
A Framework for Real-Time Processing of Sensor Data in the Cloud
Supun Kamburugamuve
skamburu@indiana.edu

Leif Christiansen
grindvald@gmail.com

Geoffrey Fox
gcf@indiana.edu

School of Informatics and Computing and Community Grids Laboratory
Indiana University, Bloomington IN 47408 USA

Abstract: In this paper we describe IoTCloud; a platform to connect smart devices to cloud services for real time data processing
and control. A connected device to IoTCloud can communicate with real time data analysis frameworks deployed in the cloud
via messaging. The platform design is scalable in connecting devices, transferring and processing data. A user develops real
time data processing algorithms in an abstract framework without concern for underlying details of how the data is distributed
and transferred. For this platform we primarily consider real time robotics applications such as autonomous robot navigation,
where there are strict requirements on processing latency and demand for scalable processing. To demonstrate the feasibility
of the system, a robotic application is developed on top of the framework. The system and the robotics application
characteristics are measured to show that data processing in central servers is feasible for real time sensor applications.

1. Introduction

The availability of internet connections and low manufacturing
costs have led to a boom in smart objects, devices with a
tripartite construction consisting of a CPU, memory storage, and
a wireless connection. These smart objects (or devices) are
equipped with sensors that produce data and actuators that are
capable of receiving commands. Such devices are widespread in
all the fields and usages are expected to grow exponentially in
the future. For these devices, central data processing has been
shown to be advantageous due to numerous factors including:
the ability to easily draw from vast stores of information,
efficient allocation of computing resources and a proclivity for
parallelization. Because of these factors, many devices may
benefit from processing only some data locally and offloading
the remaining processing to central servers. Among the
aforementioned devices, and increasingly present in modern life,
are robots. Robots such as the iRobot Roomba, a robot that can
clean the floor, present affordable, automated aids for daily
living. Additionally, Amazon and Google are researching and
developing platforms for delivering consumer products using
drones. Most of these robots have limited onboard processing
power but still generate large amounts of data. Cloud based
analysis of data coming from such robots creates many
challenges due to strict latency requirements and high volumes
of data production.

To process data coming from many smart devices, we need
scalable data processing platforms. Cloud is an ideal
computational platform for hosting data processing applications
for smart devices, because of its efficiency and agility. The.
Cloud computing[1] refers to both applications delivered as
services over the Internet and the hardware and system software
in the datacenters that provide those services. Cloud computing
enables computing as a utility and is gradually becoming the
standard for computation, allowing the systems and users to use
Platform as a Service (PaaS), Infrastructure as a Service (IaaS),

and Software as a Service (SaaS). The computational nodes are
provisioned, configured and reconfigured dynamically in the
cloud. These machines can be in the form of virtual machines or
physical machines. Furthermore, sensor based applications can
benefit from in-house private cloud environments hosted within
organizations or from public clouds hosted by large
organizations.

In order to process data generated by smart devices in a cloud
environment, the data must be transmitted from the devices to
the cloud in an efficient and scalable manner. The
communication between cloud applications and the devices is
essentially based on events, which suggests that the traditional
request/response approach is not appropriate. For example,
when using requests and responses, a device requiring real time
control has to poll the applications continuously. Continuous
polling increases the latency and network traffic. Transmission
of events is well supported by publish-subscribe messaging[2]
where a publisher makes information available to subscribers in
an asynchronous fashion. Over time Publish-Subscribe
messaging has emerged as a distributed integration paradigm for
deployment of scalable and loosely coupled systems.
Subscribers have the ability to express their interest in an event,
or a pattern of events, and are subsequently notified of any event,
generated by a publisher, which matches their registered
interest. An event is asynchronously propagated to all
subscribers that registered interest in that given event and
subscribers. Publish-Subscribe messaging decouples the
message producers and consumers in the dimensions of time,
space and synchronization. The decoupling favors the scalability
of the message producing and consuming systems. Because of
these features, publish-subscribe messaging is being proposed
as a good fit for connecting smart devices to cloud applications.

Topic based and content based are two different widely used
schemes of pub-sub systems. In topic based systems the
messages are published to topics which are identified by
keywords. The consumers subscribe to topics and receive

messages coming to these topics. In content based systems the
consumers subscribe to messages based on the properties of the
messages. This means the content of each message has to be
examined at the middleware to select a consumer among
possibly a large set of consumers. Because of the simple design
of topic based middleware, they tend to scale well compared to
content based brokers and introduces less overhead.

We envision a cloud based data intensive computing
architecture where stream based real time analysis and batch
analysis are combined together to form a rich infrastructure for
sensor applications. We propose Cloud DIKW (Data,
Information, Knowledge, Wisdom) based architecture for sensor
data analysis in the cloud. The high level DIKW view of the
system is shown in Figure 1.

