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Abstract: In this paper we describe IoTCloud, a platform to connect smart devices to cloud services for real time data processing 

and control. A device connected to IoTCloud can communicate with real time data analysis frameworks deployed in the cloud via 

messaging. The platform design is scalable in connecting devices as well as transferring and processing data. With IoTCloud a 

user can develop real time data processing algorithms in an abstract framework without concern for the underlying details of how 

the data is distributed and transferred. For this platform we primarily consider real time robotics applications such as autonomous 

robot navigation, where there are strict requirements on processing latency and demand for scalable processing. To demonstrate 

the effectiveness of the system, a robotic application is developed on top of the framework. The system and the robotics 

application characteristics are measured to show that data processing in central servers is feasible for real time sensor 

applications.  

 

1. Introduction 

 
The availability of internet connections and low manufacturing 
costs have led to a boom in smart objects, devices with a 
tripartite construction consisting of a CPU, memory storage, 
and a wireless connection. These smart objects (or devices) are 
equipped with sensors that produce data and actuators capable 
of receiving commands. Such devices have proliferated in all 
fields and their use is expected to grow exponentially in the 
future. For these devices, central data processing has been 
shown to be advantageous due to numerous factors, including 
the ability to easily draw from vast stores of information, 
efficient allocation of computing resources, and a proclivity for 
parallelization. Because of these factors, many devices may 
benefit from processing only some data locally and offloading 
the remainder to central servers.  Among the aforementioned 
devices, and increasingly present in modern life, are robots. 
Such examples as the iRobot Roomba, a robot that can clean 
the floor, present affordable, automated aids for daily living. 
Additionally, Amazon and Google are researching and 
developing platforms for delivering consumer products using 
drones. Most of these robots have  limited onboard processing 
power but still generate large amounts of data. Cloud-based 
analysis of data from such robots creates many challenges due 
to strict latency requirements and high volumes of data 
production.  

To process data derived from numerous smart devices, we need 
scalable data processing platforms. Cloud is an ideal 
computational platform for hosting data processing 
applications for smart devices because of its efficiency and 
agility. Cloud computing[1] refers to both applications 
delivered as services over the Internet and the hardware and 
system software in the datacenters that provide those services. 
Cloud computing enables computing as a utility and is 
gradually becoming the standard for computation, allowing the 
systems and users to use Platform as a Service (PaaS), 
Infrastructure as a Service (IaaS), and Software as a Service 
(SaaS). The computational nodes are provisioned, configured 

and reconfigured dynamically in the cloud, and can take the 
form of virtual machines or physical machines. Furthermore, 
sensor-based applications can benefit from in-house private 
cloud environments hosted within organizations or from public 
clouds hosted by large companies.  

In order to process data generated by smart devices in a cloud 
environment, the data must be transmitted from the devices to 
the cloud in an efficient and scalable manner. The 
communication between cloud applications and the devices is 
essentially based on events, which suggests that the traditional 
request/response approach is not appropriate. For example, 
when using requests and responses, a device requiring real time 
control has to poll the applications continuously, which 
increases the latency and network traffic. Transmission of 
events is well supported by publish-subscribe messaging[2] 
where a publisher makes information available to subscribers 
in an asynchronous fashion. Over time publish-subscribe 
messaging has emerged as a distributed integration paradigm 
for deployment of scalable and loosely coupled systems. 
Subscribers have the ability to express their interest in an event 
or pattern of events and are subsequently notified of any event 
generated by a publisher which matches their registered 
interest. An event is asynchronously propagated to all 
subscribers that registered interest. Publish-subscribe 
messaging decouples the message producers and consumers in 
the dimensions of time, space and synchronization. The 
decoupling favors the scalability of the message producing and 
consuming systems. Because of these features, publish-
subscribe messaging is potentially a good fit for connecting 
smart devices to cloud applications.  

Two widely used schemes of pub-sub systems  are topic-based 
and content-based. In topic-based systems the messages are 
published to topics which are identified by keywords. The 
consumers subscribe to and receive messages coming to these 
topics. In content-based systems the consumers subscribe to 
messages based on the properties of the messages. This means 
the content of each message has to be examined at the 
middleware to select a consumer among possibly a large set of 



consumers. Because of the simple design of most topic-based 
middleware, they tend to scale well compared to content-based 
brokers and introduce less overhead.  

