
Co-processing SPMD computation on CPUs and GPUs cluster

Hui Li, Geoffrey Fox, Gregor von Laszewski, Arun Chauhan
School of Informatics and Computing, Pervasive Technology Institute

Indiana University Bloomington
lihui@indiana.edu, gcf@indiana.edu, laszewski@gmail.com, achauhan@indiana.edu

Abstract— Heterogeneous parallel systems with multi processors
and accelerators are becoming ubiquitous due to better cost-
performance and energy-efficiency. These heterogeneous
processor architectures have different instruction sets and are
optimized for either task-latency or throughput purposes.
Challenges occur in regard to programmability and performance
when running SPMD tasks on heterogeneous devices. In order to
meet these challenges, we implemented a parallel runtime system
that used to co-process SPMD computation on CPUs and GPUs
clusters. Furthermore, we are proposing an analytic model to
automatically schedule SPMD tasks on heterogeneous clusters.
Our analytic model is derived from the roofline model, and
therefore it can be applied to a wider range of SPMD applications
and hardware devices. The experimental results of the C-means,
GMM, and GEMV show good speedup in practical heterogeneous
cluster environments.

Keywords: SPMD, GPU, CUDA, Multi-Level-Scheduler

I. INTRODUCTION
Heterogeneous parallel systems with multi-core, many-core

processors and accelerators are becoming ubiquitous due to
better cost-performance and energy-efficiency [1]. In mid-range
HPC systems, a hybrid cluster with hundreds of GPU cards is
capable of providing performance over one petaflops, while the
same scale CPU-based cluster can provide one teraflops of peak
performance. In high-end HPC systems, Titan, a hybrid cluster
using CPUs provided by AMD, Inc and GPUs provided by
NVIDIA, Inc became the fastest supercomputer in peak
performance in 2012.

Two fundamental measures for processor performance are
task latency and throughput [1]. The traditional CPU is
optimized for a lower latency of operations in clock cycles.
However this usage pattern of using single core has been
replaced by new system using multiple cores available to the
overall system. This includes architecture such as Intel Xeon
Phi, AMD Opteron. These multi-core and many-core CPUs can
exploit modest parallel workloads for multiple tasks. These
parallel tasks can have different instructions and work on
different types of data sets, or MIMD. The current generation of
graphical processing units (GPUs) contain large number of
simple processing cores that are optimized for computation that
contain single-instruction, multiple threads, or SIMT. GPUs
sacrifice single thread execution speed in order to achieve
aggregated high throughput across all of the threads. More
recently, the CPUs system is augmented with other processing
engines such as GPU, which we call this system as fat node. The
purpose of fat nodes is to keep more processing on the local
node. The AMD take a more aggressive strategy based on this
idea and it has merged GPU/CPU with Fusion APU.

The NVIDIA’s CUDA [2] and Khronos Group OpenCL [3]
are the current and most widely used GPU programming tools.

Both CUDA and OpenCL can compile source code into binaries
to run on CPUs and GPUs, respectively. However, this process
cannot be done automatically, and requires programming efforts
from programmers. If these heterogeneous resources are
assigned to users, then the CPU cores are idle while conducting
computations on GPUs, or vice versa. In order to solve this
problem, one should first meet the programmability challenge of
how to map the SPMD computation to the CPUs and GPUs.
NVIDIA uses the terminology SIMT, “Single Instruction,
Multiple Threads” to present the programming model on the
GPU. SIMT can be considered a hybrid between vector
processing and hardware threads. The difficulty of writing
CUDA program is that developers need to organize the kernel
threads and carefully arrange the memory access patterns. For
CPUs, the SPMD style computations are already presented on
CPUs by using many programming tools such as Pthreads,
OpenMP, and MPI. Other programmability difficulties are that
the developer needs to explicitly split the input data, and to
handle the communications across the cluster.

The MapReduce [4] programming model was popularized at
Google, and has been successfully applied to various SPMD
applications on shared memory and distributed memory
systems. Developing programs with the MapReduce program is
easy because MapReduce runtime hides the implementation
details such as data movement, task scheduling and work load
balance issues from the developers. Research has proven that
executing MapReduce computations on GPUs is not only
feasible but also practical. Recently, some MapReduce like
runtime frameworks have been used to run tasks on CPUs or
GPUs simultaneously [5] [6]. However, these works usually are
constrained when it comes to SPMD applications, or introduced
extra overhead during computation, which is not general and
desirable.

The Roofline model [7] provides researchers with a
graphical aid that provides realistic expectations of performance
and productivity for a given application on a specific hardware
device. It models the performance as the function of the
arithmetic intensity of the target application and some
performance related parameters of the hardware including
DRAM, PCI-E bandwidth, and the peak performance of the
CPU or the GPU. Generally, for applications that have low
arithmetic intensity, such as log analysis and GEMV, the
performance bottleneck lies in the disk I/O. For applications
with moderate arithmetic intensity, such as FFT, and Kmeans,
the performance bottleneck lies in the DRAM, and PCI-E
bandwidth. For applications with high arithmetic intensity, such
as DGEMM, the performance bottleneck lies in the L2 cache and
the peak performance of computation unites. All of these types
of information are critical in regard to making scheduling
decisions and therefore they can be used as parameters for the
mathematic modeling of task scheduling on GPUs and CPUs.

We implemented a parallel runtime system in order to co-
process the SPMD computation on modern NVIDIA GPUs and
Intel Xeon CPUs on distributed memory systems. We provided
a MapReduce like programming interface for developers. More
importantly, we leveraged the roofline model to derive an
analytic model that is used to create automatic scheduling plan
for placing SPMD computations on the GPUs and CPUs cluster.
In order to evaluate this scheduling model, we implemented C-
means, GMM and GEMV applications and conducted
comprehensive performance studies.

The rest of the paper is organized as follows. We give a brief
overview of the related work in section 2. We illustrate the
design and implementation of the runtime environment in
Section 3. In Section 4, we introduce three applications and
evaluate their performance and we conclude the paper in Section
5.

II. RELATED WORK

A. High-Level Interface on Heterogeneous Devices
Other high level programming interface for GPUs include

the following research projects: The Mars MapReduce
framework [8] was developed for a single NVIDIA G80 GPU
and the authors reported up to a 16x speedup over the 4-core
CPU-based implementation for six common web mining
applications. However, Mars cannot run on multiple GPUs and
is not capable of running computation on GPUs and CPUs
simultaneously. StarPU [9] provides a unified execution model
to be used to parallelize numerical kernels on a multi-core CPU
equipped with one GPU. OpenACC [10] is a current framework
that provides OpenMP style syntax and can translate C or
Fortran source code into a low-level codes, such as CUDA, or
OpenCL. A growing number of vendors support the OpenACC
standard. However, OpenACC cannot automatically run tasks
on GPUs and CPUs simultaneously, which requires
programmers’ extra effort to make this happen.