Figure 1 DIKW View of the System

We can assume that for all our devices, data is sent to cloud as a
stream of events. It is important to process the data as a stream
(before storing it) to achieve real time processing guarantees.
Parallel processing of events coming from a single source can
help to reduce the latency in most applications. The ability to
connect large number of devices creates a need for a scalable
infrastructure to process the data. Distributed event processing
engines (DSPEs)[3-6] are a good fit for such requirements. A
DSPE abstracts out the event delivery, propagation and
processing semantics and greatly simplifies the real time
algorithm development. Also a DSPE can act as a messaging
fabric that distributes data to other data sinks like databases, file
systems etc.; for batch processing and archival purposes, after
some pre-processing of the data.

By combining the above requirements, we have developed our
IoTCloud platform, which is a distributed software platform
capable of connecting devices to the cloud services. IoTCloud
uses topics based publish-subscribe messaging to transfer data
between the devices and the cloud services and uses a DSPE to
process the data in the cloud. The platform supports two publish-
subscribe brokers with different semantics that are suitable for
different applications. We have developed a robotic application
that runs through a private in house cloud to demonstrate how to
use the system and measured the characteristics of the system in
order to show that we can do real time processing of sensor data
in a cloud environment in a scalable manner. The main
contribution of our work is to explore scalable cloud based real
time data processing for sensor applications.

Section 2 of the paper describes the related work in this area.
Section 3 explains the architecture of the framework and section
4 the robotics application we have developed. Next in section 5,
we present a series of tests we have done to evaluate the system
and discuss the observations. Finally, in section 6 and 7 we
conclude the paper with conclusions and future work.

2. Related Work

To best of our knowledge, connecting devices to cloud services
for real time processing in a scalable manner is not addressed in
the literature. Also, work related to cloud based control of robots
is largely lacking. Hassan[7] is a content based
publish/subscribe framework for connecting sensor data to
cloud services. Content based pub-sub allows greater flexibility
for the application designers than topic based pub-sub systems.
But content based pub-sub systems usually involves higher
overhead than topic based pub-sub systems because the brokers
has to inspect message content. Furthermore, content based
pub-sub brokers are not popular and are not widely available as
products.

Mires[8], TinySIP[9], DV/DRP[10] are all publish/subscribe
messaging middleware for WSNs. They address the different
issues in connecting WSNs and communicating with sensors.
MQTT-S[11] is an open topic-based pub-sub protocol defined
for transferring data from sensors. The protocol enables data
transfer between sensors and traditional networks. In our work
we assume that sensor data is available to be transported to cloud
services and we handle the transferring of gathered data from
devices to cloud services. For example, a device connected to
our system can send data via a dedicated communication
channel, public Internet etc. Also many devices can be
connected in WSNs using above mentioned protocols or
messaging systems and our platform can transfer this data to
cloud services for processing.

Reference architectures for integrating sensors and cloud
services have being discussed in the literature[12, 13]. Both
works explore the general architecture that can be used to
connect the sensors to cloud services and the potential issues. In
our work we provide a framework that can be used to send
sensor data from devices to the cloud as well as show how to
process the data within a generic framework. We also discuss
how to transfer data from devices to cloud services and process
it in a scalable way, topics that are not fully addressed in above
papers.

3. IoTCloud Architecture

A system view of the architecture is shown in Figure 2. Our
architecture consists of three main layers.

1. Gateway Layer
2. Publish-Subscribe messaging layer
3. Cloud based big data processing layer

We consider a device as a set of sensors and actuators. Users
develop a driver that can communicate with the device and
deploys it in a gateway. This driver doesn’t always have to
directly connect to the device. For example, it can connect to the

device via a TCP connection or through a message broker. The
data generated by the driver application is sent to the cloud-
processing layer using publish-subscribe messaging brokers.
The cloud processing layer processes the data and sends control
messages back to the driver using the message brokers. The
driver converts the information to a format that suites the device
and communicates this to the device. The platform is
implemented in the Java programming language.

3.1 Gateway: Drivers are deployed in gateways responsible for
managing drivers. There can be multiple Gateways in the
system and each gateway has a unique id. A Gateway master
controls the gateways by issuing commands to deploy/un-
deploy, start/stop drivers etc. A Gateway is connected to
multiple message brokers and these brokers can be in a cluster
configuration. By default the platform supports RabbitMQ[14],
ActiveMQ and Kafka[15] message brokers. Gateways manage
the connections to the brokers and handle the load balancing of
the device data to the brokers. Gateways update the master
about the drivers deployed in it and status of the gateways.
Master stores the state information in a ZooKeeper[16] cluster.

