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Abstract—The growing use of Big Data frameworks on large
machines highlights the importance of performance issues and
the value of High Performance Computing (HPC) technology.
This paper looks carefully at three major frameworks Spark,
Flink and Message Passing Interface (MPI) both in scaling across
nodes and internally over the many cores inside modern nodes.
We focus on the special challenges of the Java Virtual Machine
(JVM) using an Intel Haswell HPC cluster with 24 or 36 cores
per node. Two parallel machine learning algorithms, K-Means
clustering and Multidimensional Scaling (MDS) are used in our
performance studies. We identify three major issues – thread
models, affinity patterns, and communication mechanisms – as
factors affecting performance by large factors and show how
to optimize them so that Java can match the performance of
traditional HPC languages like C. Further we suggest approaches
that preserve the user interface and elegant dataflow approach
of Flink and Spark but modify the runtime so that these Big
Data frameworks can achieve excellent performance and realize
the goals of HPC-Big Data convergence.

Index Terms—Big Data; Machine Learning; Java; Multicore;
HPC;

I. INTRODUCTION

The performance of Big Data frameworks is of growing
importance with increasingly complex use cases and large
scale deployments. In light of this trend, High Performance
Computing (HPC) technologies are proving to be more im-
portant and applicable to Big Data than ever before. The
HPC-Big Data convergence [1] elaborates this concept and
previous work [2] and [3] show promising results highlighting
the usefulness of this approach.

Parallel machine learning is a blooming area in Big Data
with a high demand for performance. A primary challenge
with parallel machine learning is its sensitivity to performance
variations in individual tasks. To elaborate, these algorithms
are typically iterative in nature and require collective com-
munications that are not easily overlapped with computations;
hence the performance is susceptible to communication over-
heads and noise caused by slow performing tasks. Beyond the
nature of these applications, The Java runtime on multicore
Non-Uniform Memory Access (NUMA) nodes brings out
additional challenges in keeping constant performance when
scaling over the many cores within a node as well as across
nodes. In this paper, we focus on such special challenges
of the Java Virtual Machine (JVM) for parallel machine
learning. In particular, we identify three major factors – thread
models, affinity patterns, and communication mechanisms –

that affect performance by large factors and show optimization
techniques to bring Java performance closer to traditional HPC
applications in languages like C.

In studying performance, we carefully look at three major
frameworks – Message Passing Interface (MPI), Spark [4], and
Flink [5], [6]. Two parallel machine learning algorithms – K-
Means clustering and Multidimensional Scaling (MDS) – are
used to evaluate these frameworks using an Intel Haswell HPC
cluster consisting of both 24-core and 36-core nodes. Based
on the results, we further suggest approaches to improve the
runtime of Flink and Spark, while preserving their elegant
dataflow programming model.

The remaining sections are organized as follows. Section II
presents a comparison of execution models of MPI, Spark, and
Flink, which paves the way to explain performance differences
observed in later sections. Section III elaborates the three
major factors affecting performance of Big Data applications.
It describes two thread models, six affinity patterns, and two
communication mechanisms used to evaluate performance.
Section IV outlines the two machine learning applications
and their various implementations in MPI, Spark, and Flink.
Section V describes the testing of these applications using an
Intel Haswell HPC cluster followed by a discussion on Big
Data frameworks and MPI in Section VI. Section VII and
Section VIII present our conclusion based on the experiments
and future plans to improve Spark and Flink.

II. COMPARISON OF EXECUTION MODELS

The MPI and Big Data platform implementations that we
study, follow two different execution models, message passing
and dataflow [7]. The key differences are with the task
distribution and communication. MPI is a rich execution model
that can support different styles of programming including
Bulk Synchronous Parallel (BSP) and many-task models. On
the other hand, Big Data platforms primarily follow the
data oriented execution model that is termed the dataflow
model [7]. Flink [5] is a direct realization of the dataflow
execution model, where as Spark resembles the dataflow model
but executes the parallel program as a series of transformations
over its distributed data model – Resilient Distributed Dataset
(RDD) [8].

