within-slice and
between-slice features in 3D space, and use the RNN to
capture longer-range structure both within single slices and
across the entire image sequence.

3. Technical Approach

Three-dimensional imaging typically involves sending
electromagnetic radiation (e.g., radar, X-ray, etc.) into a

region and collecting a sequence of cross-sectional tomo-
graphic slices I = {I1, I2, · · · , ID} that characterize re-
turned signals along the searching path. Each slice Id is a
2D tomographic image of size H ×W pixels. In the par-
ticular case of ice segmentation, we are interested in locat-
ingK layer surface boundaries between different materials.
Our output surfaces are highly structured, since there should
be exactly K surface pixels within any column of a given
tomographic image. We thus need to estimate the layer
boundaries in each individual slice, while incorporating ev-
idence from all slices jointly in order to overcome noise and
resolve ambiguities. Layer boundaries within each slice can
then be concatenated across slices to produce a 3D surface.

In this section, we describe the two important compo-
nents of our network framework: our multi-task 3D Convo-
lutional (C3D) Network that captures within-slice features
as well as evidence from nearby slices, and our Recurrent
Neural Network (RNN) which incorporates longer-range
cross-slice constraints. The overall architecture is shown
in Figure 2.

3.1. A Multi-task C3D Architecture

Traditional convolutional networks for tasks like object
classification and recognition lack the ability to model spa-
tiotemporal features in 3D space. More importantly, their
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Figure 3. Illustration of our C3D architecture in a special case of two layers (K = 2). All 3D convolution kernels are 3× 5× 3 with stride
1 in each dimension and the 3D pooling kernels are 1× 2× 1 with stride 2 in the height dimension of each image.

use of max or average pooling operations makes it imprac-
tical to preserve temporal information within the sequential
inputs. To address these problems, we use C3D networks
to capture local spatiotemporal features in our sequence of
input images. C3D has typically been used for video, but
our dataset has very similar characteristics: we have a se-
quence of tomographic slices taken in consecutive (discrete)
positions along the path of a penetrating wave source (a
moving plane, in the case of our ice application). Physi-
cal constraints on layer boundaries (e.g., that they should
be continuous and generally smooth) mean that integrating
information across adjacent images improves accuracy, es-
pecially when data within any give slice is particularly noisy
or weak.

Figure 3 illustrates details of our C3D architecture,
which is based on [31] but with several important modifi-
cations. Since the features of these structured layers in to-
mographic images are typically less complicated than con-
sumer photos, we use a simpler network architecture, as
follows. For the input, our model takes L consecutive
images, where L is a small odd number; we have tried
L = 1, 3, 5, · · · , 11, and choose 5 as the best empirical bal-
ance between running time and accuracy. Then, we use two
shared convolutional layers, each of which is followed by
rectifier (ReLU) units and max pooling operations, to ex-
tract low-level features for all layers. The key idea is that
different kinds of layer boundaries usually share similar de-
tailed patterns, although they have individual high-level fea-
tures, e.g., shapes. Inspired by the template model used
in [8, 35], our model uses rectangular convolutional filters
with a size of 3 × 5 × 3, since the important features lie
along the vertical dimension. Afterwards, the framework
is divided into K branches, each with 6 convolutional lay-
ers for modeling features specific to each type of ice layer
boundary. The filter size is the same as with the shared lay-
ers. Two fully-connected layers are appended to the net-
work for each ice layer, where the k-th ice layer has W
outputs Skd = {skd,1, skd,2, · · · , skd,W }, each corresponding
to a column of the tomographic slice Id, representing the
row coordinate of the k-th ice layer boundary within that
column. All training images have been labeled with ground
truth vectors, Gkd = {gkd,1, gkd,2, · · · , gkd,W } to indicate the

Figure 4. Operation visualization of the k-th GRU at iteration w.

correct position of these output layers in each image.
We train the C3D network using the L2 Euclidean loss

Lelu to encourage the model to predict correct labelings ac-
cording to human-labeled ground truth,

Lelu =
1

2

K∑
k=1

W∑
w=1

(skd,w − gkd,w)2.

