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Abstract—We present a taxonomy of research on Machine 
Learning (ML) applied to enhance simulations together with a 
catalog of some activities. We cover eight patterns for the link of 
ML to the simulations or systems plus three algorithmic areas: 
particle  dynamics, agent-based models and partial differential 
equations. The patterns are further divided into three action 
areas: Improving simulation with Configurations and Integration 
of Data, Learn Structure, Theory and Model for Simulation, and 
Learn to make Surrogates. 
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I. INTRODUCTION 

A. Introduction  

 
Fig. 1. The 8 MLAutotuning and MLaroundHPC scenarios described in text  

This taxonomy of research at the intersection of Machine 
Learning and Simulations builds on papers below. 
1) A quadrology of papers on learning everywhere [1]–[4]. 

The first paper gives an overview and the unpublished 
second report adds detail on Technology, Network 
Science, nanoengineering, biomolecular and 
computational biology (virtual tissues). The third paper 
develops the underpinnings of learning everywhere and the 
fourth is this paper. There are also presentations at BDEC 
[5] and at IPDPS [6]. 

2) Jeffrey Dean presentation at NeurIPS 2017 on Machine 
learning for systems and systems for machine learning  [7] 

3) Microsoft 2018 Faculty Summit presentations on AI for 
Systems [8], [9] 

4) Satoshi Matsuoka on the convergence of AI and HPC [10] 
5) An NSF funded project mainly focused on HPCforML 

[11], [12] 

We now describe the categories used below to categorize 
papers [1-3], [5], [13] 

• HPCforML: Using HPC to execute and enhance ML 
performance, or using HPC simulations to train ML 
algorithms (theory-guided machine learning), which are 
then used to understand experimental data or simulations. 

• MLforHPC: Using ML to enhance HPC applications and 
systems 

 
We further subdivide HPCforML as 
• HPCrunsML: Using HPC to execute ML with high 

performance 
• SimulationTrainedML: Using HPC simulations to train 

ML algorithms, which are then used to understand 
experimental data or simulations. 

 
We also subdivide MLforHPC into several categories. First we 
identify 
• MLControl: Using simulations (with HPC) in control of 

experiments and in objective driven computational 
campaigns. Here simulation surrogates of MLaroundHPC 
are very valuable to allow real-time predictions. This is 
discussed in [3] 

 
Then can divide other aspects by whether they are before - 
termed MLAutotuningHPC, during the execution - termed 
MLaroundHPC, or after - termed MLafterHPC. 
• MLafterHPC: ML analyzing results of HPC as in 

trajectory analysis and structure identification in 
biomolecular simulations 

 
The other two terms where we focus in this paper are 
• MLAutotuning: Using ML to configure (autotune) ML or 

HPC simulations. 
• MLaroundHPC: Using ML to learn from simulations and 

produce learned surrogates for the simulations. The same 
ML wrapper can also learn configurations as well as 
results. This differs from SimulationTrainedML as the 
latter is typically using learned network to predict 
observation whereas in MLaroundHPC we are using the 
ML to improve the HPC performance.  
 

Figure 1 specifies 8 subcategories in the MLAutotuning and 
MLaroundHPC spaces. We can take the categories in these two 
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areas and divide them into three types of actions represented 
into the three rows of fig. 1 and sections 2, 3 and 4 of this 
detailed taxonomy paper. The three action areas are: 
 

II. Improving simulation with Configurations and 
Integration of Data 
II.A. MLAutotuningHPC – Learn configurations of system 

and software for particular hardware and input 
parameters 

II.B. MLAutotuningHPC – Learn models from data at start 
of simulation 

II.C. MLaroundHPC: Learning model details (ML based  
data assimilation) dynamically during simulation. 
 

III. Learn Structure, Theory and Model for Simulation 
III.A. MLAutotuningHPC – Smart ensembles 
III.B. MLaroundHPC: Learning Model Details (coarse 

graining, effective potentials) 
III.C. MLaroundHPC: Learning Model Details - Improving 

Model or Theory 
IV. Learn to make Surrogates 
Here we use ML (typically neural networks) to learn the 
function representing the output of the simulation. 
IV.A. MLaroundHPC: Learning Outputs from Inputs 

(parameters) 
IV.B. MLaroundHPC: Learning Outputs from Inputs (fields) 

 
These clean atomic categories can appear differently as they 

are applied dynamically or differently in different (space or 
time) parts of simulation. 

In later sections, ABM stands for Agent-Based Simulations 
and Data-driven Approaches to ABM systems. The work is 
divided into three broad application areas: Particle dynamics, 
ABM and Partial Differential Equation based problems. We list 
MLAutotuningHPC and MLaroundHPC references divided by 
these 3 application areas and the 8 categories summarized in Fig. 
1. In this and following 8 expanded figures we use a prototypical 
particle dynamics simulation to represent the ML interaction 
with green representing input and blue output of interaction. 

II. TAXONOMY OF MLAUTOTUNING AND MLAROUNDHPC: 
IMPROVING SIMULATION WITH CONFIGURATIONS AND 
INTEGRATION OF DATA 

A. MLAutotuningHPC – Learn configurations 
Figure 2 illustrates this category, which is classic Autotuning 

and one optimizes some mix of performance and quality of 
results with the learning network inputting the configuration 
parameters of the computation. The configuration includes 
initial values and also dynamic choices such as block sizes for 
cache use, variable step sizes in space and time. This category 
can also include discrete choices as to the type of solver to be 
used. 

1) Particle Dynamics-MLAutotuningHPC – Learn 
configurations 
1. Nanoparticle simulations using ML to improve 

performance [14] 

B. MLAutoTuningHPC: Learning Model Setups from 
Observational Data 

Fig. 2. MLAutotuningHPC – Learn configurations 

Fig. 3. MLAutoTuningHPC: Learning Model Setups from Observational Data  

This category is seen when a simulation set up as a set of 
agents, perhaps each representing a cell in a virtual tissue 
simulation. Tuning agent (model) parameters to optimize agent 
outputs to available empirical data presents one of the greatest 
challenges in model construction. As well as directly setting cell 
parameters, one can use ML to learn the dynamics of cells 
replacing detailed computations by ML surrogates. As there can 
be millions to billions of such agents the performance gain can 
be huge as each agent uses the same learned model. In this case 
one is using MLaroundHPC: Learning Outputs from Inputs for 
cells or alternately MLAutotuning for multi-cell (tissue) built 
from the cells. 

1) Particle Dynamics-MLAutotuningHPC –  Learning 
Model Setups from Observational Data 
2. Use of ANN’s to represent dynamics of robots [15] 

2) ABM-MLAutotuningHPC –  Learning Model Setups 
from Observational Data 
3. Machine-learning (XGBoost) and intelligent sampling to 

build a surrogate meta-model to calibrate agent-based 
models with data [16] 
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4. Using machine learning (modest emphasis) to represent 
cell (agent) behavior based on data for prediction of 
cancer cell behavior [17] 

5. Automatic inference of a model of the escape response 
behavior in a roundworm directly from time series data 
[18] building on [19], [20]. The unknown parameters in a 
set of ODE’s are determined by fitting data in a 
hierarchical fashion 

3) PDE-MLAutotuningHPC –  Learning Model Setups from 
Observational Data 
6. Use ANN’s to discover the PDE form of biological 

transport equations from noisy data. [21] 

C. MLaroundHPC: Learning Model Details - ML for Data 
Assimilation (predictor-corrector approach) 

 
Fig. 4. MLaroundHPC: Learning Model Details - ML for Data Assimilation 
(predictor-corrector approach) 

Data assimilation involves continuous integration of time 
dependent simulations with observations to correct the model 
with a suitable combined data plus simulation model. This is for 
example common practice in weather prediction field. We see 
this approach becoming even more important with new machine 
learning approaches now available and under intense research 
for many time series based problems such as work on ride 
hailing [22]. Such current state of the art expresses the spatial 
structure as a convolutional neural net and the time dependence 
as recurrent neural net (LSTM). We expect this category to grow 
in importance and interest. This category extends the previous 
one in sec. 2.1.2 with dynamic interplay between model and 
data. 

