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Abstract— Heterogeneous parallel systems with multi processors 
and accelerators are becoming ubiquitous due to better cost-
performance and energy-efficiency. These heterogeneous 
processor architectures have different instruction sets and are 
optimized for either task-latency or throughput purposes. 
Challenges occur in regard to programmability and performance 
when running SPMD tasks on heterogeneous devices. In order to 
meet these challenges, we implemented a parallel runtime system 
that used to co-process SPMD computation on CPUs and GPUs 
clusters. Furthermore, we are proposing an analytic model to 
automatically schedule SPMD tasks on heterogeneous clusters. 
Our analytic model is derived from the roofline model, and 
therefore it can be applied to a wider range of SPMD applications 
and hardware devices. The experimental results of the C-means, 
GMM, and GEMV show good speedup in practical heterogeneous 
cluster environments. 
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I.  INTRODUCTION 
Heterogeneous parallel systems with multi-core, many-core 

processors and accelerators are becoming ubiquitous due to 
better cost-performance and energy-efficiency [1]. In mid-range 
HPC systems, a hybrid cluster with hundreds of GPU cards is 
capable of providing performance over one petaflops, while the 
same scale CPU-based cluster can provide one teraflops of peak 
performance. In high-end HPC systems, Titan, a hybrid cluster 
using CPUs provided by AMD, Inc and GPUs provided by 
NVIDIA, Inc became the fastest supercomputer in peak 
performance in 2012. 

Two fundamental measures for processor performance are 
task latency and throughput [1]. The traditional CPU is 
optimized for a lower latency of operations in clock cycles. 
However this usage pattern of using single core has been 
replaced by new system using multiple cores available to the 
overall system. This includes architecture such as Intel Xeon 
Phi, AMD Opteron. These multi-core and many-core CPUs can 
exploit modest parallel workloads for multiple tasks. These 
parallel tasks can have different instructions and work on 
different types of data sets, or MIMD. The current generation of 
graphical processing units (GPUs) contain large number of 
simple processing cores that are optimized for computation that 
contain single-instruction, multiple threads, or SIMT. GPUs 
sacrifice single thread execution speed in order to achieve 
aggregated high throughput across all of the threads. More 
recently, the CPUs system is augmented with other processing 
engines such as GPU, which we call this system as fat node. The 
purpose of fat nodes is to keep more processing on the local 
node. The AMD take a more aggressive strategy based on this 
idea and it has merged GPU/CPU with Fusion APU.   

The NVIDIA’s CUDA [2] and Khronos Group OpenCL [3] 
are the current and most widely used GPU programming tools. 

Both CUDA and OpenCL can compile source code into binaries 
to run on CPUs and GPUs, respectively. However, this process 
cannot be done automatically, and requires programming efforts 
from programmers. If these heterogeneous resources are 
assigned to users, then the CPU cores are idle while conducting 
computations on GPUs, or vice versa. In order to solve this 
problem, one should first meet the programmability challenge of 
how to map the SPMD computation to the CPUs and GPUs. 
NVIDIA uses the terminology SIMT, “Single Instruction, 
Multiple Threads” to present the programming model on the 
GPU. SIMT can be considered a hybrid between vector 
processing and hardware threads. The difficulty of writing 
CUDA program is that developers need to organize the kernel 
threads and carefully arrange the memory access patterns. For 
CPUs, the SPMD style computations are already presented on 
CPUs by using many programming tools such as Pthreads, 
OpenMP, and MPI. Other programmability difficulties are that 
the developer needs to explicitly split the input data, and to 
handle the communications across the cluster.  

The MapReduce [4] programming model was popularized at 
Google, and has been successfully applied to various SPMD 
applications on shared memory and distributed memory 
systems. Developing programs with the MapReduce program is 
easy because MapReduce runtime hides the implementation 
details such as data movement, task scheduling and work load 
balance issues from the developers. Research has proven that 
executing MapReduce computations on GPUs is not only 
feasible but also practical. Recently, some MapReduce like 
runtime frameworks have been used to run tasks on CPUs or 
GPUs simultaneously [5] [6]. However, these works usually are 
constrained when it comes to SPMD applications, or introduced 
extra overhead during computation, which is not general and 
desirable.  

The Roofline model [7] provides researchers with a 
graphical aid that provides realistic expectations of performance 
and productivity for a given application on a specific hardware 
device. It models the performance as the function of the 
arithmetic intensity of the target application and some 
performance related parameters of the hardware including 
DRAM, PCI-E bandwidth, and the peak performance of the 
CPU or the GPU. Generally, for applications that have low 
arithmetic intensity, such as log analysis and GEMV, the 
performance bottleneck lies in the disk I/O. For applications 
with moderate arithmetic intensity, such as FFT, and Kmeans, 
the performance bottleneck lies in the DRAM, and PCI-E 
bandwidth. For applications with high arithmetic intensity, such 
as DGEMM, the performance bottleneck lies in the L2 cache and 
the peak performance of computation unites.  All of these types 
of information are critical in regard to making scheduling 
decisions and therefore they can be used as parameters for the 
mathematic modeling of task scheduling on GPUs and CPUs. 



We implemented a parallel runtime system in order to co-
process the SPMD computation on modern NVIDIA GPUs and 
Intel Xeon CPUs on distributed memory systems. We provided 
a MapReduce like programming interface for developers. More 
importantly, we leveraged the roofline model to derive an 
analytic model that is used to create automatic scheduling plan 
for placing SPMD computations on the GPUs and CPUs cluster. 
In order to evaluate this scheduling model, we implemented C-
means, GMM and GEMV applications and conducted 
comprehensive performance studies.  

