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Abstract: In this paper we describe IoTCloud; a platform to connect smart devices to cloud services for real time data processing 
and control. A connected device to IoTCloud can communicate with real time data analysis frameworks deployed in the cloud 
via messaging. The platform design is scalable in connecting devices, transferring and processing data. A user develops real 
time data processing algorithms in an abstract framework without concern for underlying details of how the data is distributed 
and transferred. For this platform we primarily consider real time robotics applications such as autonomous robot navigation, 
where there are strict requirements on processing latency and demand for scalable processing. To demonstrate the feasibility 
of the system, a robotic application is developed on top of the framework. The system and the robotics application 
characteristics are measured to show that data processing in central servers is feasible for real time sensor applications. 
 

1. Introduction 
 
The availability of internet connections and low manufacturing 
costs have led to a boom in smart objects, devices with a 
tripartite construction consisting of a CPU, memory storage, and 
a wireless connection. These smart objects (or devices) are 
equipped with sensors that produce data and actuators that are 
capable of receiving commands. Such devices are widespread in 
all the fields and usages are expected to grow exponentially in 
the future. For these devices, central data processing has been 
shown to be advantageous due to numerous factors including: 
the ability to easily draw from vast stores of information, 
efficient allocation of computing resources and a proclivity for 
parallelization. Because of these factors, many devices may 
benefit from processing only some data locally and offloading 
the remaining processing to central servers.  Among the 
aforementioned devices, and increasingly present in modern life, 
are robots. Robots such as the iRobot Roomba, a robot that can 
clean the floor, present affordable, automated aids for daily 
living. Additionally, Amazon and Google are researching and 
developing platforms for delivering consumer products using 
drones. Most of these robots have  limited onboard processing 
power but still generate large amounts of data. Cloud based 
analysis of data coming from such robots creates many 
challenges due to strict latency requirements and high volumes 
of data production.  

To process data coming from many smart devices, we need 
scalable data processing platforms. Cloud is an ideal 
computational platform for hosting data processing applications 
for smart devices, because of its efficiency and agility. The. 
Cloud computing[1] refers to both applications delivered as 
services over the Internet and the hardware and system software 
in the datacenters that provide those services. Cloud computing 
enables computing as a utility and is gradually becoming the 
standard for computation, allowing the systems and users to use 
Platform as a Service (PaaS), Infrastructure as a Service (IaaS), 

and Software as a Service (SaaS). The computational nodes are 
provisioned, configured and reconfigured dynamically in the 
cloud. These machines can be in the form of virtual machines or 
physical machines. Furthermore, sensor based applications can 
benefit from in-house private cloud environments hosted within 
organizations or from public clouds hosted by large 
organizations.  

In order to process data generated by smart devices in a cloud 
environment, the data must be transmitted from the devices to 
the cloud in an efficient and scalable manner. The 
communication between cloud applications and the devices is 
essentially based on events, which suggests that the traditional 
request/response approach is not appropriate. For example, 
when using requests and responses, a device requiring real time 
control has to poll the applications continuously. Continuous 
polling increases the latency and network traffic. Transmission 
of events is well supported by publish-subscribe messaging[2] 
where a publisher makes information available to subscribers in 
an asynchronous fashion. Over time Publish-Subscribe 
messaging has emerged as a distributed integration paradigm for 
deployment of scalable and loosely coupled systems. 
Subscribers have the ability to express their interest in an event, 
or a pattern of events, and are subsequently notified of any event, 
generated by a publisher, which matches their registered 
interest. An event is asynchronously propagated to all 
subscribers that registered interest in that given event and 
subscribers. Publish-Subscribe messaging decouples the 
message producers and consumers in the dimensions of time, 
space and synchronization. The decoupling favors the scalability 
of the message producing and consuming systems. Because of 
these features, publish-subscribe messaging is being proposed 
as a good fit for connecting smart devices to cloud applications.  

Topic based and content based are two different widely used 
schemes of pub-sub systems. In topic based systems the 
messages are published to topics which are identified by 
keywords. The consumers subscribe to topics and receive 



messages coming to these topics. In content based systems the 
consumers subscribe to messages based on the properties of the 
messages. This means the content of each message has to be 
examined at the middleware to select a consumer among 
possibly a large set of consumers. Because of the simple design 
of topic based middleware, they tend to scale well compared to 
content based brokers and introduces less overhead.  

We envision a cloud based data intensive computing 
architecture where stream based real time analysis and batch 
analysis are combined together to form a rich infrastructure for 
sensor applications. We propose Cloud DIKW (Data, 
Information, Knowledge, Wisdom) based architecture for sensor 
data analysis in the cloud. The high level DIKW view of the 
system is shown in Figure 1.  