In the dataflow model, the parallel program is expressed as
a Directed Acyclic Graph (DAG). Parallel tasks are assigned
to nodes of the DAG and the flow of data between nodes



completes the “wiring”. In contrast, classic parallel applica-
tions employ the message passing model, where long run-
ning tasks are orchestrated using point-to-point and collective
communication calls. We sometimes term this an “in-place”
execution model to distinguish it from dataflow. The dataflow
model permits both batch and stream processing [9] of data,
which are supported in Flink and Spark. Apache Beam [10]
is a unified dataflow programming Application Programming
Interface (API), which can be used to write both streaming
and batch data processing applications compatible to run on
either Spark or Flink.

With MPI machine learning applications, all parts of the
program are executed on a set of pre-allocated tasks that
define the parallelism of the execution. The same (reflecting
in-place model) tasks are responsible for the computing and
communications of the program. On the other hand, dataflow
implementations allocate separate tasks for different stages
of the application and connect them through communication
channels. These tasks and communication links form the exe-
cution graph. The MPI programming model permits complete
control over the execution in a single task including memory
management and thread execution. The dataflow execution
model hides these details from the user and provides only
a high level API.

With current implementations of Big Data frameworks, pro-
gramming models and execution models are coupled together
even though they could be independent of each other. For
example the dataflow programming models in Spark and Flink
are implemented as dataflow execution graphs compared to an
in-place execution as in MPI applications.

It is important to note the differences in how the iterations
are handled in pure dataflow applications. With dataflow
applications, iterations are handled as unrolled for loops. Even
though the user specifies a for loop execution, it translates
to a lengthy dataflow graph. This implies that the data from
one loop’s tasks that is relevant to the next needs to be sent
through communications. The MPI model doesn’t have this
requirement because a for loop is a regular in memory loop
and data from the iteration is available to the next via the
task’s memory.

III. PERFORMANCE FACTORS

The performance of parallel machine learning algorithms is
sensitive to runtime variations of individual parallel tasks. The
following discussion identifies thread models, affinity patterns,
and communication mechanisms as three important factors of
performance, especially for applications developed in Java.
These are discussed in next 3 subsections.

A. Thread Models

Threads offer a convenient construct to implement shared
memory parallelism. A common pattern used in both Big
Data and HPC is the Fork-Join (FJ) thread model. In this
approach, a master thread spawns parallel regions dynamically
as required. FJ regions are implicitly synchronized at the
end, after which the worker threads are terminated and only

the master thread will continue until a new parallel region
is created. Thread creation and termination are expensive;
therefore, FJ implementations employ thread pools to hand
over forked tasks. Pooled threads are long-lived yet short-
activated; they release CPU resources and switch to idle
state after executing their tasks. This model is subsequently
referred to as Long Running Threads Fork-Join (LRT-FJ) in
this paper. Java has built-in support for LRT-FJ through its
java.util.concurrent.ForkJoinPool 1. Habanero
Java [11], an OpenMP [12]-like implementation in Java, also
supports LRT-FJ via its forall and forallChunked
constructs.

We experimented with another approach to shared memory
parallelism, hereafter referred to as Long Running Threads
Bulk Synchronous Parallel (LRT-BSP). It resembles the classic
BSP style but with threads. Fig. 1 depicts a side-by-side
view of LRT-FJ and LRT-BSP models. The notable difference
is that in LRT-BSP, threads are busy from start to finish
of the program, not just within the parallel region as in
LRT-FJ. The next important difference is the use of explicit
synchronization constructs (blue horizontal lines) after non-
trivial parallel work (red bars in the figure) in LRT-BSP.
There are constructs such as CyclicBarrier in Java to aid
the implementation of these synchronization steps. However,
we employed native compare-and-swap (CAS) operations and
busy loops for performance as well as to keep threads “hot” on
cores. A third difference in LRT-BSP is that the serial part of
the code (green bars) is replicated across workers, where as in
LRT-FJ it is executed by just the master thread. Performance
results show that despite the replication of serial work in
LRT-BSP, it does not add significant overhead. The reason for
this behavior is that in a well-designed parallel application, the
serial portions are trivial compared to the parallel work loads
and the total amount of memory accesses in LRT-BSP is equal
to that of LRT-FJ for these parts.