The rest of the paper is organized as follows. We give a brief 
overview of the related work in section 2. We illustrate the 
design and implementation of the runtime environment in 
Section 3. In Section 4, we introduce three applications and 
evaluate their performance and we conclude the paper in Section 
5.    

II. RELATED WORK 

A. High-Level Interface on Heterogeneous Devices 
Other high level programming interface for GPUs include 

the following research projects: The Mars MapReduce 
framework [8] was developed for a single NVIDIA G80 GPU 
and the authors reported up to a 16x speedup over the 4-core 
CPU-based implementation for six common web mining 
applications. However, Mars cannot run on multiple GPUs and 
is not capable of running computation on GPUs and CPUs 
simultaneously. StarPU [9] provides a unified execution model 
to be used to parallelize numerical kernels on a multi-core CPU 
equipped with one GPU. OpenACC [10] is a current framework 
that provides OpenMP style syntax and can translate C or 
Fortran source code into a low-level codes, such as CUDA, or 
OpenCL. A growing number of vendors support the OpenACC 
standard. However, OpenACC cannot automatically run tasks 
on GPUs and CPUs simultaneously, which requires 
programmers’ extra effort to make this happen.   

Existing technologies for high-level programming interfaces 
for accelerators fall into two categories 1) using a domain 
specific language (DSL) library such as Mars, Qilin, or 
MAGMA [11] to compose low-level GPU and CPU codes and 
2) compiling a sub-set of a high-level programming language 
into a low-level code run on GPU and CPU devices such as 
OpenACC, Accelerate [12], or Harlan [13]. The second group 
supports a richer control flow and significantly simplifies the 
programming development on different accelerator devices. 
However, this approach usually incurs extra overhead during 
compile and runtime, and makes it more difficult for developers 
to use low-level CUDA/OpenCL code in order to optimize 
application performance. To allow better access to optimization, 
we chose to use the DSL library technology in this paper.  

B. Task Scheduling on Heterogeneous Devices 
A number of studies exist that focus on task scheduling on 

distributed heterogeneous computing resources. The Grid 
community has developed various solutions among which the 
CoG Kits [36] provides a very flexible and simple workflow 
solution with its Karajan workflow scheduling engine and 
Coaster, a follow up to provide sustained jobs management 
facilities. GridWay [14] can split entire job into several sub-jobs, 
and schedule the sub-jobs to geographically distributed, 
heterogeneous resources. Falkon [15] uses a multi-level 

scheduling strategy in order to schedule massive, independent 
tasks on the HPC system. The first level is used to allocate 
resources, while the second level dispatches the tasks to their 
assigned resources.  

Recently, several runtime systems have been created to 
schedule and execute SPMD jobs on GPUs and CPUs. The Qilin 
system can map SPMD computations onto GPUs and CPUs, and 
they reported good results of the DGEMM using an adaptive 
mapping strategy. Their activity is similar to ours in terms of 
scheduling SPMD tasks on GPUs and CPUs simultaneously; 
and their auto tuning scheduler needs to maintain a database in 
order to build a performance profiling model for the target 
application. MPC [16] uses a multi-granularities scheduling 
strategy in order to schedule inhomogeneous tasks on GPUs and 
CPUs. The Uintah [17] system implements the CPU and GPU 
tasks as C++ methods and models hybrid GPU and CPU tasks 
as DAG. The hybrid CPU-GPU scheduler assigns tasks to CPUs 
for processing when all of the GPU nodes are busy and there are 
CPU cores idle. They report a good speedup for radiation 
modeling applications on the GPU cluster. MAGMA is a 
collection of linear algebra libraries used for heterogeneous 
architectures. It models the linear algebra computation tasks as 
a DAG. The scheduler then schedules small, non-parallelizable 
linear algebra computations on the CPU, and larger, more 
parallelized ones, often Level 3 BLAS, on GPU. 

Two main problems exist in regard to the above related work 
for task scheduling on GPUs and CPUs. One is the lack of 
generality which requires the adaptation of the approaches for 
specific domains. For example, it requires identifying regular 
memory access patterns, such as array based input data format; 
or it requires regular computation patterns, such as having 
iterative computation steps; or it focuses on a subset of parallel 
programs, such as linear algebra applications. The other problem 
is the extra performance overhead [18][19] when leveraging 
their proposed solutions. Some papers needed to run a set of 
small tests jobs on the heterogeneous devices, while some others 
need to maintain a database in order to store the performance 
profiling information for the target applications. The second 
problem may be not very serious because these papers claim that 
the benefit usually outweighs overhead their approaches 
introduced. 
     One of the main contributions of this paper is to propose an 
analytic model to be used for scheduling general SPMD 
computations on heterogeneous computation resources. 
Specifically, it can be used to calculate the work-load balance of 
SPMD tasks on heterogeneous resources and determine the task 
granularity for target applications. Our analytic model is derived 
from the roofline model, and it can be applied to a wide range of 
SPMD applications and hardware devices because the roofline 
model provides realistic expectations of performance and 
productivity for various given applications on many hardware 
devices. In addition, our model does not introduce extra 
performance overhead as there is no need to run test jobs. 



III. RUNTIME ARCHITECTURE 
Programmability and performance are two challenges faced 

when designing and implementing a parallel runtime system 
(PRS) on heterogeneous devices. In this section we will 
illustrate our design idea and the implementation details of our 
solution. 

