
A Framework for Real-Time Processing of Sensor Data in the Cloud
Supun Kamburugamuve

skamburu@indiana.edu

Leif Christiansen

grindvald@gmail.com

Geoffrey Fox

gcf@indiana.edu

School of Informatics and Computing and Community Grids Laboratory

Indiana University, Bloomington IN 47408 USA

Abstract: In this paper we describe IoTCloud, a platform to connect smart devices to cloud services for real time data processing

and control. A device connected to IoTCloud can communicate with real time data analysis frameworks deployed in the cloud via

messaging. The platform design is scalable in connecting devices as well as transferring and processing data. With IoTCloud a

user can develop real time data processing algorithms in an abstract framework without concern for the underlying details of how

the data is distributed and transferred. For this platform we primarily consider real time robotics applications such as autonomous

robot navigation, where there are strict requirements on processing latency and demand for scalable processing. To demonstrate

the effectiveness of the system, a robotic application is developed on top of the framework. The system and the robotics

application characteristics are measured to show that data processing in central servers is feasible for real time sensor

applications.

1. Introduction

The availability of internet connections and low manufacturing
costs have led to a boom in smart objects, devices with a
tripartite construction consisting of a CPU, memory storage,
and a wireless connection. These smart objects (or devices) are
equipped with sensors that produce data and actuators capable
of receiving commands. Such devices have proliferated in all
fields and their use is expected to grow exponentially in the
future. For these devices, central data processing has been
shown to be advantageous due to numerous factors, including
the ability to easily draw from vast stores of information,
efficient allocation of computing resources, and a proclivity for
parallelization. Because of these factors, many devices may
benefit from processing only some data locally and offloading
the remainder to central servers. Among the aforementioned
devices, and increasingly present in modern life, are robots.
Such examples as the iRobot Roomba, a robot that can clean
the floor, present affordable, automated aids for daily living.
Additionally, Amazon and Google are researching and
developing platforms for delivering consumer products using
drones. Most of these robots have limited onboard processing
power but still generate large amounts of data. Cloud-based
analysis of data from such robots creates many challenges due
to strict latency requirements and high volumes of data
production.

To process data derived from numerous smart devices, we need
scalable data processing platforms. Cloud is an ideal
computational platform for hosting data processing
applications for smart devices because of its efficiency and
agility. Cloud computing[1] refers to both applications
delivered as services over the Internet and the hardware and
system software in the datacenters that provide those services.
Cloud computing enables computing as a utility and is
gradually becoming the standard for computation, allowing the
systems and users to use Platform as a Service (PaaS),
Infrastructure as a Service (IaaS), and Software as a Service
(SaaS). The computational nodes are provisioned, configured

and reconfigured dynamically in the cloud, and can take the
form of virtual machines or physical machines. Furthermore,
sensor-based applications can benefit from in-house private
cloud environments hosted within organizations or from public
clouds hosted by large companies.

In order to process data generated by smart devices in a cloud
environment, the data must be transmitted from the devices to
the cloud in an efficient and scalable manner. The
communication between cloud applications and the devices is
essentially based on events, which suggests that the traditional
request/response approach is not appropriate. For example,
when using requests and responses, a device requiring real time
control has to poll the applications continuously, which
increases the latency and network traffic. Transmission of
events is well supported by publish-subscribe messaging[2]
where a publisher makes information available to subscribers
in an asynchronous fashion. Over time publish-subscribe
messaging has emerged as a distributed integration paradigm
for deployment of scalable and loosely coupled systems.
Subscribers have the ability to express their interest in an event
or pattern of events and are subsequently notified of any event
generated by a publisher which matches their registered
interest. An event is asynchronously propagated to all
subscribers that registered interest. Publish-subscribe
messaging decouples the message producers and consumers in
the dimensions of time, space and synchronization. The
decoupling favors the scalability of the message producing and
consuming systems. Because of these features, publish-
subscribe messaging is potentially a good fit for connecting
smart devices to cloud applications.

Two widely used schemes of pub-sub systems are topic-based
and content-based. In topic-based systems the messages are
published to topics which are identified by keywords. The
consumers subscribe to and receive messages coming to these
topics. In content-based systems the consumers subscribe to
messages based on the properties of the messages. This means
the content of each message has to be examined at the
middleware to select a consumer among possibly a large set of

consumers. Because of the simple design of most topic-based
middleware, they tend to scale well compared to content-based
brokers and introduce less overhead.

We can assume that for all our devices, data is sent to a cloud
as a stream of events. It is important to process the data as a
stream before storing it to achieve real time processing
guarantees. Parallel processing of events coming from a single
source can help to reduce the latency in most applications. The
ability to connect large numbers of devices creates a need for a
scalable infrastructure to process the data. Distributed event
processing engines (DSPEs)[3-6] are a good fit for such
requirements. A DSPE abstracts out the event delivery,
propagation and processing semantics and greatly simplifies
the real time algorithm development. They also act as a
messaging fabric that distributes data for batch processing and
archival purposes to other data sinks like databases and file
systems after some pre-processing of the data.