Beyond the differences in the execution model, we ob-
served a significant performance improvement with LRT-BSP
compared to LRT-BSP for parallel Java applications. Ana-
lyzing perf statistics revealed that LRT-FJ experiences a
higher number of context switches, CPU migrations, and data
Translation Lookaside Buffer (dTLB) load/store misses than
LRT-BSP. In an MDS run, the factors were over 15x and 70x
for context switches and CPU migrations respectively. These
inefficiencies coupled with the overhead of scheduling threads
lead to noise in computation times within parallel FJ regions.
Consequently, synchronization points become significantly ex-
pensive, and performance measurements indicate performance
degredation with increasing number of threads in LRT-FJ.

B. Thread and Process Affinity Patterns
Modern multicore HPC cluster nodes typically contain more

than one physical CPU. Although memory is shared between
these central processing units (CPUs), memory access is not
uniform. CPUs with their local memory compose NUMA

1 https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html



TABLE I: Affinity patterns

Process Affinity

Cores Socket None (All)

Thread

Affinity

Inherit Q R U

Explicit per Core T V S

domains or NUMA nodes. Developing parallel applications
in these settings requires paying attention to the locality of
memory access to improve performance.

In supported Operating Systems (OSs), process affinity
determines where the OS can schedule a given process as
well as the part of memory it can access. Threads spawned
within a process by default inherit the affinity policy of the
process. Also, it is possible to set affinity explicitly to threads
as desired for performance reasons. This research explores six
affinity patterns and identifies binding options that produce the
best and worst performance.

Details of the three process affinity patterns in Table I are:
Core - binds the process to N cores, where N is the number
of threads used for shared memory parallelism.
Socket - binds the process to a physical CPU or socket.
None (All) - binds the process to all available cores, which is
equivalent to being unbound.

Worker threads may either inherit the process binding or
be pinned to a separate core. K-Means and MDS performance
tests revealed that selecting proper affinity settings out of these
patterns can substantially improve overall performance.

C. Communication Mechanisms

Processes within a node offer an alternative approach from
threads to exploiting intra-node parallelism. Long running
processes as in MPI programs avoid frequent scheduling over-
heads and other pitfalls discussed with short-activated threads.
However, the shared nothing nature of processes imposes a
higher communication burden than with threads, especially
when making collective calls. Increasing process count to
utilize all cores on modern chips with higher core counts
makes this effect even worse, degrading any computational
advantages of using processes.

A solution typically employed in HPC is to use the node
shared memory to communicate between processes running
in the same node. In [2] we have shown significant perfor-
mance improvement in Java inter-process communication by
implementing a memory maps-based communication layer.
We have later applied the same technique in [3] to improve
communication between the Big Data Apache Storm tasks.

IV. APPLICATIONS

To evaluate the performance of different aspects discussed
in Section III, we have implemented six variants of K-
Means clustering. Four of them are OpenMPI-based in both
Java and C supporting LRT-FJ and LRT-BSP thread models.
The remainder are based on Flink and Spark. We have
also implemented two flavors of Deterministic Annealing

Multidimensional Scaling (DA-MDS) [13] with optimizations
discussed in [2] to support the two thread models in Java and
OpenMPI. The following subsections describe the details of
these applications.

A. MPI Java and C K-Means
The two C implementations use OpenMPI for message

passing and OpenMP for shared memory parallelism. The
LRT-FJ follows the conventional MPI plus #pragma omp
parallel regions. LRT-BSP, on the other hand, starts an
OpenMP parallel region after MPI_INIT and continues to
follow the models illustrated in Fig. 1. Intermediate thread
synchronization is done through atomic built-ins of GNU
Compiler Collection (GCC). The source code for LRT-FJ and
LRT-BSP is available in [14] under branches master and
lrt respectively.

The Java implementations use OpenMPI’s Java bind-
ing [15], [16] and Habanero-Java [11] thread library, which
provides similar parallel constructs to OpenMP. In LRT-BSP,
intermediate thread synchronization uses Java atomic support,
which is more efficient than other lock mechanisms in Java.
The source code for LRT-FJ and LRT-BSP is available in [17]
under branches master and lrt-debug respectively.