A. Design 
1) Programming Model on Heterogeneous Resources 
Figure 1 illustrates the heterogeneous MapReduce based 

scheme for co-processing SPMD computation on CPUs and 
GPUs. Map and Reduce are two user-implemented functions 
that present two main computation steps of the SPMD 
applications run on our PRS. Some SPMD applications only 
have the Map stage. Further, the heterogeneous MapReduce 
based interface supports both GPU and CPU implementations. 
Therefore, the developers can choose between the GPU or CPU 
versions, or both versions for the Map and Reduce functions. 
This design decision is based on a well-known agreement that 
applications should deliver different performance on different 
types of hardware resources. The process of tuning the 
application performance is specific to hardware resource and 
requires domain based knowledge when programming. 
Therefore, we allow developers implement either GPU or CPU 
versions of MapReduce functions.  

By providing a high-level MapReduce based programming 
interface, we hide the implementation and optimization details 
of the underlying system from developers including the data 
movement across the levels of memory hierarchy, 
communication among the distributed nodes and scheduling 
tasks on heterogeneous devices. However, we leave developers 
the flexibility to write optimized MapReduce code for different 
devices if needed. 

2) Work flow of Tasks 
From the developer perspective, the workflow of a typical 

job run on our system consists of three main stages: job 
configuration stage, map stage, and reduce stage. In the job 

configuration stage, users specify the parameters for scheduling 
the tasks and sub-tasks. These parameters include the arithmetic 
intensity and performance parameters of hardware devices, such 
as DRAM and PCI-E bandwidth.  

In the map stage, the GPU and CPU backend utilities receive 
a set of input key/value pairs from the PRS scheduler, and 
invoke the user-implemented map() function in order to process 
the assigned key/value pairs. The map() function generates a set 
of intermediate key/value pairs in GPU and CPU memory, 
separately. The intermediate data located in GPU memory will 
be copied/sorted to/in CPU memory after all map tasks on local 
node are done. Then the PRS scheduler shuffles all intermediate 
key/value pairs across the cluster so that the pairs with the same 
key are stored consecutively in a bucket on the same node. 

In the reduce stage, the PRS scheduler splits the data in 
buckets into some blocks, each of which is assigned to a Reduce 
task run on GPU or CPU. After the reduce computation is 
completed, the PRS merges the output of all of the Reduce tasks 
into the CPU memory so that these results can be further 
processed/viewed by the users. 

B. Implementation 
Figure 2 shows the PRS framework, which consists of the 

programming interfaces, task scheduler on master node, sub-
task scheduler on worker node, the GPU/CPU device daemons 
on worker node and communication utility across the network. 

1) API 
The programming interfaces consist of the PRS provided 

API and user implemented API. Table 1 summarizes the user-
implemented MapReduce based API. It provides three types of 
implementations, including gpu_host_mapreduce, 
gpu_device_mapreduce, and cpu_mapreduce.  

cpu_mapreduce() is the C/C++ version of user-
implemented MapReduce functions that run on CPUs.  

gpu_host_mapreduce() is the user-implemented CUDA 
__host__ function for MapReduce functions that run on CPU, 
and it can invoke the CUDA __global__ function or other 
CUDA libraries to run on GPUs, such as cuBLAS.  

gpu_device_mapreduce() is the user-implemented CUDA 
__device__ function of MapReduce functions that run on GPU 
directly, and it can invoke other __device__ functions to run on 
GPU as well. 

Developers need implement at least one type of the map(), 
reduce(), and compare() functions; while the combiner() 
function is optional. For some applications, the source codes of 
cpu_mapreduce and gpu_device_mapreduce are same or similar 

 
Figure 1: Heterogeneous MapReduce Based Scheme 

 
Figure 2: Parallel Runtime System Framework 

 



to each other. Paper [12][13] discuss their work on automatically 
transferring C++ code to CUDA code for different accelerator 
devices. However, this topic is not the focus of this paper. 

2) Scheduler 
We take the two-level scheduling strategy [15][22] 

consisting of the task scheduler in the master node and the sub-
task scheduler on the worker node. The task scheduler first splits 
the input data into partitions, whose default number is twice that 
of the fat nodes. Then, the task scheduler sends out these 
partitions to sub-task schedulers on worker nodes. The sub-task 
scheduler further split the partition into blocks, which will be 
assigned to GPU and CPU device daemons for the further 
processing. 

One problem for the scheduler is to determine how to 
schedule the tasks using the appropriate granularities on the 
GPUs and CPUs. There are two options to solve this problem. 
The first option is to have the sub-task scheduler split the 
partition into fixed size blocks, and then have the GPU and CPU 

devices daemons dynamically poll available blocks from sub-
task scheduler when GPU or CPU resources are idle. This is 
called dynamically scheduling, however it is non-trivial work 
to find out the appropriate blocks sizes for both the GPUs and 
CPUs. Previous researches have proposed some solutions, but 
they usually introduce extra performance overhead or put some 
constrains on the target applications. The other option is to have 
the sub-task scheduler split the assigned partition into two parts 
to be assigned to the GPU and CPU device daemons. The 
workload distribution among GPU and CPU is calculated by 
our proposed analytical model. Then, the GPU and CPU device 
daemons would split assigned sub-partitions into sub-tasks with 
heterogeneous granularities suitable to run on the GPUs and 
CPUs, respectively. This process is the static scheduling 
approach. Our PRS provides for both scheduling strategies. We 
will make comparisons in following sections. 