 
Figure 1 DIKW View of the System 

We can assume that for all our devices, data is sent to cloud as a 
stream of events. It is important to process the data as a stream 
(before storing it) to achieve real time processing guarantees. 
Parallel processing of events coming from a single source can 
help to reduce the latency in most applications. The ability to 
connect large number of devices creates a need for a scalable 
infrastructure to process the data. Distributed event processing 
engines (DSPEs)[3-6] are a good fit for such requirements. A 
DSPE abstracts out the event delivery, propagation and 
processing semantics and greatly simplifies the real time 
algorithm development. Also a DSPE can act as a messaging 
fabric that  distributes data to other data sinks like databases, file 
systems etc.; for batch processing and archival purposes, after 
some pre-processing of the data.    

By combining the above requirements, we have developed our 
IoTCloud platform, which is a distributed software platform 
capable of connecting devices to the cloud services. IoTCloud 
uses topics based publish-subscribe messaging to transfer data 
between the devices and the cloud services and uses a DSPE to 
process the data in the cloud. The platform supports two publish-
subscribe brokers with different semantics that are suitable for 
different applications. We have developed a robotic application 
that runs through a private in house cloud to demonstrate how to 
use the system and measured the characteristics of the system in 
order to show that we can do real time processing of sensor data 
in a cloud environment in a scalable manner. The main 
contribution of our work is to explore scalable cloud based real 
time data processing for sensor applications. 

Section 2 of the paper describes the related work in this area. 
Section 3 explains the architecture of the framework and section 
4 the robotics application we have developed. Next in section 5, 
we present a series of tests we have done to evaluate the system 
and discuss the observations. Finally, in section 6 and 7 we 
conclude the paper with conclusions and future work. 

2. Related Work 
 
To best of our knowledge, connecting devices to cloud services 
for real time processing in a scalable manner is not addressed in 
the literature. Also, work related to cloud based control of robots 
is largely lacking. Hassan[7] is a content based 
publish/subscribe framework for connecting sensor data to 
cloud services. Content based pub-sub allows greater flexibility 
for the application designers than topic based pub-sub systems.  
But content based pub-sub systems usually involves higher 
overhead than topic based pub-sub systems because the brokers 
has to inspect message content.  Furthermore, content based 
pub-sub brokers are not popular and are not widely available as 
products.  

Mires[8], TinySIP[9], DV/DRP[10] are all publish/subscribe 
messaging middleware for WSNs. They address the different 
issues in connecting WSNs and communicating with sensors. 
MQTT-S[11] is an open topic-based pub-sub protocol defined 
for transferring data from sensors. The protocol enables data 
transfer between sensors and traditional networks. In our work 
we assume that sensor data is available to be transported to cloud 
services and we handle the transferring of gathered data from 
devices to cloud services. For example, a device connected to 
our system can send data via a dedicated communication 
channel, public Internet etc. Also many devices can be 
connected in WSNs using above mentioned protocols or 
messaging systems and our platform can transfer this data to 
cloud services for processing. 

Reference architectures for integrating sensors and cloud 
services have being discussed in the literature[12, 13]. Both 
works explore the general architecture that can be used to 
connect the sensors to cloud services and the potential issues. In 
our work we provide a framework that can be used to send 
sensor data from devices to the cloud as well as show how to 
process the data within a generic framework. We also discuss 
how to transfer data from devices to cloud services and process 
it in a scalable way, topics that are not fully addressed in above 
papers.  

3. IoTCloud Architecture 
 
A system view of the architecture is shown in Figure 2. Our 
architecture consists of three main layers. 

1. Gateway Layer  
2. Publish-Subscribe messaging layer 
3. Cloud based big data processing layer 

We consider a device as a set of sensors and actuators. Users 
develop a driver that can communicate with the device and 
deploys it in a gateway.  This driver doesn’t always have to 
directly connect to the device. For example, it can connect to the 



device via a TCP connection or through a message broker. The 
data generated by the driver application is sent to the cloud-
processing layer using publish-subscribe messaging brokers. 
The cloud processing layer processes the data and sends control 
messages back to the driver using the message brokers. The 
driver converts the information to a format that suites the device 
and communicates this to the device. The platform is 
implemented in the Java programming language. 