Often the data consists of “videos” recording observational 
data, which is a high dimensional (spatial extent) time series. 
Then as a function of time one iterates a predictor corrector 
approach, where one time steps models and at each step optimize 
the parameters to minimize divergence between simulation and 
ground truth data. As an example considered by a team led by 
Glazier at Indiana University, one produces a generic agent-
based model organism such as an embryo. Then one could take 
this generic model as a template and learn the different 
adjustments for particular individual  organisms. 

1) ABM-MLaroundHPC: Learning Model Details (ML 
based data assimilation) 
7. Using data to predict solutions of complex coupled 

Agents for metabolic pathway dynamics  [23] 
8. Deep Learning RNN and CNN to predict epidemics 

viewed as time series [24] 
9. LSTM based Flu epidemic forecasting enhanced by 

environmental data such as climate [25] 

2) PDE-MLaroundHPC: Learning Model Details (ML 
based data assimilation) 
10. Deep Learning to find sub-grid processes (such as cloud 

processes) for Climate prediction [26] 

III. TAXONOMY OF MLAROUNDHPC:LEARN STRUCTURE, 
THEORY AND MODEL FOR SIMULATION 

A. MLAutotuningHPC – Smart ensembles 
Here we choose the best strategy to achieve some 

computation goal such as providing the most efficient training 
set with defining parameters spread well over the relevant phase 
space. Ensembles are also essential in many computational 
studies such as weather forecasting or search for new drugs 
where regions of defining parameters need to be searched. This 
category overlaps with the following Learning Model Details 
(effective potentials and coarse graining) category as both look 
at the structure of the simulation. Different papers tackle related 
but distinct goals. Some look for reaction coordinates that are 
collective variables (CV) that can be used to accelerate the 
simulation; these are typically the slowest varying with time 
modes of the system. Others look for structure (order 
parameters) of the system such as “has the protein folded”. 

 

Fig. 5. MLAutotuningHPC – Smart ensembles 

1) General Simulations-MLAutotuningHPC – Smart 
ensembles 
11. Use of visualization to control smart ensembles of 

simulations [27] 

2) Particle Dynamics-MLAutotuningHPC – Smart 
ensembles 
12. Review of techniques for smart ensembles [28] 
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13. Use of machine learning to guide molecular dynamics 
simulations to explore full range of phase space [29]. 
Manifold learning is used to find a low dimension set of 
collective variables and then to learn dynamics in those 
variables. 

14. Use of Machine Learning (Best Arm Identification 
method) to optimize determination of protein-ligand 
binding (docking) energies when total compute resources 
are constrained, [30] 

15. Efficient exploration of configuration space by adding an 
adaptively computed biasing potential using machine 
learning to the original dynamics. [31]–[35] 

16. Use of the “information Bottleneck” approach to design 
an ANN that will identify a collective coordinate that will 
guide simulations with importance sampling to correct 
bias [36], [37].This leads to a collective coordinator with 
good physical (chemical) interpretation. 

17. Loop over multiple molecular dynamics and Deep 
Learning steps to more accurately sample phase for long 
time computations - termed “Reweighted autoencoded 
variational Bayes for enhanced sampling (RAVE)” [38], 
[39] 

18. Use reinforcement learning to learn a ANN representation 
of the Free Energy based on an uncertainty estimate 
comping from a set of ANN’s with the same updates and 
different random starting weights [40]. The choice of 
collective variables (CV) is not discussed except to note 
that approach can accommodate a quite large number (10-
20) of CV’s. 

19. Study of protein folding using machine learning to 
identify the special regions of phase space where proteins 
do indeed fold [41], [42]. Google’s Alphafold [43], [44] 
won [45] the 13th Critical Assessment of Structure 
Prediction (CASP) competition [46] with deep learning 
used to identify how specific proteins fold.  Such studies 
can be followed up by traditional MD simulations. In [47] 
convolutions and a variational autoencoder (CVAE) are 
used for dimension reduction to identify folding region. 

3) ABM-MLAutotuningHPC – Smart ensembles 
20. Smart ensembles for cancer agent-based models with 

PhysiCell. [48] 

B. MLaroundHPC: Learning Model Details (effective 
potentials and coarse graining)  
This is classic coarse graining strategy with recently, deep 

learning replacing dimension reduction techniques.) One can 
learn effective potentials and interaction graphs. An effective 
potential is an analytic, quasi-empirical or quasi-
phenomenological potential that combines multiple, perhaps 
opposing, effects into a single potential. 

1) Particle Dynamics-MLaroundHPC: Learning Model 
Details (effective potentials) 
21. Use of machine learning to generate an effective 

Hamiltonian using initial local updates as training data to 
choose correlated update spins with Wolff’s method near 
a critical point [49]. This is applied in [50] 

22. Neural-network representation  [51]–[54]  of DFT 
potential-energy surfaces  

23. General framework for calculating a many-body coarse-
grained potential. [55] 

24. Formulate coarse-graining as a supervised machine 
learning problem and use coarse-graining error  and 
cross-validation to select and compare the performance of 
different models. [56] 

25. Review of the use of neural networks to represent 
potentials and speed up simulations  [57]. Has plot of 
physics, chemistry and materials papers per year using 
ANN’s. There are 1500 per year after 2010. 

2) Particle Dynamics-MLaroundHPC: Learning Model 
Details (coarse graining) 
26. VAMP(variational approach for Markov processes)nets to 

learn end to end reduced complexity surrogates of 
molecular dynamics without custom modelling such as  
transformation of simulated coordinates into structural 
features, dimension reduction, clustering the dimension-
reduced data, and estimation of a Markov state models 
[58] 

27. Use of collective variables (dimension reduction) to study 
protein dynamics [59] 

28. Obtains one-dimensional collective variables for studying 
rarely occurring transitions between two metastable states 
separated by a high free energy barrier [60]. 

29. Collective variables to sample molecular dynamics and 
free energy landscape using autoencoders  [61]–[64]. 
Includes MLAutotuningHPC – Smart ensembles 

30. Use of machine learning to support long time scale 
molecular simulations [65] Reviews other approaches 
such as RAVE and VAMP. Includes MLAutotuningHPC 
– Smart ensembles. 

3) PDE-MLaroundHPC: Learning Model Details (coarse 
graining) 
31. Use of equation free modeling [66] for coarse graining 

combined with manifold learning (dimension reduction) 
[67] 

32. Uses neural nets as expansion functions for solutions of 
partial differential equations [68].  

 
Fig. 6. MLaroundHPC: Learning Model Details (effective potentials and 
coarse graining) 
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C. MLaroundHPC: Learning Model Details - Inference of 
Missing Model Structure 
The final category in the Structure, Theory and Model class 

and represented in the above figure imagines a future where AI 
will essentially  be able to derive theories from data, or more 
practically a mix of data and models. This is especially 
promising in agent based models which often contain 
phenomenological approaches such as the predictor-corrector 
method of sec. 2.1.3. We expect that will take the results of such 
assimilation and effective potentials and interactions discussed 
earlier and use them as the master model or theory for future 
research. 