3) Roofline Model Based Scheduling 
One highlighted feature of our PRS is the analytical model 

for guiding scheduling of the SPMD computations on the GPUs 
and CPUs clusters. We leverage the Roofline model in order to 
derive the analytical task scheduling model. We studied two 
parameters that affect performance of the task scheduling. One 
is the work load distribution fraction between the CPU and 
GPU, while the other is the task granularities on the CPU and 
GPU. The required system information for leveraging the 
Roofline model is summarized in Table 2. 

a) Workload Distribution 
We first analyses the workload distribution between the 

CPU and GPU for the SPMD computation on each node. Let Tc 
represent the overall run time on each node when only the CPUs 
are engaged in the computation. Let Tg represent the overall run 
time on each node when only the GPUs are used for the 
computation. Let Tgc represent job runtime when both CPUs 
and GPUs are engaged in the computation, the job run time is 
defined in Equation (1). The Tc_p is the CPU’s time to process 
the fraction p of all of the input data, Tg_p is the GPU’s 
processing time and data movement time for processing the 
remaining fraction, (1-p), of the input data. Let Fc and Fg 
represent the flop per second for the target application on the 
CPU and GPU. Let Ac and Ag represent the flops per byte for 
the target application on the CPU and GPU. Usually Ac~=Ag, 
but they could be different due to different algorithm 
implementations on the CPUs and GPUs. Let M represent the 

Table 1 User-implemented MapReduce based API 
Type Function 
 
C/C++ 

void cpu_map(KEY  *key, VAL *val, int keySize, …) 
void cpu_reduce(KEY  *key, VAL *val, …)  
void cpu_combiner(KEY *KEY, VAL_Arr *val, …) 
Int cpu_comare(KEY  *key1, VAL *val1, .., KEY  …) 

 
CUDA 
Device 
Func. 

__device__ void gpu_device_map(KEY  *key, …) 
__device__ void gpu__device_reduce(KEY  *key, …) 
__device__ void gpu_device_combiner(KEY  *key, ..) 
__device__ Int gpu_device_compare(KEY  *key, …) 

 
CUDA  
Host  
Func. 

__host__ void gpu_host_map(KEY  *key, …) 
__host__ void gpu_host_reduce(KEY  *key, …) 
__host__ void gpu_host_combiner(KEY  *key, …) 
__host__ void gpu_host_compare(KEY  *key, …) 

 
Table 2: Parameters of the Roofline Model 

Parameters Description 
Fc/Fg flop per second for target application on 

CPU/GPU, respectively 
Ac/Ag flops per byte for target application on 

CPU/GPU, respectively 
B_dram present the bandwidth of DRAM,  
B_pcie present the bandwidth of PCI-E, 
Pc/Pg present peak performance of CPU/GPU 

 

 
(1) GPU:GT430, CPU:i5-2400                  (2) GPU:C2050, CPU:x5660                    (3) GPU:K20, CPU: Opteron 6212 

Figure 3: Roofline model for fat nodes consist of different GPUs and CPUs. Y axis represents flop per second, X axis represents 
arithmetic intensity. The slope of left curve of ridge point represents the peak bandwidth when data go through DRAM,          

PCI-E, Network, and Disk. The right curve of ridge point represents the peak computation of GPU and CPU. 
 



size of the input data for the target application. The parameter, 
p, to be tuned is the fraction of the input data that has to be 
processed by the CPU cores. We formulate equations to derive 
Tgc using the above defined variables. 

 
According to the linear programming theory in math, when 

Tg_p ~= Tc_p, Tgc gets the minimal value, and therefore we get 
the Equation (2) and Equation (3). Since Fc and Fg have to do 
with the other parameters defined in Table 1, we have the 
consequent deductions of Equation (4) and Equation (5) for Fc 
and Fg. Let B_dram represent the bandwidth of DRAM, and 
B_pcie represent the bandwidth of PCI-E. Let Pc represent the 
peak performance of the CPU and Pg represent the peak 
performance of the GPU. Let S represent the size of the input 
data. As shown in Figure 3, usually the GPU and CPU have 
drastically different ridge points. Let Rc represent the value of 
the Y axis of the ridge point for the CPU cores, and Rg represent 
the value of Y axis of the ridge point for the GPU. The slope of 
left part of the ridge point for the CPU cores is equal to DRAM 
bandwidth which is the peak performance divide by arithmetic 
intensity of application; the slope of right part of ridge point for 
GPU is equal to aggregated DRAM and PCI-E bandwidth, 
which is equal to the peak performance divide by arithmetic 
intensity of target application. When the arithmetic intensity of 
target application is less than the value of the X axis of the ridge 
point (as shown in Figure 3) and when the computation of 
application achieve the dynamic balance (data transfer rate 
equal to computation rate), then we get the first part of Equation 
(6) and (7) for the CPU and GPU, respectively. When the 
arithmetic intensity of the target application is larger than the 
value of the X axis of the ridge point, we get second part of 
Equation (6) and (7). 