B. Flink K-Means
Flink is a distributed dataflow engine for Big Data ap-

plications and provides a dataflow-based programming and
execution model. The dataflow computations composed by the
user are converted to an execution dataflow graph by Flink and
executed on a distributed set of nodes.

Flink K-Means’ [18] dataflow graph is shown in Fig. 2.
Inputs to the algorithm are a set of points and a set of centroids
read from the disk. At each iteration, a new set of centroids
are calculated and fed back to the beginning of the iteration.
The algorithm partitions the points into multiple map tasks
and uses the full set of centroids in each map task. Each map
task assigns its points to their nearest centroid. The average
of such points is reduced (sum) for each centroid to get the
new set of centroids, which are broadcast to the next iteration.
This is essentially the same algorithm as that used in MPI
but expressed as a stream of dataflow transformations. In
particular, the Flink reduction and broadcast are equivalent
to MPI_Allreduce semantics.

C. Spark K-Means
Spark is a distributed in-memory data processing engine.

The data model in Spark is based around RDDs [8]. The
execution model of Spark is based on RDDs and lineage
graphs. The lineage graph captures dependencies between
RDDs and their transformations. The logical execution model
is expressed through a chain of transformations on RDDs by
the user.

We used a slightly modified version 2 of the K-Means
implementation provided in Spark MLlib [19] library . The
overall dataflow is shown in Fig. 2, which is as same as that

2 https://github.com/DSC-SPIDAL/spark/tree/1.6.1.modifiedKmeans



TABLE II: Linux perf statistics for DA-MDS run of 18x2
on 32 nodes. Affinity pattern is T.

LRT-FJ LRT-BSP

Context Switches 477913 31433

CPU Migrations 63953 31433

dTLB load misses 17226323 6493703

TABLE III: Java DA-MDS speedup for varying data sizes on
24-core and 36-core nodes. Red values indicate the suboptimal
performance of LRT-FJ model compared to LRT-BSP. Ideally,
these values should be similar to their immediate left cell
values.

Data Size
50k 100k 200k

24-
Core

Nodes

1x24
LRT-
BSP

12x2
LRT-
BSP

12x2
LRT-

FJ

1x24
LRT-
BSP

12x2
LRT-
BSP

12x2
LRT-

FJ

1x24
LRT-
BSP

12x2
LRT-
BSP

12x2
LRT-

FJ

16 1 1 0.6 1 1 0.6 1 1 0.4

32 2.2 2 1.1 1.9 1.9 1.1 1.9 2 0.6

64 3.9 3.6 1.9 3.6 3.6 1.9 3.7 3.8 0.9

36-
Core

Nodes

1x36
LRT-
BSP

18x2
LRT-
BSP

18x2
LRT-

FJ

1x36
LRT-
BSP

18x2
LRT-
BSP

18x2
LRT-

FJ

1x36
LRT-
BSP

18x2
LRT-
BSP

18x2
LRT-

FJ

16 1 1 0.6 1 1 0.6 1 1.1 0.4

32 2 1.8 0.9 1.9 1.9 1.1 1.9 2.1 0.6

of Flink K-Means. Also, the inputs are read in a similar fashion
from disk. The points data file is partitioned and parallel map
operations are performed on each partition. Each point in a
data partition is cached to increase performance. Within the
map operations, points are assigned to their closest centers.
The reduce step gathers all this information to the driver
program, where the new set of centers are calculated and
boradcast to all the worker nodes for the next iteration.

D. MPI Java MDS

MDS is a technique to visualize high dimensional data
in a lower dimension, typically in 3D. We extended our
DA-MDS [2] implementation, which is based on LRT-FJ,
to include a version of LRT-BSP as well. Also, both these
versions include shared memory based inter-process communi-
cation support. Note, computations in DA-MDS grow O(N2)
and communications O(N). Moreover, unlike K-Means, where
only one parallel region is required, DA-MDS requires mul-
tiple parallel regions revisited on each iteration until con-
verged. This hierarchical iteration pattern (parallel conjugate
gradient iteration inside a classic expectation maximization
loop) causes issues with the Big Data frameworks that we
will explore elsewhere.