Fig. 7. MLaroundHPC: Learning Model Details - Inference of Missing Model 
Structure 

IV. TAXONOMY OF MLAUTOTUNING AND MLAROUNDHPC: 
LEARN SURROGATES FOR SIMULATION 
A. MLaroundHPC: Learning Outputs from Inputs: a) 

Computation Results from Computation defining 
Parameters 

Fig. 8. MLaroundHPC: Learning Outputs from Inputs: Computation Results 
from Computation defining Parameters 

In this category, one just feeds in a modest number of meta-
parameters that define the problem and learn a modest number 
of calculated answers. In many circumstances, summary 
parameters are joined with observed properties to specify 
compounds. This task presumably requires fewer training 
samples than “fields from fields” (next category) and is main 
MLaroundHPC use so far. 

Operationally this category is the same as 
SimulationTrainedML but with a different goal: In 
SimulationTrainedML the simulations are performed to directly 
train an AI system rather than the case here where the AI system 
is being added to learn a simulation. 

1) Particle Dynamics- MLaroundHPC: Learning Outputs 
from Inputs (parameters) 
33. An early paper in 2012 using non-ANN machine learning 

to learn energies from molecular properties [69] 
34. Use of generative and predictive ANN to predict drug 

properties from their SMILES representation using 
existing databases [70].Use of DNN to learn crystal 
energies and stability with training data calculated by 
DFT. [71] 

35. Review of machine learning (emphasized) for molecular 
and materials science [72] 

36. Nanoparticle simulations [73] defining surrogates learnt 
as a function of defining parameters 

37. Review article on machine learning to predict material 
properties from structure of compounds. Uses observation 
and simulations to determine structure-property 
relationships for training [74] 

38. Use of neural nets to describe potentials and simulation 
results for Infrared Spectra [75] The input features to the 
ANN’s are the parameters of Frenkel exciton 
Hamiltonians and the output average exciton transfer 
times and overall transfer efficiencies. 

39.  Machine Learning (kernel ridge regression) to map 
database (of DFT simulations) into material properties. 
[76] 

40. Machine Learning (kernel ridge regression) to map 
database (of DFT simulations) into valence charge 
densities. [77], [78] 

41. ANN’s for fast estimate of excitation energy transfer 
properties (used in solar cells) [79]. The ANN is used to 
map Hamiltonian specifications into material properties. 

42. Machine Learning to predict the energies and forces and 
avoid repetitive computations [80]. A decision engine 
decides whether to use learnt result or calculate using full 
simulation. 

43. Machine Learning used to estimate forces in molecular 
simulations choosing between ab initio Quantum 
mechanics or regression based ML estimate from a 
database enhanced dynamically. [32], [81] 

44. Review of machine learning with dimensionality 
reduction and clustering algorithms, drug discovery 
DeepTox, free-energy surface of molecules,  ligand 
binding site detection, ligand pose prediction, ligand, 
active/inactive classification, ligand binding affinity 
prediction, and protein design, DeepChem software, 
MoleculeNet challenge and access to relevant QSAR 
prediction datasets. Two cases covered in detail - ML 
representation of Quantum forces and prediction of 
binding affinities. [82] 

45. Deep Learning to study compositional and 
configurational chemical space for molecules of 
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intermediate size. Focus on use of a particular 
representation of input molecular structure [83]. 

46. Specifying atom representations for input into machine 
learning [84] 

47. MLaroundHPC: Learning Outputs from Inputs 
(parameters) is reviewed but generalized to learn system 
wavefunction in its hamiltonian matrix element form 
allowing richer set of predictions with MLaroundHPC: 
Learning Outputs from Inputs (fields) [85] 

2) PDE-MLaroundHPC - Learning Outputs from Inputs 
(parameters) 
48. Finding coefficients of a PDE that reproduce observed 

data [86] 
49. Machine Learning surrogates of heart simulations to 

speed up aortic aneurysm studies  [87] 

B. MLaroundHPC: Learning Outputs from Inputs: b) Fields 
from Fields 

 
Fig. 9. MLaroundHPC: b) Learning Outputs from Inputs: Fields from Fields 

Here one feeds in initial conditions and the neural network 
learns the result where initial and final results are fields 

There is also a mixed category c) Learning Outputs from 
Inputs: output fields from computation defining parameters 
combining a) and b), which we don’t illustrate. 

1) Particle Dynamics-MLaroundHPC: Learning Outputs 
from Inputs (fields) 
50. An early paper using in 1994 neural nets to solve ODE’s. 

[88]] 
51. Investigation of different neural network structures to 

learn the results of an Ising model simulation near its 
critical point comparing with classic Monte Carlo using a 
combination of single-site Metropolis and Wolff cluster 
updates [89] 

52. MLaroundHPC: Learning Outputs from Inputs 
(parameters) is reviewed but generalized to learn system 
wavefunction in its hamiltonian matrix element form 
allowing richer set of predictions with MLaroundHPC: 
Learning Outputs from Inputs (fields) [85] 

53. Using Generative Adversarial Networks to produce 
surrogates of large scale simulations of the effect of 
gravitational lensing used to study early universe 
CosmoGAN [90], [91] with supplement [92] on Github 

54. Uses LSTM’s to learn time series represented by 
molecular dynamics simulation [93]. Promising results on 
small model systems. 

55. Uses deep learning to find a clean set of collective 
coordinates that can be easily sampled to efficiently move 
through phase space [94]. 

2) ABM-MLaroundHPC: Learning Outputs from Inputs 
(fields) 
56. Use of Deep Learning LSTM to produce surrogates of a 

one-dimensional biological agent simulation [95]. Errors 
were estimated by training four neural networks differing 
in initial (random) choices of weights. 105 simulations 
took 2 months on a 400 node cluster and were followed 
by looking at 108 surrogate runs for an in depth survey 
over the full  phase space. The speedup was 30,000 using 
surrogates. 

57. Deep Learning for Agent-based Epidemic Forecasting 
DEFSI with ANN’s learning detailed (county level) 
information from simulations. [96] 

3)  PDE-MLaroundHPC: Learning Outputs from Inputs 
(fields) 
58. Finding forward (direct) and inverse mapping functions of 

input to output. The inverse map is particularly interesting 
as it is no harder than direct method for ANN’s but classic 
PDE solvers only give direct map straightforwardly. [97], 
[98] 

59. Deep Learning for solving partial differential equations 
[99], [100] (called Physics Informed Neural Net PINN) 
extended to nonlinear systems [101] 

60. Uses PINN to solve stochastic forward and inverse 
problems with separate DNN to learn error. [102] 

61. Deep learning to find surrogates for fluid flow 
simulations [103] 

62. Use of machine learning to improve Extended dynamic 
mode decomposition for representing Koopman Operator 
to represent dynamical systems. The ANN learns the 
operators used to represent the solution.[104] 

63. Solving high dimensional (up to 1000’s) partial 
differential equations using deep learning surrogates with 
differentiation of neural net form and no mesh points. 
Exact solutions used to train surrogates [105], [106] 

64. Explicitly differentiating the ANN in [87] solving 
advection and diffusion type PDEs in complex 
geometries[107] 

V. CONCLUSIONS 
We have reviewed 107 references in 64 distinct micro 

categories. These are grouped into 8 action areas and separately 
discussed for particles, agent-based modelling and partial 
differential equation solvers. We see that deep learning is 
showing striking success and tends to replace other machine 
learning approaches. As discussed in [3], we expect these 
successes to lead to large increases in effective performance 
(often by several orders of magnitude) and lead computational 
science to new discoveries. Although we have broken out 
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https://paperpile.com/c/ZbACIz/xktU5
https://paperpile.com/c/ZbACIz/7UU9g
https://paperpile.com/c/ZbACIz/z7QQ9
https://paperpile.com/c/ZbACIz/T5MqA
https://paperpile.com/c/ZbACIz/vq4av+Uft8H
https://paperpile.com/c/ZbACIz/H9ZGR
https://paperpile.com/c/ZbACIz/Rk8Jg


methods into the 8 categories, one can expect them all to be 
combined in future projects as illustrated in fig. 10. 