3.1 Gateway: Drivers are deployed in gateways responsible for 
managing drivers. There can be multiple Gateways in the 
system and each gateway has a unique id. A Gateway master 
controls the gateways by issuing commands to deploy/un-
deploy, start/stop drivers etc. A Gateway is connected to 
multiple message brokers and these brokers can be in a cluster 
configuration. By default the platform supports RabbitMQ[14], 
ActiveMQ and Kafka[15] message brokers. Gateways manage 
the connections to the brokers and handle the load balancing of 
the device data to the brokers. Gateways update the master 
about the drivers deployed in it and status of the gateways. 
Master stores the state information in a ZooKeeper[16] cluster.  
 

 
Figure 2 IOTCloud Architecture 

 
3.2 Driver: The driver is the data bridge between a device and 
the cloud applications. The driver converts data coming from 
the device to a format that the cloud applications expect and 
vice versa. A driver has a name and a set of communication 
channels. When a driver is deployed, the running instance gets 

an instance id. This instance id is used for controlling the driver 
after the deployment. The same driver can be deployed multiple 
times and each of the instances receive a unique id. A driver can 
have multiple communication channels and each channel 
within a driver has a unique name. A communication channel 
connects the driver to publish-subscribe messaging brokers. 
When a driver is deployed, its information is saved in 
ZooKeeper. The default structure of driver information in 
ZooKeeper is: 
/iot/sensors/[driver_name]/[driver_instance_id]/[cha
nnel_name] 

A zookeeper node (ZNode) with the driver instance id contains 
information about the driver like its status, metadata etc. ZNodes 
with channel name contains the information about the channels. 
The framework allows shared and exclusive channels to be 
created. An exclusive channel can give faster communication 
between the drivers and the cloud processing. But in large-scale 
deployment of drivers, an exclusive channel can result in large 
number resources in the brokers. Some applications don’t have 
strict latency requirements and can use shared channels 
consuming less system resources.  

3.3 Brokers: The platform specifically focuses on Topic-Based 
publish-subscribe brokers rather than content-based publish-
subscribe brokers. We chose Topic based brokers due to several 
reasons. 1. Stable, open source topic based brokers are available 
2. Topic based brokers are simple to use and configure 3. The 
overhead introduces by the broker is minimal compared to 
content based brokers. For this project the most important 
factors are 1 and 3, because our applications require low latency 
and topics based brokers are the ones readily available for use. 
The messaging layer needs to preserve the message ordering 
preventing multiple consumers consuming messages from the 
same driver.   
 
There are many open source brokers available that full fill our 
needs for the messaging infrastructure. Such brokers includes 
ActiveMQ[17], RabbitMQ[14], Kafka[15, 18] Kestrel, 
HonertMQ etc. From these brokers ActiveMQ, RabbitMQ and 
Kafka are widely used topic based publish subscribe brokers. 
The preliminary studies showed that ActiveMQ and RabbitMQ 
have identical functionalities for our purposes and latter is 
capable of handling more load with less overhead. So we 
decided to use RabbitMQ. The Kafka broker has very good 
clustering capabilities and can handle parallel consumer reads 
for the same Topic.  So we decided to support both these brokers 
in our platform. 

Each communication channel created in a driver is connected 
with a topic created in the message broker. The framework 
supports two mappings of channels to topics hence creating two 
types of channels. In the first type, each channel is mapped to a 
unique queue in the broker. We call this type of channels 
exclusive channels. In the other type of channel, a set of 
channels share the same topic in the broker. This type of channel 
is called a shared channel. At the moment we use a very simple 
rule to map the channels to a shared queue. We map the same 



channel from multiple instances of a driver deployed in one 
gateway to a single topic.  

For shared channels: 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠 = 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  
Exclusive channels: 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
 
For a shared channel, corresponding topic name is of the format 
of “gateway_id.driver_name.queue_name”. For an exclusive 
channel, topic name is of the format of 
“gateway_id.driver_name.driver_id.queue_name”.  

RabbitMQ: RabbitMQ is a message broker primarily 
supporting Advanced Message Queuing Protocol (AMQP)[19]. 
Even though the core of RabbitMQ is designed to support 
AMQP protocol, the broker has been extended to support other 
message protocols like STOMP, MQTT etc. RabbitMQ is 
written in the Erlang programing language and supports low 
latency high throughput messaging. RabbitMQ has a rich API 
and architecture for developing consumers and publishers. 
RabbitMQ topics are easy to create and manage using its APIs. 
These topics are light weight and can be created without much 
burden to the broker. We allow both shared channels and 
exclusive channels to be created for RabbitMQ. The metadata 
about the messages are sent using RabbitMQ message headers. 
The metadata includes sensor id, gateway id and custom 
properties.  
 