    Equations (6) and (7) can be used to derive the Fg and Fc 
values in different situations. Let Acr and Agr represent the 
values of the X axis of ridge points for CPU and GPU, 
respectively. Assuming all of the input data is located in CPU 
memory, program needs to load data from CPU to GPU 
memory through PCI-E bus. For this case, Acr is usually smaller 
than Agr, as shown in Figure 3. Thus, the arithmetic intensity of 
the target application can lie between three scopes: A<Acr, 
Acr<A<Agr, and Agr<A. When using Equation (6) and (7) to 
replace the Fg and Fc in Equation (5), we get Equation (8), which 

is used to derive the optimal work load distribution between the 
CPU and GPU for the target application.  
     Equation (8) is the core result of the proposed analytical 
model, and can be used to explain the work-load distribution 
among the CPUs and GPUs for various SPMD applications. 
When the target applications have low arithmetic intensity, the 
performance bottleneck is probably the bandwidth of the disk, 
network or DRAM. For these applications, such as word count, 
the CPU may provide better performance than the GPU. When 
the target applications have high arithmetic intensity, the 
performance bottleneck is the peak performance of the CPU and 
GPU, or the L2 cache. For these applications, such as DGEMM, 
the GPU has a better performance than the CPU. The similar 
observations have been reported in other papers [5][11]. 
However, our analytic model is the first mathematical model to 
precisely calculate the work load balance between the CPU and 
GPU, while it can be applied to applications with wide range of 
arithmetic intensities as shown in Figure 4. 

 
Figure 4: the arithmetic intensity of different applications 

  
The task scheduler on master node can use Equation (8) in 

order to split the input data among homogeneous or 
inhomogeneous fat nodes in cluster. The sub-task scheduler on 
the worker node can also use Equation (8) to split the data 
partition between the CPU and GPU. Equation (8) can also be 
extended by considering the bandwidth of the network in order 
to schedule communication intensive tasks. In this paper, we 
study the case where the fat nodes are of homogeneous 
computation capability; and we do not discuss communication 
intensive applications in the paper.  

b) Task Granularity 
The sub-task scheduler on the worker node can use the 

Equation (8) in order to indicate the splitting of the data 
partition between the GPU and CPU. However, the sub-
partition of the data may be too large causing the CPU and GPU 
daemons to cause further splits. Intuitively, a small block size 
for the CPU can achieve good load balancing among multiple 
CPU cores; while a large block size for the GPU can minimize 
the impact of the data transfer latency on the execution time.  
   Paper [5][16][20] discuss their solutions for the task 
granularity issue. They use the parameter sweeping in order to 
discover the suitable task granularity, which is associated with 
extra performance overhead or they introduce some constrains 
on the target applications. These studies split the input partition 
into blocks whose numbers are several times those of the CPU 
cores. This splitting pattern can provide desirable results in both 
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𝐹𝐹𝑔𝑔 = 𝑃𝑃𝑔𝑔                                    (𝑖𝑖𝑖𝑖 𝐴𝐴𝑔𝑔 ≥ 𝐴𝐴𝑔𝑔𝑑𝑑) 
     (6)             
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+

𝑆𝑆
𝐵𝐵_𝑝𝑝𝑐𝑐𝑖𝑖𝑝𝑝

  (𝑖𝑖𝑖𝑖 𝐴𝐴𝑔𝑔 < 𝐴𝐴𝑔𝑔𝑑𝑑)  

𝐹𝐹𝑔𝑔 = 𝑃𝑃𝑔𝑔                                  �𝑖𝑖𝑖𝑖 𝐴𝐴𝑔𝑔 ≥ 𝐴𝐴𝑔𝑔𝑑𝑑� 
   (7)             



the balanced workload distribution and low sub-task scheduling 
overhead. We adopt the same splitting pattern for scheduling 
sub-tasks on CPU cores in this paper.  
   It becomes complex to decide the task granularity for the 
GPUs. Serialized data transfers and GPU computations can 
either be PCI-E bus idle or GPU idle. The CUDA stream can 
simultaneously execute a kernel, while performing data 
transferring between the device and host memory. The Fermi 
architecture support only one hardware work queue; while the 
Kepler Hyper-Q model supports multiple hardware work 
queues. In addition, the stream approach can only improve 
application performance whose data transferring overhead is 
similar to computation overhead. Otherwise there will not be 
much overlap to hide the overhead.  
   For an application whose arithmetic intensity is a function of 
the input size, such as BLAS3, whose arithmetic intensity is 
O(N), we should increase the arithmetic intensity by increasing 
the input data size so as to saturate the peak performance of 
GPU. By using the Roofline model, we can calculate the 
minimal task block size necessary to achieve peak performance. 
Then, one task should be split into several sub-tasks and run on 
GPUs concurrently by launching multiple streams.  
   Let BS represent the block size of the target application on the 
GPU. The overlap percentage between data transfer overhead 
and computation overhead can be deduced by using the 
Roofline model as show in Equation (9). 

 
   Let Agr represent the value of the X axis of the ridge point on 
the GPU. Let Fag represent the arithmetic intensity function of 
a target application on the GPU. Then, the minimal block size 
necessary to cause the target application to achieve peak 
performance is the result of the inverse function Fag

-1 of Agr. 
   As shown in Equation (11), MinBS is the theoretical minimal 
block size that should be used to saturate the peak performance 
of the GPU. One should notice that having a block size larger 
than the MinBS won’t further increase the flops performance. 
Therefore, there are two requirements for leveraging multiple 
streams in CUDA: 1) the overlap percentage calculated by 
Equation (9) is larger than a certain threshold. 2) The data block 
size is larger than MinBS calculated by Equation (11). 