Figure 2 IOTCloud Architecture

3.2 Driver: The driver is the data bridge between a device and
the cloud applications. The driver converts data coming from
the device to a format that the cloud applications expect and
vice versa. A driver has a name and a set of communication
channels. When a driver is deployed, the running instance gets

an instance id. This instance id is used for controlling the driver
after the deployment. The same driver can be deployed multiple
times and each of the instances receive a unique id. A driver can
have multiple communication channels and each channel
within a driver has a unique name. A communication channel
connects the driver to publish-subscribe messaging brokers.
When a driver is deployed, its information is saved in
ZooKeeper. The default structure of driver information in
ZooKeeper is:
/iot/sensors/[driver_name]/[driver_instance_id]/[cha
nnel_name]

A zookeeper node (ZNode) with the driver instance id contains
information about the driver like its status, metadata etc. ZNodes
with channel name contains the information about the channels.
The framework allows shared and exclusive channels to be
created. An exclusive channel can give faster communication
between the drivers and the cloud processing. But in large-scale
deployment of drivers, an exclusive channel can result in large
number resources in the brokers. Some applications don’t have
strict latency requirements and can use shared channels
consuming less system resources.

3.3 Brokers: The platform specifically focuses on Topic-Based
publish-subscribe brokers rather than content-based publish-
subscribe brokers. We chose Topic based brokers due to several
reasons. 1. Stable, open source topic based brokers are available
2. Topic based brokers are simple to use and configure 3. The
overhead introduces by the broker is minimal compared to
content based brokers. For this project the most important
factors are 1 and 3, because our applications require low latency
and topics based brokers are the ones readily available for use.
The messaging layer needs to preserve the message ordering
preventing multiple consumers consuming messages from the
same driver.

There are many open source brokers available that full fill our
needs for the messaging infrastructure. Such brokers includes
ActiveMQ[17], RabbitMQ[14], Kafka[15, 18] Kestrel,
HonertMQ etc. From these brokers ActiveMQ, RabbitMQ and
Kafka are widely used topic based publish subscribe brokers.
The preliminary studies showed that ActiveMQ and RabbitMQ
have identical functionalities for our purposes and latter is
capable of handling more load with less overhead. So we
decided to use RabbitMQ. The Kafka broker has very good
clustering capabilities and can handle parallel consumer reads
for the same Topic. So we decided to support both these brokers
in our platform.

Each communication channel created in a driver is connected
with a topic created in the message broker. The framework
supports two mappings of channels to topics hence creating two
types of channels. In the first type, each channel is mapped to a
unique queue in the broker. We call this type of channels
exclusive channels. In the other type of channel, a set of
channels share the same topic in the broker. This type of channel
is called a shared channel. At the moment we use a very simple
rule to map the channels to a shared queue. We map the same

channel from multiple instances of a driver deployed in one
gateway to a single topic.

For shared channels: 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠 = 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
Exclusive channels: 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

For a shared channel, corresponding topic name is of the format
of “gateway_id.driver_name.queue_name”. For an exclusive
channel, topic name is of the format of
“gateway_id.driver_name.driver_id.queue_name”.

RabbitMQ: RabbitMQ is a message broker primarily
supporting Advanced Message Queuing Protocol (AMQP)[19].
Even though the core of RabbitMQ is designed to support
AMQP protocol, the broker has been extended to support other
message protocols like STOMP, MQTT etc. RabbitMQ is
written in the Erlang programing language and supports low
latency high throughput messaging. RabbitMQ has a rich API
and architecture for developing consumers and publishers.
RabbitMQ topics are easy to create and manage using its APIs.
These topics are light weight and can be created without much
burden to the broker. We allow both shared channels and
exclusive channels to be created for RabbitMQ. The metadata
about the messages are sent using RabbitMQ message headers.
The metadata includes sensor id, gateway id and custom
properties.

Kafka: Kafka is publish-subscribe message broker backed by a
commit log. The messages sent by the producers are appended
to a commit log and the consumers read the messages from this
commit log. Kafka implements its own message protocol and
does not support standard protocols like AMQP or MQTT. At
the core of Kafka messaging is the concept of a Topic. A topic
is divided into multiple partitions and a message is sent to a
single partition. In our platform, partition for a message is
chosen using a key accompanying a message. So messages with
the same key go to the same partition. Consumers consume
messages from partitions. Partitions of a single topic can spread
across a cluster of Kafka servers. Furthermore, a single partition
is replicated in a Kafka cluster for reliability. Kafka guarantees
ordering of messages in a partition and doesn’t guarantee
ordering across partitions. Because a topic consists of multiple
partitions, consumers can read from the same topic in parallel
without affecting the message ordering for a single message
key. In IoTCloud platform we use the driver id as the key for a
message.

In IoTCloud we need to send metadata with a message such as
the driver id, site id and some properties. Because Kafka only
supports byte messages without any headers, we use a
Thrift[20] based message format to send metadata about the
message. Use of driver id as the key, makes sure that the
messages belonging to a single driver instance will always be
in one partition. We use at most one consumer per partition to
ensure the message ordering for a driver. Because Kafka topics
can be partitioned we will have parallel read capability and

write capabilities for shared channels. Because of this, the
platform only support shared channels for Kafka.