We note that this formulation differs from what is typically
done with semantic and instance segmentation, which typi-
cally use Softmax and Cross-entropy as the target function.
This is because we are not assigning each pixel with a cate-
gorical label (e.g., dog, cat, etc.), but instead assigning each
column of the image with a row index. Since these labels
are ordinal, it makes sense to directly compare them and
minimize a Euclidean loss.

3.2. A Multi-task RNN Architecture

The C3D networks discussed above model features both
in the temporal and spatial dimensions, but only in very
small neighborhoods. For example, they can model the fact
that adjacent pixels within the same layer should have sim-
ilar grayscale value, but not that the layer boundaries them-
selves (which are usually separated by dozens of pixels at
least) are often roughly parallel to one another. Similarily,
CSD models some cross-slice constraints but only in a few
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Figure 5. Visualization of sample tomographic images with height H and width W . The first row shows the ice-air (red) and ice-bed
(green) layers labeled by human annotator, while the second row shows the predicted layers by our model. In general, our predictions not
only capture the precise location of each ice layer, but also have better smoothness over human labellings.

slices in either direction. We thus also include an RNN that
incorporates longer-range cross-slice evidence. Because of
the limited training data, we use Gated Recurrent Units
(GRUs) [6] since they have fewer learnable parameters than
another popular networks like Long Short-Term Memories
(LSTMs) [16].

GRU Training and Testing. The multi-task GRU frame-
work is shown in Figure 2. Our model for each individual
slice consists of K GRU cells, each responsible for predict-
ing the k-th layer in each image. Each GRU cell takes a
tomographic slice Id and the output of the previous GRU
layer as inputs, and producesW real value numbers indicat-
ing the predicted positions of the layer within each column
of the image. Each GRU also takes as input the output from
the GRU corresponding to the same ice layer in the previ-
ous slice, since these layer boundaries should be continuous
and roughly smooth. In previous work [8, 23, 35], this prior
knowledge was explicitly enforced by pairwise interaction
potentials, which were manually tuned by human experts.
Here we train RNNs to be able to model more general rela-
tionships in an fully learnable way.

We split each tomographic input image Id into separate
columns vectors Id,w, w = 1, 2, · · · ,W , each with width
1 and height H . Each column vector is projected to the
length of the GRU hidden state with a fully-connected layer.
During training time, the k-th GRU cell is operated for W
iterations, where each iteration w predicts the k-th layer
position in image column Id,w. Then in a given iteration
w, the k-th GRU takes the fused features (e.g., using sum
or max fusion) of the (resized) image column Id,w and the
hidden state hk−1

d,w as the input. It also receives the hidden

states hkd,w−1 of itself in iteration w − 1 as contextual in-
formation. More formally, the k-th GRU cell outputs a se-
quence of hidden state hkd,1, h

k
d,2, · · · , hkd,W with iteration

w = 1, 2, · · · ,W , and each hidden state hkd,w is followed
by a fully-connected layer to predict the actual layer posi-
tion skd,w as shown in Figure 4. Since each GRU has the
same operation for each 2D image Id, we drop d subscribe
for simplicity, and compute,

zw = sigmoid(UizF(Iw, hk−1
w ) + Uhzhw−1 + bz),

rw = sigmoid(UizF(Iw, hk−1
w ) + Uhzhw−1 + br),

nw = tanh(UinF(Iw, hk−1
w ) + Uhn(rw ◦ hw−1) + bn),

hw = zw ◦ hw−1 + (1− zw) ◦ nw, and
sw = Uyhw + by,

(1)

where ◦ is the Hadamard product, zw, rw, nw, hw, and sw
are the reset, input, new gate, hidden state, and output layer
position at time w, respectively. We use 512 neurons in
the hidden layer of the GRU. We train the GRU network
with the same L2 Euclidean loss Lelu as discussed in the
previous section.