C. Other Implementation Details 
1) Threading Model 
The PRS leverages the Pthreads in order to create CPU and 

GPU device daemons for managing tasks. It spawns one 
daemon thread for each GPU card and one daemon thread for 
all assigned CPU cores in the host. For example, if there are two 
GPUs and 12 CPU cores on one machine, then the PRS will 
spawn two daemon threads to be used for scheduling tasks on 
the GPUs and another daemon thread for scheduling tasks on 
the 12 CPU cores. The PRS also makes use of Pthreads to 
schedule tasks on CPU cores. Each thread runs one mapper or 

reducer on each CPU core. For gpu_device_mapreduce 
function, the PRS leverages the CUDA kernel threads to 
schedule tasks on GPU cores. It runs one mapper or reducer task 
per CUDA kernel thread. The default number of mappers and 
reducers in the PRS is several times larger than GPU cores in 
order to keep physical cores busy and hide latencies of the 
context switch. The gpu_host_mapreduce function is invoked 
by the GPU daemon thread, where the grid and block 
configuration of kernel threads is determined by programmer.  

2) Region-based Memory Management 
Region-based memory management [23] is a type of memory 

management in which each allocated object is assigned to a 
region, which, typically, is a single contiguous range of 
memory space. Two advantages exist to adopting this 
technology in a runtime framework. First, although the latest 
CUDA supports dynamically allocating the buffer in the GPU 
global memory using the malloc operation, the aggregated 
overhead of the malloc operations can degrade the performance 
if many small memory allocation requests exist. Instead of 
allocating many small memory buffers, the runtime library 
allocates a block of memory for each CPU or GPU thread, 
whose size should be big enough to serve many small memory 
allocations. When the block is filled, the runtime library will 
increase the buffer and copy the data to new buffer. The second 
advantage is that the collection of allocated objects in the region 
can be deallocated all at once.  

3) Iterative Support 
A set of iterative applications, such as Cmeans, exist that 

have loop invariant data during the iterations. It is expensive for 
the GPU program to copy these loop invariant data between the 
CPU and GPU memories over the iterations.      

Paper [24][25][26] discuss the work of caching loop invariant 
data in the CPU memory over iterations. However, it will be 
difficult to do so because GPU need maintain the GPU context 
between iterations [27][35]. Therefore, instead of having every 
MapReduce tasks creating its own GPU context, we make GPU 
device daemon to be the only thread that communicate to GPU 
device. The GPU device daemon take in charge of read/write 
input/output data on behalf of MapReduce tasks. In addition 
that, GPU context switch is expensive. Such overhead is 
magnified when a large number of MapReduce tasks create 
their own GPU context. We adopt same strategy for funneled 
MapReduce tasks onto CPU cores. 

IV. APPLICATIONS AND EVALUATION 
This section evaluates the execution time using three sample 

applications on different experimental environments. Table 4 
illustrates the configuration of the GPU and CPU devices used 
in the experiments. All of the NVIDIA GPU cards listed in 
Table 3 support computation capability at 2.x or above. The 
user implemented API are written in CUDA and C/C++, and 
compiled by using nvcc 4.2 and gcc 4.4.6, respectively. 

A. Applications 
1) C-means  

𝑜𝑜𝑝𝑝 =
� 𝐵𝐵𝑠𝑠
𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝐵𝐵𝑠𝑠
𝐵𝐵𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝

�

� 𝐵𝐵𝑠𝑠
𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝐵𝐵𝑠𝑠
𝐵𝐵𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝

�+
𝐵𝐵𝑠𝑠∗𝐴𝐴𝑔𝑔
𝑃𝑃𝑔𝑔

      (9) 

𝐴𝐴𝑔𝑔 = 𝐹𝐹𝑑𝑑𝑔𝑔(𝐵𝐵𝑠𝑠)    (10)  
𝑀𝑀𝑖𝑖𝑀𝑀𝐵𝐵𝑀𝑀 = 𝐹𝐹𝑑𝑑𝑔𝑔−1(𝐴𝐴𝑔𝑔𝑑𝑑)   (11) 



The computational demands of the multivariate clustering 
grow rapidly; therefore clustering for large data sets is very time 
consuming on a single CPU. Fuzzy K- means (also called as C-
means) [28][29] is an algorithm of clustering that allows one 
element to belong to two or more clusters with different 
probabilities. The C-means application is frequently used in 
multivariate clustering, such as flowcytometry clustering [30]. 
The algorithm is based on a minimization of the Equation 12. 
M is a real number greater than 1, while N is the number of 
elements. Uij is the value of the membership of Xi in cluster Cj. 
||Xi-Cj|| is the norm expressing the similarity between the data 
point and the cluster center. The Xi is the ith data point, while 
Cj is the jth cluster center. The fuzzy partitioning is performed 
using an iterative optimization of the objective function as 
shown above. Within each iteration, the algorithm updates the 
membership Uij and the cluster centers the Cj using Equation 13 
and Equation 14. The iteration will stop when    
maxij��uij

(k+1) − uij
(k)�� < ϵ where 'e' is a termination criterion 

between 0 and 1, and ‘k’ is the iteration steps. 

We implemented a C-means MapReduce application using 
our PRS framework on GPU and CPU. The input matrices were 
copied into CPU and GPU memories in advance. The key object 
of the C-means MapReduce task contains the indices bound of 
input matrices, while the value object stores the pointers of input 
matrices in GPU or CPU memory. The event matrix is cached in 
GPU memory in order to avoid data staging overhead over 
iterations. The Map function calculates the distance and 
membership matrices, and then multiplies the distance matrix by 
the membership matrix in order to calculate the new cluster 
centers. The Reduce function aggregates partial cluster centers 
and calculates the final cluster centers. 
   We used one of Lymphocytes data set, which has 20054 points, 
4 dimensions, and 5 clusters, to evaluate correctness of C-means 
implementation. The Lymphocytes data set has already been 