Existing technologies for high-level programming interfaces
for accelerators fall into two categories 1) using a domain
specific language (DSL) library such as Mars, Qilin, or
MAGMA [11] to compose low-level GPU and CPU codes and
2) compiling a sub-set of a high-level programming language
into a low-level code run on GPU and CPU devices such as
OpenACC, Accelerate [12], or Harlan [13]. The second group
supports a richer control flow and significantly simplifies the
programming development on different accelerator devices.
However, this approach usually incurs extra overhead during
compile and runtime, and makes it more difficult for developers
to use low-level CUDA/OpenCL code in order to optimize
application performance. To allow better access to optimization,
we chose to use the DSL library technology in this paper.

B. Task Scheduling on Heterogeneous Devices
A number of studies exist that focus on task scheduling on

distributed heterogeneous computing resources. The Grid
community has developed various solutions among which the
CoG Kits [36] provides a very flexible and simple workflow
solution with its Karajan workflow scheduling engine and
Coaster, a follow up to provide sustained jobs management
facilities. GridWay [14] can split entire job into several sub-jobs,
and schedule the sub-jobs to geographically distributed,
heterogeneous resources. Falkon [15] uses a multi-level

scheduling strategy in order to schedule massive, independent
tasks on the HPC system. The first level is used to allocate
resources, while the second level dispatches the tasks to their
assigned resources.

Recently, several runtime systems have been created to
schedule and execute SPMD jobs on GPUs and CPUs. The Qilin
system can map SPMD computations onto GPUs and CPUs, and
they reported good results of the DGEMM using an adaptive
mapping strategy. Their activity is similar to ours in terms of
scheduling SPMD tasks on GPUs and CPUs simultaneously;
and their auto tuning scheduler needs to maintain a database in
order to build a performance profiling model for the target
application. MPC [16] uses a multi-granularities scheduling
strategy in order to schedule inhomogeneous tasks on GPUs and
CPUs. The Uintah [17] system implements the CPU and GPU
tasks as C++ methods and models hybrid GPU and CPU tasks
as DAG. The hybrid CPU-GPU scheduler assigns tasks to CPUs
for processing when all of the GPU nodes are busy and there are
CPU cores idle. They report a good speedup for radiation
modeling applications on the GPU cluster. MAGMA is a
collection of linear algebra libraries used for heterogeneous
architectures. It models the linear algebra computation tasks as
a DAG. The scheduler then schedules small, non-parallelizable
linear algebra computations on the CPU, and larger, more
parallelized ones, often Level 3 BLAS, on GPU.

Two main problems exist in regard to the above related work
for task scheduling on GPUs and CPUs. One is the lack of
generality which requires the adaptation of the approaches for
specific domains. For example, it requires identifying regular
memory access patterns, such as array based input data format;
or it requires regular computation patterns, such as having
iterative computation steps; or it focuses on a subset of parallel
programs, such as linear algebra applications. The other problem
is the extra performance overhead [18][19] when leveraging
their proposed solutions. Some papers needed to run a set of
small tests jobs on the heterogeneous devices, while some others
need to maintain a database in order to store the performance
profiling information for the target applications. The second
problem may be not very serious because these papers claim that
the benefit usually outweighs overhead their approaches
introduced.
 One of the main contributions of this paper is to propose an
analytic model to be used for scheduling general SPMD
computations on heterogeneous computation resources.
Specifically, it can be used to calculate the work-load balance of
SPMD tasks on heterogeneous resources and determine the task
granularity for target applications. Our analytic model is derived
from the roofline model, and it can be applied to a wide range of
SPMD applications and hardware devices because the roofline
model provides realistic expectations of performance and
productivity for various given applications on many hardware
devices. In addition, our model does not introduce extra
performance overhead as there is no need to run test jobs.

III. RUNTIME ARCHITECTURE
Programmability and performance are two challenges faced

when designing and implementing a parallel runtime system
(PRS) on heterogeneous devices. In this section we will
illustrate our design idea and the implementation details of our
solution.

A. Design
1) Programming Model on Heterogeneous Resources
Figure 1 illustrates the heterogeneous MapReduce based

scheme for co-processing SPMD computation on CPUs and
GPUs. Map and Reduce are two user-implemented functions
that present two main computation steps of the SPMD
applications run on our PRS. Some SPMD applications only
have the Map stage. Further, the heterogeneous MapReduce
based interface supports both GPU and CPU implementations.
Therefore, the developers can choose between the GPU or CPU
versions, or both versions for the Map and Reduce functions.
This design decision is based on a well-known agreement that
applications should deliver different performance on different
types of hardware resources. The process of tuning the
application performance is specific to hardware resource and
requires domain based knowledge when programming.
Therefore, we allow developers implement either GPU or CPU
versions of MapReduce functions.

By providing a high-level MapReduce based programming
interface, we hide the implementation and optimization details
of the underlying system from developers including the data
movement across the levels of memory hierarchy,
communication among the distributed nodes and scheduling
tasks on heterogeneous devices. However, we leave developers
the flexibility to write optimized MapReduce code for different
devices if needed.

2) Work flow of Tasks
From the developer perspective, the workflow of a typical

job run on our system consists of three main stages: job
configuration stage, map stage, and reduce stage. In the job

configuration stage, users specify the parameters for scheduling
the tasks and sub-tasks. These parameters include the arithmetic
intensity and performance parameters of hardware devices, such
as DRAM and PCI-E bandwidth.

In the map stage, the GPU and CPU backend utilities receive
a set of input key/value pairs from the PRS scheduler, and
invoke the user-implemented map() function in order to process
the assigned key/value pairs. The map() function generates a set
of intermediate key/value pairs in GPU and CPU memory,
separately. The intermediate data located in GPU memory will
be copied/sorted to/in CPU memory after all map tasks on local
node are done. Then the PRS scheduler shuffles all intermediate
key/value pairs across the cluster so that the pairs with the same
key are stored consecutively in a bucket on the same node.

In the reduce stage, the PRS scheduler splits the data in
buckets into some blocks, each of which is assigned to a Reduce
task run on GPU or CPU. After the reduce computation is
completed, the PRS merges the output of all of the Reduce tasks
into the CPU memory so that these results can be further
processed/viewed by the users.

B. Implementation
Figure 2 shows the PRS framework, which consists of the

programming interfaces, task scheduler on master node, sub-
task scheduler on worker node, the GPU/CPU device daemons
on worker node and communication utility across the network.

1) API
The programming interfaces consist of the PRS provided

API and user implemented API. Table 1 summarizes the user-
implemented MapReduce based API. It provides three types of
implementations, including gpu_host_mapreduce,
gpu_device_mapreduce, and cpu_mapreduce.

cpu_mapreduce() is the C/C++ version of user-
implemented MapReduce functions that run on CPUs.

gpu_host_mapreduce() is the user-implemented CUDA
__host__ function for MapReduce functions that run on CPU,
and it can invoke the CUDA __global__ function or other
CUDA libraries to run on GPUs, such as cuBLAS.

gpu_device_mapreduce() is the user-implemented CUDA
__device__ function of MapReduce functions that run on GPU
directly, and it can invoke other __device__ functions to run on
GPU as well.