V. EVALUATION

The experiments were run on Juliet, which is an Intel
Haswell HPC cluster with 128 nodes total. In this cluster 96

nodes have 24 cores (2 sockets x 12 cores each) and 32 nodes
have 36 cores (2 sockets x 18 cores each) per node. Each node
consists of 128GB of main memory and 56Gbps Infiniband
interconnect and 1Gbps dedicated Ethernet connections. MPI
runs used the Infiniband except when comparing against Flink
and Spark, where all three frameworks used Transmission
Control Protocol (TCP) communications.

A. MPI Java and C K-Means

Fig. 3 and Fig. 4 show K-Means Java and C total runtime
for 1 million 2D points and 1000 centroids respectively. Each
figure presents performance of both LRT-FJ and LRT-BSP
models over the six binding patterns identified in Table I.
These were run on 24-core nodes; hence the abscissa shows
all the eight possible combinations of threads and processes
within a node to exploit the full 24-way parallelism. The left
most pattern, 1x24, indicates all processes and the right most
pattern, 24x1 indicates all threads within a node. Note, patterns
8x3 and 24x1 imply that processes span across NUMA mem-
ory boundaries, which is known to be inefficient but presented
here for completeness. The red and orange lines represent
inherited thread affinity for LRT-FJ and LRT-BSP respectively.
Similarly, the black and green lines illustrate explicit thread
pinning, each to a core, for these two thread models.

Java results suggest LRT-FJ is the worst whatever the
affinity strategy for any pattern other than 1x24, which is all
MPI and does not use thread parallel regions. A primary reason
for this poor performance is the thread scheduling overhead in
Java as FJ threads are short-activated. Also, the JVM spawns
extra bookkeeping threads for Garbage Collection (GC) and
other tasks, which compete for CPU resources as well. Of
the LRT-BSP lines, the unbound threads (U) show the worst
performance. Affinity patterns S and T seem to give the best
runtime with increasing number of threads.

C results show the same behavior for unbounded and ex-
plicitly bound threads. The two thread models, however, show
similar performance, unlike Java. Further investigation of this
behavior revealed OpenMP threads keep the CPUs occupied
at 100% between FJ regions suggesting OpenMP internally
optimizes threads similar to the Java LRT-BSP implementation
introduced in this paper.

Fig. 5 illustrates the effect of affinity patterns T and S for
varying data sizes on LRT-BSP. They performed similar to
each other, but numbers favor pattern T over S.

Fig. 6 compares Java and C LRT-BSP runtimes for K-
Means over varying data sizes across thread and process
combinations. Results demonstrate Java performance is on par
with C. Also, sometimes Java outperform C, mostly due to Just
In Time (JIT) optimizations, as seen in the figure for 500k
centers.

Fig. 7 and Fig. 8 showcase LRT-FJ and LRT-BSP per-
formance over varying data sizes for affinity pattern T. In
Fig. 7, the number of centroids were incremented as 1k,10k,
and 100k. LRT-BSP shows constant performance across thread
and process combinations for all data sizes, where as LRT-FJ
exhibits abysmal performance with increasing threads and data



Fig. 1: Fork-Join vs. long running threads

Fig. 2: Flink and Spark K-Means algorithm. Both Flink and
Spark implementations follow the same data-flow

Fig. 3: Java K-Means 1 mil points and 1k centers performance
on 16 nodes for LRT-FJ and LRT-BSP with varying affinity
patterns over varying threads and processes.

Fig. 4: C K-Means 1 mil points and 1k centers performance
on 16 nodes for LRT-FJ and LRT-BSP with varying affinity
patterns over varying threads and processes.

Fig. 5: Java K-Means LRT-BSP affinity T vs S performance
for 1 mil points with 1k,10k,50k,100k, and 500k centers on
16 nodes over varying threads and processes.

Fig. 6: Java vs C K-Means LRT-BSP affinity T performance
for 1 mil points with 1k,10k,50k,100k, and 500k centers on
16 nodes over varying threads and processes.

sizes. Fig. 8 replicates the same experiment for data sizes 50k
and 500k. Again, the results agree with those of Fig. 7.