We envision a cloud-based data-intensive computing
architecture where stream-based real time analysis and batch
analysis are combined together to form a rich infrastructure for
sensor applications. We propose Cloud DIKW (Data,
Information, Knowledge and Wisdom)-based architecture for
sensor data analysis in the cloud. The high level DIKW view of
the system is shown in Figure 1. With DIKW architecture the
data enters the processing pipeline through the DSPE layer.
Both stream analysis and batch analysis are combined to
continuously evolve the data models to transition from raw
data to decisions. The storage layer acts as the glue between the
batch analysis and the stream analysis.

Figure 1 DIKW View of the System

By combining the above requirements, we have developed our
IoTCloud platform, which is a distributed software platform
capable of connecting devices to the cloud services. IoTCloud
uses topics-based publish-subscribe messaging to transfer data
between the devices and the cloud services and a DSPE to
process the data in the cloud. The platform supports two
publish-subscribe brokers with different semantics that are
suitable for different applications. We have developed a robotic
application that runs through a private in-house cloud to
demonstrate how to use the system and measured the
characteristics of the system. Doing so demonstrates that we
can achieve real time processing of sensor data in a cloud
environment in a scalable manner. The main contribution of
our work is to explore scalable cloud-based real time data
processing for sensor applications.

Section 2 of the paper describes the related work in this area.
Section 3 explains the architecture of the framework and
section 4 highlights the robotics application we have
developed. In section 5, we present a series of experiments
done to evaluate the system and discuss the resulting
observations. Finally, in section 6 and 7 we end with
conclusions and future work.

2. Related Work

Hassan[7] is a content-based publish/subscribe framework for
connecting sensor data to cloud services. Content-based pub-
sub allows greater flexibility for the application designers than
topic-based systems. But content-based setups usually involve
higher overhead because the brokers have to inspect message
content. Furthermore, content-based pub-sub brokers are
neither popular nor widely available as products.

Mires[8], TinySIP[9], and DV/DRP[10] are all
publish/subscribe messaging middleware for Wireless Sensor
Networks(WSN). They address the different issues in
connecting WSNs and communicating with sensors. MQTT-
S[11] is an open topic-based pub-sub protocol defined for
transferring data from sensors. The protocol enables data
transfer between sensors and traditional networks. In our work
we assume that sensor data is available to be transported to
cloud services and we handle the transfer of gathered data from
devices to cloud services. For example, a device connected to
our system can send data via a dedicated communication
channel, public Internet, etc. Also many devices can be
connected in WSNs using the above-mentioned protocols or
messaging systems after which our platform can transfer this
data to cloud services for processing.

Reference architectures for integrating sensors and cloud
services have being discussed in the literature [12, 13]. Both
works explore the general architecture that can be used to
connect sensors to cloud services and the potential issues. In
our work we provide a framework that can be used to send
sensor data from devices to the cloud as well as show how to
process the data within a generic framework. We also discuss
how to transfer data and process it in a scalable way, topics that
are not fully addressed in the above papers. A detailed survey
of some of the existing work done on cloud robotics has been
summarized in [14]. Our framework can be used as a generic
platform for developing cloud robotics applications such as
collective robot learning, robot swarms, and robot perception
based on image processing.

3. IoTCloud Architecture

A system view of the architecture is shown in Figure 2. Our

architecture consists of three main layers.

1. Gateway Layer

2. Publish-Subscribe messaging layer

3. Cloud-based big data processing layer
We consider a device as a set of sensors and actuators. Users
develop a driver that can communicate with the device and
deploy it in a gateway. This driver doesn’t always have to
directly connect to the device. For example, it can connect via
a TCP connection or through a message broker. The data
generated by the driver application is sent to the cloud-

processing layer using publish-subscribe messaging brokers.
The cloud processing layer processes the data and sends
control messages via the message brokers back to the driver,
which converts the information to a format that suits the device
and communicates this back to it. The platform is implemented
in the Java programming language.

3.1 Gateway: Drivers are deployed in gateways responsible

for managing drivers. There can be multiple gateways in the

system and each has a unique id. A gateway master controls

the gateways by issuing commands that include deploy/un-

deploy, start/stop drivers, etc. A gateway is connected to

multiple message brokers which can be in a cluster

configuration. By default the platform supports

RabbitMQ[15], ActiveMQ and Kafka[16] message brokers.

Gateways manage the connections to the brokers and handle

the load balancing of the device data to the brokers. They

update the master about the drivers deployed in it and the

status of the gateways. The master then stores the state

information in a ZooKeeper[17] cluster.

Figure 2 IOTCloud Architecture

3.2 Driver: The driver is the data bridge between a device and

the cloud applications. It serves to convert data coming from

the device into a format that the cloud applications expect and

vice versa. A driver has a name and a set of communication

channels. When a driver is deployed, the running instance gets

an instance id. This is used for controlling the driver after the

deployment. The same driver can be deployed multiple times

and each of the instances receives a unique id. One driver can

have multiple communication channels each with a unique

name. A communication channel connects the driver to

publish-subscribe messaging brokers. When a driver is

deployed, its information is saved in ZooKeeper. The default

structure of driver information in ZooKeeper is:
/iot/sensors/[driver_name]/[driver_instance_id]/[cha

nnel_name]

A ZooKeeper node (ZNode) with the driver instance id
contains information about the driver such as its status and
metadata. ZNodes with a channel name contain information
about the channels. The framework allows shared and
exclusive channels to be created. An exclusive channel can
give faster communication between the drivers and the cloud
processing. But in large-scale deployment of drivers, an
exclusive channel can result in a large number of resources in
the brokers. Some applications don’t have strict latency
requirements and can use shared channels, thus consuming less
system resources.