 

Fig. 10. 8 MLAutotuning and MLaroundHPC appoaches combined. 

 
Acknowledgements 
Partial support by NSF CIF21 DIBBS 1443054, NSF  nanoBIO 
1720625, NSF CINES 1835598 and NSF BDEC2 1849625 is 
gratefully acknowledged. We thank the “Learning 
Everywhere” collaboration James A. Glazier, JCS Kadupitiya, 
Vikram Jadhao, Minje Kim, Judy Qiu, James P. Sluka, Endre 
Somogyi, Madhav Marathe, Abhijin Adiga, Jiangzhuo Chen, 
and Oliver Beckstein for many discussions. SJ is partially 
supported by DOE ECP “ExaLearn”. 

REFERENCES 
[1] Geoffrey Fox, James A. Glazier, JCS Kadupitiya, Vikram Jadhao, Minje 

Kim, Judy Qiu, James P. Sluka, Endre Somogyi, Madhav Marathe, 
Abhijin Adiga, Jiangzhuo Chen, Oliver Beckstein, and Shantenu Jha, 
“Learning Everywhere: Pervasive Machine Learning for Effective High-
Performance Computation,” presented at the HPDC Workshop at IPDPS, 
Rio de Janeiro [Online]. Available: https://arxiv.org/abs/1902.10810, 
http://dsc.soic.indiana.edu/publications/Learning_Everywhere_Summar
y.pdf 

[2] Geoffrey Fox, James A. Glazier, JCS Kadupitiya, Vikram Jadhao, Minje 
Kim, Judy Qiu, James P. Sluka, Endre Somogyi, Madhav Marathe, 
Abhijin Adiga, Jiangzhuo Chen, Oliver Beckstein, and Shantenu Jha, 
“Learning Everywhere: Pervasive Machine Learning for Effective High-
Performance Computation: Application Background,” Feb. 2019 
[Online]. Available: 
http://dsc.soic.indiana.edu/publications/Learning_Everywhere.pdf 

[3] Geoffrey Fox, Shantenu Jha, “Understanding ML driven HPC: 
Applications and Infrastructure,” in IEEE eScience 2019 Conference, San 
Diego, California [Online]. Available: https://escience2019.sdsc.edu/ 

[4] Geoffrey Fox, Shantenu Jha, “Learning Everywhere: A Taxonomy for the 
Integration of Machine Learning and Simulations,” in IEEE eScience 
2019 Conference, San Diego, California [Online]. Available: 
https://escience2019.sdsc.edu/ 

[5] Geoffrey Fox, Shantenu Jha, “The Promise of Learning Everywhere and 
MLforHPC,” in Online Resource for BDEC2 Second Meeting at Kobe 
Japan, Kobe Japan [Online]. Available: 
http://dsc.soic.indiana.edu/presentations/JhaFox_BDEC2_Kobe_02-
2019.pptx 

[6] Shantenu Jha, Geoffrey Fox, “Presentation: Learning Everywhere: 
Pervasive Machine Learning for Effective High-Performance 
Computing,” presented at the HPBDC workshop at IPDPS Conference, 
Rio de Janeiro, Brazil, 2019 [Online]. Available: 
http://dsc.soic.indiana.edu/presentations/LE-ipdps19.pdf. [Accessed: 07-
Jun-2019] 

[7] Jeff Dean, “Machine Learning for Systems and Systems for Machine 
Learning,” in Presentation at 2017 Conference on Neural Information 

Processing Systems, Long Beach, CA [Online]. Available: 
http://learningsys.org/nips17/assets/slides/dean-nips17.pdf 

[8] Microsoft Research, “AI for AI Systems at Microsoft Faculty Summit,” 
August 1-2 2018. [Online]. Available: https://youtu.be/MqBOuoLflpU. 
[Accessed: 29-Jan-2019] 

[9] Microsoft Research, “AI for Database and Data Analytic Systems at 
Microsoft Faculty Summit,” August 1-2, 2018. [Online]. Available: 
https://youtu.be/Tkl6ERLWAbA. [Accessed: 29-Jan-2019] 

[10] S. Matsuoka, “Post-K: A Game Changing Supercomputer for 
Convergence of HPC and Big Data / AI,” 13-Feb-2019 [Online]. 
Available: https://drive.google.com/file/d/1t_F_shSU-
48uDh4FKHhpZQXWIhk-BgJX/view?usp=sharing 

[11] G. Fox, D. Crandall, J. Qiu, G. Von Laszewski, S. Jha, J. Paden, O. 
Beckstein, T. Cheatham, M. Marathe, and F. Wang, “NSF 1443054: 
CIF21 DIBBs: Middleware and High Performance Analytics Libraries for 
Scalable Data Science, Poster,” presented at the DIBBs18 NSF 
Workshop, Data Infrastructure Building Blocks (DIBBs) 
https://dibbs18.ucsd.edu/, Washington DC, 2018 [Online]. Available: 
http://dsc.soic.indiana.edu/presentations/SPIDALPosterDibbsNSF14430
54_0622.pdf 

[12] O. Beckstein, G. Fox, J. Qiu, D. Crandall, G. von Laszewski, J. Paden, S. 
Jha, F. Wang, M. Marathe, A. Vullikanti, and T. Cheatham, 
“Contributions to High-Performance Big Data Computing,” Sep. 2018 
[Online]. Available: 
http://dsc.soic.indiana.edu/publications/SPIDALPaperSept2018.pdf 

[13] Geoffrey Fox, “HPC, Big Data, and Machine Learning Convergence,” 
Presentation Washington DC, 17-Jul-2019. [Online]. Available: 
http://dsc.soic.indiana.edu/presentations/HPC-
BigDataConvergenceJuly16-2019.pdf 

[14] JCS Kadupitiya, Geoffrey C. Fox, Vikram Jadhao, “Machine Learning for 
Parameter Auto-tuning in Molecular Dynamics Simulations: Efficient 
Dynamics of Ions near Polarizable Nanoparticles,” Indiana University, 
Nov. 2018 [Online]. Available: 
http://dsc.soic.indiana.edu/publications/Manuscript.IJHPCA.Nov2018.p
df 

[15] C. J. Pretorius, M. C. du Plessis, and C. B. Cilliers, “Simulating Robots 
Without Conventional Physics: A Neural Network Approach,” J. Intell. 
Rob. Syst., vol. 71, no. 3–4, pp. 319–348, Sep. 2013 [Online]. Available: 
https://link.springer.com/article/10.1007/s10846-012-9782-6. [Accessed: 
21-Jul-2019] 

[16] F. Lamperti, A. Roventini, and A. Sani, “Agent-based model calibration 
using machine learning surrogates,” J. Econ. Dyn. Control, vol. 90, pp. 
366–389, May 2018 [Online]. Available: 
http://www.sciencedirect.com/science/article/pii/S0165188918301088 

[17] M. H. Zangooei and J. Habibi, “Hybrid multiscale modeling and 
prediction of cancer cell behavior,” PLoS One, vol. 12, no. 8, p. 
e0183810, Aug. 2017 [Online]. Available: 
http://dx.doi.org/10.1371/journal.pone.0183810 

[18] B. C. Daniels, W. S. Ryu, and I. Nemenman, “Automated, predictive, and 
interpretable inference of Caenorhabditis elegans escape dynamics,” 
Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 15, pp. 7226–7231, Apr. 
2019 [Online]. Available: http://dx.doi.org/10.1073/pnas.1816531116 

[19] B. C. Daniels and I. Nemenman, “Automated adaptive inference of 
phenomenological dynamical models,” Nat. Commun., vol. 6, p. 8133, 
Aug. 2015 [Online]. Available: http://dx.doi.org/10.1038/ncomms9133 