3.4 Cloud Processing: As the primary cloud-processing
framework we are using Apache Storm[6], which is an open
source DSPE. There are many DSPEs available but we chose
Storm because of its scalability, performance, excellent
development community support and the ability to use scripting
languages to write its applications. Storm can be used to process
the data and send responses back immediately or it can be used
to do some pre-processing of the data and store them for later
processing by batch engines such as Apache Hadoop. The
applications we have developed doesn’t uses batch processing
at the moment, so we haven’t incorporated such engines to the
platform yet but our architecture permits integration of engines
like Hadoop. We use FutureGrid[21] as our cloud platform for
deploying the Storm Cluster. Futuregrid has an OpenStack
based could implementation and we provision VM images
using the OpenStack tools.

Apache Storm: Storm is a distributed stream processing engine
designed to process large amounts of streaming data in a
scalable and efficient way. Data processing applications are
written as Storm topologies. A topology defines a DAG
structure for processing the streaming data coming from the
devices as an unbounded stream of tuples. The DAG consists
of a set of Spouts and Bolts written to process the data. The
tuples of the stream flow through the nodes (Spouts and Bolts)
of the DAG. Spouts and Bolts are primarily written in Java but
other programming languages like Python, Ruby is permitted.
Data enters a topology through Spouts and the processing
happens in bolts. The components in the DAG are connected to
each other using stream (tuple) groupings. Pub-sub is a
common pattern for ingesting data in to a Storm topology. A
bolt can consume the connected input streams, do some
processing on the tuples and generate and emit new tuples to
the output streams. Usually the last bolts in the topology DAG
write the results to a DB or send the results to remote nodes
using pub-sub messaging. The spouts and bolts of a topology
can be run in parallel in different computation nodes.

To ease the development of Storm topologies in our platform
we allow the external communication points of a Storm
Topology to be defined in a configuration file. Figure 3 is an
example of such configuration file. The topology has two
external communication channels. A “kinect_receive” spout is
where we get the input data from devices and a “count_send”
bolt is where we send output information back to the devices.
We can use the above configuration to build the outer layer of
a topology automatically. The algorithm has to be written by
the application developer.

We can run many instances of any of the components in a Storm
Topology in parallel. For example to read data parallelly from
many devices, we can spawn several instances of the
kinect_receive spout in different nodes. This can be done for

any bolt in the topology as well. The parallelism can be
changed at runtime as well. This allows the system to scale with
the addition of drivers.

Figure 3 Topology Endpoint Configuration

3.5 Discovery: Because Storm is a parallel processing
framework, it requires coordination among the processing
units. For example when a communication channel is created in
the broker for a device, the parallel units responsible for
communicating with that channel should pick a leader because
multiple units reading from the same channel can lead to data
duplication and out of order processing, which is not desirable
for most applications. Also the distributed processing units
should be able to detect when the drivers come online and go
offline. To adapt to such a distributed dynamic processing
environment we need discovery and coordination. We use
Apache ZooKeeper[16] for achieving both. When drivers come
online the information about the drivers is saved in the
ZooKeeper. The discovery component discovers and connects
this information to the cloud processors dynamically at runtime.
This allows the processing layers to automatically distribute the
load and adjust accordingly to the changes in the data producer
side.

A storm Topology is deployed with a number of parallel Spouts
and Bolts that send and receive data from the pub-sub brokers.
We can change the parallelism of a Spout or a Bolt at the
runtime as well. When a topology deploys its external
communication components (Spout and Bolts) does not know
about the physical addresses of the topics or how many topics
they have to listen to. So at the very beginning the topology
does not have any active message listeners or senders. The
topology knows that it has to exchange messages with a set of
drivers deployed in the gateways. The topology has information
about the ZooKeeper and the drivers that it is interested in. It
uses this information to dynamically discover the topics that it
has to listen and add those consumers and producers to the
topology at runtime
3.6 Processing Parallelism: The processing parallelism at the
endpoints of the topology is bound to the message brokers and
how we can distribute the topics across the brokers. For middle
processing bolts, maximum parallelism is not bounded and
depends on the application. A Storm topology gets its messages
through the spouts. Same spout can run multiple instances in

parallel to read the messages coming from multiple devices
connected to the system. A spout always reads the messages
from a single channel of a device. If a processing algorithm
requires input from multiple channels, the topology must have
multiple spouts. A running instance of a Spout can connect to
multiple topics to read the messages, but all these topics must
be connected to a channel with the same name and driver. When
a spout needs to read from multiple topics, the topology
distributes the topics equally among the running instances of
the spout dynamically at the runtime. The message flow
through the Storm topology happens primarily using the driver
ids. The bolts that are communicating with the brokers know
about all the topics in the system and they can send a message
to an appropriate topic by selecting the correct topic using the
driver id.

RabbitMQ: There is a limit to the number of parallel spouts that
we can run due to the number of topics created per channel.
Following gives an upper bound on number of spouts we can
run when RabbitMQ brokers are used.