3.3 Brokers: The platform specifically focuses on topic-based

publish-subscribe brokers rather than content-based models.

We chose topic-based brokers for several reasons: (1) Stable,

open source topic-based brokers are easily available (2) Topic-

based brokers are simple to use and configure (3) The

overhead introduced by the broker is minimal compared to

content-based versions. For this project the most important

factors are 1 and 3, because our applications require low

latency and topic-based brokers are the ones readily available

for use. The messaging layer needs to preserve the message

ordering, preventing multiple consumers from consuming

messages off the same driver.

There are many open source brokers available that fulfill our
needs for the messaging infrastructure. Such brokers include
ActiveMQ[18], RabbitMQ[15], Kafka[16, 19] Kestrel, and
HonertMQ. From these, ActiveMQ, RabbitMQ and Kafka are
widely used topic-based publish subscribe brokers. The
preliminary studies show that ActiveMQ and RabbitMQ have
identical functionalities for our purposes but the latter is
capable of handling more load with less overhead. The Kafka
broker has very good clustering capabilities and can handle
parallel consumer reads for the same topic. For these reasons
we decided to support both RabbitMQ and Kafka in our
platform.

Each communication channel created in a driver is connected
with a topic created in the message broker. The framework
supports two mappings of channels to topics, thus creating two
types of channels. In the first type, each channel is mapped to a
unique queue in the broker. We call this type exclusive
channels. In the other type, a set of channels share the same
topic in the broker and is called a shared channel. At the
moment we use a very simple rule to map the channels to a
shared queue. We map the same channel from multiple
instances of a driver deployed in one gateway to a single topic.

For shared channels: 𝑁𝑜 𝑜𝑓 𝑡𝑜𝑝𝑖𝑐𝑠 = 𝑁𝑜 𝑜𝑓 𝐺𝑎𝑡𝑒𝑤𝑎𝑦𝑠

Exclusive channels: 𝑁𝑜 𝑜𝑓 𝑡𝑜𝑝𝑖𝑐𝑠 = 𝑁𝑜 𝑜𝑓 𝐷𝑟𝑖𝑣𝑒𝑟 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

For a shared channel, the corresponding topic name is of the
format “gateway_id.driver_name.queue_name”. For an
exclusive channel, it is
“gateway_id.driver_name.driver_id.queue_name”.

RabbitMQ: RabbitMQ is a message broker primarily

supporting Advanced Message Queuing Protocol

(AMQP)[20]. Even though the core of RabbitMQ is designed

to support AMQP protocol, the broker has been extended to

support other message protocols like STOMP, MQTT, etc.

RabbitMQ is written in the Erlang programing language and

supports low latency high throughput messaging. It has a rich

API and architecture for developing consumers and

publishers, plus topics are easy to create and manage using its

APIs. These topics are lightweight and can be created without

much burden to the broker. We allow both shared channels

and exclusive channels to be created for RabbitMQ. The

metadata of a message is sent using RabbitMQ message

headers, and includes sensor id, gateway id and custom

properties.

Kafka: Kafka is a publish-subscribe message broker backed by

a commit log. The messages sent by the producers are

appended to a commit log and the consumers read the

messages from this. Kafka implements its own message

protocol and does not support standard protocols like AMQP

or MQTT. At the core of Kafka messaging is the concept of a

topic. A topic is divided into multiple partitions and a message

is sent to a single partition. In our platform, the partition for a

message is chosen using a key accompanying a message. Thus

messages with the same key go to the same partition.

Consumers consume messages from partitions. Partitions of a

single topic can spread across a cluster of Kafka servers.

Furthermore, a single partition is replicated in a Kafka cluster

for reliability. Kafka guarantees ordering of messages in a

partition and doesn’t guarantee ordering across partitions.

Because a topic consists of multiple partitions, consumers can

read from the same topic in parallel without affecting the

message ordering for a single message key. In IoTCloud

platform we use the driver id as the key for a message.

IoTCloud needs to send metadata with a message, such as the

driver id, site id and custom properties. Because Kafka only

supports byte messages without any headers, we use a

Thrift[21]-based message format to send metadata about the

message. Use of driver id as the key ensures that the messages

belonging to a single driver instance will always be in one

partition. We use at most one consumer per partition to ensure

the message ordering for a driver. Because Kafka topics can

be partitioned, we will have parallel read-and write

capabilities for shared channels. Because of this, the platform

only supports shared channels for Kafka.