B. MPI Java MDS

Fig. 9 through Fig. 14 illustrate DA-MDS performance for
data sizes 50k, 100k, and 200k on 24-core and 36-core nodes.
Each figure presents DA-MDS runtime for the two thread

models and affinity patterns T, V, S, and U. Patterns Q and R
were omitted as they showed similar abysmal performance as
U in earlier K-Means results. Thread and process combinations
for 24-core nodes are as same as the ones used in K-Means
experiments. On 36-core nodes, nine patterns were tested from
1x36 to 36x1. However, as LRT-BSP allocates data for all
threads at process level, 200k decomposition over 16 nodes



Fig. 7: Java K-Means 1 mil points with 1k,10k, and 100k
centers performance on 16 nodes for LRT-FJ and LRT-BSP
over varying threads and processes. The affinity pattern is T.

Fig. 8: Java K-Means 1 mil points with 50k, and 500k centers
performance on 16 nodes for LRT-FJ and LRT-BSP over
varying threads and processes. The affinity pattern is T.

Fig. 9: Java DA-MDS 50k points performance on 16 nodes
for LRT-FJ and LRT-BSP over varying threads and processes.
Affinity patterns are T,S,V, and U.

Fig. 10: Java DA-MDS 50k points performance on 16 of 36-
core nodes for LRT-FJ and LRT-BSP over varying threads and
processes. Affinity patterns are T,S,V, and U.

Fig. 11: Java DA-MDS 100k points performance on 16 nodes
for LRT-FJ and LRT-BSP over varying threads and processes.
Affinity patterns are T,S,V, and U.

Fig. 12: Java DA-MDS 100k points performance on 16 of 36-
core nodes for LRT-FJ and LRT-BSP over varying threads and
processes. Affinity patterns are T,S,V, and U.

produced more data than what Java 1D arrays could hold.
Therefore, this pattern could not be tested for 200k data.
LRT-BSP did not face this situation as data structures are local
to threads and each allocates only data required for the thread,
which is within Java’s array limit of 231 − 1 elements.

The above results confirm that Java LRT-FJ has the lowest
performance irrespective of the binding, data size or the num-

ber of threads. On the other hand, the LRT-BSP model pro-
duced constant high performance across all these parameters.
Investigating these effects further, an 18x2 run for 100k data
produced the perf stats in Table II, which show a vast number
of context switches, CPU migrations, and data Translation
Lookaside Buffer load misses for LRT-FJ compared to LRT-FJ.
These statistics are directly related with performance and



Fig. 13: Java DA-MDS 200k points performance on 16 nodes
for LRT-FJ and LRT-BSP over varying threads and processes.
Affinity patterns are T,S,V, and U.

Fig. 14: Java DA-MDS 200k points performance on 16 of 36-
core nodes for LRT-FJ and LRT-BSP over varying threads and
processes. Affinity patterns are T,S,V, and U.

Fig. 15: K-Means total and compute times for 1 million 2D
points and 1k,10,50k,100k, and 500k centroids for Spark,
Flink, and MPI Java LRT-BSP T. Run on 16 nodes as 24x1.

Fig. 16: K-Means total and compute times for 100k 2D points
and 1k,2k,4k,8k, and 16k centroids for Spark, Flink, and MPI
Java LRT-BSP T. Run on 1 node as 24x1

Fig. 17: Spark and Flink’s all reduction vs MPI all reduction.

hence explain the poor performance of LRT-FJ model.
Table III presents scaling of DA-MDS across nodes for

data sizes 50k, 100k, and 200k. Speedup values are measured

against the all process – 1x24 or 1x36 – base case. With
doubling of the nodes, the performance is expected to double.
However, none of the 12x2 LRT-FJ values came close to
the expected number; hence shown in red. In contrast, 12x2
of LRT-BSP follows the expected doubling in performance
and also can produce slightly better results than 1x24 with
increasing data.

C. Flink and Spark K-Means

We evaluated the performance of K-Means algorithm im-
plemented in Flink and Spark to compare these frameworks
against MPI. The evaluation was done in 16 nodes, each with
24 cores. We measured the difference between total time and
computation time to estimate overheads including communi-
cation. Note, in both Spark and Flink, communications are
handled intenally to the framework and it is not possible
to measure this through the available API functions. The
results are shown in Fig. 15 for 1 million 2D data points
with varying number of centroids. We observed significant
communication overhead in these frameworks compared to
MPI. The primary reason for such poor performance is the
sub-optimal implementation of reductions in Flink and Spark.