Developers need implement at least one type of the map(),
reduce(), and compare() functions; while the combiner()
function is optional. For some applications, the source codes of
cpu_mapreduce and gpu_device_mapreduce are same or similar

Figure 1: Heterogeneous MapReduce Based Scheme

Figure 2: Parallel Runtime System Framework

to each other. Paper [12][13] discuss their work on automatically
transferring C++ code to CUDA code for different accelerator
devices. However, this topic is not the focus of this paper.

2) Scheduler
We take the two-level scheduling strategy [15][22]

consisting of the task scheduler in the master node and the sub-
task scheduler on the worker node. The task scheduler first splits
the input data into partitions, whose default number is twice that
of the fat nodes. Then, the task scheduler sends out these
partitions to sub-task schedulers on worker nodes. The sub-task
scheduler further split the partition into blocks, which will be
assigned to GPU and CPU device daemons for the further
processing.

One problem for the scheduler is to determine how to
schedule the tasks using the appropriate granularities on the
GPUs and CPUs. There are two options to solve this problem.
The first option is to have the sub-task scheduler split the
partition into fixed size blocks, and then have the GPU and CPU

devices daemons dynamically poll available blocks from sub-
task scheduler when GPU or CPU resources are idle. This is
called dynamically scheduling, however it is non-trivial work
to find out the appropriate blocks sizes for both the GPUs and
CPUs. Previous researches have proposed some solutions, but
they usually introduce extra performance overhead or put some
constrains on the target applications. The other option is to have
the sub-task scheduler split the assigned partition into two parts
to be assigned to the GPU and CPU device daemons. The
workload distribution among GPU and CPU is calculated by
our proposed analytical model. Then, the GPU and CPU device
daemons would split assigned sub-partitions into sub-tasks with
heterogeneous granularities suitable to run on the GPUs and
CPUs, respectively. This process is the static scheduling
approach. Our PRS provides for both scheduling strategies. We
will make comparisons in following sections.

3) Roofline Model Based Scheduling
One highlighted feature of our PRS is the analytical model

for guiding scheduling of the SPMD computations on the GPUs
and CPUs clusters. We leverage the Roofline model in order to
derive the analytical task scheduling model. We studied two
parameters that affect performance of the task scheduling. One
is the work load distribution fraction between the CPU and
GPU, while the other is the task granularities on the CPU and
GPU. The required system information for leveraging the
Roofline model is summarized in Table 2.

a) Workload Distribution
We first analyses the workload distribution between the

CPU and GPU for the SPMD computation on each node. Let Tc
represent the overall run time on each node when only the CPUs
are engaged in the computation. Let Tg represent the overall run
time on each node when only the GPUs are used for the
computation. Let Tgc represent job runtime when both CPUs
and GPUs are engaged in the computation, the job run time is
defined in Equation (1). The Tc_p is the CPU’s time to process
the fraction p of all of the input data, Tg_p is the GPU’s
processing time and data movement time for processing the
remaining fraction, (1-p), of the input data. Let Fc and Fg
represent the flop per second for the target application on the
CPU and GPU. Let Ac and Ag represent the flops per byte for
the target application on the CPU and GPU. Usually Ac~=Ag,
but they could be different due to different algorithm
implementations on the CPUs and GPUs. Let M represent the

Table 1 User-implemented MapReduce based API
Type Function

C/C++

void cpu_map(KEY *key, VAL *val, int keySize, …)
void cpu_reduce(KEY *key, VAL *val, …)
void cpu_combiner(KEY *KEY, VAL_Arr *val, …)
Int cpu_comare(KEY *key1, VAL *val1, .., KEY …)

CUDA
Device
Func.

__device__ void gpu_device_map(KEY *key, …)
__device__ void gpu__device_reduce(KEY *key, …)
__device__ void gpu_device_combiner(KEY *key, ..)
__device__ Int gpu_device_compare(KEY *key, …)

CUDA
Host
Func.

__host__ void gpu_host_map(KEY *key, …)
__host__ void gpu_host_reduce(KEY *key, …)
__host__ void gpu_host_combiner(KEY *key, …)
__host__ void gpu_host_compare(KEY *key, …)

Table 2: Parameters of the Roofline Model

Parameters Description
Fc/Fg flop per second for target application on

CPU/GPU, respectively
Ac/Ag flops per byte for target application on

CPU/GPU, respectively
B_dram present the bandwidth of DRAM,
B_pcie present the bandwidth of PCI-E,
Pc/Pg present peak performance of CPU/GPU

(1) GPU:GT430, CPU:i5-2400 (2) GPU:C2050, CPU:x5660 (3) GPU:K20, CPU: Opteron 6212

Figure 3: Roofline model for fat nodes consist of different GPUs and CPUs. Y axis represents flop per second, X axis represents
arithmetic intensity. The slope of left curve of ridge point represents the peak bandwidth when data go through DRAM,

PCI-E, Network, and Disk. The right curve of ridge point represents the peak computation of GPU and CPU.

size of the input data for the target application. The parameter,
p, to be tuned is the fraction of the input data that has to be
processed by the CPU cores. We formulate equations to derive
Tgc using the above defined variables.

According to the linear programming theory in math, when

Tg_p ~= Tc_p, Tgc gets the minimal value, and therefore we get
the Equation (2) and Equation (3). Since Fc and Fg have to do
with the other parameters defined in Table 1, we have the
consequent deductions of Equation (4) and Equation (5) for Fc
and Fg. Let B_dram represent the bandwidth of DRAM, and
B_pcie represent the bandwidth of PCI-E. Let Pc represent the
peak performance of the CPU and Pg represent the peak
performance of the GPU. Let S represent the size of the input
data. As shown in Figure 3, usually the GPU and CPU have
drastically different ridge points. Let Rc represent the value of
the Y axis of the ridge point for the CPU cores, and Rg represent
the value of Y axis of the ridge point for the GPU. The slope of
left part of the ridge point for the CPU cores is equal to DRAM
bandwidth which is the peak performance divide by arithmetic
intensity of application; the slope of right part of ridge point for
GPU is equal to aggregated DRAM and PCI-E bandwidth,
which is equal to the peak performance divide by arithmetic
intensity of target application. When the arithmetic intensity of
target application is less than the value of the X axis of the ridge
point (as shown in Figure 3) and when the computation of
application achieve the dynamic balance (data transfer rate
equal to computation rate), then we get the first part of Equation
(6) and (7) for the CPU and GPU, respectively. When the
arithmetic intensity of the target application is larger than the
value of the X axis of the ridge point, we get second part of
Equation (6) and (7).