[20] B. C. Daniels and I. Nemenman, “Automated adaptive inference of 
coarse-grained dynamical models in systems biology,” arXiv [q-bio.QM], 
24-Apr-2014 [Online]. Available: http://arxiv.org/abs/1404.6283 

[21] J. Lagergren, J. T. Nardini, G. Michael Lavigne, E. M. Rutter, and K. B. 
Flores, “Learning partial differential equations for biological transport 
models from noisy spatiotemporal data,” arXiv [math.DS], 13-Feb-2019 
[Online]. Available: http://arxiv.org/abs/1902.04733 

[22] X. Geng, X. Wu, L. Zhang, Q. Yang, Y. Liu, and J. Ye, “Multi-Modal 
Graph Interaction for Multi-Graph Convolution Network in Urban 
Spatiotemporal Forecasting,” arXiv [cs.LG], 27-May-2019 [Online]. 
Available: http://arxiv.org/abs/1905.11395 

[23] Z. Costello and H. G. Martin, “A machine learning approach to predict 
metabolic pathway dynamics from time-series multiomics data,” NPJ 



Syst Biol Appl, vol. 4, p. 19, May 2018 [Online]. Available: 
http://dx.doi.org/10.1038/s41540-018-0054-3 

[24] Y. Wu, Y. Yang, H. Nishiura, and M. Saitoh, “Deep Learning for 
Epidemiological Predictions,” in The 41st International ACM SIGIR 
Conference on Research & Development in Information Retrieval, 2018, 
pp. 1085–1088 [Online]. Available: 
https://dl.acm.org/citation.cfm?id=3209978.3210077. [Accessed: 08-
Jun-2019] 

[25] S. R. Venna, A. Tavanaei, R. N. Gottumukkala, V. V. Raghavan, A. S. 
Maida, and S. Nichols, “A Novel Data-Driven Model for Real-Time 
Influenza Forecasting,” IEEE Access, vol. 7, pp. 7691–7701, 2019 
[Online]. Available: http://dx.doi.org/10.1109/ACCESS.2018.2888585 

[26] S. Rasp, M. S. Pritchard, and P. Gentine, “Deep learning to represent 
subgrid processes in climate models,” Proc. Natl. Acad. Sci. U. S. A., vol. 
115, no. 39, p. 9684, Sep. 2018 [Online]. Available: 
http://www.pnas.org/content/115/39/9684.abstract 

[27] K. Matković, D. Gračanin, and H. Hauser, “Visual Analytics for 
Simulation Ensembles,” in Proceedings of the 2018 Winter Simulation 
Conference, Gothenburg, Sweden, 2018, pp. 321–335 [Online]. 
Available: http://dl.acm.org/citation.cfm?id=3320516.3320563 

[28] P. M. Kasson and S. Jha, “Adaptive ensemble simulations of 
biomolecules,” arXiv [q-bio.QM], 13-Sep-2018 [Online]. Available: 
http://arxiv.org/abs/1809.04804 

[29] E. Chiavazzo, R. Covino, R. R. Coifman, C. W. Gear, A. S. Georgiou, G. 
Hummer, and I. G. Kevrekidis, “Intrinsic map dynamics exploration for 
uncharted effective free-energy landscapes,” Proc. Natl. Acad. Sci. U. S. 
A., vol. 114, no. 28, pp. E5494–E5503, Jul. 2017 [Online]. Available: 
http://dx.doi.org/10.1073/pnas.1621481114 

[30] K. Terayama, H. Iwata, M. Araki, Y. Okuno, and K. Tsuda, “Machine 
learning accelerates MD-based binding pose prediction between ligands 
and proteins,” Bioinformatics, vol. 34, no. 5, pp. 770–778, Mar. 2018 
[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/29040432 

[31] R. Galvelis and Y. Sugita, “Neural Network and Nearest Neighbor 
Algorithms for Enhancing Sampling of Molecular Dynamics,” J. Chem. 
Theory Comput., vol. 13, no. 6, pp. 2489–2500, Jun. 2017 [Online]. 
Available: http://dx.doi.org/10.1021/acs.jctc.7b00188 

[32] A. Z. Guo, E. Sevgen, H. Sidky, J. K. Whitmer, J. A. Hubbell, and J. J. de 
Pablo, “Adaptive enhanced sampling by force-biasing using neural 
networks,” J. Chem. Phys., vol. 148, no. 13, p. 134108, Apr. 2018 
[Online]. Available: http://dx.doi.org/10.1063/1.5020733 

[33] H. Sidky and J. K. Whitmer, “Learning free energy landscapes using 
artificial neural networks,” J. Chem. Phys., vol. 148, no. 10, p. 104111, 
Mar. 2018 [Online]. Available: http://dx.doi.org/10.1063/1.5018708 

[34] Jun Zhang, Yi Isaac Yang, and Frank Noé, “Targeted Adversarial 
Learning Optimized Sampling,” May 2019 [Online]. Available: 
https://chemrxiv.org/articles/Targeted_Adversarial_Learning_Optimized
_Sampling/7932371 

[35] E. Schneider, L. Dai, R. Q. Topper, C. Drechsel-Grau, and M. E. 
Tuckerman, “Stochastic Neural Network Approach for Learning High-
Dimensional Free Energy Surfaces,” Phys. Rev. Lett., vol. 119, no. 15, p. 
150601, Oct. 2017 [Online]. Available: 
http://dx.doi.org/10.1103/PhysRevLett.119.150601 

[36] Y. Wang, J. Ribeiro, and P. Tiwary, “Past-future information bottleneck 
framework for simultaneously sampling biomolecular reaction 
coordinate, thermodynamics and kinetics,” BioRxiv, p. 507822, 2018 
[Online]. Available: 
https://www.biorxiv.org/content/10.1101/507822v1.abstract 

[37] Y. Wang, J. M. L. Ribeiro, and P. Tiwary, “Past–future information 
bottleneck for sampling molecular reaction coordinate simultaneously 
with thermodynamics and kinetics,” Nat. Commun., vol. 10, no. 1, p. 
3573, Aug. 2019 [Online]. Available: https://doi.org/10.1038/s41467-
019-11405-4 

[38] J. M. Lamim Ribeiro and P. Tiwary, “Toward Achieving Efficient and 
Accurate Ligand-Protein Unbinding with Deep Learning and Molecular 
Dynamics through RAVE,” J. Chem. Theory Comput., vol. 15, no. 1, pp. 
708–719, Jan. 2019 [Online]. Available: 
http://dx.doi.org/10.1021/acs.jctc.8b00869 

[39] J. M. L. Ribeiro, P. Bravo, Y. Wang, and P. Tiwary, “Reweighted 
autoencoded variational Bayes for enhanced sampling (RAVE),” J. 