Kafka: Kafka is publish-subscribe message broker backed by a 
commit log. The messages sent by the producers are appended 
to a commit log and the consumers read the messages from this 
commit log. Kafka implements its own message protocol and 
does not support standard protocols like AMQP or MQTT. At 
the core of Kafka messaging is the concept of a Topic. A topic 
is divided into multiple partitions and a message is sent to a 
single partition. In our platform, partition for a message is 
chosen using a key accompanying a message. So messages with 
the same key go to the same partition. Consumers consume 
messages from partitions. Partitions of a single topic can spread 
across a cluster of Kafka servers. Furthermore, a single partition 
is replicated in a Kafka cluster for reliability. Kafka guarantees 
ordering of messages in a partition and doesn’t guarantee 
ordering across partitions. Because a topic consists of multiple 
partitions, consumers can read from the same topic in parallel 
without affecting the message ordering for a single message 
key. In IoTCloud platform we use the driver id as the key for a 
message. 
 
In IoTCloud we need to send metadata with a message such as 
the driver id, site id and some properties. Because Kafka only 
supports byte messages without any headers, we use a 
Thrift[20] based message format to send metadata about the 
message. Use of driver id as the key, makes sure that the 
messages belonging to a single driver instance will always be 
in one partition. We use at most one consumer per partition to 
ensure the message ordering for a driver. Because Kafka topics 
can be partitioned we will have parallel read capability and 

write capabilities for shared channels. Because of this, the 
platform only support shared channels for Kafka.   
 
3.4 Cloud Processing: As the primary cloud-processing 
framework we are using Apache Storm[6], which is an open 
source DSPE. There are many DSPEs available but we chose 
Storm because of its scalability, performance, excellent 
development community support and the ability to use scripting 
languages to write its applications. Storm can be used to process 
the data and send responses back immediately or it can be used 
to do some pre-processing of the data and store them for later 
processing by batch engines such as Apache Hadoop. The 
applications we have developed doesn’t uses batch processing 
at the moment, so we haven’t incorporated such engines to the 
platform yet but our architecture permits integration of engines 
like Hadoop. We use FutureGrid[21] as our cloud platform for 
deploying the Storm Cluster.  Futuregrid has an OpenStack 
based could implementation and we provision VM images 
using the OpenStack tools. 
 
Apache Storm: Storm is a distributed stream processing engine 
designed to process large amounts of streaming data in a 
scalable and efficient way. Data processing applications are 
written as Storm topologies. A topology defines a DAG 
structure for processing the streaming data coming from the 
devices as an unbounded stream of tuples. The DAG consists 
of a set of Spouts and Bolts written to process the data. The 
tuples of the stream flow through the nodes (Spouts and Bolts) 
of the DAG. Spouts and Bolts are primarily written in Java but 
other programming languages like Python, Ruby is permitted. 
Data enters a topology through Spouts and the processing 
happens in bolts. The components in the DAG are connected to 
each other using stream (tuple) groupings. Pub-sub is a 
common pattern for ingesting data in to a Storm topology. A 
bolt can consume the connected input streams, do some 
processing on the tuples and generate and emit new tuples to 
the output streams. Usually the last bolts in the topology DAG 
write the results to a DB or send the results to remote nodes 
using pub-sub messaging. The spouts and bolts of a topology 
can be run in parallel in different computation nodes. 
 
To ease the development of Storm topologies in our platform 
we allow the external communication points of a Storm 
Topology to be defined in a configuration file. Figure 3 is an 
example of such configuration file. The topology has two 
external communication channels. A “kinect_receive” spout is 
where we get the input data from devices and a “count_send” 
bolt is where we send output information back to the devices. 
We can use the above configuration to build the outer layer of 
a topology automatically. The algorithm has to be written by 
the application developer.  
 
We can run many instances of any of the components in a Storm 
Topology in parallel. For example to read data parallelly from 
many devices, we can spawn several instances of the 
kinect_receive spout in different nodes. This can be done for 



any bolt in the topology as well.  The parallelism can be 
changed at runtime as well. This allows the system to scale with 
the addition of drivers. 
 

 
Figure 3 Topology Endpoint Configuration 

3.5 Discovery: Because Storm is a parallel processing 
framework, it requires coordination among the processing 
units. For example when a communication channel is created in 
the broker for a device, the parallel units responsible for 
communicating with that channel should pick a leader because 
multiple units reading from the same channel can lead to data 
duplication and out of order processing, which is not desirable 
for most applications. Also the distributed processing units 
should be able to detect when the drivers come online and go 
offline. To adapt to such a distributed dynamic processing 
environment we need discovery and coordination. We use 
Apache ZooKeeper[16] for achieving both. When drivers come 
online the information about the drivers is saved in the 
ZooKeeper. The discovery component discovers and connects 
this information to the cloud processors dynamically at runtime. 
This allows the processing layers to automatically distribute the 
load and adjust accordingly to the changes in the data producer 
side.  
 