We can assume that for all our devices, data is sent to a cloud 
as a stream of events. It is important to process the data as a 
stream before storing it to achieve real time processing 
guarantees. Parallel processing of events coming from a single 
source can help to reduce the latency in most applications. The 
ability to connect large numbers of devices creates a need for a 
scalable infrastructure to process the data. Distributed event 
processing engines (DSPEs)[3-6] are a good fit for such 
requirements. A DSPE abstracts out the event delivery, 
propagation and processing semantics and greatly simplifies 
the real time algorithm development. They also act as a 
messaging fabric that distributes data for batch processing and 
archival purposes to other data sinks like databases and file 
systems after some pre-processing of the data.    

We envision a cloud-based data-intensive computing 
architecture where stream-based real time analysis and batch 
analysis are combined together to form a rich infrastructure for 
sensor applications. We propose Cloud DIKW (Data, 
Information, Knowledge and Wisdom)-based architecture for 
sensor data analysis in the cloud. The high level DIKW view of 
the system is shown in Figure 1. With DIKW architecture the 
data enters the processing pipeline through the DSPE layer. 
Both stream analysis and batch analysis are combined to 
continuously evolve the data models to transition from raw 
data to decisions. The storage layer acts as the glue between the 
batch analysis and the stream analysis. 

 

 

Figure 1 DIKW View of the System 

By combining the above requirements, we have developed our 
IoTCloud platform, which is a distributed software platform 
capable of connecting devices to the cloud services. IoTCloud 
uses topics-based publish-subscribe messaging to transfer data 
between the devices and the cloud services and a DSPE to 
process the data in the cloud. The platform supports two 
publish-subscribe brokers with different semantics that are 
suitable for different applications. We have developed a robotic 
application that runs through a private in-house cloud to 
demonstrate how to use the system and measured the 
characteristics of the system. Doing so demonstrates that we 
can achieve real time processing of sensor data in a cloud 
environment in a scalable manner. The main contribution of 
our work is to explore scalable cloud-based real time data 
processing for sensor applications. 

Section 2 of the paper describes the related work in this area. 
Section 3 explains the architecture of the framework and 
section 4 highlights the robotics application we have 
developed. In section 5, we present a series of experiments 
done to evaluate the system and discuss the resulting 
observations. Finally, in section 6 and 7 we end with 
conclusions and future work. 

2. Related Work 

 
Hassan[7] is a content-based publish/subscribe framework for 
connecting sensor data to cloud services. Content-based pub-
sub allows greater flexibility for the application designers than 
topic-based systems.  But content-based setups usually involve 
higher overhead because the brokers have to inspect message 
content.  Furthermore, content-based pub-sub brokers are 
neither popular nor widely available as products.  

Mires[8], TinySIP[9], and DV/DRP[10] are all 
publish/subscribe messaging middleware for Wireless Sensor 
Networks(WSN). They address the different issues in 
connecting WSNs and communicating with sensors. MQTT-
S[11] is an open topic-based pub-sub protocol defined for 
transferring data from sensors. The protocol enables data 
transfer between sensors and traditional networks. In our work 
we assume that sensor data is available to be transported to 
cloud services and we handle the transfer of gathered data from 
devices to cloud services. For example, a device connected to 
our system can send data via a dedicated communication 
channel, public Internet, etc. Also many devices can be 
connected in WSNs using the above-mentioned protocols or 
messaging systems after which our platform can transfer this 
data to cloud services for processing. 

Reference architectures for integrating sensors and cloud 
services have being discussed in the literature [12, 13]. Both 
works explore the general architecture that can be used to 
connect sensors to cloud services and the potential issues. In 
our work we provide a framework that can be used to send 
sensor data from devices to the cloud as well as show how to 
process the data within a generic framework. We also discuss 
how to transfer data and process it in a scalable way, topics that 
are not fully addressed in the above papers. A detailed survey 
of some of the existing work done on cloud robotics has been 
summarized in [14]. Our framework can be used as a generic 
platform for developing cloud robotics applications such as 
collective robot learning, robot swarms, and robot perception 
based on image processing. 

3. IoTCloud Architecture 

 

A system view of the architecture is shown in Figure 2. Our 

architecture consists of three main layers. 

1. Gateway Layer  

2. Publish-Subscribe messaging layer 

3. Cloud-based big data processing layer 
We consider a device as a set of sensors and actuators. Users 
develop a driver that can communicate with the device and 
deploy it in a gateway.  This driver doesn’t always have to 
directly connect to the device. For example, it can connect via 
a TCP connection or through a message broker. The data 
generated by the driver application is sent to the cloud-



processing layer using publish-subscribe messaging brokers. 
The cloud processing layer processes the data and sends 
control messages via the message brokers back to the driver, 
which converts the information to a format that suits the device 
and communicates this back to it. The platform is implemented 
in the Java programming language. 