Shared Channels: 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 parallel 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
Exclusive Channels: 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 parallel 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Figure 4 RabbitMQ Exclusive Channels & Storm

In general we cannot do parallel reads from a topic due to the
ordering constrains. Figure 4 shows how exclusive channels
created by a driver named sensor_01 is connected to the storm
topology. Here, the storm topology runs only one instance for
each spout reading from channel_01 and channel_02. Because
we have 8 channels in 4 instances of the drivers, we need 8
topics in the broker. Because we only have 2 spouts and 2 bolts

zk.servers: ["server1:2181"]
zk.root: "/iot/sensors"
topology.name: "wordcount"
spouts:
 kinect_receive:
 broker: "rabbitmq"
 driver: "turtle"
 channel: "kinect"
 fields: ["frame", "driverID", "time"]
 properties:
 broker.zk.servers: "server1:2181"
 broker.zk.root: "/brokers"
bolts:
 count_send:
 broker: "rabbitmq"
 driver: "turtle"
 channel: "control"
 fields: ["control", "driverID", "time"]

http://topology.name/

in the topology, each spout is connected to 2 topics and each
bolt is communicating with 2 topics. Figure 5 shows the same
scenario with shared channels. In this case we only have 4
topics because the two drivers deployed in the same gateway
are using the same topics.

Figure 5 RabbitMQ Shared Channels & Storm

Figure 6 Kafka Shared Channels & Storm

Kafka: Kafka topics are more heavy weight than RabbitMQ.
For every topic in the system, Kafka has to create a log files and
index files in the file system for its partitions. If the replication
is enabled for fault tolerance, these files have to be replicated
in the Kafka cluster. Kafka also supports parallel reads for a
single topic. Because of these reasons we only support shared
channels for Kafka. In Kafka the number of spouts possible
depends on the number of partitions for a topic.

𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

Figure 6 shows topics distribution with Kafka for the same
scenario as in Figure 4. In the Figure 6 each Kafka topic has 2
partitions and we have 4 topics because the channels are shared.
Because each topic has two partitions, read and write
parallelism in this case is equal to the exclusive channel
scenario with RabbitMQ (Figure 5). But in practical scenarios
we will have less number of partitions than devices connected
per gateway. This will make the parallelism greater than the
shared channels with RabbitMQ but less than the exclusive
channels.

4. TurtleBot Follower Application

In order to explore possible configurations for the IoTCloud
framework, we have used the Microsoft Kinect[22] and
TurtleBot[23]. The Microsoft Kinect consists of an IR camera,
an RGB camera, an IR emitter, and several auxiliary features.
Our project was not concerned with the details of the hardware
but complete discussions of the Kinects specifications and

method of depth calculation are available. Currently, there are
numerous open-source projects and academic studies utilizing
the Kinect, due to the sensors affordability and host of
applications. In addition, a well-documented robot
incorporating the Kinect is already available, the TurtleBot by
Willow Garage. It is because of these many resources that the
Kinect and TurtleBot were chosen as a subject for the
development of a sensor to cloud processing framework.
In our application the TurtleBot follows a large target in front
of it by trying to maintain a constant distance to the target.
Compressed depth images of the Kinect camera are sent to the
cloud and the processing topology calculates a point cloud of
the TurtleBot’s field of view. The algorithm uses the point
cloud to calculate an average point, the centroid, of a
hypothetical box in front of the TurtleBot. Shifts in the centroid

Figure 7 TurtleBot

are calculated and command messages, in the form of vectors,
are sent back to the Turtlebot using its ROS[24] API. The
Turtlebot then actuates these vectors in order to maintain a set
distance from the centroid.

4.1 Reading Depth Frames from the Kinect: The initial step in
developing our application utilizing the Kinect depth camera
was finding a driver to read in the Kinect data stream. The
TurtleBot is operated with ROS, the open-source robotics
operating system, which has an available Kinect driver. The
ROS Kinect driver is built on OpenKinect’s libfreenect[25]
driver so in order to avoid any unnecessary overhead,
libfreenect was used pure. Libfreenect is an open-source Kinect
driver that provides a Java interface to both the IR and RGB
cameras. Methods are provided to start a depth stream and
handle frames. libfreenect was originally implemented in C++,
although a Java JNA wrapper is now available.

4.2 Compression: In the course of the project several
compression schemes were tested. In the early stages the LZ4,
Snappy[26] and JZlib Java compression libraries were tested.
Snappy achieved less compression but was faster than the other
two. Ultimately, we chose a two-stage compression process
using Mehrotra et al’s [27] inversion technique as the first stage
and Snappy as the second. Mehrotra et al’s[27] inversion
technique takes advantage of the error endemic to the depth
camera. The depth camera’s accuracy decreases proportional to
the inverse of the squared depth. Hence, multiple values may
be encoded to the same number without any loss in fidelity[27].
From using this inversion technique every two-byte disparity
can be compressed to one byte. It is worth noting however that
the inversion algorithm takes distance as an input, not disparity.
Mehrotra et al. achieve a startling 5ms compression time for
their whole 3-step process with little optimization. For the sake
of expediency, our project used an existing java compression
library (Snappy) rather than Mehrotra et al’s RLE/Golomb-
Rice compression.