A storm Topology is deployed with a number of parallel Spouts 
and Bolts that send and receive data from the pub-sub brokers. 
We can change the parallelism of a Spout or a Bolt at the 
runtime as well. When a topology deploys its external 
communication components (Spout and Bolts) does not know 
about the physical addresses of the topics or how many topics 
they have to listen to. So at the very beginning the topology 
does not have any active message listeners or senders. The 
topology knows that it has to exchange messages with a set of 
drivers deployed in the gateways. The topology has information 
about the ZooKeeper and the drivers that it is interested in. It 
uses this information to dynamically discover the topics that it 
has to listen and add those consumers and producers to the 
topology at runtime 
3.6 Processing Parallelism: The processing parallelism at the 
endpoints of the topology is bound to the message brokers and 
how we can distribute the topics across the brokers. For middle 
processing bolts, maximum parallelism is not bounded and 
depends on the application. A Storm topology gets its messages 
through the spouts. Same spout can run multiple instances in 

parallel to read the messages coming from multiple devices 
connected to the system. A spout always reads the messages 
from a single channel of a device. If a processing algorithm 
requires input from multiple channels, the topology must have 
multiple spouts. A running instance of a Spout can connect to 
multiple topics to read the messages, but all these topics must 
be connected to a channel with the same name and driver. When 
a spout needs to read from multiple topics, the topology 
distributes the topics equally among the running instances of 
the spout dynamically at the runtime. The message flow 
through the Storm topology happens primarily using the driver 
ids. The bolts that are communicating with the brokers know 
about all the topics in the system and they can send a message 
to an appropriate topic by selecting the correct topic using the 
driver id. 
 
RabbitMQ: There is a limit to the number of parallel spouts that 
we can run due to the number of topics created per channel. 
Following gives an upper bound on number of spouts we can 
run when RabbitMQ brokers are used.   
 
Shared Channels: 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 parallel 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔   
Exclusive Channels: 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 parallel 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
 

 
Figure 4 RabbitMQ Exclusive Channels & Storm 

 
In general we cannot do parallel reads from a topic due to the 
ordering constrains. Figure 4 shows how exclusive channels 
created by a driver named sensor_01 is connected to the storm 
topology. Here, the storm topology runs only one instance for 
each spout reading from channel_01 and channel_02. Because 
we have 8 channels in 4 instances of the drivers, we need 8 
topics in the broker. Because we only have 2 spouts and 2 bolts 

zk.servers: ["server1:2181"] 
zk.root: "/iot/sensors" 
topology.name: "wordcount" 
spouts: 
    kinect_receive: 
        broker: "rabbitmq" 
        driver: "turtle" 
        channel: "kinect" 
        fields: ["frame", "driverID", "time"] 
        properties: 
          broker.zk.servers: "server1:2181" 
          broker.zk.root: "/brokers" 
bolts: 
    count_send: 
        broker: "rabbitmq" 
        driver: "turtle" 
        channel: "control" 
        fields: ["control", "driverID", "time"] 
                   
            

http://topology.name/


in the topology, each spout is connected to 2 topics and each 
bolt is communicating with 2 topics. Figure 5 shows the same 
scenario with shared channels. In this case we only have 4 
topics because the two drivers deployed in the same gateway 
are using the same topics. 
 
 

 
Figure 5 RabbitMQ Shared Channels & Storm 

 
Figure 6 Kafka Shared Channels & Storm 

Kafka: Kafka topics are more heavy weight than RabbitMQ. 
For every topic in the system, Kafka has to create a log files and 
index files in the file system for its partitions. If the replication 
is enabled for fault tolerance, these files have to be replicated 
in the Kafka cluster. Kafka also supports parallel reads for a 
single topic. Because of these reasons we only support shared 
channels for Kafka. In Kafka the number of spouts possible 
depends on the number of partitions for a topic. 
 
𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
 
Figure 6 shows topics distribution with Kafka for the same 
scenario as in Figure 4. In the Figure 6 each Kafka topic has 2 
partitions and we have 4 topics because the channels are shared. 
Because each topic has two partitions, read and write 
parallelism in this case is equal to the exclusive channel 
scenario with RabbitMQ (Figure 5). But in practical scenarios 
we will have less number of partitions than devices connected 
per gateway. This will make the parallelism greater than the 
shared channels with RabbitMQ but less than the exclusive 
channels. 