3.1 Gateway: Drivers are deployed in gateways responsible 

for managing drivers. There can be multiple gateways in the 

system and each has a unique id. A gateway master controls 

the gateways by issuing commands that include deploy/un-

deploy, start/stop drivers, etc. A gateway is connected to 

multiple message brokers which can be in a cluster 

configuration. By default the platform supports 

RabbitMQ[15], ActiveMQ and Kafka[16] message brokers. 

Gateways manage the connections to the brokers and handle 

the load balancing of the device data to the brokers. They 

update the master about the drivers deployed in it and the 

status of the gateways. The master then stores the state 

information in a ZooKeeper[17] cluster.  

 

 
Figure 2 IOTCloud Architecture 

3.2 Driver: The driver is the data bridge between a device and 

the cloud applications. It serves to convert data coming from 

the device into a format that the cloud applications expect and 

vice versa. A driver has a name and a set of communication 

channels. When a driver is deployed, the running instance gets 

an instance id. This is used for controlling the driver after the 

deployment. The same driver can be deployed multiple times 

and each of the instances receives a unique id. One driver can 

have multiple communication channels each with a unique 

name. A communication channel connects the driver to 

publish-subscribe messaging brokers. When a driver is 

deployed, its information is saved in ZooKeeper. The default 

structure of driver information in ZooKeeper is: 
/iot/sensors/[driver_name]/[driver_instance_id]/[cha

nnel_name] 

A ZooKeeper node (ZNode) with the driver instance id 
contains information about the driver such as its status and 
metadata. ZNodes with a channel name contain information 
about the channels. The framework allows shared and 
exclusive channels to be created. An exclusive channel can 
give faster communication between the drivers and the cloud 
processing. But in large-scale deployment of drivers, an 
exclusive channel can result in a large number of resources in 
the brokers. Some applications don’t have strict latency 
requirements and can use shared channels, thus consuming less 
system resources.  

3.3 Brokers: The platform specifically focuses on topic-based 

publish-subscribe brokers rather than content-based models. 

We chose topic-based brokers for several reasons: (1) Stable, 

open source topic-based brokers are easily available (2) Topic-

based brokers are simple to use and configure (3) The 

overhead introduced by the broker is minimal compared to 

content-based versions. For this project the most important 

factors are 1 and 3, because our applications require low 

latency and topic-based brokers are the ones readily available 

for use. The messaging layer needs to preserve the message 

ordering, preventing multiple consumers from consuming 

messages off the same driver.   

 
There are many open source brokers available that fulfill our 
needs for the messaging infrastructure. Such brokers include 
ActiveMQ[18], RabbitMQ[15], Kafka[16, 19] Kestrel, and 
HonertMQ. From these, ActiveMQ, RabbitMQ and Kafka are 
widely used topic-based publish subscribe brokers. The 
preliminary studies show that ActiveMQ and RabbitMQ have 
identical functionalities for our purposes but the latter is 
capable of handling more load with less overhead. The Kafka 
broker has very good clustering capabilities and can handle 
parallel consumer reads for the same topic.  For these reasons 
we decided to support both RabbitMQ and Kafka in our 
platform. 

Each communication channel created in a driver is connected 
with a topic created in the message broker. The framework 
supports two mappings of channels to topics, thus creating two 
types of channels. In the first type, each channel is mapped to a 
unique queue in the broker. We call this type exclusive 
channels. In the other type, a set of channels share the same 
topic in the broker and is called a shared channel. At the 
moment we use a very simple rule to map the channels to a 
shared queue. We map the same channel from multiple 
instances of a driver deployed in one gateway to a single topic.  

For shared channels: 𝑁𝑜 𝑜𝑓 𝑡𝑜𝑝𝑖𝑐𝑠 = 𝑁𝑜 𝑜𝑓 𝐺𝑎𝑡𝑒𝑤𝑎𝑦𝑠  

Exclusive channels: 𝑁𝑜 𝑜𝑓 𝑡𝑜𝑝𝑖𝑐𝑠 = 𝑁𝑜 𝑜𝑓 𝐷𝑟𝑖𝑣𝑒𝑟 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

 

For a shared channel, the corresponding topic name is of the 
format “gateway_id.driver_name.queue_name”. For an 
exclusive channel, it is   
“gateway_id.driver_name.driver_id.queue_name”.  



RabbitMQ: RabbitMQ is a message broker primarily 

supporting Advanced Message Queuing Protocol 

(AMQP)[20]. Even though the core of RabbitMQ is designed 

to support AMQP protocol, the broker has been extended to 

support other message protocols like STOMP, MQTT, etc. 