 Equations (6) and (7) can be used to derive the Fg and Fc
values in different situations. Let Acr and Agr represent the
values of the X axis of ridge points for CPU and GPU,
respectively. Assuming all of the input data is located in CPU
memory, program needs to load data from CPU to GPU
memory through PCI-E bus. For this case, Acr is usually smaller
than Agr, as shown in Figure 3. Thus, the arithmetic intensity of
the target application can lie between three scopes: A<Acr,
Acr<A<Agr, and Agr<A. When using Equation (6) and (7) to
replace the Fg and Fc in Equation (5), we get Equation (8), which

is used to derive the optimal work load distribution between the
CPU and GPU for the target application.
 Equation (8) is the core result of the proposed analytical
model, and can be used to explain the work-load distribution
among the CPUs and GPUs for various SPMD applications.
When the target applications have low arithmetic intensity, the
performance bottleneck is probably the bandwidth of the disk,
network or DRAM. For these applications, such as word count,
the CPU may provide better performance than the GPU. When
the target applications have high arithmetic intensity, the
performance bottleneck is the peak performance of the CPU and
GPU, or the L2 cache. For these applications, such as DGEMM,
the GPU has a better performance than the CPU. The similar
observations have been reported in other papers [5][11].
However, our analytic model is the first mathematical model to
precisely calculate the work load balance between the CPU and
GPU, while it can be applied to applications with wide range of
arithmetic intensities as shown in Figure 4.

Figure 4: the arithmetic intensity of different applications

The task scheduler on master node can use Equation (8) in

order to split the input data among homogeneous or
inhomogeneous fat nodes in cluster. The sub-task scheduler on
the worker node can also use Equation (8) to split the data
partition between the CPU and GPU. Equation (8) can also be
extended by considering the bandwidth of the network in order
to schedule communication intensive tasks. In this paper, we
study the case where the fat nodes are of homogeneous
computation capability; and we do not discuss communication
intensive applications in the paper.

b) Task Granularity
The sub-task scheduler on the worker node can use the

Equation (8) in order to indicate the splitting of the data
partition between the GPU and CPU. However, the sub-
partition of the data may be too large causing the CPU and GPU
daemons to cause further splits. Intuitively, a small block size
for the CPU can achieve good load balancing among multiple
CPU cores; while a large block size for the GPU can minimize
the impact of the data transfer latency on the execution time.
 Paper [5][16][20] discuss their solutions for the task
granularity issue. They use the parameter sweeping in order to
discover the suitable task granularity, which is associated with
extra performance overhead or they introduce some constrains
on the target applications. These studies split the input partition
into blocks whose numbers are several times those of the CPU
cores. This splitting pattern can provide desirable results in both

𝑇𝑇𝑔𝑔𝑔𝑔 = max (𝑇𝑇𝑔𝑔_𝑝𝑝,𝑇𝑇𝑔𝑔_𝑝𝑝) (1)
𝑇𝑇𝑔𝑔_𝑝𝑝 = (1 − 𝑝𝑝) ∗ 𝑀𝑀 ∗ 𝐴𝐴𝑔𝑔/𝐹𝐹𝑔𝑔 (2)
𝑇𝑇𝑔𝑔_𝑝𝑝 = 𝑝𝑝 ∗ 𝑀𝑀 ∗ 𝐴𝐴𝑔𝑔/𝐹𝐹𝑔𝑔 (3)

(1 − 𝑝𝑝) ∗ 𝑀𝑀 ∗ 𝐴𝐴𝑔𝑔 𝐹𝐹𝑔𝑔⁄ = 𝑝𝑝 ∗ 𝑀𝑀 ∗ 𝐴𝐴𝑔𝑔/𝐹𝐹𝑔𝑔 (4)
𝑝𝑝 = 𝐹𝐹𝑐𝑐

𝐹𝐹𝑔𝑔+𝐹𝐹𝑐𝑐
 (𝑖𝑖𝑖𝑖 𝐴𝐴𝑔𝑔 ≅ 𝐴𝐴𝑔𝑔) (5)

⎩
⎪
⎨

⎪
⎧𝑝𝑝 = 𝐴𝐴𝑐𝑐∗𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝐴𝐴𝑔𝑔∗(1
𝐵𝐵𝑝𝑝𝑐𝑐𝑖𝑖𝑝𝑝

+ 1
𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

)+𝐴𝐴𝑐𝑐∗𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 𝑖𝑖𝑖𝑖(𝐴𝐴 < 𝐴𝐴𝑐𝑐𝑑𝑑)

𝑝𝑝 = 𝑃𝑃𝑐𝑐
𝐴𝐴𝑔𝑔∗(1

𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
+ 1
𝐵𝐵𝑝𝑝𝑐𝑐𝑖𝑖𝑝𝑝

)+𝑃𝑃𝑐𝑐
 𝑖𝑖𝑖𝑖(𝐴𝐴𝑐𝑐𝑑𝑑 ≤ 𝐴𝐴 < 𝐴𝐴𝑔𝑔𝑑𝑑)

𝑝𝑝 = 𝑃𝑃𝑐𝑐
𝑃𝑃𝑔𝑔+𝑃𝑃𝑐𝑐

 𝑖𝑖𝑖𝑖(𝐴𝐴𝑔𝑔𝑑𝑑 ≤ 𝐴𝐴)

(8)

�
𝐴𝐴𝑔𝑔 ∗ 𝑆𝑆
𝐹𝐹𝑔𝑔

=
𝑆𝑆

𝐵𝐵_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 (𝑖𝑖𝑖𝑖 𝐴𝐴𝑔𝑔 < 𝐴𝐴𝑔𝑔𝑑𝑑)

𝐹𝐹𝑔𝑔 = 𝑃𝑃𝑔𝑔 (𝑖𝑖𝑖𝑖 𝐴𝐴𝑔𝑔 ≥ 𝐴𝐴𝑔𝑔𝑑𝑑)
 (6)

�
𝐴𝐴𝑔𝑔 ∗ 𝑆𝑆
𝐹𝐹𝑔𝑔

=
𝑆𝑆

𝐵𝐵_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
+

𝑆𝑆
𝐵𝐵_𝑝𝑝𝑐𝑐𝑖𝑖𝑝𝑝

 (𝑖𝑖𝑖𝑖 𝐴𝐴𝑔𝑔 < 𝐴𝐴𝑔𝑔𝑑𝑑)

𝐹𝐹𝑔𝑔 = 𝑃𝑃𝑔𝑔 �𝑖𝑖𝑖𝑖 𝐴𝐴𝑔𝑔 ≥ 𝐴𝐴𝑔𝑔𝑑𝑑�
 (7)

the balanced workload distribution and low sub-task scheduling
overhead. We adopt the same splitting pattern for scheduling
sub-tasks on CPU cores in this paper.
 It becomes complex to decide the task granularity for the
GPUs. Serialized data transfers and GPU computations can
either be PCI-E bus idle or GPU idle. The CUDA stream can
simultaneously execute a kernel, while performing data
transferring between the device and host memory. The Fermi
architecture support only one hardware work queue; while the
Kepler Hyper-Q model supports multiple hardware work
queues. In addition, the stream approach can only improve
application performance whose data transferring overhead is
similar to computation overhead. Otherwise there will not be
much overlap to hide the overhead.
 For an application whose arithmetic intensity is a function of
the input size, such as BLAS3, whose arithmetic intensity is
O(N), we should increase the arithmetic intensity by increasing
the input data size so as to saturate the peak performance of
GPU. By using the Roofline model, we can calculate the
minimal task block size necessary to achieve peak performance.
Then, one task should be split into several sub-tasks and run on
GPUs concurrently by launching multiple streams.
 Let BS represent the block size of the target application on the
GPU. The overlap percentage between data transfer overhead
and computation overhead can be deduced by using the
Roofline model as show in Equation (9).