Chem. Phys., vol. 149, no. 7, p. 072301, Aug. 2018 [Online]. Available: 
http://dx.doi.org/10.1063/1.5025487 

[40] L. Zhang, H. Wang, and E. Weinan, “Reinforced dynamics for enhanced 
sampling in large atomic and molecular systems,” J. Chem. Phys., vol. 
148, no. 12, p. 124113, Mar. 2018 [Online]. Available: 
http://dx.doi.org/10.1063/1.5019675 

[41] M. Gao, H. Zhou, and J. Skolnick, “DESTINI: A deep-learning approach 
to contact-driven protein structure prediction,” Sci. Rep., vol. 9, no. 1, p. 
3514, Mar. 2019 [Online]. Available: http://dx.doi.org/10.1038/s41598-
019-40314-1 

[42] N. Anand and P. Huang, “Generative modeling for protein structures,” in 
Advances in Neural Information Processing Systems 31, S. Bengio, H. 
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, 
Eds. Curran Associates, Inc., 2018, pp. 7494–7505 [Online]. Available: 
http://papers.nips.cc/paper/7978-generative-modeling-for-protein-
structures.pdf 

[43] Google Deepmind, “AlphaFold: Using AI for scientific discovery,” 02-
Dec-2018. [Online]. Available: https://deepmind.com/blog/alphafold/. 
[Accessed: 02-Aug-2019] 

[44] R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. F. G. Green, C. Qin, A. 
Zidek, A. Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan, 
S. Crossan, D. T. Jones, D. Silver, et al., “De novo structure prediction 
with deep-learning based scoring” [Online]. Available: 
https://deepmind.com/documents/262/A7D_AlphaFold.pdf 

[45] Robert F. Service, “Google’s DeepMind aces protein folding,” 06-Dec-
2018. [Online]. Available: 
https://www.sciencemag.org/news/2018/12/google-s-deepmind-aces-
protein-folding. [Accessed: 18-Aug-2018] 

[46] “13th Community Wide Experiment on the Critical Assessment of 
Techniques for Protein Structure Prediction CASP.” [Online]. Available: 
http://www.predictioncenter.org/casp13/index.cgi. [Accessed: 18-Aug-
2019] 

[47] Heng Ma, Debsindhu Bhowmik, Hyungro Lee, Matteo Turilli, Michael T. 
Young, Shantenu Jha, Arvind Ramanathan, “Deep Generative Model 
Driven Protein Folding Simulation,” Aug. 2019 [Online]. Available: 
https://arxiv.org/abs/1908.00496 

[48] J. Ozik, N. Collier, R. Heiland, G. An, and P. Macklin, “Learning-
accelerated Discovery of Immune-Tumour Interactions,” bioRxiv, p. 
573972, Jan. 2019 [Online]. Available: 
http://biorxiv.org/content/early/2019/04/15/573972.abstract 

[49] Z. Y. Meng, J. Liu, Y. Qi, and L. Fu, “Self-learning Monte Carlo method,” 
Physical Review B, vol. 95, no. 041101, Jan. 2017 [Online]. Available: 
https://dspace.mit.edu/handle/1721.1/106311. [Accessed: 08-Jun-2019] 

[50] X. Y. Xu, Z. H. Liu, G. Pan, Y. Qi, K. Sun, and Z. Y. Meng, “Revealing 
Fermionic Quantum Criticality from New Monte Carlo Techniques,” 
arXiv [cond-mat.str-el], 15-Apr-2019 [Online]. Available: 
http://arxiv.org/abs/1904.07355 

[51] J. S. Smith, O. Isayev, and A. E. Roitberg, “ANI-1: an extensible neural 
network potential with DFT accuracy at force field computational cost,” 
Chem. Sci., vol. 8, no. 4, pp. 3192–3203, Apr. 2017 [Online]. Available: 
http://dx.doi.org/10.1039/c6sc05720a 

[52] J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev, and A. E. Roitberg, “Less 
is more: Sampling chemical space with active learning,” J. Chem. Phys., 
vol. 148, no. 24, p. 241733, Jun. 2018 [Online]. Available: 
http://dx.doi.org/10.1063/1.5023802 

[53] J. S Smith, B. T. Nebgen, R. Zubatyuk, N. Lubbers, C. Devereux, K. 
Barros, S. Tretiak, O. Isayev, and A. Roitberg, “Outsmarting quantum 
chemistry through transfer learning,” 2018 [Online]. Available: 
https://chemrxiv.org/articles/Outsmarting_Quantum_Chemistry_Throug
h_Transfer_Learning/6744440/files/12304376.pdf 

[54] J. Behler and M. Parrinello, “Generalized neural-network representation 
of high-dimensional potential-energy surfaces,” Phys. Rev. Lett., vol. 98, 
no. 14, p. 146401, Apr. 2007 [Online]. Available: 
http://dx.doi.org/10.1103/PhysRevLett.98.146401 

[55] L. Zhang, J. Han, H. Wang, R. Car, and W. E, “DeePCG: Constructing 
coarse-grained models via deep neural networks,” J. Chem. Phys., vol. 
149, no. 3, p. 034101, Jul. 2018 [Online]. Available: 
http://dx.doi.org/10.1063/1.5027645 



[56] J. Wang, S. Olsson, C. Wehmeyer, A. Pérez, N. E. Charron, G. de 
Fabritiis, F. Noé, and C. Clementi, “Machine Learning of Coarse-Grained 
Molecular Dynamics Force Fields,” ACS Cent. Sci., vol. 5, no. 5, pp. 
755–767, May 2019 [Online]. Available: 
https://doi.org/10.1021/acscentsci.8b00913 

[57] J. Behler, “First Principles Neural Network Potentials for Reactive 
Simulations of Large Molecular and Condensed Systems,” Angew. 
Chem. Int. Ed Engl., vol. 56, no. 42, pp. 12828–12840, Oct. 2017 
[Online]. Available: http://dx.doi.org/10.1002/anie.201703114 

[58] A. Mardt, L. Pasquali, H. Wu, and F. Noé, “VAMPnets for deep learning 
of molecular kinetics,” Nat. Commun., vol. 9, no. 1, p. 5, Jan. 2018 
[Online]. Available: http://dx.doi.org/10.1038/s41467-017-02388-1 

[59] F. Sittel and G. Stock, “Perspective: Identification of collective variables 
and metastable states of protein dynamics,” J. Chem. Phys., vol. 149, no. 
15, p. 150901, Oct. 2018 [Online]. Available: 
http://dx.doi.org/10.1063/1.5049637 

[60] D. Mendels, G. Piccini, and M. Parrinello, “Collective Variables from 
Local Fluctuations,” J. Phys. Chem. Lett., vol. 9, no. 11, pp. 2776–2781, 
Jun. 2018 [Online]. Available: 
http://dx.doi.org/10.1021/acs.jpclett.8b00733 

[61] W. Chen and A. L. Ferguson, “Molecular enhanced sampling with 
autoencoders: On-the-fly collective variable discovery and accelerated 
free energy landscape exploration,” arXiv [physics.bio-ph], 30-Dec-2017 
[Online]. Available: http://arxiv.org/abs/1801.00203 

[62] W. Chen, A. R. Tan, and A. L. Ferguson, “Collective variable discovery 
and enhanced sampling using autoencoders: Innovations in network 
architecture and error function design,” J. Chem. Phys., vol. 149, no. 7, p. 
072312, Aug. 2018 [Online]. Available: 
http://dx.doi.org/10.1063/1.5023804 

[63] M. M. Sultan, H. K. Wayment-Steele, and V. S. Pande, “Transferable 
Neural Networks for Enhanced Sampling of Protein Dynamics,” J. Chem. 
Theory Comput., vol. 14, no. 4, pp. 1887–1894, Apr. 2018 [Online]. 
Available: http://dx.doi.org/10.1021/acs.jctc.8b00025 

[64] C. Wehmeyer and F. Noé, “Time-lagged autoencoders: Deep learning of 
slow collective variables for molecular kinetics,” J. Chem. Phys., vol. 
148, no. 24, p. 241703, Jun. 2018 [Online]. Available: 
http://dx.doi.org/10.1063/1.5011399 

[65] F. Noé, “Machine Learning for Molecular Dynamics on Long 
Timescales,” arXiv [physics.chem-ph], 18-Dec-2018 [Online]. Available: 
http://arxiv.org/abs/1812.07669 

[66] I. G. Kevrekidis, C. W. Gear, and G. Hummer, “Equation-free: The 
computer-aided analysis of complex multiscale systems,” AIChE J., vol. 
50, no. 7, pp. 1346–1355, 2004 [Online]. Available: 
https://onlinelibrary.wiley.com/doi/abs/10.1002/aic.10106 