RabbitMQ is written in the Erlang programing language and 

supports low latency high throughput messaging. It has a rich 

API and architecture for developing consumers and 

publishers, plus topics are easy to create and manage using its 

APIs. These topics are lightweight and can be created without 

much burden to the broker. We allow both shared channels 

and exclusive channels to be created for RabbitMQ. The 

metadata of a message is sent using RabbitMQ message 

headers, and includes sensor id, gateway id and custom 

properties.  

 

Kafka: Kafka is a publish-subscribe message broker backed by 

a commit log. The messages sent by the producers are 

appended to a commit log and the consumers read the 

messages from this. Kafka implements its own message 

protocol and does not support standard protocols like AMQP 

or MQTT. At the core of Kafka messaging is the concept of a 

topic. A topic is divided into multiple partitions and a message 

is sent to a single partition. In our platform, the partition for a 

message is chosen using a key accompanying a message. Thus 

messages with the same key go to the same partition. 

Consumers consume messages from partitions. Partitions of a 

single topic can spread across a cluster of Kafka servers. 

Furthermore, a single partition is replicated in a Kafka cluster 

for reliability. Kafka guarantees ordering of messages in a 

partition and doesn’t guarantee ordering across partitions. 

Because a topic consists of multiple partitions, consumers can 

read from the same topic in parallel without affecting the 

message ordering for a single message key. In IoTCloud 

platform we use the driver id as the key for a message. 

 

IoTCloud needs to send metadata with a message, such as the 

driver id, site id and custom properties. Because Kafka only 

supports byte messages without any headers, we use a 

Thrift[21]-based message format to send metadata about the 

message. Use of driver id as the key ensures that the messages 

belonging to a single driver instance will always be in one 

partition. We use at most one consumer per partition to ensure 

the message ordering for a driver. Because Kafka topics can 

be partitioned, we will have parallel read-and write 

capabilities for shared channels. Because of this, the platform 

only supports shared channels for Kafka.   

 

3.4 Cloud Processing: As the primary cloud-processing 

framework we use Apache Storm[6], which is an open source 

DSPE. There are many DSPEs available but we chose Storm 

because of its scalability, performance, excellent development 

community support and its ability to use scripting languages to 

write applications. Storm can be used to process the data and 

send responses back immediately, or it can do some pre-

processing of the data and store it for later processing by batch 

engines such as Apache Hadoop. The applications we have 

developed don’t use batch processing at the moment, so we 

haven’t incorporated such engines into the platform yet. But 

our architecture permits integration of engines like Hadoop. 

We use FutureGrid[22] as our cloud platform for deploying 

the Storm Cluster since it has an OpenStack installation and 

we can provision VM images using the OpenStack tools. 

 

Apache Storm: Storm is a distributed stream processing engine 

designed to process large amounts of streaming data in a 

scalable and efficient way. Data processing applications are 

written as Storm topologies. A topology defines a DAG 

structure for processing the streaming data coming from the 

devices as an unbounded stream of tuples. The DAG consists 

of a set of Spouts and Bolts written to process the data. The 

tuples of the stream flow through the nodes (spouts and bolts) 

of the DAG. Spouts and bolts are primarily written in Java but 

other programming languages like Python and Ruby are 

permitted. Data enters a topology through Spouts and the 

processing happens in Bolts. The components in the DAG are 

connected to each other using stream (tuple) groupings. Pub-

sub is a common pattern for ingesting data into a Storm 

topology. A bolt can consume the connected input streams, do 

some processing on the tuples, and generate and emit new 

tuples to the output streams. Usually the last bolts in the 

topology DAG write the results to a DB or send the results to 

remote nodes using pub-sub messaging. The spouts and bolts 

of a topology can be run in parallel in different computation 

nodes. 

 

To ease the development of Storm topologies in our platform 

we allow the external communication points of a Storm 

Topology to be defined in a configuration file. Figure 3 is one 

such example. The topology has two external communication 

channels. A “kinect_receive” spout gets the input data from 

devices and a “count_send” bolt sends output information 

back to the devices. We can use the above configuration to 

build the outer layer of a topology automatically. The 

algorithm has to be written by the application developer.  
 

Figure 3 Topology Endpoint Configuration 

 

We can run many instances of any of the components in a 

Storm Topology in parallel. For example to read data in 

parallel from many devices, we can spawn several instances of 

the kinect_receive spout in different nodes. This can be done 

for any bolt in the topology as well.  The parallelism can be 

changed at runtime as well. This allows the system to scale 

with the addition of drivers. 