4. TurtleBot Follower Application  
 
In order to explore possible configurations for the IoTCloud 
framework, we have used the Microsoft Kinect[22] and 
TurtleBot[23]. The Microsoft Kinect consists of an IR camera, 
an RGB camera, an IR emitter, and several auxiliary features. 
Our project was not concerned with the details of the hardware 
but complete discussions of the Kinects specifications and 

method of depth calculation are available. Currently, there are 
numerous open-source projects and academic studies utilizing 
the Kinect, due to the sensors affordability and host of 
applications. In addition, a well-documented robot 
incorporating the Kinect is already available, the TurtleBot by 
Willow Garage. It is because of these many resources that the 
Kinect and TurtleBot were chosen as a subject for the 
development of a sensor to cloud processing framework. 
In our application the TurtleBot follows a large target in front 
of it by trying to maintain a constant distance to the target. 
Compressed depth images of the Kinect camera are sent to the 
cloud and the processing topology calculates a point cloud of 
the TurtleBot’s field of view. The algorithm uses the point 
cloud to calculate an average point, the centroid, of a 
hypothetical box in front of the TurtleBot. Shifts in the centroid 

Figure 7 TurtleBot 



are calculated and command messages, in the form of vectors, 
are sent back to the Turtlebot using its ROS[24] API. The 
Turtlebot then actuates these vectors in order to maintain a set 
distance from the centroid.  
 
4.1 Reading Depth Frames from the Kinect: The initial step in 
developing our application utilizing the Kinect depth camera 
was finding a driver to read in the Kinect data stream. The 
TurtleBot is operated with ROS, the open-source robotics 
operating system, which has an available Kinect driver. The 
ROS Kinect driver is built on OpenKinect’s libfreenect[25] 
driver so in order to avoid any unnecessary overhead, 
libfreenect was used pure. Libfreenect is an open-source Kinect 
driver that provides a Java interface to both the IR and RGB 
cameras. Methods are provided to start a depth stream and 
handle frames. libfreenect was originally implemented in C++, 
although a Java JNA wrapper is now available. 
 
4.2 Compression: In the course of the project several 
compression schemes were tested. In the early stages the LZ4, 
Snappy[26] and JZlib Java compression libraries were tested. 
Snappy achieved less compression but was faster than the other 
two. Ultimately, we chose a two-stage compression process 
using Mehrotra et al’s [27] inversion technique as the first stage 
and Snappy as the second. Mehrotra et al’s[27] inversion 
technique takes advantage of the error endemic to the depth 
camera. The depth camera’s accuracy decreases proportional to 
the inverse of the squared depth.  Hence, multiple values may 
be encoded to the same number without any loss in fidelity[27]. 
From using this inversion technique every two-byte disparity 
can be compressed to one byte. It is worth noting however that 
the inversion algorithm takes distance as an input, not disparity. 
Mehrotra et al. achieve a startling 5ms compression time for 
their whole 3-step process with little optimization. For the sake 
of expediency, our project used an existing java compression 
library (Snappy) rather than Mehrotra et al’s RLE/Golomb-
Rice compression.  
  
The last decision left was whether to implement the prediction 
strategy mentioned in Mehrotra et al. The prediction strategy 
takes advantage of the heterogeneous nature of the depths of 
objects. This translates into long runs of values in the depth 
data. The prediction strategy is simple and converts any run into 
a run of 0’s. For an RLE this will have a clear advantage but 
when tested with Snappy the gain was negligible and thus not 
worth the added computation. Ultimately, we were able to 
achieve a compression ratio of 10:1 in a time of 10ms. This 
compares favorably to Mehrotra et al’s 7:1 ratio in 5ms. The 
data compression happens in the Laptop computer inside the 
Turtlebot. After the compression the data is sent to a driver 
application that runs in an IoTCloud gateway. This Gateway 
relays the information to the cloud.   
 
4.3 Calculation of Velocity: The Storm topology for our 
scenario consists of 3 processing units. One spout receives the 
data, a bolt un-compresses this data and calculate the velocity 

vector required by the TurtleBot to move and last bolt send 
these vectors to the TurtleBot.  
 