The last decision left was whether to implement the prediction
strategy mentioned in Mehrotra et al. The prediction strategy
takes advantage of the heterogeneous nature of the depths of
objects. This translates into long runs of values in the depth
data. The prediction strategy is simple and converts any run into
a run of 0’s. For an RLE this will have a clear advantage but
when tested with Snappy the gain was negligible and thus not
worth the added computation. Ultimately, we were able to
achieve a compression ratio of 10:1 in a time of 10ms. This
compares favorably to Mehrotra et al’s 7:1 ratio in 5ms. The
data compression happens in the Laptop computer inside the
Turtlebot. After the compression the data is sent to a driver
application that runs in an IoTCloud gateway. This Gateway
relays the information to the cloud.

4.3 Calculation of Velocity: The Storm topology for our
scenario consists of 3 processing units. One spout receives the
data, a bolt un-compresses this data and calculate the velocity

vector required by the TurtleBot to move and last bolt send
these vectors to the TurtleBot.

All the literature indicates that the Kinect should stream each
frame as 307,200 11-bit disparity values, 2047 being sent to
indicate an unreadable point. But upon inspection of received
disparity values, the highest value observed was 1024. When
this value was treated as the unreadable flag, the depth map
displayed appeared normal. Depth shadows were rendered
correctly along with the minimum and maximum readable
distances. The code was then adjusted to expect only 10-bit
disparity values and everything functions normally. The full
range of the Kinect, 80 cm – 400 cm can be encoded with only
10-bit values. It is unclear whether the 10-bit values are a result
of the Java libfreenect wrapper or faulty code, but our programs
are fully functional and the issue was left unresolved. An
explanation of this phenomenon would no doubt prove
beneficial and may be a point of latter investigation.

The processing bolt creates a point cloud using the depth frames
it receives using an approximation technique mentioned in [28].
The algorithm defines a hypothetical box in the TurtleBot field
of view. The average point of this box is calculated and a
velocity vector is generated for TurtleBot to move towards or
away from this average point. This way TurtleBot always tries
to keep a fixed distance to an object in front of it.

4.4 Controlling the TurtleBot: The driver running in the
Gateway receives the velocity vectors from the processing
application. It then converts this vectors to a format that the
ROS API of the TurtleBot accepts. Ultimately the ROS API is
used by the driver to control the TurtleBot. We use a Java
version of ROS available for interfacing with ROS, which is
primarily written in Python.

5. Results & Discussion

We primarily focused on the latency of the system and the
scalability of the system. A series of experiments were
conducted to measure the latency and how well the system
performs under deployment of multiple of sensors. We used
FutureGrid as our cloud platform and deployed the setup on
FutureGrid OpenStack medium flavors. An instance of medium
flavor has 2 VCPUs, 4GB of memory and 40 GB of hard disk.
We run Storm Nimbus & ZooKeeper on 1 node, Gateways
Servers on 2 nodes, Storm Supervisors on 3 nodes and Brokers
on 2 nodes. Altogether our setup contained 8 Virtual Machines
with moderate configurations.

In order to test the latency of the system we deployed 4 driver
applications on the two Gateways that produce data at a
constant rate. This data were relayed through the two brokers
and injected to a Storm topology. Storm topology passes the
data back to the Gateways and it was running 4 spout instances
in parallel to get the data and 4 bolts in parallel to send the data
out. The round-trip latency was measured at the gateways for

each message. This setup was repeated for different message
sizes and message rates. We went up to 100 message per second
and increased the messages size up to 1MB. Each driver sent
200 messages and we got the average across all the drivers. We
tested the system with RabbitMQ and Kafka brokers. For
measuring the scalability we progressively increased the
number of drivers deployed in the gateways and observed how
many devices can be handled by the system.

The TurtleBot application is an application deployed on the
FutureGrid. We observe TurtleBot following a human in front
of it when this application was deployed. We tested the
TurtleBot application through the Indiana University computer
network and measured the latency observed.

5.1 Latency: Figure 6 shows the latency observed when running
the tests through a RabbitMQ server. Up to 200KB messages,
the latency was at a considerably lower value for all the
message rates we tested. At 300KB messages the latency started
to grow rapidly after message rate of 50.

Figure 6 Average Latency for different message sizes with RabbitMQ. The
different lines are for different message sizes in bytes.

Figure 7 shows the average latency observed with the Kafka
broker. We observed some drastically high latency values
frequently. The frequency of these values increased the average
latency considerably. Despite variations in latency, in average
the system was running with a considerably low latency with
Kafka. The Kafka broker is better suited to be run in machines
with high disk IO rates. We ran our tests on computation nodes
that doesn’t have very good IO performance. But there are other
performance results of Kafka that were done on high disk IO
nodes that shows some large variations in latency as well. In
our setup Kafka broker latency was started to increase much
more quickly than the RabbitMQ brokers.