zk.servers: ["server1:2181"] 
zk.root: "/iot/sensors" 
topology.name: "wordcount" 
spouts: 
    kinect_receive: 
        broker: "rabbitmq" 
        driver: "turtle" 
        channel: "kinect" 
        fields: ["frame", "driverID", "time"] 
bolts: 
    count_send: 
        broker: "rabbitmq" 
        driver: "turtle" 
        channel: "control" 
        fields: ["control", "driverID", "time"] 
 

http://topology.name/


3.5 Discovery: Because Storm is a distributed processing 

framework, it requires coordination among the processing 

units. For example when a communication channel is created 

in the broker for a device, the parallel units responsible for 

communicating with that channel should pick a leader because 

multiple units reading from the same channel can lead to data 

duplication and out of order processing, which is not desirable 

for most applications. Also the distributed processing units 

should be able to detect when the drivers come online and go 

offline. To adapt to such a distributed dynamic processing 

environment we need discovery and coordination. Apache 

ZooKeeper[17] can achieve both. When drivers come online, 

the information about them is saved in the ZooKeeper. The 

discovery component discovers and connects this information 

to the cloud processors dynamically at runtime. This allows 

the processing layers to automatically distribute the load and 

adjust accordingly to the changes in the data producer side.  

 

When a topology deploys its external communication 

components (spout and bolts), it does not know about the 

physical addresses of the topics or how many topics it has to 

listen to. So at the very beginning, the topology does not have 

any active message listeners or senders. The topology has 

information about the ZooKeeper and the drivers that it is 

interested in. It uses this information to dynamically discover 

the topics that it has to listen to and add those consumers and 

producers to the topology at runtime. 

 

3.6 Processing Parallelism: The processing parallelism at the 

endpoints of the topology is bound to the message brokers and 

how we can distribute the topics across the brokers. For 

processing bolts at the middle, maximum parallelism is not 

bounded and depends on the application. A Storm topology 

gets its messages through the spouts. The same spout can run 

multiple instances in parallel to read the messages coming 

from multiple devices connected to the system. A spout 

always reads the messages from a single channel of a device. 

If a processing algorithm requires input from multiple 

channels, the topology must have multiple spouts. A running 

instance of a spout can connect to multiple topics to read the 

messages, but all these topics must be connected to a channel 

with the same name and driver. When a spout needs to read 

from multiple topics, the topology distributes the topics 

equally among the running instances of the spout dynamically 

at runtime. The message flow through the Storm topology 

happens primarily using the driver ids. The bolts that are 

communicating with the brokers know about all the topics in 

the system and they can send a message to an appropriate 

topic using the driver id. 

 

RabbitMQ: There is a limit to the number of parallel spouts 

that we can run due to the number of topics created per 

channel. The following gives an upper bound on how many 

spouts we can run when RabbitMQ brokers are used.   

 

Shared Channels: 𝑁𝑜 𝑜𝑓 parallel 𝑠𝑝𝑜𝑢𝑡𝑠 ≤ 𝑁𝑜 𝑜𝑓 𝑔𝑎𝑡𝑒𝑤𝑎𝑦𝑠   

Exclusive Channels: 𝑁𝑜 𝑜𝑓 parallel 𝑠𝑝𝑜𝑢𝑡𝑠 ≤ 𝑁𝑜 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 
 

 
Figure 4 RabbitMQ Exclusive Channels & Storm 

In general we cannot do parallel reads from a topic due to the 

ordering constrains. Figure 4 shows how exclusive channels 

created by a driver named sensor_01 are connected to the 

storm topology. Here, the storm topology runs only one 

instance for each spout reading from channel_01 and 

channel_02. Because we have 8 channels in 4 instances of the 

drivers, we need 8 topics in the broker. Since we only have 2 

spouts and 2 bolts in the topology, each spout is connected to 

2 topics and each bolt is communicating with 2 topics. Figure 

5 shows the same scenario with shared channels. In this case 

we only have 4 topics because the two drivers deployed in the 

same gateway are using the same topics. 

 

 
Figure 5 RabbitMQ Shared Channels & Storm 



 
Figure 6 Kafka Shared Channels & Storm 

Kafka: Kafka topics are more heavyweight than RabbitMQ. 

For every topic in the system, Kafka has to create log files and 

index files in the file system for its partitions. If the replication 

is enabled for fault tolerance, these files have to be replicated 

in the Kafka cluster. Kafka also supports parallel reads for a 

single topic. Because of these reasons we only support shared 

channels for Kafka, where the number of spouts possible 

depends on the number of partitions for a topic. 

 
𝑁𝑜 𝑜𝑓 𝑝𝑎𝑟𝑒𝑙𝑙𝑒𝑙 𝑠𝑝𝑜𝑢𝑡𝑠 ≤ 𝑁𝑜 𝑜𝑓 𝑔𝑎𝑡𝑒𝑤𝑎𝑦𝑠 ×  𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑇𝑜𝑝𝑖𝑐 

 

Figure 6 shows topics distribution with Kafka for the same 

scenario as in Figure 4. In Figure 6 each Kafka topic has 2 

partitions and we have 4 topics because the channels are 

shared. Read and write parallelism in this case is equal to the 

exclusive channel scenario with RabbitMQ (Figure 5) since 

each topic has two partitions. But in practical scenarios we 

will have fewer partitions than devices connected per gateway. 