3.4 Cloud Processing: As the primary cloud-processing

framework we use Apache Storm[6], which is an open source

DSPE. There are many DSPEs available but we chose Storm

because of its scalability, performance, excellent development

community support and its ability to use scripting languages to

write applications. Storm can be used to process the data and

send responses back immediately, or it can do some pre-

processing of the data and store it for later processing by batch

engines such as Apache Hadoop. The applications we have

developed don’t use batch processing at the moment, so we

haven’t incorporated such engines into the platform yet. But

our architecture permits integration of engines like Hadoop.

We use FutureGrid[22] as our cloud platform for deploying

the Storm Cluster since it has an OpenStack installation and

we can provision VM images using the OpenStack tools.

Apache Storm: Storm is a distributed stream processing engine

designed to process large amounts of streaming data in a

scalable and efficient way. Data processing applications are

written as Storm topologies. A topology defines a DAG

structure for processing the streaming data coming from the

devices as an unbounded stream of tuples. The DAG consists

of a set of Spouts and Bolts written to process the data. The

tuples of the stream flow through the nodes (spouts and bolts)

of the DAG. Spouts and bolts are primarily written in Java but

other programming languages like Python and Ruby are

permitted. Data enters a topology through Spouts and the

processing happens in Bolts. The components in the DAG are

connected to each other using stream (tuple) groupings. Pub-

sub is a common pattern for ingesting data into a Storm

topology. A bolt can consume the connected input streams, do

some processing on the tuples, and generate and emit new

tuples to the output streams. Usually the last bolts in the

topology DAG write the results to a DB or send the results to

remote nodes using pub-sub messaging. The spouts and bolts

of a topology can be run in parallel in different computation

nodes.

To ease the development of Storm topologies in our platform

we allow the external communication points of a Storm

Topology to be defined in a configuration file. Figure 3 is one

such example. The topology has two external communication

channels. A “kinect_receive” spout gets the input data from

devices and a “count_send” bolt sends output information

back to the devices. We can use the above configuration to

build the outer layer of a topology automatically. The

algorithm has to be written by the application developer.

Figure 3 Topology Endpoint Configuration

We can run many instances of any of the components in a

Storm Topology in parallel. For example to read data in

parallel from many devices, we can spawn several instances of

the kinect_receive spout in different nodes. This can be done

for any bolt in the topology as well. The parallelism can be

changed at runtime as well. This allows the system to scale

with the addition of drivers.

zk.servers: ["server1:2181"]
zk.root: "/iot/sensors"
topology.name: "wordcount"
spouts:
 kinect_receive:
 broker: "rabbitmq"
 driver: "turtle"
 channel: "kinect"
 fields: ["frame", "driverID", "time"]
bolts:
 count_send:
 broker: "rabbitmq"
 driver: "turtle"
 channel: "control"
 fields: ["control", "driverID", "time"]

http://topology.name/

3.5 Discovery: Because Storm is a distributed processing

framework, it requires coordination among the processing

units. For example when a communication channel is created

in the broker for a device, the parallel units responsible for

communicating with that channel should pick a leader because

multiple units reading from the same channel can lead to data

duplication and out of order processing, which is not desirable

for most applications. Also the distributed processing units

should be able to detect when the drivers come online and go

offline. To adapt to such a distributed dynamic processing

environment we need discovery and coordination. Apache

ZooKeeper[17] can achieve both. When drivers come online,

the information about them is saved in the ZooKeeper. The

discovery component discovers and connects this information

to the cloud processors dynamically at runtime. This allows

the processing layers to automatically distribute the load and

adjust accordingly to the changes in the data producer side.

When a topology deploys its external communication

components (spout and bolts), it does not know about the

physical addresses of the topics or how many topics it has to

listen to. So at the very beginning, the topology does not have

any active message listeners or senders. The topology has

information about the ZooKeeper and the drivers that it is

interested in. It uses this information to dynamically discover

the topics that it has to listen to and add those consumers and

producers to the topology at runtime.

3.6 Processing Parallelism: The processing parallelism at the

endpoints of the topology is bound to the message brokers and

how we can distribute the topics across the brokers. For

processing bolts at the middle, maximum parallelism is not

bounded and depends on the application. A Storm topology

gets its messages through the spouts. The same spout can run

multiple instances in parallel to read the messages coming

from multiple devices connected to the system. A spout

always reads the messages from a single channel of a device.

If a processing algorithm requires input from multiple

channels, the topology must have multiple spouts. A running

instance of a spout can connect to multiple topics to read the

messages, but all these topics must be connected to a channel

with the same name and driver. When a spout needs to read

from multiple topics, the topology distributes the topics

equally among the running instances of the spout dynamically

at runtime. The message flow through the Storm topology

happens primarily using the driver ids. The bolts that are

communicating with the brokers know about all the topics in

the system and they can send a message to an appropriate

topic using the driver id.

RabbitMQ: There is a limit to the number of parallel spouts

that we can run due to the number of topics created per

channel. The following gives an upper bound on how many

spouts we can run when RabbitMQ brokers are used.