[67] I. G. Kevrekidis, “Equation-free and variable free modeling for 
complex/multiscale systems. Coarse-grained computation in science and 
engineering using fine-grained models,” Princeton Univ., NJ (United 
States), DOE-PRINCETON-25877, Feb. 2017 [Online]. Available: 
https://www.osti.gov/biblio/1347549-equation-free-variable-free-
modeling-complex-multiscale-systems-coarse-grained-computation-
science-engineering-using-fine-grained-models. [Accessed: 09-Jun-
2019] 

[68] Esteban Samaniego, Cosmin Anitescu, Somdatta Goswami, Vien Minh 
Nguyen-Thanh, Hongwei Guo, Khader Hamdia, Timon Rabczuk, 
Xiaoying Zhuang, “An Energy Approach to the Solution of Partial 
Differential Equations in Computational Mechanics via Machine 
Learning: Concepts, Implementation and Applications,” arXiv [stat.ML], 
, 27 Aug 2019 [Online]. Available: https://arxiv.org/abs/1908.10407 

[69] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld, “Fast 
and accurate modeling of molecular atomization energies with machine 
learning,” Phys. Rev. Lett., vol. 108, no. 5, p. 058301, Feb. 2012 [Online]. 
Available: http://dx.doi.org/10.1103/PhysRevLett.108.058301 

[70] M. Popova, O. Isayev, and A. Tropsha, “Deep reinforcement learning for 
de novo drug design,” Sci Adv, vol. 4, no. 7, p. eaap7885, Jul. 2018 
[Online]. Available: http://dx.doi.org/10.1126/sciadv.aap7885 

[71] W. Ye, C. Chen, Z. Wang, I.-H. Chu, and S. P. Ong, “Deep neural 
networks for accurate predictions of crystal stability,” Nat. Commun., vol. 
9, no. 1, p. 3800, Sep. 2018 [Online]. Available: 
http://dx.doi.org/10.1038/s41467-018-06322-x 

[72] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, 
“Machine learning for molecular and materials science,” Nature, vol. 559, 
no. 7715, pp. 547–555, Jul. 2018 [Online]. Available: 
http://dx.doi.org/10.1038/s41586-018-0337-2 

[73] JCS Kadupitiya , Geoffrey C. Fox , and Vikram Jadhao, “Machine 
learning for performance enhancement of molecular dynamics 
simulations,” presented at the International Conference on Computational 
Science ICCS2019 , Faro, Algarve, Portugal, 2018 [Online]. Available: 
http://dsc.soic.indiana.edu/publications/ICCS8.pdf 

[74] P. V. Balachandran, “Machine learning guided design of functional 
materials with targeted properties,” Comput. Mater. Sci., vol. 164, pp. 82–
90, Jun. 2019 [Online]. Available: 
http://www.sciencedirect.com/science/article/pii/S0927025619301922 

[75] M. Gastegger, J. Behler, and P. Marquetand, “Machine learning 
molecular dynamics for the simulation of infrared spectra,” Chem. Sci., 
vol. 8, no. 10, pp. 6924–6935, Oct. 2017 [Online]. Available: 
http://dx.doi.org/10.1039/c7sc02267k 

[76] A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R. Kermode, G. Csányi, 
and M. Ceriotti, “Machine learning unifies the modeling of materials and 
molecules,” Sci Adv, vol. 3, no. 12, p. e1701816, Dec. 2017 [Online]. 
Available: http://dx.doi.org/10.1126/sciadv.1701816 

[77] A. Grisafi, A. Fabrizio, B. Meyer, D. M. Wilkins, C. Corminboeuf, and 
M. Ceriotti, “Transferable Machine-Learning Model of the Electron 
Density,” ACS Cent Sci, vol. 5, no. 1, pp. 57–64, Jan. 2019 [Online]. 
Available: http://dx.doi.org/10.1021/acscentsci.8b00551 

[78] A. Grisafi, D. M. Wilkins, G. Csányi, and M. Ceriotti, “Symmetry-
Adapted Machine Learning for Tensorial Properties of Atomistic 
Systems,” Phys. Rev. Lett., vol. 120, no. 3, p. 036002, Jan. 2018 [Online]. 
Available: http://dx.doi.org/10.1103/PhysRevLett.120.036002 

[79] F. Häse, C. Kreisbeck, and A. Aspuru-Guzik, “Machine learning for 
quantum dynamics: deep learning of excitation energy transfer 
properties,” Chem. Sci., vol. 8, no. 12, pp. 8419–8426, Dec. 2017 
[Online]. Available: http://dx.doi.org/10.1039/c7sc03542j 

[80] V. Botu and R. Ramprasad, “Adaptive machine learning framework to 
accelerate ab initio molecular dynamics,” Int. J. Quantum Chem., vol. 
115, no. 16, pp. 1074–1083, Aug. 2015 [Online]. Available: 
http://doi.wiley.com/10.1002/qua.24836 

[81] Z. Li, J. R. Kermode, and A. De Vita, “Molecular dynamics with on-the-
fly machine learning of quantum-mechanical forces,” Phys. Rev. Lett., 
vol. 114, no. 9, p. 096405, Mar. 2015 [Online]. Available: 
http://dx.doi.org/10.1103/PhysRevLett.114.096405 

[82] A. Pérez, G. Martínez-Rosell, and G. De Fabritiis, “Simulations meet 
machine learning in structural biology,” Theory and simulation • 
Macromolecular assemblies, vol. 49, pp. 139–144, Apr. 2018 [Online]. 
Available: 
http://www.sciencedirect.com/science/article/pii/S0959440X17301069 

[83] K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. 
Tkatchenko, “Quantum-chemical insights from deep tensor neural 
networks,” Nat. Commun., vol. 8, p. 13890, Jan. 2017 [Online]. 
Available: http://dx.doi.org/10.1038/ncomms13890 

[84] M. J. Willatt, F. Musil, and M. Ceriotti, “Atom-density representations 
for machine learning,” J. Chem. Phys., vol. 150, no. 15, p. 154110, Apr. 
2019 [Online]. Available: https://doi.org/10.1063/1.5090481 

[85] K. T. Schütt, M. Gastegger, A. Tkatchenko, K. -R. Müller, and R. J. 
Maurer, “Unifying machine learning and quantum chemistry -- a deep 
neural network for molecular wavefunctions,” arXiv [physics.chem-ph], 
24-Jun-2019 [Online]. Available: http://arxiv.org/abs/1906.10033 

[86] Y. Khoo, J. Lu, and L. Ying, “Solving parametric PDE problems with 
artificial neural networks,” arXiv [math.NA], 11-Jul-2017 [Online]. 
Available: http://arxiv.org/abs/1707.03351 

[87] L. Liang, M. Liu, C. Martin, J. A. Elefteriades, and W. Sun, “A machine 
learning approach to investigate the relationship between shape features 
and numerically predicted risk of ascending aortic aneurysm,” Biomech. 
Model. Mechanobiol., vol. 16, no. 5, pp. 1519–1533, Oct. 2017 [Online]. 
Available: http://dx.doi.org/10.1007/s10237-017-0903-9 

[88] A. J. Meade and A. A. Fernandez, “The numerical solution of linear 
ordinary differential equations by feedforward neural networks,” Math. 
Comput. Model., vol. 19, no. 12, pp. 1–25, Jun. 1994 [Online]. Available: 
http://www.sciencedirect.com/science/article/pii/0895717794900957 



[89] A. Morningstar and R. G. Melko, “Deep Learning the Ising Model Near 
Criticality,” J. Mach. Learn. Res., vol. 18, no. 163, pp. 1–17, 2018 
[Online]. Available: http://jmlr.org/papers/v18/17-527.html. [Accessed: 
08-Jun-2019] 