 Let Agr represent the value of the X axis of the ridge point on
the GPU. Let Fag represent the arithmetic intensity function of
a target application on the GPU. Then, the minimal block size
necessary to cause the target application to achieve peak
performance is the result of the inverse function Fag

-1 of Agr.
 As shown in Equation (11), MinBS is the theoretical minimal
block size that should be used to saturate the peak performance
of the GPU. One should notice that having a block size larger
than the MinBS won’t further increase the flops performance.
Therefore, there are two requirements for leveraging multiple
streams in CUDA: 1) the overlap percentage calculated by
Equation (9) is larger than a certain threshold. 2) The data block
size is larger than MinBS calculated by Equation (11).

C. Other Implementation Details
1) Threading Model
The PRS leverages the Pthreads in order to create CPU and

GPU device daemons for managing tasks. It spawns one
daemon thread for each GPU card and one daemon thread for
all assigned CPU cores in the host. For example, if there are two
GPUs and 12 CPU cores on one machine, then the PRS will
spawn two daemon threads to be used for scheduling tasks on
the GPUs and another daemon thread for scheduling tasks on
the 12 CPU cores. The PRS also makes use of Pthreads to
schedule tasks on CPU cores. Each thread runs one mapper or

reducer on each CPU core. For gpu_device_mapreduce
function, the PRS leverages the CUDA kernel threads to
schedule tasks on GPU cores. It runs one mapper or reducer task
per CUDA kernel thread. The default number of mappers and
reducers in the PRS is several times larger than GPU cores in
order to keep physical cores busy and hide latencies of the
context switch. The gpu_host_mapreduce function is invoked
by the GPU daemon thread, where the grid and block
configuration of kernel threads is determined by programmer.

2) Region-based Memory Management
Region-based memory management [23] is a type of memory

management in which each allocated object is assigned to a
region, which, typically, is a single contiguous range of
memory space. Two advantages exist to adopting this
technology in a runtime framework. First, although the latest
CUDA supports dynamically allocating the buffer in the GPU
global memory using the malloc operation, the aggregated
overhead of the malloc operations can degrade the performance
if many small memory allocation requests exist. Instead of
allocating many small memory buffers, the runtime library
allocates a block of memory for each CPU or GPU thread,
whose size should be big enough to serve many small memory
allocations. When the block is filled, the runtime library will
increase the buffer and copy the data to new buffer. The second
advantage is that the collection of allocated objects in the region
can be deallocated all at once.

3) Iterative Support
A set of iterative applications, such as Cmeans, exist that

have loop invariant data during the iterations. It is expensive for
the GPU program to copy these loop invariant data between the
CPU and GPU memories over the iterations.

Paper [24][25][26] discuss the work of caching loop invariant
data in the CPU memory over iterations. However, it will be
difficult to do so because GPU need maintain the GPU context
between iterations [27][35]. Therefore, instead of having every
MapReduce tasks creating its own GPU context, we make GPU
device daemon to be the only thread that communicate to GPU
device. The GPU device daemon take in charge of read/write
input/output data on behalf of MapReduce tasks. In addition
that, GPU context switch is expensive. Such overhead is
magnified when a large number of MapReduce tasks create
their own GPU context. We adopt same strategy for funneled
MapReduce tasks onto CPU cores.

IV. APPLICATIONS AND EVALUATION
This section evaluates the execution time using three sample

applications on different experimental environments. Table 4
illustrates the configuration of the GPU and CPU devices used
in the experiments. All of the NVIDIA GPU cards listed in
Table 3 support computation capability at 2.x or above. The
user implemented API are written in CUDA and C/C++, and
compiled by using nvcc 4.2 and gcc 4.4.6, respectively.

A. Applications
1) C-means

𝑜𝑜𝑝𝑝 =
� 𝐵𝐵𝑠𝑠
𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝐵𝐵𝑠𝑠
𝐵𝐵𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝

�

� 𝐵𝐵𝑠𝑠
𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝐵𝐵𝑠𝑠
𝐵𝐵𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝

�+
𝐵𝐵𝑠𝑠∗𝐴𝐴𝑔𝑔
𝑃𝑃𝑔𝑔

 (9)

𝐴𝐴𝑔𝑔 = 𝐹𝐹𝑑𝑑𝑔𝑔(𝐵𝐵𝑠𝑠) (10)
𝑀𝑀𝑖𝑖𝑀𝑀𝐵𝐵𝑀𝑀 = 𝐹𝐹𝑑𝑑𝑔𝑔−1(𝐴𝐴𝑔𝑔𝑑𝑑) (11)

The computational demands of the multivariate clustering
grow rapidly; therefore clustering for large data sets is very time
consuming on a single CPU. Fuzzy K- means (also called as C-
means) [28][29] is an algorithm of clustering that allows one
element to belong to two or more clusters with different
probabilities. The C-means application is frequently used in
multivariate clustering, such as flowcytometry clustering [30].
The algorithm is based on a minimization of the Equation 12.
M is a real number greater than 1, while N is the number of
elements. Uij is the value of the membership of Xi in cluster Cj.
||Xi-Cj|| is the norm expressing the similarity between the data
point and the cluster center. The Xi is the ith data point, while
Cj is the jth cluster center. The fuzzy partitioning is performed
using an iterative optimization of the objective function as
shown above. Within each iteration, the algorithm updates the
membership Uij and the cluster centers the Cj using Equation 13
and Equation 14. The iteration will stop when
maxij��uij

(k+1) − uij
(k)�� < ϵ where 'e' is a termination criterion

between 0 and 1, and ‘k’ is the iteration steps.