3.3. Combination

We combine our proposed C3D model and GRU model
for efficiently encoding spatiotemporal information into ex-
plicit structured layer predictions. We use the C3D features
C3Dkθ(Id,k) (where C3Dkθ denotes the features with model
parameters θ for the k-th ice layer) to initialize the k-th
GRU’s hidden state h1, as shown in Figure 2. In the fig-
ure, Id is marked in red; this is the frame currently under

5
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Figure 6. Results of the extracted ice-air surfaces based on about 330 tomographic images. The x-axis corresponds to distance along the
flight path, and the y axis is the width of the tomographic images (W ), and the color is the height dimension (max height is H), which also
represents the depth from the radar.

Mean Error

Ice-air surface Ice-bed surface

Crandall [8] - 101.6
Lee [23] - 35.6
Xu et al. (without ice masks) [35] - 30.7
Xu et al. [35] - 11.9

Ours (RNN) 10.1 21.4
Ours (C2D) 8.8 15.2
Ours (C3D) 9.4 13.9
Ours (C2D + RNN) 8.4 14.3
Ours (C3D + RNN) 8.1 13.1

Table 1. Error in terms of the mean absolute column-wise differ-
ence compared to ground truth, in pixels.

Averaged Mean Error (pixels) Time (sec)

Xu et al. [35] 11.9 306
Ours (C3D + RNN) 10.6 51.6

Table 2. Performance evaluation comparing to the state of the art.
The accuracy is computed on the average of the ice-air and ice-bed
surfaces. The running time is measured by processing a sequence
of 330 tomographic images.

consideration, which is divided into columns which are then
provided to the GRU cells one at a time.

4. Experiments

4.1. Dataset

We use a dataset of the basal topography of the Cana-
dian Arctic Archipelago (CAA) ice sheets, collected by the
Multichannel Coherent Radar Depth Sounder (MCoRDS)
instrument [28]. It contains a total of 8 tomographic se-
quences, each with over 3,300 radar images corresponding
to about 50km of flight data per sequence. For training and
testing, we also have ground truth that identifies the posi-
tions of two layers of interest (the ice-air and ice-bed, i.e.,
K = 2). Several examples of these tomographic images
and their annotations are shown in Figure 5.

To evaluate our model, we split the data into training and
testing sets (60% as training images, 40% as testing images)
and learn the model parameters from the training images.
More formally, we wish to detect the ice-air and ice-bed lay-
ers in each image, then reconstruct their corresponding 3D
surfaces from a sequence of tomographic slices. We assume
the tomographic sequence has size C×D×H×W , where
C denotes the number of image channels (which is 1 for our
data), D is the number of slices in the sequence, and W and
H are the dimensions of each slice. We also parameterize
the output surfaces as sequences, Sk = {Sk1 , Sk2 , · · · , SkD},
and Skd = {skd,1, skd,2, · · · , skd,W }, where skd,w indicates the
row coordinate of the surface position for column w of slice
d, and skd,w ∈ [1, H] since the boundary can occur any-
where within a column. In our case, k ∈ {0, 1} to represent
the ice-air and ice-bed surfaces, respectively.
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Figure 7. Sample results of extracted ice-bed surfaces from a sequence of about 330 tomographic images. The x-axis corresponds to
distance along the flight path, and the y axis is the width of the tomographic images (W ), and the color is the height dimension (max height
is H), which also represents the depth from the radar.
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Normalization. Since images from different sequences
have different sizes (from 824 × 64 pixels to 2000 × 64
pixels), we resize all inputs images to 64 × 64 by us-
ing bicubic interpolation. For each image, we also nor-
malize their pixels values to the interval [−1, 1] and sub-
tract the mean value computed from the training images.
Further, since the coordinates of the ground truth labels
Gkd = {gkd,1, gkd,2, · · · , gkd,W } in each image Id are in ab-
solute coordinates, we follow [30] to normalize them to rel-
ative positions in each image. Formally, each ground truth
label is normalized as,

N(gkd,w) = 2(gkd,w −H/2)/H,

and we predict the absolute image coordinates skd,w as,

skd,w = N−1(Mθ(Id)),

where Mθ denotes our model with learnable parameters θ.