Shared Channels: 𝑁𝑜 𝑜𝑓 parallel 𝑠𝑝𝑜𝑢𝑡𝑠 ≤ 𝑁𝑜 𝑜𝑓 𝑔𝑎𝑡𝑒𝑤𝑎𝑦𝑠

Exclusive Channels: 𝑁𝑜 𝑜𝑓 parallel 𝑠𝑝𝑜𝑢𝑡𝑠 ≤ 𝑁𝑜 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

Figure 4 RabbitMQ Exclusive Channels & Storm

In general we cannot do parallel reads from a topic due to the

ordering constrains. Figure 4 shows how exclusive channels

created by a driver named sensor_01 are connected to the

storm topology. Here, the storm topology runs only one

instance for each spout reading from channel_01 and

channel_02. Because we have 8 channels in 4 instances of the

drivers, we need 8 topics in the broker. Since we only have 2

spouts and 2 bolts in the topology, each spout is connected to

2 topics and each bolt is communicating with 2 topics. Figure

5 shows the same scenario with shared channels. In this case

we only have 4 topics because the two drivers deployed in the

same gateway are using the same topics.

Figure 5 RabbitMQ Shared Channels & Storm

Figure 6 Kafka Shared Channels & Storm

Kafka: Kafka topics are more heavyweight than RabbitMQ.

For every topic in the system, Kafka has to create log files and

index files in the file system for its partitions. If the replication

is enabled for fault tolerance, these files have to be replicated

in the Kafka cluster. Kafka also supports parallel reads for a

single topic. Because of these reasons we only support shared

channels for Kafka, where the number of spouts possible

depends on the number of partitions for a topic.

𝑁𝑜 𝑜𝑓 𝑝𝑎𝑟𝑒𝑙𝑙𝑒𝑙 𝑠𝑝𝑜𝑢𝑡𝑠 ≤ 𝑁𝑜 𝑜𝑓 𝑔𝑎𝑡𝑒𝑤𝑎𝑦𝑠 × 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑇𝑜𝑝𝑖𝑐

Figure 6 shows topics distribution with Kafka for the same

scenario as in Figure 4. In Figure 6 each Kafka topic has 2

partitions and we have 4 topics because the channels are

shared. Read and write parallelism in this case is equal to the

exclusive channel scenario with RabbitMQ (Figure 5) since

each topic has two partitions. But in practical scenarios we

will have fewer partitions than devices connected per gateway.

This will make the parallelism greater than the shared

channels with RabbitMQ but less than the exclusive channels.

4. TurtleBot Follower Application

In order to explore possible configurations for the IoTCloud

framework, we used Microsoft Kinect[23] and TurtleBot[24].

Microsoft Kinect consists of an IR camera, an RGB camera,

an IR emitter, and several auxiliary features. Our project was

not concerned with the details of the hardware but complete

discussions of the Kinect specifications and method of depth

calculation are available. Currently, there are numerous open-

source projects and academic studies utilizing Kinect due to

the sensor’s affordability and host of applications. In addition,

a well-documented robot incorporating Kinect is already

available: the TurtleBot by Willow Garage. For these reasons

they were chosen as a subject for the development of a sensor

to cloud processing framework.

In our application the TurtleBot follows a large target in front

of it by trying to maintain a constant distance to the target.

Compressed depth images of the Kinect camera are sent to the

cloud and the processing topology calculates command

messages, in the form of velocity vectors, in order to maintain

a set distance from the large object in front of TurtleBot.

These command messages are sent back to the Turtlebot using

its ROS[25] API. Turtlebot then actuates these vectors to

move.

4.1 Reading Depth Frames from Kinect: The initial step in

developing our application utilizing the Kinect depth camera

was finding a driver to read in the Kinect data stream. The

TurtleBot is operated with ROS, the open-source robotics

operating system, which has an available Kinect driver. The

ROS Kinect driver is built on OpenKinect’s libfreenect[26]

driver, so in order to avoid any unnecessary overhead,

libfreenect was used. Libfreenect is an open-source Kinect

driver that provides a Java interface to both the IR and RGB

cameras. Methods are provided to start a depth stream and

handle frames. libfreenect was originally implemented in C++,

although a Java JNA wrapper is now available.

4.2 Compression: During the course of the project several

compression schemes were tested. In the early stages this

included the LZ4, Snappy[27] and JZlib Java compression

libraries. Snappy achieved less compression but was faster

than the other two. Ultimately, we chose a two-stage

compression process using the Mehrotra et al. [28] inversion

technique as the first stage and Snappy as the second. The

Mehrotra et al.[28] inversion technique takes advantage of the

error endemic to the depth camera. The depth camera’s

accuracy decreases proportional to the inverse of the squared

depth. Hence, multiple values may be encoded to the same

number without any loss in fidelity[28]. By using this

inversion technique, every two-byte disparity can be

compressed to one byte. It is worth noting, however, that the

inversion algorithm takes distance as an input, not disparity.

Mehrotra et al. achieved a startling 5ms compression time for

their whole 3-step process with little optimization. For the

sake of expediency, our project used an existing Java

Figure 7 TurtleBot

compression library (Snappy) rather than the Mehrotra et al.

RLE/Golomb-Rice compression.