We implemented a C-means MapReduce application using
our PRS framework on GPU and CPU. The input matrices were
copied into CPU and GPU memories in advance. The key object
of the C-means MapReduce task contains the indices bound of
input matrices, while the value object stores the pointers of input
matrices in GPU or CPU memory. The event matrix is cached in
GPU memory in order to avoid data staging overhead over
iterations. The Map function calculates the distance and
membership matrices, and then multiplies the distance matrix by
the membership matrix in order to calculate the new cluster
centers. The Reduce function aggregates partial cluster centers
and calculates the final cluster centers.
 We used one of Lymphocytes data set, which has 20054 points,
4 dimensions, and 5 clusters, to evaluate correctness of C-means
implementation. The Lymphocytes data set has already been

studied in paper [30], and the clusters were calculated using
Flame with finite mixture model. Figure 5 is the plot of C-means
and K-means clustering results for Lymphocytes data set after
project 4D data points into 3D data points by using
algorithms[31][32]. The initial centers of C-means and K-means
programs were picked up randomly, and we choose the best
clustering results among several runs. We also compare results
between C-means and K-means and DA[37][38] approaches [33]
in terms of average width over clusters and points and clusters
overlapping with standard Flame results. The DA approach
provide the best quality of output results. The C-means results
are a little better than Kmeans in the two metrics for the test data
set. Table 3 shows the performance results in seconds of Cmeans
using different runtime frameworks including MPI/GPU, PRS,
and Mahout/CPU on 4 GPU nodes. The MPI/GPU and PRS use
one GPU on each node. The MPI/CPU and Mahout/CPU use all
CPU cores on each node, and they spawn two threads for each
CPU core with hyper-threading enabled. The sample data set has
200k to 800k points, 100 dimensions, and 10 clusters. The
results indicate that our PRS introduce some overhead during the
computation as compared with MPI using one GPU per node
solution, but it is faster than MPI using multiple CPUs per node
and is two orders of magnitude faster than the Mahout (Apache
Hadoop clustering) solution. We also have seen similar
performance ratios for Kmeans application.
Table 3 Performance results of C-means with different runtimes

#points 200k 400k 800k
MPI/GPU 0.53 sec 0.945 sec 1.78 sec
PRS/GPU 2.31 sec 3.81 sec 5.31 sec
MPI/CPU 6.41 sec 12.58 sec 24.89 sec
Mahout/CPU 541.3 sec 563.1 sec 687.5 sec

𝐽𝐽𝑑𝑑 = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑑𝑑�𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑖𝑖�
2𝑔𝑔

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1 (12)

𝑈𝑈𝑖𝑖𝑖𝑖 = 1

∑ �
�𝑥𝑥𝑝𝑝−𝑐𝑐𝑗𝑗�

�𝑥𝑥𝑝𝑝−𝑐𝑐𝑘𝑘�
�

2
𝜋𝜋−1

𝑐𝑐
𝑘𝑘=1

 (13)

𝐶𝐶𝑖𝑖 =
∑ 𝑢𝑢𝑝𝑝𝑗𝑗

𝑑𝑑𝑛𝑛
𝑝𝑝=1 𝑥𝑥𝑝𝑝
∑ 𝑢𝑢𝑝𝑝𝑗𝑗

𝑑𝑑𝑛𝑛
𝑝𝑝=1

 (14)

(1) GEMV (2) C-means (3) GMM

Figure 6: weak scalability for GEMV, C-means, and GMM applications with up to 8 nodes on Delta. Y axis represents Gflops
per node for each application. (1) GEMV, M=35000, N=10,000 per Node. (2) C-means, N=1000,000 per node , D=100, M=10. (3)

GMM, N=100,000 per node, D=60, M=100. The red bard means only using GPUs as computation resources, while blue bar
means using both GPUs and CPUs as computation resources.

Figure 5: C-means (left) and K-means (right) clustering results

of a Lymphocytes data set after a 3D projection.

2) GMM
 The expectation maximization using a mixture model
approach takes the data set as a sum of a mixture of multiple
distinct events. Gaussians mixtures form probabilistic models
composed of multiple distinct Gaussians distributions as clusters.
Each cluster ‘m’ within a D dimensional data set can be
characterized by the following parameters[28]:

Nm: the number of samples in the cluster
πm : probability that a sample in data set belongs to the cluster
μm : a D dimensional mean
Rm: a DxD spectral covariance matrix

Assuming that there are N data points y1,y2,…, yN, then the
probability that an event yi belongs to a Gaussian distribution is
given by the following equation

𝑃𝑃(𝑦𝑦𝑛𝑛|𝑑𝑑,𝜃𝜃) =
𝑒𝑒𝑥𝑥𝑝𝑝�−12(𝑦𝑦𝑛𝑛−𝜇𝜇𝑑𝑑)𝑡𝑡𝑅𝑅𝑑𝑑−1(𝑦𝑦𝑛𝑛−𝜇𝜇𝑑𝑑)�

(2𝜋𝜋)𝐷𝐷/2|𝑅𝑅𝑑𝑑|1/2 (15)
 Neither the statistical parameters of the Gaussian Mixture
Model, θ = (π,µ, R), nor the membership of events to clusters
are known. An algorithm must be employed to deal with this
lack of information. The expectation maximization is a statistical
method for performance likelihood estimation with incomplete
data. The objective of the algorithm is to estimate θ, the
parameters for each cluster.

3) GEMV
The BLAS are a set of basic linear algebra subprograms that

perform vector-vector, matrix-vector, and matrix-matrix
operations. The matrix-vector multiplication is embedded in
many algorithms for solving a wide variety of problems. There
are three straightforward ways to decompose a MxN matrix A:
row wise block striping, column wise block striping and the
checkerboard block decomposition. In this paper, we use row
wise block-striped decomposition to parallel matrix-vector
multiplication. We associate a primitive map task with each row
of the matrix A. Vectors B and C are replicated among the map
tasks so the memory can be allocated for the entire vectors on
each compute node. It follows that the map task has all the
elements required to compute. Once this is done, reduce task can
concatenate the pieces of vector C into a complete vector.

For many programmers, the key to a good performance of
numerical scientific applications is still linked to the availability
of high-performance libraries available for GPUs and CPUs, e.g.,
Nvidia’s cuBLAS [2], Intel MKL, and open source MAGMA
library. In the experiment, we leveraged the CUDA cuBLAS and
Intel MKL library to perform the GEMV computation on GPU
and CPU on each node. This strategy simplified our
programming work so that we could focus on evaluating the
proposed scheduling strategy.

B. Performance Evaluation
Figure 6 show the weak scalability of GEMV, C-means, and

GMM using our framework. In this case the problem size
(workload) assigned to each node stays constant. The GPU
version only uses one GPU per node during computation, while
GPU+CPU version uses one GPU and all available CPU cores
on same node during computation. The value X in Table 4 means
X percentage of the work load is assigned to CPU, while the
remain (1-X) percentage of work is assigned to GPU.