This will make the parallelism greater than the shared 

channels with RabbitMQ but less than the exclusive channels. 

4. TurtleBot Follower Application  

 

In order to explore possible configurations for the IoTCloud 

framework, we used Microsoft Kinect[23] and TurtleBot[24]. 

Microsoft Kinect consists of an IR camera, an RGB camera, 

an IR emitter, and several auxiliary features. Our project was 

not concerned with the details of the hardware but complete 

discussions of the Kinect specifications and method of depth 

calculation are available. Currently, there are numerous open-

source projects and academic studies utilizing Kinect due to 

the sensor’s affordability and host of applications. In addition, 

a well-documented robot incorporating Kinect is already 

available: the TurtleBot by Willow Garage. For these reasons 

they were chosen as a subject for the development of a sensor 

to cloud processing framework. 

 

In our application the TurtleBot follows a large target in front 

of it by trying to maintain a constant distance to the target. 

Compressed depth images of the Kinect camera are sent to the 

cloud and the processing topology calculates command 

messages, in the form of velocity vectors, in order to maintain 

a set distance from the large object in front of TurtleBot. 

These command messages are sent back to the Turtlebot using 

its ROS[25] API. Turtlebot then actuates these vectors to 

move.  

 

4.1 Reading Depth Frames from Kinect: The initial step in 

developing our application utilizing the Kinect depth camera 

was finding a driver to read in the Kinect data stream. The 

TurtleBot is operated with ROS, the open-source robotics 

operating system, which has an available Kinect driver. The 

ROS Kinect driver is built on OpenKinect’s libfreenect[26] 

driver, so in order to avoid any unnecessary overhead, 

libfreenect was used. Libfreenect is an open-source Kinect 

driver that provides a Java interface to both the IR and RGB 

cameras. Methods are provided to start a depth stream and 

handle frames. libfreenect was originally implemented in C++, 

although a Java JNA wrapper is now available. 

 

 

4.2 Compression: During the course of the project several 

compression schemes were tested. In the early stages this 

included the LZ4, Snappy[27] and JZlib Java compression 

libraries. Snappy achieved less compression but was faster 

than the other two. Ultimately, we chose a two-stage 

compression process using the Mehrotra et al. [28] inversion 

technique as the first stage and Snappy as the second. The 

Mehrotra et al.[28] inversion technique takes advantage of the 

error endemic to the depth camera. The depth camera’s 

accuracy decreases proportional to the inverse of the squared 

depth.  Hence, multiple values may be encoded to the same 

number without any loss in fidelity[28]. By using this 

inversion technique, every two-byte disparity can be 

compressed to one byte. It is worth noting, however, that the 

inversion algorithm takes distance as an input, not disparity. 

Mehrotra et al. achieved a startling 5ms compression time for 

their whole 3-step process with little optimization. For the 

sake of expediency, our project used an existing Java 

Figure 7 TurtleBot 



compression library (Snappy) rather than the Mehrotra et al. 

RLE/Golomb-Rice compression.  

  

The last major decision left was whether to implement the 

prediction strategy mentioned in Mehrotra et al. This strategy 

takes advantage of the heterogeneous nature of the depth of 

objects. This translates into long runs of values in the depth 

data. The prediction strategy is simple and converts any run 

into a run of 0’s. For an RLE this will have a clear advantage, 

but when tested with Snappy the gain was negligible and thus 

not worth the added computation. Ultimately, we were able to 

achieve a compression ratio of 10:1 in a time of 10ms. This 

compares favorably to the 7:1 ratio in 5ms reached by 

Mehrotra et al. The data compression happens in the Laptop 

computer inside the Turtlebot. After compression, the data is 

sent to a driver application that runs in an IoTCloud gateway. 

This Gateway relays the information to the cloud.   

 

4.3 Calculation of Velocity: The Storm topology for this 

application consists of 3 processing units arranged one after 

other. First spout receives the compressed Kinect frames, next 

bolt un-compresses this data and calculates the velocity vector 

required by the TurtleBot to move. The algorithm running in 

this bolt calculates a point cloud of the TurtleBot’s field of 

view using an approximation technique mentioned in [29]. 

Then it uses the point cloud to calculate an average point, the 

centroid, of a hypothetical box in front of the TurtleBot. Shifts 

in the centroid are calculated and command messages, in the 

form of vectors, are generated. Last bolt sends these vectors to 

the TurtleBot.   