[90] M. Mustafa, D. Bard, W. Bhimji, Z. Lukić, R. Al-Rfou, and J. Kratochvil, 
“CosmoGAN: creating high-fidelity weak lensing convergence maps 
using Generative Adversarial Networks,” arXiv [astro-ph.IM], 07-Jun-
2017 [Online]. Available: http://arxiv.org/abs/1706.02390 

[91] “Popular account of CosmoGAN: Training a neural network to study dark 
matter.” [Online]. Available: https://phys.org/news/2019-05-cosmogan-
neural-network-dark.html. [Accessed: 08-Jun-2019] 

[92] “Code is to accompany ‘Creating Virtual Universes Using Generative 
Adversarial Networks’ CosmoGAN manuscript.” [Online]. Available: 
https://github.com/MustafaMustafa/cosmoGAN. [Accessed: 08-Jun-
2019] 

[93] K. Endo, K. Tomobe, and K. Yasuoka, “Multi-step time series generator 
for molecular dynamics,” in Thirty-Second AAAI Conference on 
Artificial Intelligence, 2018 [Online]. Available: 
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/16
477 

[94] F. Noé, S. Olsson, J. Köhler, and H. Wu, “Boltzmann Generators -- 
Sampling Equilibrium States of Many-Body Systems with Deep 
Learning,” arXiv [stat.ML], 04-Dec-2018 [Online]. Available: 
http://arxiv.org/abs/1812.01729 

[95] S. Wang, F. Kai, N. Luo, Y. Cao, F. Wu, C. Zhang, K. A. Heller, and L. 
You, “Massive computational acceleration by using neural networks to 
emulate mechanism-based biological models,” bioRxiv, p. 559559, 03-
Mar-2019 [Online]. Available: 
https://www.biorxiv.org/content/10.1101/559559v2. [Accessed: 06-Jun-
2019] 

[96] Lijing Wang, J Chen, and Madhav Marathe., “DEFSI : Deep Learning 
Based Epidemic Forecasting with Synthetic Information,” presented at 
the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), 
Hilton Hawaiian Village, Honolulu, Hawaii, USA [Online]. Available: 
https://www.researchgate.net/publication/328639130_DEFSI_Deep_Lea
rning_Based_Epidemic_Forecasting_with_Synthetic_Information 

[97] Y. Khoo, J. Lu, and L. Ying, “Solving for high-dimensional committor 
functions using artificial neural networks,” Publ. Res. Inst. Math. Sci., 
vol. 6, no. 1, p. 1, Oct. 2018 [Online]. Available: 
https://doi.org/10.1007/s40687-018-0160-2 

[98] Y. Khoo and L. Ying, “SwitchNet: a neural network model for forward 
and inverse scattering problems,” arXiv [math.NA], 23-Oct-2018 
[Online]. Available: http://arxiv.org/abs/1810.09675 

[99] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics Informed Deep 
Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential 
Equations,” arXiv [cs.AI], 28-Nov-2017 [Online]. Available: 
http://arxiv.org/abs/1711.10561 

[100] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics Informed Deep 
Learning (Part II): Data-driven Discovery of Nonlinear Partial 
Differential Equations,” arXiv [cs.AI], 28-Nov-2017 [Online]. Available: 
http://arxiv.org/abs/1711.10566 

[101] M. Raissi, “Deep Hidden Physics Models: Deep Learning of Nonlinear 
Partial Differential Equations,” J. Mach. Learn. Res., vol. 19, no. 25, pp. 
1–24, 2018 [Online]. Available: http://jmlr.org/papers/v19/18-046.html. 
[Accessed: 08-Jun-2019] 

[102] D. Zhang, L. Lu, L. Guo, and G. E. Karniadakis, “Quantifying total 
uncertainty in physics-informed neural networks for solving forward and 
inverse stochastic problems,” arXiv [math.AP], 21-Sep-2018 [Online]. 
Available: http://arxiv.org/abs/1809.08327 

[103] W. Gentzsch, “Deep Learning for Fluid Flow Prediction in the Cloud.” 
08-Dec-2018 [Online]. Available: https://www.linkedin.com/pulse/deep-
learning-fluid-flow-prediction-cloud-wolfgang-gentzsch/. [Accessed: 01-
Mar-2019] 

[104] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis, “Extended dynamic 
mode decomposition with dictionary learning: A data-driven adaptive 
spectral decomposition of the Koopman operator,” Chaos: An 
Interdisciplinary Journal of Nonlinear Science, vol. 27, no. 10, p. 103111, 
2017 [Online]. Available: https://doi.org/10.1063/1.4993854 

[105] J. Sirignano and K. Spiliopoulos, “DGM: A deep learning algorithm for 
solving partial differential equations,” J. Comput. Phys., vol. 375, pp. 
1339–1364, Dec. 2018 [Online]. Available: 
http://www.sciencedirect.com/science/article/pii/S0021999118305527 

[106] J. Han, A. Jentzen, and W. E, “Solving high-dimensional partial 
differential equations using deep learning,” Proc. Natl. Acad. Sci. U. S. 
A., vol. 115, no. 34, pp. 8505–8510, Aug. 2018 [Online]. Available: 
http://dx.doi.org/10.1073/pnas.1718942115 

[107] J. Berg and K. Nyström, “A unified deep artificial neural network 
approach to partial differential equations in complex geometries,” arXiv 
[stat.ML], 17-Nov-2017 [Online]. Available: 
http://arxiv.org/abs/1711.06464 

 


	I. Introduction
	A. Introduction

	II. Taxonomy of MLAutotuning and MLaroundHPC: Improving Simulation with Configurations and Integration of Data
	A. MLAutotuningHPC – Learn configurations
	1) Particle Dynamics-MLAutotuningHPC – Learn configurations

	B. MLAutoTuningHPC: Learning Model Setups from Observational Data
	1) Particle Dynamics-MLAutotuningHPC –  Learning Model Setups from Observational Data
	2) ABM-MLAutotuningHPC –  Learning Model Setups from Observational Data
	3) PDE-MLAutotuningHPC –  Learning Model Setups from Observational Data

	C. MLaroundHPC: Learning Model Details - ML for Data Assimilation (predictor-corrector approach)
	1) ABM-MLaroundHPC: Learning Model Details (ML based data assimilation)
	2) PDE-MLaroundHPC: Learning Model Details (ML based data assimilation)


	III. Taxonomy of MLaroundHPC:Learn Structure, Theory and Model for Simulation
	A. MLAutotuningHPC – Smart ensembles
	1) General Simulations-MLAutotuningHPC – Smart ensembles
	2) Particle Dynamics-MLAutotuningHPC – Smart ensembles
	3) ABM-MLAutotuningHPC – Smart ensembles

	B. MLaroundHPC: Learning Model Details (effective potentials and coarse graining)
	1) Particle Dynamics-MLaroundHPC: Learning Model Details (effective potentials)
	2) Particle Dynamics-MLaroundHPC: Learning Model Details (coarse graining)
	3) PDE-MLaroundHPC: Learning Model Details (coarse graining)

	C. MLaroundHPC: Learning Model Details - Inference of Missing Model Structure

	IV. Taxonomy of MLAutotuning and MLaroundHPC: Learn Surrogates for Simulation
	A. MLaroundHPC: Learning Outputs from Inputs: a) Computation Results from Computation defining Parameters
	1) Particle Dynamics- MLaroundHPC: Learning Outputs from Inputs (parameters)
	2) PDE-MLaroundHPC - Learning Outputs from Inputs (parameters)

	B. MLaroundHPC: Learning Outputs from Inputs: b) Fields from Fields
	1) Particle Dynamics-MLaroundHPC: Learning Outputs from Inputs (fields)
	2) ABM-MLaroundHPC: Learning Outputs from Inputs (fields)
	3)  PDE-MLaroundHPC: Learning Outputs from Inputs (fields)


	V. Conclusions
	References