For GEMV, it shows the Gflops/node performance gap
between GPU and CPU is large, i.e., CPU+GPU version is 10
times faster than GPU only version. This is because GEMV has
low arithmetic density. The data staging overhead between GPU
and CPU cost more than 90% of its overall overhead. We
calculate the work load distribution proportion of GEMV among
GPU and CPU on Delta node by using equation (8) of analytical
model. For C-means, it shows the linear scaling is achieved as
the Gflops per node stays constant while the workload is
increased in direct proportion to the number of nodes. In addition,
the GPU+CPU version is 1.3 times faster than GPU only version.
The peak performance per node decrease by 5.5% when using 8
compute nodes, which is due to the increasing overhead in global
reduction stage of the parallel C-means algorithm. For GMM, it
shows similar linear weak scaling when number of points per
node is fixed. But peak performance of GMM is much larger
than that of C-means, as it has larger arithmetic intensity
O(M*D), as compared with O(M) for C-means. Given C-means
and GMM are of iterative computationsteps, we didn’t timing
the data staging overhead between GPU and CPU at the
beginning step and end step of computation. This is because
these overhead are one-off overhead[34], which will be
amortized when number of iterations is large. In other words, the
average arithmetic intensity of C-means and GMM depend on
the bandwidth of DRAM and peak performance of GPU, rather
than bandwidth of PCI-E bus.

We also study the work load balance issue of our PRS
implementation on GPUs and CPUs clusters. Table 5
summarizes the work load distribution between GPU and CPU
of three applications using our PRS framework on the Delta
node illustrated in Table 4. The work load distribution
proportions, p values, between GPU and CPU are calculated by
using Equation (8). The parameters of bandwidth of DRAM,
PCI-E bus, and peak performance of GPU and CPU are shown
in Figure 3 (1). Another set of p values calculated by measuring

Table 4: Hardware Configuration
Machine

Name
Future Grid

Delta
IU

BigRed2
GPU Type C2070 K20

GPUs/Node 2 1
Memory/GPU 6 GB 5 GB

Cores/GPU 448 Cores 2496 Cores
CPU Type Intel Xeon

5660
AMD

Opteron 6212
Cores/CPU 12 Cores 32 Cores

Memory/CPU 192 GB 62 GB

Table 5: Work Load Distribution among GPU and CPU
of Three Applications using Our Framework
Apps GEMV C-means GMM

Arithmetic
intensity

2 5*M
(M = 100)

11*M*D
(M=10,D=

60)
p calculated by

Equation (8)
97.3% 11.2% 11.2%

p calculated by
app profiling

90.8% 11.9% 13.1%

the real peak performance of the three applications using GPU
version and GPU+CPU version, respectively. As it shown in
Table 5, applications with low arithmetic intensity, such as
GEMV, should assign more work load onto the CPU; while
applications with high arithmetic intensity should assign more
work load onto the GPU. The error between p values calculated
by using Equation (8) and the ones by application profiling is
less than 10% for the three applications in Table 5.

I. SUMMARY AND CONCLUSION
This paper introduced a PRS framework for running SPMD

computation on GPU and CPU cluster. The paper is proposing
an analytical model that is used to automatically scheduling
SPMD computation on GPU and CPU cluster. The analytical
model is derived from roofline model, and therefore, it can be
applied to a wide range of SPMD applications and hardware
devices. The significant contribution of analytic model is that it
can precisely calculate the balanced work load distribution
between the CPU and GPU, while be applied to applications
with wide range of arithmetic intensities. Experimental results
of GEMV, C-means, and GMM indicate that using all CPU
cores increase the GPU performance by 1011.8%, 11.56%, and
15.4% respectively. The error between the real optimal work
load distribution proportion and theoretical one is less than
10%.

For SPMD applications, such as PDEs, FFT whose
arithmetic intensities are in the middle range as shown in Figure
4, using our PRS framework can increase resource utilization
of heterogeneous devices, and decrease job running time
because both GPU and CPU can make the non-trivial
contribution to overall computation, and because the workload
is evenly distributed between GPU and CPU by the PRS.

The future work of our PRS framework could be: a) Extend
the proposed analytical model by considering the network
bandwidth issue. b) Extend the framework to other backend or
accelerators, such as OpenCL, MIC. c) Applying the analytical
model to heterogeneous fat nodes.

Acknowledgements
 The authors thank Andrew Pangborn for the original C-means
and GMM CUDA programs. We also thank Jerome Mitchell
and Adnan Ozsoy for the help about running experiments on
Delta nodes. We also thank Judy Qiu for the suggestions on
MapReduce design and implementation. At last we thank Jong
Choi for plotting figure 5 in the paper. The work in this paper
was supported by FutureGrid project funded by National
Science Foundation (NSF) under Grant No. 0910812.

REFERENCES
[1] Michael Garland, David Kirk, Understanding throughput-oriented

architectures, COMMUNICATIONS of the ACM 2010.
[2] NVIDIA Inc, CUDA C Programming Guide, http://www.nvidia.com/

October 2012.
[3] MUNSHI, A. “OpenCL Parallel Computing on the GPU and CPU”, In

ACM SIGGRAPH, Los Angeles, California, USA, August 2008.
[4] Dean, J. and S. Ghemawat (2004). “MapReduce: Simplified Data

Processing on Large Clusters”. Sixth Symposium on Operating Systems
Design and Implementation: San Francisco, CA , 2004.

[5] Chi-Keung Luk, Sunpyo Hong, Hyesoon Kim, “Qilin: Exploting
Parallelism on Heterogeneous Mulitprocessors with Adaptive Mapping”,
MICRO'09, New York, NY, 2009.

[6] Chun-Yu Shei, Pushkar Ratnalikar and Arun Chauhan. “Automating GPU
Computing in MATLAB”. In Proceedings of the International Conference
on Supercomputing (ICS), pages 245–254, 2011.

[7] Samuel Williams, Andrew Waterman, David Patterson, “Roofline: An
Insightful Visual Performance Model for Multicore Architecture”,
Communications of the ACM , Volume 52 Issue 4, New York, NY, USA
, April 2009.

[8] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and
Tuyong Wang. “Mars: A MapReduce Framework on Graphics
Processors”. PACT 2008, Toronto, CANADA, 2008.

[9] Ludovic Courtes and Nathalie Furmento, “StarPU: Hybrid CPU/GPU
Task Programming, C Extensions and MPI Support”, ComPAS,
Grenoble, January 2013.

[10] OpenACC www.openacc-standard.org
[11] ICL Innovative Computing Laboratory, “MAGMA: Matrix Algebra on

GPU and Multicore Architectures”, SC12, Salt Lake City, Utah, 2012
[12] Manuel M. T. Chakravartyy Gabriele Kellery Sean Leezy Trevor L.

McDonelly Vinod Groverz, “Accelerating Haskell Array Codes with
Multicore GPUs”. DAMP’11 Austin, Texas, USA, 2011.

[13] Eric Holk, William Byrd, Nilesh Mahajan, Jeremiah Willcock, Arun
Chauhan, and Andrew Lumsdaine. “Declarative Parallel Programming for
GPUs. In Proceedings of the International Conference on Parallel
Computing” (ParCo), September 2011.

[14] GridWay, Metascheduling Technologies for the Grid,
www.GridWay.org, September 2009.

[15] Ioan Raicu, Yong Zhao, "Falkon: a Fast and Light-weight tasK executiON
framework for Grid Environments", IEEE/ACM SuperComputing 2007,
November 15th, Reno, Nevada, USA, 2007.