All the literature indicates that the Kinect should stream each 
frame as 307,200 11-bit disparity values, 2047 being sent to 
indicate an unreadable point. But upon inspection of received 
disparity values, the highest value observed was 1024. When 
this value was treated as the unreadable flag, the depth map 
displayed appeared normal. Depth shadows were rendered 
correctly along with the minimum and maximum readable 
distances. The code was then adjusted to expect only 10-bit 
disparity values and everything functions normally. The full 
range of the Kinect, 80 cm – 400 cm can be encoded with only 
10-bit values. It is unclear whether the 10-bit values are a result 
of the Java libfreenect wrapper or faulty code, but our programs 
are fully functional and the issue was left unresolved. An 
explanation of this phenomenon would no doubt prove 
beneficial and may be a point of latter investigation. 
 
The processing bolt creates a point cloud using the depth frames 
it receives using an approximation technique mentioned in [28]. 
The algorithm defines a hypothetical box in the TurtleBot field 
of view. The average point of this box is calculated and a 
velocity vector is generated for TurtleBot to move towards or 
away from this average point. This way TurtleBot always tries 
to keep a fixed distance to an object in front of it. 
 
4.4 Controlling the TurtleBot: The driver running in the 
Gateway receives the velocity vectors from the processing 
application. It then converts this vectors to a format that the 
ROS API of the TurtleBot accepts. Ultimately the ROS API is 
used by the driver to control the TurtleBot. We use a Java 
version of ROS available for interfacing with ROS, which is 
primarily written in Python. 

5. Results & Discussion 
 
We primarily focused on the latency of the system and the 
scalability of the system. A series of experiments were 
conducted to measure the latency and how well the system 
performs under deployment of multiple of sensors. We used 
FutureGrid as our cloud platform and deployed the setup on 
FutureGrid OpenStack medium flavors. An instance of medium 
flavor has 2 VCPUs, 4GB of memory and 40 GB of hard disk. 
We run Storm Nimbus & ZooKeeper on 1 node, Gateways 
Servers on 2 nodes, Storm Supervisors on 3 nodes and Brokers 
on 2 nodes. Altogether our setup contained 8 Virtual Machines 
with moderate configurations. 
 
In order to test the latency of the system we deployed 4 driver 
applications on the two Gateways that produce data at a 
constant rate. This data were relayed through the two brokers 
and injected to a Storm topology. Storm topology passes the 
data back to the Gateways and it was running 4 spout instances 
in parallel to get the data and 4 bolts in parallel to send the data 
out. The round-trip latency was measured at the gateways for 



each message. This setup was repeated for different message 
sizes and message rates. We went up to 100 message per second 
and increased the messages size up to 1MB. Each driver sent 
200 messages and we got the average across all the drivers. We 
tested the system with RabbitMQ and Kafka brokers. For 
measuring the scalability we progressively increased the 
number of drivers deployed in the gateways and observed how 
many devices can be handled by the system. 
 
The TurtleBot application is an application deployed on the 
FutureGrid.  We observe TurtleBot following a human in front 
of it when this application was deployed. We tested the 
TurtleBot application through the Indiana University computer 
network and measured the latency observed. 
 
5.1 Latency: Figure 6 shows the latency observed when running 
the tests through a RabbitMQ server. Up to 200KB messages, 
the latency was at a considerably lower value for all the 
message rates we tested. At 300KB messages the latency started 
to grow rapidly after message rate of 50.   
 

 
Figure 6 Average Latency for different message sizes with RabbitMQ. The 
different lines are for different message sizes in bytes.  

Figure 7 shows the average latency observed with the Kafka 
broker. We observed some drastically high latency values 
frequently. The frequency of these values increased the average 
latency considerably. Despite variations in latency, in average 
the system was running with a considerably low latency with 
Kafka. The Kafka broker is better suited to be run in machines 
with high disk IO rates. We ran our tests on computation nodes 
that doesn’t have very good IO performance. But there are other 
performance results of Kafka that were done on high disk IO 
nodes that shows some large variations in latency as well. In 
our setup Kafka broker latency was started to increase much 
more quickly than the RabbitMQ brokers. 
 
5.2 Jitter: For most real time applications uniformity of the 
latency over time is very important. Figure 8 shows the latency 
variation in observed latencies for a particular message size and 
rate with RabbitMQ broker. The variation in latency was also 
minimal for message sizes up to 200KB. After that there was a 

large variation in the latency. The Kafka latency variation is 
very high compared to the RabbitMQ broker and we are not 
including those results here. 
 

 
Figure 7 Average Latency for different message sizes with Kafka. The 
different lines are for different message sizes in bytes. 

 
Figure 8 Latency standard deviation with different message sizes and message 
rates for RabbitMQ. The different lines are for different message sizes in 
bytes.  