 

All the literature indicates that the Kinect should stream each 

depth frame as 307,200 11-bit disparity values, 2047 being 

sent to indicate an unreadable point. But upon inspection of 

received disparity values, the highest value observed was 

1024. When this value was treated as the unreadable flag, the 

depth map displayed appeared normal. Depth shadows were 

rendered correctly along with the minimum and maximum 

readable distances. The code was then adjusted to expect only 

10-bit disparity values, after which everything functioned 

normally. The full range of the Kinect, 80 cm – 400 cm, can 

be encoded with only 10-bit values. It is unclear whether the 

10-bit values are a result of the Java libfreenect wrapper or 

faulty code, but our programs are fully functional and the 

issue was left unresolved. An explanation of this phenomenon 

would no doubt prove beneficial and may be a point of latter 

investigation. 

 

4.4 Controlling the TurtleBot: The driver running in the 

Gateway receives the velocity vectors from the application in 

the cloud. It then converts these vectors to a format that the 

ROS API of the TurtleBot accepts. Ultimately the ROS API is 

used by the driver to control the TurtleBot. We use a Java 

version of ROS available for interfacing with ROS, which is 

primarily written in Python. 

 

5. Results & Discussion 

 

We mainly focused on the latency and the scalability of the 

system. A series of experiments were conducted to measure 

latency and how well the system performs under deployment 

of multiple sensors. We used FutureGrid as our cloud platform 

and deployed the setup on FutureGrid OpenStack medium 

flavors. An instance of medium flavor has 2 VCPUs, 4GB of 

memory and 40GB of hard disk. We ran Storm Nimbus & 

ZooKeeper on 1 node, Gateway Servers on 2 nodes, Storm 

Supervisors on 3 nodes and Brokers on 2 nodes. Altogether 

our setup contained 8 Virtual Machines with moderate 

configurations. 

 

To test the latency of the system we deployed 4 driver 

applications on the two gateways that produce data at a 

constant rate. This data was relayed through the two brokers 

and injected into a Storm topology, which passed the data 

back to the gateways. The topology was running 4 spout 

instances in parallel to get the data and 4 bolts in parallel to 

send the data out. The round-trip latency was measured at the 

gateways for each message. This setup was repeated for 

different message sizes and message rates. We went up to 100 

messages per second and increased the messages size up to 

1MB. Each driver sent 200 messages and we recorded the 

average across all the drivers. We tested the system with 

RabbitMQ and Kafka brokers. For measuring the scalability 

we progressively increased the number of drivers deployed in 

the gateways and observed how many devices can be handled 

by the system. 

 

The TurtleBot application is an application deployed on 

FutureGrid.  We observed that TurtleBot was able to follow a 

human in front of it when this application was deployed. We 

tested the TurtleBot application through the Indiana 

University computer network and measured the latency 

observed. 

 

 
Figure 8 Average Latency for different message sizes with RabbitMQ. The 

different lines are for different message sizes in bytes. 

5.1 Latency: Figure 8 shows the latency observed when 

running the tests through a RabbitMQ server. Up to 200KB 

messages, the latency was at a considerably lower value for all 



the message rates we tested. At 300KB messages the latency 

started to grow rapidly after a message rate of 50 was reached.  

Figure 9 shows the average latency observed with the Kafka 

broker. We noticed some drastically high latency values, and 

when the size of the messages increases beyond 40K these 

variations became frequent. The frequency of these values 

increased the average latency considerably. The increase in 

latency can be attributed to the fact that Kafka brokers are 

designed to be run in machines with high disk I/O rates and 

our tests were done on computation nodes that do not have 

very good I/O performance. There are other performance 

results of Kafka that were done on high disk I/O nodes that 

show some large variations in latency as well[30]. Despite 

variations in latency, on average the system was running with 

a considerably low latency using Kafka. In our setup Kafka 

broker latency began to increase much more quickly than the 

RabbitMQ brokers. We have reported these issues to the 

Kafka development community. Kafka is a relatively new 

project under development and we believe its development 

community is working on fixing these issues in future 

versions. 

 

 
Figure 9 Average Latency for different message sizes with Kafka. The 

different lines are for different message sizes in bytes. 

 

 
Figure 10 Latency standard deviation with different message sizes and 
message rates for RabbitMQ. The different lines are for different message 

sizes in bytes.  

5.2 Jitter: For most real time applications, uniformity of the 

latency over time is very important. Figure 10 shows the 

latency variation in observed latencies for a particular message 

size and rate with RabbitMQ broker. The variation was also 

minimal for message sizes up to 200KB. After that there was a 

large variation in the latency. The Kafka latency variation is 

very high compared to RabbitMQ broker and we are not 

including those results here. 