5.2 Jitter: For most real time applications uniformity of the
latency over time is very important. Figure 8 shows the latency
variation in observed latencies for a particular message size and
rate with RabbitMQ broker. The variation in latency was also
minimal for message sizes up to 200KB. After that there was a

large variation in the latency. The Kafka latency variation is
very high compared to the RabbitMQ broker and we are not
including those results here.

Figure 7 Average Latency for different message sizes with Kafka. The
different lines are for different message sizes in bytes.

Figure 8 Latency standard deviation with different message sizes and message
rates for RabbitMQ. The different lines are for different message sizes in
bytes.

5.3 Scalability: In the test we did for observing the scalability
of the system we deployed 1000 mock drivers in two gateways
and measured the latency. These drivers can generate 100byte
messages at a rate of 5 message per second. We use low values
for both message rate and size so that we can make sure the
system doesn’t slow down due to large amount of data
produced. Figure 9 shows the latency with RabbitMQ. Latency
observed was little higher than the previous test we did with 4
drivers but it was consistent up to 1000 drivers and stayed
within reasonable range. The increase in latency can be
attributed to increased use of resources. At 1000 sensors the
latency started to increase. Because this test was done in shared
channel mode, only 2 spouts were actively reading from the 2
queues created.

We did the same test with the Kafka broker. Because we
partitioned each topic in to 4, all 4 spouts were actively reading
from the Topics. This is the advantage of having a Kafka like

distributed broker. The latency observed is shown in Figure 10.
As expected, there were big variations in the latencies observed.
We tried to remove these big numbers and draw the graph to
see how they affect the average latency. Figure 10 shows graphs
with values > 200 removed. We can observe that the average
latency is at a considerable low range after these very high
values are removed. Kafka is a relatively new broker under
development and we believe its development community is
working on fixing these issues with the broker and expect these
variations to reduce in future versions.

Figure 9 Latency with varying number of devices - RabbitMQ

Figure 10 Latency with varying number of devices – Kafka

All the tests were done for the best case scenario in terms of
latency of Storm based analysis. A real application would
involve much more complex processing and a complex DAG
structure for data processing. Those processing latencies will
add to the overall latency in real applications. Also in our tests
we sent and received the same message through the cloud. In
real applications messages generated after the processing is
usually minimal compared to the data messages. So we expect
a reduction in latency as well.
5.3 TurtleBot: Because of the latency requirements, we used the
RabbitMQ broker for the TurtleBot application. The TurleBot
was functioning properly under the latencies we have observed.

Figure 11 shows the latency values we observed for 1500
Kinect frames. The average latency fluctuated between 35ms
and 25ms. The TurtleBot was sending messages of size 60KB
in a 20 message/sec rate. The best case latency without any
processing for such messages is around 10ms. The network
latency and the processing is adding around another 25ms to the
latency. The processing includes both compression and
decompression time of Kinect frames. There were some outliers
that went to values such as 50ms. These were not frequent but
can be seen occurring with some high probability. We could not
recognize any patterns in such high latency observations and
some of the reasons for these increases can be network
congestions, Java garbage collections and other users using the
same network and resources in FutureGrid. We observed,
average latency of 33.26 milliseconds and standard deviation of
2.91.

Figure 11 Latency observed in Turtlebot application

6. Conclusions

In this paper we introduced a scalable, distributed architecture
for connecting devices to cloud services and processing data in
real time. Further we discussed about a robotics application
built on top of this framework. We investigated how to scale
the system with topic based publish-subscribe messaging
brokers and a distributed stream processing engine in the cloud.
We measured the performance characteristics of the system and
showed that we can achieve low latencies with moderate
hardware in the cloud. Also the results indicate we can scale the
architecture to hundreds of connected devices. Because of the
low latencies, framework with the RabbitMQ broker is suitable
for applications with real time requirements. Applications
involving massive amount of devices without strict latency
requirements can benefit from the scalability of Kafka brokers.
The results also indicate that reasonably uniform behavior in
message processing latencies can be maintained which is
important factor for modeling most problems.

7. Future Work

As our platform evolves, we would like to extend our system to
Cloud DIKW applications which involve both real time analysis
and batch analysis. A primary concern for real time applications

is the recovery from faults. A robot guided by a cloud
application should work amidst the application level failures and
middleware level failures. We would like to explore different
fault tolerant techniques for making our platform more robust.
The discovery of devices is coarse grained at the moment and
we would like to enable finer grained discovery of devices at the
cloud processing layer. For example selecting devices that meet
specific criteria like geographical locations for processing is
important for some applications. We observed that there are
variations in the latency observed in our applications. In some
applications it is required to contain the processing latency with
hard limits. It will be interesting to look at methods for enabling
such guarantees for our applications. Simultaneously we are
working to build new robotics applications based on our
platform.

8. Acknowledgement

The authors would like to thank the Indiana University
FutureGrid team for their support in setting up the system in
FutureGrid NSF award OCI-0910812. This work was partially
supported by AFOSR award FA9550-13-1-0225 “Cloud-Based
Perception and Control of Sensor Nets and Robot Swarms”.