studied in paper [30], and the clusters were calculated using 
Flame with finite mixture model. Figure 5 is the plot of C-means 
and K-means clustering results for Lymphocytes data set after 
project 4D data points into 3D data points by using 
algorithms[31][32]. The initial centers of C-means and K-means 
programs were picked up randomly, and we choose the best 
clustering results among several runs. We also compare results 
between C-means and K-means and DA[37][38] approaches [33] 
in terms of average width over clusters and points and clusters 
overlapping with standard Flame results. The DA approach 
provide the best quality of output results. The C-means results 
are a little better than Kmeans in the two metrics for the test data 
set. Table 3 shows the performance results in seconds of Cmeans 
using different runtime frameworks including MPI/GPU, PRS, 
and Mahout/CPU on 4 GPU nodes. The MPI/GPU and PRS use 
one GPU on each node. The MPI/CPU and Mahout/CPU use all 
CPU cores on each node, and they spawn two threads for each 
CPU core with hyper-threading enabled. The sample data set has 
200k to 800k points, 100 dimensions, and 10 clusters. The 
results indicate that our PRS introduce some overhead during the 
computation as compared with MPI using one GPU per node 
solution, but it is faster than MPI using multiple CPUs per node 
and is two orders of magnitude faster than the Mahout (Apache 
Hadoop clustering) solution. We also have seen similar 
performance ratios for Kmeans application. 
Table 3 Performance results of C-means with different runtimes  

#points 200k 400k  800k  
MPI/GPU 0.53   sec 0.945 sec 1.78   sec 
PRS/GPU 2.31   sec 3.81   sec 5.31   sec 
MPI/CPU 6.41   sec 12.58 sec 24.89 sec 
Mahout/CPU 541.3 sec 563.1 sec 687.5 sec 

𝐽𝐽𝑑𝑑 = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑑𝑑�𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑖𝑖�
2𝑔𝑔

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1  (12) 

𝑈𝑈𝑖𝑖𝑖𝑖 = 1

∑ �
�𝑥𝑥𝑝𝑝−𝑐𝑐𝑗𝑗�

�𝑥𝑥𝑝𝑝−𝑐𝑐𝑘𝑘�
�

2
𝜋𝜋−1

𝑐𝑐
𝑘𝑘=1

  (13) 

𝐶𝐶𝑖𝑖 =
∑ 𝑢𝑢𝑝𝑝𝑗𝑗

𝑑𝑑𝑛𝑛
𝑝𝑝=1 𝑥𝑥𝑝𝑝
∑ 𝑢𝑢𝑝𝑝𝑗𝑗

𝑑𝑑𝑛𝑛
𝑝𝑝=1

    (14) 

 

 
(1) GEMV    (2) C-means    (3) GMM 

Figure 6: weak scalability for GEMV, C-means, and GMM applications with up to 8 nodes on Delta. Y axis represents Gflops 
per node for each application. (1) GEMV, M=35000, N=10,000 per Node. (2) C-means, N=1000,000 per node , D=100, M=10. (3) 

GMM, N=100,000 per node, D=60, M=100. The red bard means only using GPUs as computation resources, while blue bar 
means using both GPUs and CPUs as computation resources. 

 
Figure 5: C-means (left) and K-means (right) clustering results 

of a Lymphocytes data set after a 3D projection. 
 
 



2) GMM  
   The expectation maximization using a mixture model 
approach takes the data set as a sum of a mixture of multiple 
distinct events. Gaussians mixtures form probabilistic models 
composed of multiple distinct Gaussians distributions as clusters. 
Each cluster ‘m’ within a D dimensional data set can be 
characterized by the following parameters[28]: 
 
Nm: the number of samples in the cluster 
πm : probability that a sample in data set belongs to the cluster  
μm : a D dimensional mean 
Rm: a DxD spectral covariance matrix 
 
Assuming that there are N data points y1,y2,…, yN, then the 
probability that an event yi belongs to a Gaussian distribution is 
given by the following equation 

𝑃𝑃(𝑦𝑦𝑛𝑛|𝑑𝑑,𝜃𝜃) =
𝑒𝑒𝑥𝑥𝑝𝑝�−12(𝑦𝑦𝑛𝑛−𝜇𝜇𝑑𝑑)𝑡𝑡𝑅𝑅𝑑𝑑−1(𝑦𝑦𝑛𝑛−𝜇𝜇𝑑𝑑)�

(2𝜋𝜋)𝐷𝐷/2|𝑅𝑅𝑑𝑑|1/2                (15)       
   Neither the statistical parameters of the Gaussian Mixture 
Model, θ = (π,µ, R), nor the membership of events to clusters 
are known. An algorithm must be employed to deal with this 
lack of information. The expectation maximization is a statistical 
method for performance likelihood estimation with incomplete 
data. The objective of the algorithm is to estimate θ, the 
parameters for each cluster. 

3) GEMV 
The BLAS are a set of basic linear algebra subprograms that 

perform vector-vector, matrix-vector, and matrix-matrix 
operations. The matrix-vector multiplication is embedded in 
many algorithms for solving a wide variety of problems. There 
are three straightforward ways to decompose a MxN matrix A: 
row wise block striping, column wise block striping and the 
checkerboard block decomposition. In this paper, we use row 
wise block-striped decomposition to parallel matrix-vector 
multiplication. We associate a primitive map task with each row 
of the matrix A. Vectors B and C are replicated among the map 
tasks so the memory can be allocated for the entire vectors on 
each compute node. It follows that the map task has all the 
elements required to compute. Once this is done, reduce task can 
concatenate the pieces of vector C into a complete vector.  