Fig. 17 illustrates the dataflow reduction model imple-
mented in Spark and Flink, where all parallel tasks send data
to a single or multiple reduce tasks to perform the reduction.
K-Means requires an MPI like Allreduce semantics; hence
the reduction in these programs is followed by a broadcast.
Similar to the reduction operation, the broadcast is imple-
mented serially as well. As the number of parallel tasks and
the message size increase, this two-step approach becomes
highly inefficient in performing global reductions. On the other
hand, MPI uses a recursive doubling algorithm for doing the
reduction and broadcast together, which is very efficient and
happens in-place.

Since the communication overhead was dominant in K-
Means algorithm, we performed a single node experiment
with one process and multiple threads to look at computation
costs more closely. With one process there is no network
communication in Flink or Spark and Fig. 16 illustrates
the results. Flink uses an actor-based execution model using
Akka [20] framework to execute the tasks. The framework
creates and destroys LRT-FJ style threads to execute the
individual tasks. Spark uses an executor/task model where
an executor creates at most a single task for each core that
is allocated to the executor. With this experiment, we have
observed execution time imbalances among the parallel tasks
for both Spark and Flink. The same has been observed with
the LRT-FJ Java MPI implementation of K-Means and we
could minimize these effects in MPI Java with the LRT-BSP
style executions. Balanced parallel computations are vital to
efficient parallel algorithms as the slowest task dominates the
parallel computation time.

VI. DISCUSSION

Spark and Flink are widely used efficient Big Data platforms
for processing large amounts of data as well as executing
machine learning algorithms. Both are in-memory computation
platforms, unlike Hadoop, which is primarily a disk-based
platform. These systems are designed to handle large amounts
of data and be fault tolerant in case of failures. They can use
disks as an auxiliary storage if the data is too large to fit in
the memory.

On the other hand, MPI is a lightweight framework with
excellent communication and execution semantics that are well
suited for high performance multicore clusters. We believe
Java MPI implementations with careful design of threading,
computations and communications as discussed in this work,
provide top-notch performance for Java-based machine learn-
ing applications that match C implementations for big data
platforms. This study shows the many factors that are critical
for achieving the best possible performance and scalability and
how they can be carefully tuned.

Current implementations of Big Data computation frame-
works lack efficient communication algorithms as imple-
mented MPI. We have identified inefficient communication as
the most detrimental feature in getting to the best possible
performance with Spark and Flink. For example, a carefully
tuned broadcast operation can work in O(log n) steps while

a sequential implementation needs O(n) where n is the num-
ber of parallel communicators. As the parallelism increases
the communication overhead in terms of both latency and
bandwidth dramatically increases for the sequential approach
compared to the optimized approach.

The computation time variations in the parallel tasks of
Flink and Spark frameworks can be attributed to the LRT-FJ
style invocations and GCs. It is hard to completely avoid GC
overheads but Flink-like systems have adopted off-heap mem-
ory management for reducing this effect. The LRT-BSP style
threads can also help in reducing the compute time variations,
as evident in MPI Java applications. Another factor that can
affect computation is the inefficient use of memory hierarchy.
If cache optimizations are not considered, performance can
show degrade drastically. Also, for larger data sets, it can be
efficient to run multiple processes rather than a single process
with threads due to large page tables required for the single
process.

It is also noteworthy that Scala [21] plays a major role in Big
Data frameworks such as Spark and Flink. Spark is developed
with Scala, and provides API’s for Java, Python and R in
addition to Scala. Flink is developed with a mixture of Java
and Scala, and provides a Scala API in addition to its Java
API. Scala is a functional programming language that runs
on the JVM, this allows Scala to seamlessly work with Java
libraries. Our results are of course sensitive to virtual machine
used and not the language.