The last major decision left was whether to implement the

prediction strategy mentioned in Mehrotra et al. This strategy

takes advantage of the heterogeneous nature of the depth of

objects. This translates into long runs of values in the depth

data. The prediction strategy is simple and converts any run

into a run of 0’s. For an RLE this will have a clear advantage,

but when tested with Snappy the gain was negligible and thus

not worth the added computation. Ultimately, we were able to

achieve a compression ratio of 10:1 in a time of 10ms. This

compares favorably to the 7:1 ratio in 5ms reached by

Mehrotra et al. The data compression happens in the Laptop

computer inside the Turtlebot. After compression, the data is

sent to a driver application that runs in an IoTCloud gateway.

This Gateway relays the information to the cloud.

4.3 Calculation of Velocity: The Storm topology for this

application consists of 3 processing units arranged one after

other. First spout receives the compressed Kinect frames, next

bolt un-compresses this data and calculates the velocity vector

required by the TurtleBot to move. The algorithm running in

this bolt calculates a point cloud of the TurtleBot’s field of

view using an approximation technique mentioned in [29].

Then it uses the point cloud to calculate an average point, the

centroid, of a hypothetical box in front of the TurtleBot. Shifts

in the centroid are calculated and command messages, in the

form of vectors, are generated. Last bolt sends these vectors to

the TurtleBot.

All the literature indicates that the Kinect should stream each

depth frame as 307,200 11-bit disparity values, 2047 being

sent to indicate an unreadable point. But upon inspection of

received disparity values, the highest value observed was

1024. When this value was treated as the unreadable flag, the

depth map displayed appeared normal. Depth shadows were

rendered correctly along with the minimum and maximum

readable distances. The code was then adjusted to expect only

10-bit disparity values, after which everything functioned

normally. The full range of the Kinect, 80 cm – 400 cm, can

be encoded with only 10-bit values. It is unclear whether the

10-bit values are a result of the Java libfreenect wrapper or

faulty code, but our programs are fully functional and the

issue was left unresolved. An explanation of this phenomenon

would no doubt prove beneficial and may be a point of latter

investigation.

4.4 Controlling the TurtleBot: The driver running in the

Gateway receives the velocity vectors from the application in

the cloud. It then converts these vectors to a format that the

ROS API of the TurtleBot accepts. Ultimately the ROS API is

used by the driver to control the TurtleBot. We use a Java

version of ROS available for interfacing with ROS, which is

primarily written in Python.

5. Results & Discussion

We mainly focused on the latency and the scalability of the

system. A series of experiments were conducted to measure

latency and how well the system performs under deployment

of multiple sensors. We used FutureGrid as our cloud platform

and deployed the setup on FutureGrid OpenStack medium

flavors. An instance of medium flavor has 2 VCPUs, 4GB of

memory and 40GB of hard disk. We ran Storm Nimbus &

ZooKeeper on 1 node, Gateway Servers on 2 nodes, Storm

Supervisors on 3 nodes and Brokers on 2 nodes. Altogether

our setup contained 8 Virtual Machines with moderate

configurations.

To test the latency of the system we deployed 4 driver

applications on the two gateways that produce data at a

constant rate. This data was relayed through the two brokers

and injected into a Storm topology, which passed the data

back to the gateways. The topology was running 4 spout

instances in parallel to get the data and 4 bolts in parallel to

send the data out. The round-trip latency was measured at the

gateways for each message. This setup was repeated for

different message sizes and message rates. We went up to 100

messages per second and increased the messages size up to

1MB. Each driver sent 200 messages and we recorded the

average across all the drivers. We tested the system with

RabbitMQ and Kafka brokers. For measuring the scalability

we progressively increased the number of drivers deployed in

the gateways and observed how many devices can be handled

by the system.

The TurtleBot application is an application deployed on

FutureGrid. We observed that TurtleBot was able to follow a

human in front of it when this application was deployed. We

tested the TurtleBot application through the Indiana

University computer network and measured the latency

observed.

Figure 8 Average Latency for different message sizes with RabbitMQ. The

different lines are for different message sizes in bytes.

5.1 Latency: Figure 8 shows the latency observed when

running the tests through a RabbitMQ server. Up to 200KB

messages, the latency was at a considerably lower value for all

the message rates we tested. At 300KB messages the latency

started to grow rapidly after a message rate of 50 was reached.

Figure 9 shows the average latency observed with the Kafka

broker. We noticed some drastically high latency values, and

when the size of the messages increases beyond 40K these

variations became frequent. The frequency of these values

increased the average latency considerably. The increase in

latency can be attributed to the fact that Kafka brokers are

designed to be run in machines with high disk I/O rates and

our tests were done on computation nodes that do not have

very good I/O performance. There are other performance

results of Kafka that were done on high disk I/O nodes that

show some large variations in latency as well[30]. Despite

variations in latency, on average the system was running with

a considerably low latency using Kafka. In our setup Kafka

broker latency began to increase much more quickly than the

RabbitMQ brokers. We have reported these issues to the

Kafka development community. Kafka is a relatively new

project under development and we believe its development

community is working on fixing these issues in future

versions.

Figure 9 Average Latency for different message sizes with Kafka. The

different lines are for different message sizes in bytes.