4.2. Implementation Details

We use PyTorch [1] to implement our model, and do the
training and all experiments on a system with Pascal Nvidia
Titan X graphics cards. Each tomographic sequence is di-
vided into 10 sub-sequences on average, and we randomly
choose 60% of them as training data and the remaining 40%
for evaluation. We repeat this training process (each time
from scratch) three times and report the average statistics
for evaluation.

For C3D training, we use the Adam [21] optimizer to
learn the network parameters with batch size of 128, each
containing 5 consecutive radar images. The training process
is stopped after 20 epochs, starting with a learning rate of
10−4 and reducing it in half every 5 epochs. The RNN train-
ing is applied with the same update rule and batch size, but
uses learning rate 10−3 multiplied by 0.1 every 10 epochs.

4.3. Evaluation

We evaluate our model on estimating the ice-air and ice-
bed surfaces from tomographic sequences of noisy radar
images. We run inference on the testing sub-sequences and
calculate the pixel-level errors with respect to the human-
labeled ground truth. We report the results with two sum-
mary statistics: mean deviation errors and running time. As
shown in Table 2, the mean error averaged across the two
different surfaces is about 10.6 pixels (where the mean ice-
air surface error is 8.1 pixels and mean ice-bed surface error
is 13.1 pixels), and the running time of processing a topo-
graphic sequence with 330 images is about 51.6 seconds.
Figure 6 and 7 show some example results of the ice-air and
ice-bed surfaces, respectively.

To give some context, we compare our results to pre-
vious state of the art techniques as baselines, and results

are presented in Table 1. Our first two baselines are Cran-
dall et al. [8] that detects the ice-air and ice-bed layers by
incorporating a template model with vertical profile and a
smoothness prior in a Hidden Markov Model, and Lee et
al. [23] that use Markov-Chain Monte Carlo (MCMC) to
sample from the joint distribution over all possible layers
conditioned on radar images. These techniques were de-
signed for 2D echogram segmentation and do not include
cross-slice constraints, so they perform poorly on this prob-
lem. Xu et al. [35] does use information between adjacent
images and achieves slightly better results than our tech-
nique (11.9 vs 13.1 mean pixel error), but that technique
also uses more information. In particular, they incorporate
additional extra non-visual metadata from external sources,
such as the “ice mask” which gives prior weak information
about anticipated ice thickness (e.g., derived from satellite
maps or other prior data). When we removed the ice mask
queue from their technique to make the comparison fair, our
technique beat theirs by a significant margin (13.1 vs 30.7
mean pixel error). Our approach has two additional advan-
tages: (2) it is able to jointly estimate both the ice-air and
ice-bed surfaces simultaneously, so it can incorporate con-
straints on the similarity of these boundaries, and (2) it re-
quires less than one minute to process an entire sequence of
slices, instead of over 5 minues for [35].

In addition to published methods, we also implemented
several baselines to evaluate each component of our deep ar-
chitecture. Specifically, we implemented: (a) a basic C2D
network using the same architecture with the 3D network
but with 2D convolution and pooling operations; (b) the
RNN network using the extracted features from the C2D
as the initial hidden state; (c) the C3D network alone with-
out the RNN; (d) the RNN network alone without the C3D
network. The results of these baselines are also shown in
Table 1. The results show that all components of the model
are important for achieving good performance, and that the
best accuracy is achieved by our full model.

5. Conclusion

We have presented an effective and efficient framework
for reconstructing smoothed and structured 3D surfaces
from sequences of tomographic images using deep net-
works. Our approach shows significant improvements over
existing techniques in three ways: (1) our model is able
to extract and reconstruct different material boundaries, si-
multaneously; (2) our model only uses the tomographic se-
quences as input without any extra evidence from other in-
struments or human experts; (3) our model improves the
feasibility of analyzing large-scale datasets by significant
decreases in the running time. We also demonstrated the
performance of our model by producing convincing ice-air
and ice-bed surfaces results against the state-of-the-art.
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