VII. RELATED WORK

A plethora of libraries are available for Java in HPC envi-
ronments including many MPI implementations; Guillermo et
al. [22] discuss the performance of some of these frameworks
in HPC environments. MPJ-Express [23] and JaMP [24] are
popular pure Java implementation of the MPI standard. In
our work, we used OpenMPI’s Java bindings to develop the
MPI applications. Our preliminary studies showed OpenMPI
performed the best among the available Java MPI implemen-
tations. Rajesh et al. [25] discusses actor-based frameworks
to exploit the multicore machines and Flink uses actor model
for handling concurrency. Java Garbage Collection (GC) plays
a vital role in HPC Java applications because of the slowest
parallel tasks dominating the performance. Maria et al. [26]
shows how to optimize the Java GC in multicore NUMA
machines. Research on improving Spark performance by in-
troducing its own memory management and cache handing
system is being done in Project Tungsten [27], which aims to
greatly reduce the usage of java objects and to reduce Spark’s
memory footprint.

Much research has been done on how to get better per-
formance on multicore clusters using hybrid execution model
of threads and processes [28], [29], [30]. They discuss the
performance across NUMA sockets, as well as how threads
and processes perform in conjunction. In this work, we apply
these techniques in the context of machine learning algorithms
to get scalable performance.

Because of the high number of cores available in multicore



nodes, hybrid communication models involving shared mem-
ory communication and network communication are preferred.
In these models, the tasks within a node first communicate
using shared memory and then the results are forwarded to
other nodes in the cluster. Previous work by the authors [2]
focused on improving the collective communications for Java
machine learning algorithms using this hybrid approach.

Hadoop [31] became the first widely used system for big
data processing and it uses a disk based communication among
tasks with HDFS. Hadoop offers only the Map and Reduce
dataflow operations. The later systems such as Twiste [32],
Spark, Flink and Google Cloud Dataflow [7] are using in-
memory and network communications among the tasks and
are offering a rich set of data-flow operations compared to
Hadoop. Bacause of the way communication is handled Spark
and Flink, they are much closer to MPI in run-time and can
use the advanced communication features in MPI.

These big data frameworks follow the dataflow model
and the equivalent of collective communications in MPI are
implemented as dataflow operators. These implementations are
elegant but inefficient compared to the optimized collective
communication algorithms implemented in MPI [33], [34]. Re-
cent work by the authors [3] have improved communications
of Apache Storm streaming framework with classical collec-
tive algorithms found in MPI implementations. Harp [35] is a
collective communication framework developed for Hadoop to
speed up the machine learning applications. There has being
efforts to bring HPC enhancements such as RDMA [36] to big
data frameworks and these have given excellent performance
in HPC environments.

Our findings are in the spirit of HPC-ABDS (the High Per-
formance Computing enhanced Apache Big Data Stack) [37]
and help establish a Big Data - HPC convergence approach [1].

VIII. CONCLUSION AND FUTURE WORK

In this paper we discussed how to obtain consistent scalable
performance of machine learning algorithms implemented in
Java in large multicore clusters. The deficiencies in perfor-
mance we observed before the improvements in Java MPI
machine learning applications can be observed on the current
implementations of Big Data run-times such as Flink and
Spark, and we are working on bringing these improvements
to such frameworks. In particular we aim to improve the
collective communications of Flink and Spark using efficient
algorithms. As part of the SPIDAL (Scalable parallel interop-
erable data analytics library) [38] machine learning library we
would like to apply these techniques to further algorithms.
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[33] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
and J. J. Dongarra, “Performance analysis of MPI collective operations,”
Cluster Computing, vol. 10, no. 2, pp. 127–143, 2007.

[34] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[35] B. Zhang, Y. Ruan, and J. Qiu, “Harp: Collective communication
on hadoop,” in Cloud Engineering (IC2E), 2015 IEEE International
Conference on. IEEE, 2015, pp. 228–233.

[36] X. Lu, N. S. Islam, M. Wasi-Ur-Rahman, J. Jose, H. Subramoni,
H. Wang, and D. K. Panda, “High-performance design of hadoop rpc
with rdma over infiniband,” in 2013 42nd International Conference on
Parallel Processing. IEEE, 2013, pp. 641–650.

[37] HPC-ABDS Kaleidoscope of over 350 Apache Big Data Stack and HPC
Technologies. [Online]. Available: http://hpc-abds.org/kaleidoscope/

[38] Spidal project. [Online]. Available: http://www.spidal.org/