Figure 10 Latency standard deviation with different message sizes and
message rates for RabbitMQ. The different lines are for different message

sizes in bytes.

5.2 Jitter: For most real time applications, uniformity of the

latency over time is very important. Figure 10 shows the

latency variation in observed latencies for a particular message

size and rate with RabbitMQ broker. The variation was also

minimal for message sizes up to 200KB. After that there was a

large variation in the latency. The Kafka latency variation is

very high compared to RabbitMQ broker and we are not

including those results here.

5.3 Scalability: In the test we did for observing the scalability

of the system we deployed 1000 mock drivers in two gateways

and measured the latency. These drivers can generate 100-byte

messages at a rate of 5 messages per second. We used low

values for both message rate and size so that we could make

sure the system didn’t slow down due to the large amount of

data produced. Figure 11 shows the latency with RabbitMQ.

Latency observed was marginally higher than the previous test

we did with 4 drivers, but it was consistent up to 1000 drivers

and stayed within reasonable range. The increase in latency

can be attributed to increased use of resources. At 1000

sensors the latency started to increase. Because this test was

done in shared channel mode, only 2 spouts were actively

reading from the 2 queues created.

Figure 11 Latency with varying number of devices – RabbitMQ. The average

latency and standard deviation is shown.

Figure 12 Latency with varying number of devices – Kafka. The average

latency and standard deviation is shown. Also averages calculated with

ommitting values over 200 are shown.

We performed the same test with the Kafka broker. Because

we partitioned each topic into 4, all 4 spouts were actively

reading from the topics. This is the advantage of having a

Kafka-like distributed broker. The latency observed is shown

in Figure 12. As expected, there were large variations

observed. We tried to remove these big numbers and draw the

graph to see how they affect the average latency. Figure 12

shows graphs with values > 200 removed. We can observe

that the average latency is at a considerable low range after

these very high values are removed.

All the tests were done for the best case scenario in terms of

latency of Storm-based analysis. A real application would

involve much more complex processing and a complicated

DAG structure for data processing. Those processing latencies

will add to the overall latency in real applications. Also in our

tests we sent and received the same message through the

cloud. In real applications, messages generated after the

processing are usually minimal compared to the data

messages, so we expect a reduction in latency as well.

5.3 TurtleBot: Because of the latency requirements, we used

the RabbitMQ broker for the TurtleBot application. The

TurtleBot was functioning properly under the latencies we

have observed. Figure 13 shows the latency values we

observed for 1500 Kinect frames. The average latency

fluctuated between 35ms and 25ms. The TurtleBot was

sending messages of size 60KB in a 20 message/sec rate. The

best case latency without any processing for such messages is

around 10ms. The network latency and the processing adds

another 25ms to the latency. The processing includes both

compression and decompression time of Kinect frames. There

were some outliers that went to values such as 50ms. These

were not frequent but can be seen occurring with some high

probability. We could not recognize any patterns in such high

latency observations; some explanations for these increases

might be network congestion, Java garbage collection and

other users employing the same network and resources in

FutureGrid. We observed, average latency of 33.26

milliseconds and standard deviation of 2.91.

Figure 13 Latency observed in Turtlebot application

6. Conclusions

In this paper we introduced a scalable, distributed architecture

for connecting devices to cloud services and processing data

in real time. Further we discussed a robotics application built

on top of this framework. We investigated how to scale the

system with topic-based publish-subscribe messaging brokers

and a distributed stream processing engine in the cloud. We

measured the performance characteristics of the system and

showed that we can achieve low latencies with moderate

hardware in the cloud. Also the results indicate we can scale

the architecture to hundreds of connected devices. Because of

the low latencies, RabbitMQ broker is suitable for applications

with real time requirements. Applications involving massive

amounts of devices without strict latency requirements can

benefit from the scalability of Kafka brokers. The results also

indicate that reasonably uniform behavior in message

processing latencies can be maintained, which is an important

factor for modeling most problems.

7. Future Work

As our platform evolves, we would like to extend our system to
Cloud DIKW applications, which involve both real time
analysis and batch analysis. A primary concern for real time
applications is the recovery from faults. A robot guided by a
cloud application should work amidst application level failures
and middleware level failures. We would like to explore
different fault tolerance techniques for making our platform
more robust. The discovery of devices is coarse-grained at the
moment and we hope to enable finer-grained discovery of
devices at the cloud processing layer. For example, selecting
devices that meet specific criteria like geographical locations
for processing is important for some applications. We observed
that there are variations in the latency observed in our
applications. In some applications it is required to contain the
processing latency with hard limits. It will be interesting to
look at methods for enabling such guarantees for our
applications. Simultaneously we are working to build new
robotics applications based on our platform.

8. Acknowledgement

The authors would like to thank the Indiana University

FutureGrid team for their support in setting up the system in

FutureGrid NSF award OCI-0910812. This work was partially

supported by AFOSR award FA9550-13-1-0225 “Cloud-

Based Perception and Control of Sensor Nets and Robot

Swarms”.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, and I.