References

1. Armbrust, M., et al., A view of cloud computing.

Communications of the ACM, 2010. 53(4): p. 50-58.
2. Eugster, P.T., et al., The many faces of publish/subscribe.

ACM Computing Surveys (CSUR), 2003. 35(2): p. 114-
131.

3. Abadi, D.J., et al. The Design of the Borealis Stream
Processing Engine. in CIDR. 2005.

4. Gedik, B., et al. SPADE: the system s declarative stream
processing engine. in Proceedings of the 2008 ACM
SIGMOD international conference on Management of
data. 2008. ACM.

5. Neumeyer, L., et al. S4: Distributed stream computing
platform. in Data Mining Workshops (ICDMW), 2010
IEEE International Conference on. 2010. IEEE.

6. Anderson, Q., Storm Real-time Processing Cookbook.
2013: Packt Publishing Ltd.

7. Hassan, M.M., B. Song, and E.-N. Huh. A framework of
sensor-cloud integration opportunities and challenges. in
Proceedings of the 3rd international conference on
Ubiquitous information management and communication.
2009. ACM.

8. Souto, E., et al., Mires: a publish/subscribe middleware for
sensor networks. Personal and Ubiquitous Computing,
2006. 10(1): p. 37-44.

9. Krishnamurthy, S. TinySIP: Providing seamless access to
sensor-based services. in Mobile and Ubiquitous Systems-
Workshops, 2006. 3rd Annual International Conference
on. 2006. IEEE.

10. Hall, C.P., A. Carzaniga, and A.L. Wolf, DV/DRP: A
content-based networking protocol for sensor networks.

2006, Technical Report 2006/04, Faculty of Informatics,
University of Lugano.

11. Hunkeler, U., H.L. Truong, and A. Stanford-Clark. MQTT-
S—A publish/subscribe protocol for Wireless Sensor
Networks. in Communication Systems Software and
Middleware and Workshops, 2008. COMSWARE 2008.
3rd International Conference on. 2008. IEEE.

12. Dash, S.K., et al., Sensor-cloud: assimilation of wireless
sensor network and the cloud, in Advances in Computer
Science and Information Technology. Networks and
Communications. 2012, Springer. p. 455-464.

13. Alamri, A., et al., A survey on sensor-cloud: architecture,
applications, and approaches. International Journal of
Distributed Sensor Networks, 2013. 2013.

14. Videla, A. and J.J. Williams, RabbitMQ in action. 2012:
Manning.

15. Kreps, J., N. Narkhede, and J. Rao. Kafka: A distributed
messaging system for log processing. in Proceedings of the
NetDB. 2011.

16. Hunt, P., et al. ZooKeeper: Wait-free Coordination for
Internet-scale Systems. in USENIX Annual Technical
Conference. 2010.

17. Snyder, B., D. Bosnanac, and R. Davies, ActiveMQ in
action. 2011: Manning.

18. Goodhope, K., et al., Building LinkedIn's Real-time
Activity Data Pipeline. IEEE Data Eng. Bull., 2012. 35(2):
p. 33-45.

19. Vinoski, S., Advanced message queuing protocol. IEEE
Internet Computing, 2006. 10(6): p. 87-89.

20. Agarwal, A., M. Slee, and M. Kwiatkowski, Thrift:
Scalable cross-language services implementation. 2007,
Tech. rep., Facebook (4 2007), http://thrift. apache.
org/static/files/thrift-20070401. pdf.

21. Fox, G., et al., FutureGrid—A reconfigurable testbed for
Cloud, HPC and Grid Computing. Contemporary High
Performance Computing: From Petascale toward Exascale,
Computational Science. Chapman and Hall/CRC, 2013.

22. Zhang, Z., Microsoft kinect sensor and its effect.
MultiMedia, IEEE, 2012. 19(2): p. 4-10.

23. Garage, W., TurtleBot. Website: http://turtlebot. com/last
visited, 2011: p. 11-25.

24. Quigley, M., et al. ROS: an open-source Robot Operating
System. in ICRA workshop on open source software. 2009.

25. openkinect. Open Kinect. 2014 [cited 2014; Available
from: http://openkinect.org/.

26. Google. snappy. 2014 [cited 2014; Available from:
https://code.google.com/p/snappy/.

27. Mehrotra, S., et al. Low-complexity, near-lossless coding
of depth maps from kinect-like depth cameras. in
Multimedia Signal Processing (MMSP), 2011 IEEE 13th
International Workshop on. 2011. IEEE.

28. openkinect. Imaging Information. 2014; Available from:
http://openkinect.org/wiki/Imaging_Information.

http://thrift/
http://turtlebot/
http://openkinect.org/
http://openkinect.org/wiki/Imaging_Information

	A Framework for Real-Time Processing of Sensor Data in the Cloud
	1. Introduction
	2. Related Work
	3. IoTCloud Architecture
	4. TurtleBot Follower Application
	5. Results & Discussion
	6. Conclusions
	7. Future Work
	8. Acknowledgement
	References