 

5.3 Scalability: In the test we did for observing the scalability 

of the system we deployed 1000 mock drivers in two gateways 

and measured the latency. These drivers can generate 100-byte 

messages at a rate of 5 messages per second. We used low 

values for both message rate and size so that we could make 

sure the system didn’t slow down due to the large amount of 

data produced. Figure 11 shows the latency with RabbitMQ. 

Latency observed was marginally higher than the previous test 

we did with 4 drivers, but it was consistent up to 1000 drivers 

and stayed within reasonable range. The increase in latency 

can be attributed to increased use of resources. At 1000 

sensors the latency started to increase. Because this test was 

done in shared channel mode, only 2 spouts were actively 

reading from the 2 queues created.  

 

 
Figure 11 Latency with varying number of devices – RabbitMQ. The average 

latency and standard deviation is shown.  

 
Figure 12 Latency with varying number of devices – Kafka. The average 

latency and standard deviation is shown. Also averages calculated with 

ommitting values over 200 are shown. 

We performed the same test with the Kafka broker. Because 

we partitioned each topic into 4, all 4 spouts were actively 

reading from the topics. This is the advantage of having a 



Kafka-like distributed broker. The latency observed is shown 

in Figure 12. As expected, there were large variations 

observed. We tried to remove these big numbers and draw the 

graph to see how they affect the average latency. Figure 12 

shows graphs with values > 200 removed. We can observe 

that the average latency is at a considerable low range after 

these very high values are removed.  

 

All the tests were done for the best case scenario in terms of 

latency of Storm-based analysis. A real application would 

involve much more complex processing and a complicated 

DAG structure for data processing. Those processing latencies 

will add to the overall latency in real applications. Also in our 

tests we sent and received the same message through the 

cloud. In real applications, messages generated after the 

processing are usually minimal compared to the data 

messages, so we expect a reduction in latency as well.   

 

5.3 TurtleBot: Because of the latency requirements, we used 

the RabbitMQ broker for the TurtleBot application. The 

TurtleBot was functioning properly under the latencies we 

have observed. Figure 13 shows the latency values we 

observed for 1500 Kinect frames. The average latency 

fluctuated between 35ms and 25ms. The TurtleBot was 

sending messages of size 60KB in a 20 message/sec rate. The 

best case latency without any processing for such messages is 

around 10ms. The network latency and the processing adds 

another 25ms to the latency. The processing includes both 

compression and decompression time of Kinect frames. There 

were some outliers that went to values such as 50ms. These 

were not frequent but can be seen occurring with some high 

probability. We could not recognize any patterns in such high 

latency observations; some explanations for these increases 

might be network congestion, Java garbage collection and 

other users employing the same network and resources in 

FutureGrid. We observed, average latency of 33.26 

milliseconds and standard deviation of 2.91. 

 
Figure 13 Latency observed in Turtlebot application 

6. Conclusions 

 

In this paper we introduced a scalable, distributed architecture 

for connecting devices to cloud services and processing data 

in real time. Further we discussed a robotics application built 

on top of this framework. We investigated how to scale the 

system with topic-based publish-subscribe messaging brokers 

and a distributed stream processing engine in the cloud. We 

measured the performance characteristics of the system and 

showed that we can achieve low latencies with moderate 

hardware in the cloud. Also the results indicate we can scale 

the architecture to hundreds of connected devices. Because of 

the low latencies, RabbitMQ broker is suitable for applications 

with real time requirements. Applications involving massive 

amounts of devices without strict latency requirements can 

benefit from the scalability of Kafka brokers. The results also 

indicate that reasonably uniform behavior in message 

processing latencies can be maintained, which is an important 

factor for modeling most problems.  

7. Future Work 

 
As our platform evolves, we would like to extend our system to 
Cloud DIKW applications, which involve both real time 
analysis and batch analysis. A primary concern for real time 
applications is the recovery from faults. A robot guided by a 
cloud application should work amidst application level failures 
and middleware level failures. We would like to explore 
different fault tolerance techniques for making our platform 
more robust. The discovery of devices is coarse-grained at the 
moment and we hope to enable finer-grained discovery of 
devices at the cloud processing layer. For example, selecting 
devices that meet specific criteria like geographical locations 
for processing is important for some applications. We observed 
that there are variations in the latency observed in our 
applications. In some applications it is required to contain the 
processing latency with hard limits. It will be interesting to 
look at methods for enabling such guarantees for our 
applications. Simultaneously we are working to build new 
robotics applications based on our platform.  
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