Stoica, “A view of cloud computing,” Communications of

the ACM, vol. 53, no. 4, pp. 50-58, 2010.

[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.

Kermarrec, “The many faces of publish/subscribe,” ACM

Computing Surveys (CSUR), vol. 35, no. 2, pp. 114-131,

2003.

[3] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M.

Cherniack, J.-H. Hwang, W. Lindner, A. Maskey, A.

Rasin, and E. Ryvkina, "The Design of the Borealis

Stream Processing Engine." pp. 277-289.

[4] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo,

"SPADE: the system s declarative stream processing

engine." pp. 1123-1134.

[5] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, "S4:

Distributed stream computing platform." pp. 170-177.

[6] Q. Anderson, Storm Real-time Processing Cookbook:

Packt Publishing Ltd, 2013.

[7] M. M. Hassan, B. Song, and E.-N. Huh, "A framework of

sensor-cloud integration opportunities and challenges."

pp. 618-626.

[8] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N.

Rosa, C. Ferraz, and J. Kelner, “Mires: a

publish/subscribe middleware for sensor networks,”

Personal and Ubiquitous Computing, vol. 10, no. 1, pp.

37-44, 2006.

[9] S. Krishnamurthy, "TinySIP: Providing seamless access

to sensor-based services." pp. 1-9.

[10] C. P. Hall, A. Carzaniga, and A. L. Wolf, "DV/DRP: A

content-based networking protocol for sensor networks,"

Technical Report 2006/04, Faculty of Informatics,

University of Lugano, 2006.

[11] U. Hunkeler, H. L. Truong, and A. Stanford-Clark,

"MQTT-S—A publish/subscribe protocol for Wireless

Sensor Networks." pp. 791-798.

[12] S. K. Dash, J. P. Sahoo, S. Mohapatra, and S. P. Pati,

"Sensor-cloud: assimilation of wireless sensor network

and the cloud," Advances in Computer Science and

Information Technology. Networks and Communications,

pp. 455-464: Springer, 2012.

[13] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain,

A. Alelaiwi, and M. A. Hossain, “A survey on sensor-

cloud: architecture, applications, and approaches,”

International Journal of Distributed Sensor Networks,

vol. 2013, 2013.

[14] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A

survey of research on cloud robotics and automation,”

2015.

[15] A. Videla, and J. J. Williams, RabbitMQ in action:

Manning, 2012.

[16] J. Kreps, N. Narkhede, and J. Rao, "Kafka: A distributed

messaging system for log processing."

[17] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed,

"ZooKeeper: Wait-free Coordination for Internet-scale

Systems." p. 9.

[18] B. Snyder, D. Bosnanac, and R. Davies, ActiveMQ in

action: Manning, 2011.

[19] K. Goodhope, J. Koshy, J. Kreps, N. Narkhede, R. Park,

J. Rao, and V. Y. Ye, “Building LinkedIn's Real-time

Activity Data Pipeline,” IEEE Data Eng. Bull., vol. 35,

no. 2, pp. 33-45, 2012.

[20] S. Vinoski, “Advanced message queuing protocol,” IEEE

Internet Computing, vol. 10, no. 6, pp. 87-89, 2006.

[21] A. Agarwal, M. Slee, and M. Kwiatkowski, Thrift:

Scalable cross-language services implementation, Tech.

rep., Facebook (4 2007), http://thrift. apache.

org/static/files/thrift-20070401. pdf, 2007.

[22] G. Fox, G. von Laszewski, J. Diaz, K. Keahey, J. Fortes,

R. Figueiredo, S. Smallen, W. Smith, and A. Grimshaw,

“FutureGrid—A reconfigurable testbed for Cloud, HPC

and Grid Computing,” Contemporary High Performance

Computing: From Petascale toward Exascale,

Computational Science. Chapman and Hall/CRC, 2013.

[23] Z. Zhang, “Microsoft kinect sensor and its effect,”

MultiMedia, IEEE, vol. 19, no. 2, pp. 4-10, 2012.

[24] "TurtleBot," 2014; http://wiki.ros.org/Robots/TurtleBot.

[25] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J.

Leibs, R. Wheeler, and A. Y. Ng, "ROS: an open-source

Robot Operating System." p. 5.

[26] openkinect. "Open Kinect," 2014; http://openkinect.org/.

[27] Google. "snappy," 2014;

https://code.google.com/p/snappy/.

[28] S. Mehrotra, Z. Zhang, Q. Cai, C. Zhang, and P. A. Chou,

"Low-complexity, near-lossless coding of depth maps

from kinect-like depth cameras." pp. 1-6.

[29] openkinect. "Imaging Information,"

http://openkinect.org/wiki/Imaging_Information.

[30] P. Kozikowski. "Kafka 0.8 Producer Performance,"

http://liveramp.com/blog/kafka-0-8-producer-

performance-2/.

http://thrift/
http://wiki.ros.org/Robots/TurtleBot
http://openkinect.org/
http://openkinect.org/wiki/Imaging_Information
http://liveramp.com/blog/kafka-0-8-producer-performance-2/
http://liveramp.com/blog/kafka-0-8-producer-performance-2/