[16] Patrick Carribault, Marc Pérache and Hervé Jourdren “Enabling Low-
Overhead Hybrid MPI/OpenMP Parallelism with MPC”, IWOMP 2010,
Aprajon France, 2010.

[17] Alan Humphrey, Qingyu Meng, Martin Berzins, Todd Harman,
“Radiation Modeling Using the Uintah Heterogeneous CPU/GPU
Runtime System”, XSEDE’12, Chicago Illinois, USA, July 2012.

[18] Satoshi Ohshima, Kenji Kise, Takahiro Katagiri, Toshitsugu Yuba,
“Parallel Processing of Matrix Multiplication in a CPU and GPU
Heterogeneous Environment”, VECPAR'06, Rio de Janeiro, Brazil, 2006.

[19] Linchuan Chen, Xin Huo, Gagan Agrawal, “Accelerating MapReduce on
a Coupled CPU-GPU Architecture”, SC12, Salt Lake City, Utah, USA,
Nov, 2012.

[20] Z Guo, M Pierce, G Fox, M Zhou, Automatic Task Re-organization in
MapReduce , CLUSTER2011, Austin Texas , September 2011.

[21] T.R.Vignesh, M. Wenjing “Compiler and runtime support for enabling
generalized reduction computation on heterogenesou paralle
configuration” ICS’10; Proceedings of the 24ACM International
Conference on Supercomputing. New Orleans, Louisiana, 2010

[22] Li Hui, Yu Huashan, Li Xiaoming. A lightweight execution framework
for massive independent tasks. Many-Task Computing on Grids and
Supercomputers. MTAGS 2008. Austin, Texas. Nov 2008.

[23] David R. Hanson, Fast allocation and deallocation of memory based on
object lifetimes, SOFTWARE-PRACTICE AND EXPERIENCE, Jan,
1990.

[24] J.Ekanayake, H.Li, et al. (2010). Twister: A Runtime for iterative
MapReduce. Proceedings of the First International Workshop on
MapReduce and its Applications of ACM HPDC 2010 conference.
Chicago, Illinois, ACM. June, 2010.

[25] Bingjing Zhang, Yang Ruan, Tak-Lon Wu, Judy Qiu, Adam Hughes,
Geoffrey Fox, Applying Twister to Scientific Applications, in
Proceedings of IEEE CloudCom 2010 Conference (CloudCom 2010),
Indianapolis, November 30-December 3, 2010, ISBN: 978-0-7695-4302-
4, pp. 25-32

[26] Hui Li, Yang Ruan, Yuduo Zhou, Judy Qiu, Geoffrey Fox, "Design
Patterns for Scientific Applications in DryadLINQ CTP", DataCloud-
SC11, Nov 2011

http://www.nvidia.com/
http://www.openacc-standard.org/
http://www.gridway.org/

[27] Thilina Gunarathne, Bimalee Salpitikorala, Arun Chauhan and Geoffrey
Fox. Optimizing OpenCL Kernels for Iterative Statistical Algorithms on
GPUs. In Proceedings of the Second International Workshop on GPUs
and Scientific Applications (GPUScA), Galveston Island, TX. 2011.

[28] Andrew Pangborn, Gregor von Laszewski, James Cavenaugh,
Muhammad Shaaban, Roy Melton, Scalable Data Clustering using GPUs
cluster, Thesis. Computer Engineering, Rochester Institue of Technology,
2009.

[29] Andrew Pangborn, Scalable Data Clustering with GPUs, Thesis,
Computer Engineering, Rochester Institue of Technology, 2010.

[30] FLAME DataSet, Gene Pattern,
http://www.broadinstitute.org/cancer/software/genepattern/modules/FL
AME/published_data, 2009.

[31] J. Choi, S. Bae, X. Qiu, and G. Fox, "High Performance Dimension
Reduction and Visualization for Large High-dimensional Data Analysis,"
proceedings of CCGRID, 2010.

[32] S.-H. Bae, J. Y. Choi, J. Qiu, and G. C. Fox, "Dimension reduction and
visualization of large high-dimensional data via interpolation," in HPDC
'10: Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, (New York, NY, USA), pp. 203–
214, ACM, 2010.

[33] Y Ruan, S Ekanayake, M Rho, H Tang, SH Bae, J Qiu , DACIDR:
deterministic annealed clustering with interpolative dimension reduction
using a large collection of 16S rRNA sequences, Proceedings of the ACM
Conference on Bioinformatics, 2012.

[34] Hui Li, Geoffrey Fox, Judy Qiu, "Performance Model for Parallel Matrix
Multiplication with Dryad: Dataflow Graph Runtime", BigDataMR-12,
Nov 2012

[35] Jon Currey, Simon Baker, and Christopher J. Rossbach, Supporting
Iteration in a Heterogeneous Dataflow Engine, in SFMA 2013, The 3rd
Workshop on Systems for Future Multicore Architectures, 14 April 2013

[36] G. von Laszewski, Workflow Concepts of the Java CoG Kit, in Journal of
Grid Computing in Vol 3, Issue 3-4, pp. 239-258, 2005,
http://dx.doi.org/10.1007/s10723-005-9013-5,,
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-
workflow-taylor-anl.pdf

[37] Geoffrey Fox , D. R. Mani, Saumyadipta Pyne Parallel Deterministic
Annealing Clustering and its Application to LC-MS Data Analysis
Proceedings of 2013 IEEE International Conference on Big Data October
6-9, 2013, Santa Clara, CA, USA

[38] Geoffrey Fox, Robust Scalable Visualized Clustering in Vector and non
Vector Semimetric Spaces, To be published in Parallel Processing Letters
2013

http://www.broadinstitute.org/cancer/software/genepattern/modules/FLAME/published_data
http://www.broadinstitute.org/cancer/software/genepattern/modules/FLAME/published_data
http://dx.doi.org/10.1007/s10723-005-9013-5
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-workflow-taylor-anl.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-workflow-taylor-anl.pdf

	I. INTRODUCTION
	II. RELATED WORK
	A. High-Level Interface on Heterogeneous Devices
	B. Task Scheduling on Heterogeneous Devices

	III. RUNTIME ARCHITECTURE
	A. Design
	1) Programming Model on Heterogeneous Resources
	2) Work flow of Tasks

	B. Implementation
	1) API
	2) Scheduler
	3) Roofline Model Based Scheduling
	a) Workload Distribution
	b) Task Granularity

	C. Other Implementation Details
	1) Threading Model
	2) Region-based Memory Management
	3) Iterative Support

	IV. Applications and EVALUATION
	A. Applications
	1) C-means
	The computational demands of the multivariate clustering grow rapidly; therefore clustering for large data sets is very time consuming on a single CPU. Fuzzy K- means (also called as C-means) [28][29] is an algorithm of clustering that allows one elem...
	2) GMM
	3) GEMV

	B. Performance Evaluation

	I. Summary and Conclusion
	References