5.3 Scalability: In the test we did for observing the scalability 
of the system we deployed 1000 mock drivers in two gateways 
and measured the latency. These drivers can generate 100byte 
messages at a rate of 5 message per second. We use low values 
for both message rate and size so that we can make sure the 
system doesn’t slow down due to large amount of data 
produced. Figure 9 shows the latency with RabbitMQ. Latency 
observed was little higher than the previous test we did with 4 
drivers but it was consistent up to 1000 drivers and stayed 
within reasonable range. The increase in latency can be 
attributed to increased use of resources. At 1000 sensors the 
latency started to increase. Because this test was done in shared 
channel mode, only 2 spouts were actively reading from the 2 
queues created.  
 
We did the same test with the Kafka broker. Because we 
partitioned each topic in to 4, all 4 spouts were actively reading 
from the Topics. This is the advantage of having a Kafka like 



distributed broker.  The latency observed is shown in Figure 10. 
As expected, there were big variations in the latencies observed. 
We tried to remove these big numbers and draw the graph to 
see how they affect the average latency. Figure 10 shows graphs 
with values > 200 removed. We can observe that the average 
latency is at a considerable low range after these very high 
values are removed. Kafka is a relatively new broker under 
development and we believe its development community is 
working on fixing these issues with the broker and expect these 
variations to reduce in future versions. 
 
 

 
Figure 9 Latency with varying number of devices - RabbitMQ 

 

 
Figure 10 Latency with varying number of devices – Kafka 

All the tests were done for the best case scenario in terms of 
latency of Storm based analysis. A real application would 
involve much more complex processing and a complex DAG 
structure for data processing. Those processing latencies will 
add to the overall latency in real applications. Also in our tests 
we sent and received the same message through the cloud. In 
real applications messages generated after the processing is 
usually minimal compared to the data messages. So we expect 
a reduction in latency as well.   
5.3 TurtleBot: Because of the latency requirements, we used the 
RabbitMQ broker for the TurtleBot application. The TurleBot 
was functioning properly under the latencies we have observed. 

Figure 11 shows the latency values we observed for 1500 
Kinect frames. The average latency fluctuated between 35ms 
and 25ms. The TurtleBot was sending messages of size 60KB 
in a 20 message/sec rate. The best case latency without any 
processing for such messages is around 10ms. The network 
latency and the processing is adding around another 25ms to the 
latency. The processing includes both compression and 
decompression time of Kinect frames. There were some outliers 
that went to values such as 50ms. These were not frequent but 
can be seen occurring with some high probability. We could not 
recognize any patterns in such high latency observations and 
some of the reasons for these increases can be network 
congestions, Java garbage collections and other users using the 
same network and resources in FutureGrid. We observed, 
average latency of 33.26 milliseconds and standard deviation of 
2.91. 
 

 
Figure 11 Latency observed in Turtlebot application 

6. Conclusions 
 
In this paper we introduced a scalable, distributed architecture 
for connecting devices to cloud services and processing data in 
real time. Further we discussed about a robotics application 
built on top of this framework. We investigated how to scale 
the system with topic based publish-subscribe messaging 
brokers and a distributed stream processing engine in the cloud. 
We measured the performance characteristics of the system and 
showed that we can achieve low latencies with moderate 
hardware in the cloud. Also the results indicate we can scale the 
architecture to hundreds of connected devices. Because of the 
low latencies, framework with the RabbitMQ broker is suitable 
for applications with real time requirements. Applications 
involving massive amount of devices without strict latency 
requirements can benefit from the scalability of Kafka brokers. 
The results also indicate that reasonably uniform behavior in 
message processing latencies can be maintained which is 
important factor for modeling most problems.  

7. Future Work 
 
As our platform evolves, we would like to extend our system to 
Cloud DIKW applications which involve both real time analysis 
and batch analysis. A primary concern for real time applications 



is the recovery from faults. A robot guided by a cloud 
application should work amidst the application level failures and 
middleware level failures. We would like to explore different 
fault tolerant techniques for making our platform more robust. 
The discovery of devices is coarse grained at the moment and 
we would like to enable finer grained discovery of devices at the 
cloud processing layer. For example selecting devices that meet 
specific criteria like geographical locations for processing is 
important for some applications. We observed that there are 
variations in the latency observed in our applications. In some 
applications it is required to contain the processing latency with 
hard limits. It will be interesting to look at methods for enabling 
such guarantees for our applications. Simultaneously we are 
working to build new robotics applications based on our 
platform.  
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