For many programmers, the key to a good performance of 
numerical scientific applications is still linked to the availability 
of high-performance libraries available for GPUs and CPUs, e.g., 
Nvidia’s cuBLAS [2], Intel MKL, and open source MAGMA 
library. In the experiment, we leveraged the CUDA cuBLAS and 
Intel MKL library to perform the GEMV computation on GPU 
and CPU on each node. This strategy simplified our 
programming work so that we could focus on evaluating the 
proposed scheduling strategy.  

B. Performance Evaluation 
Figure 6 show the weak scalability of GEMV, C-means, and 

GMM using our framework.  In this case the problem size 
(workload) assigned to each node stays constant. The GPU 
version only uses one GPU per node during computation, while 
GPU+CPU version uses one GPU and all available CPU cores 
on same node during computation. The value X in Table 4 means 
X percentage of the work load is assigned to CPU, while the 
remain (1-X) percentage of work is assigned to GPU. 

For GEMV, it shows the Gflops/node performance gap 
between GPU and CPU is large, i.e., CPU+GPU version is 10 
times faster than GPU only version. This is because GEMV has 
low arithmetic density. The data staging overhead between GPU 
and CPU cost more than 90% of its overall overhead. We 
calculate the work load distribution proportion of GEMV among 
GPU and CPU on Delta node by using equation (8) of analytical 
model. For C-means, it shows the linear scaling is achieved as 
the Gflops per node stays constant while the workload is 
increased in direct proportion to the number of nodes. In addition, 
the GPU+CPU version is 1.3 times faster than GPU only version. 
The peak performance per node decrease by 5.5% when using 8 
compute nodes, which is due to the increasing overhead in global 
reduction stage of the parallel C-means algorithm. For GMM, it 
shows similar linear weak scaling when number of points per 
node is fixed. But peak performance of GMM is much larger 
than that of C-means, as it has larger arithmetic intensity 
O(M*D), as compared with O(M) for C-means. Given C-means 
and GMM are of iterative computationsteps, we didn’t timing 
the data staging overhead between GPU and CPU at the 
beginning step and end step of computation. This is because 
these overhead are one-off overhead[34], which will be 
amortized when number of iterations is large. In other words, the 
average arithmetic intensity of C-means and GMM depend on 
the bandwidth of DRAM and peak performance of GPU, rather 
than bandwidth of PCI-E bus. 

We also study the work load balance issue of our PRS 
implementation on GPUs and CPUs clusters. Table 5 
summarizes the work load distribution between GPU and CPU 
of three applications using our PRS framework on the Delta 
node illustrated in Table 4. The work load distribution 
proportions, p values, between GPU and CPU are calculated by 
using Equation (8). The parameters of bandwidth of DRAM, 
PCI-E bus, and peak performance of GPU and CPU are shown 
in Figure 3 (1). Another set of p values calculated by measuring 

Table 4: Hardware Configuration 
Machine 

Name 
Future Grid 

Delta 
IU  

BigRed2 
GPU Type C2070 K20 

GPUs/Node 2 1 
Memory/GPU 6 GB 5 GB 

Cores/GPU 448 Cores 2496 Cores 
CPU Type Intel Xeon 

5660 
AMD 

Opteron 6212 
Cores/CPU 12 Cores 32 Cores 

Memory/CPU 192 GB  62 GB 
 

Table 5: Work Load Distribution among GPU and CPU 
of Three Applications using Our Framework 
Apps GEMV C-means GMM 

Arithmetic 
intensity 

2 5*M 
(M = 100) 

11*M*D 
(M=10,D=

60) 
p calculated by 

Equation (8) 
97.3% 11.2% 11.2% 

p calculated by 
app profiling 

90.8% 11.9% 13.1% 

 



the real peak performance of the three applications using GPU 
version and GPU+CPU version, respectively. As it shown in 
Table 5, applications with low arithmetic intensity, such as 
GEMV, should assign more work load onto the CPU; while 
applications with high arithmetic intensity should assign more 
work load onto the GPU. The error between p values calculated 
by using Equation (8) and the ones by application profiling is 
less than 10% for the three applications in Table 5.  

I. SUMMARY AND CONCLUSION 
This paper introduced a PRS framework for running SPMD 

computation on GPU and CPU cluster. The paper is proposing 
an analytical model that is used to automatically scheduling 
SPMD computation on GPU and CPU cluster. The analytical 
model is derived from roofline model, and therefore, it can be 
applied to a wide range of SPMD applications and hardware 
devices. The significant contribution of analytic model is that it 
can precisely calculate the balanced work load distribution 
between the CPU and GPU, while be applied to applications 
with wide range of arithmetic intensities. Experimental results 
of GEMV, C-means, and GMM indicate that using all CPU 
cores increase the GPU performance by 1011.8%, 11.56%, and 
15.4% respectively. The error between the real optimal work 
load distribution proportion and theoretical one is less than 
10%. 

For SPMD applications, such as PDEs, FFT whose 
arithmetic intensities are in the middle range as shown in Figure 
4, using our PRS framework can increase resource utilization 
of heterogeneous devices, and decrease job running time 
because both GPU and CPU can make the non-trivial 
contribution to overall computation, and because the workload 
is evenly distributed between GPU and CPU by the PRS.  

The future work of our PRS framework could be: a) Extend 
the proposed analytical model by considering the network 
bandwidth issue. b) Extend the framework to other backend or 
accelerators, such as OpenCL, MIC. c) Applying the analytical 
model to heterogeneous fat nodes.  
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