A Framework for Real-Time processing of Device Data in the Cloud
Supun Kamburugamuve
skamburu@indiana.edu
Leif Christiansen
grindvald@gmail.com
Geoffrey Fox
gcf@indiana.edu

Abstract

The availability of internet connections and low manufacturing costs have led to a boom in smart objects, devices with a tripartite construction consisting of a CPU, memory storage, and a wireless connection and they are equipped with sensors and actuators. There is a wide range of such devices ranging from smart phones to home appliances to Industrial Sensors and Robots etc. The use of such devices is widespread in all the fields and usages are expected to grow exponentially in the future. For these devices, central data processing has been shown to be advantageous due to numerous factors: the ability to easily draw from vast stores of information, efficient allocation of computing resources and a proclivity for parallelization. Because of these factors, most devices are better off doing part of the data processing locally and offloading rest of the processing to central servers. Cloud has emerged, as the data center of choice for processing large amounts of data and it is natural to connect these devices to cloud services. In this paper we present IoTCloud; a generic scalable platform for connecting large number of devices to cloud services for real time processing of data. We also present a robotics application developed using above framework and measures the characteristics of the system and the application. As our cloud environment we use FutureGrid(Fox, von Laszewski et al. 2013), which is a geographically distributed and heterogeneous cloud test bed.
Introduction

The number of devices being connected to the Internet is expected to grow exponentially in the future. It is estimated that 30 to 50 billion devices will be connected to the Internet by 2020. These devices will range from complex robots to smart phones to small RFID and temperature sensors. The devices will be used to improve Transportation, Agriculture, Manufacturing, Education, production and consumption of energy, homes etc. It is almost impossible to imagine the full range of applications for such a wide range of devices and the data produced by them.

Robots are a special class of devices that will be connected to the Internet. Already there are affordable robots that can improve our lives such as IRobot Roomba, a robot that can clean the floor. Such robots can improve the lives of people in many different ways. For example Amazon and Google are researching and developing platforms for delivering consumer products using Drones. Most of these robots have a limited processing power built in to their systems and they can generate a large amount of data. HD Video stream from a Drone equipped with a camera is a good example of a high volume data stream. How much processing has to be done locally and remotely depends on the particular application.

The large amount of data produced in such devices makes the cloud an ideal choice as the computational platform for hosting data processing applications. Cloud computing(Armbrust, Fox et al. 2010) refers to both applications delivered as services over the Internet and the hardware and system software in the datacenters that provide those services. Cloud computing enables computing as a utility and is gradually becoming the standard for computation allowing the systems and users to use Platform as a Service (PaaS), Infrastructure as a Service (IaaS), and Software as a Service (SaaS). The computational nodes are provisioned, configured and reconfigured dynamically in the cloud. These machines can be in the form of virtual machines or physical machines. Cloud computing has being identified as a key enabling technology for the Internet of Things applications because of the efficiency and the agility.

In order to process the data generated by the devices in a Cloud environment it has to be transmitted from the devices to the cloud in an efficient and scalable manner. The communication between cloud applications and the devices is essentially based on events, which suggests that the traditional request/response approach is not appropriate. For example when using request response a device requiring real time control has to poll the applications continuously. Continuous polling increases the latency and network traffic. Transmission of events is well supported by the publish-subscribe messaging(Eugster, Felber et al. 2003) where a publisher makes information available to subscribers in an asynchronous fashion. Over the time Publish-Subscribe messaging has emerged as a distributed integration paradigm for deployment of scalable and loosely coupled systems. Subscribers have the ability to express their interest in an event, or a pattern of events, and are subsequently notiﬁed of any event, generated by a publisher, which matches their registered interest. An event is asynchronously propagated to all subscribers that registered interest in that given event and subscribers. Publish-Subscribe messaging decouples the message producers and consumers in the dimensions of time, space and synchronization. The decoupling favors the scalability of the message producing and consuming systems. Because of these features publish-subscribe messaging is being proposed as a great fit for connecting the devices to cloud applications.

We have developed a platform called IoTCloud, which is a distributed software platform capable of connecting the devices to the cloud services. The devices connected to the IoTCloud can communicate with the data processing applications hosted in cloud. IoTCloud uses publish-subscribe messaging to transfer data between the devices and the cloud services and some of the devices connected can produce large amount of data in a high rate and expect real time processing of that data. Since IoTCloud is at the middle of the path between devices and the cloud based applications, the overhead introduced in transferring the data from the devices to the cloud has to be minimum. The system has to scale well for large number of devices producing data at a high rate. Even though the platform is general enough to support any type of devices we mainly focus on Robotics applications because they present more strict requirements on the platform like real time processing of data.

First we will describe the related work in this area and then explain the architecture of our framework and the robotics application we have developed. Next the series of tests we have done to evaluate the system is presented and the observations are discussed. Finally the paper talks about the conclusions and the future work.
Related Work

To best of our knowledge frameworks for connecting devices to cloud services for real time processing cannot not be found in the literature. Hassan(Hassan, Song et al. 2009) is a content based publish/subscribe framework for connecting the sensor data to cloud services. Content based pub-sub allows greater flexibility for the application designers than topic based pub-sub systems. But content based pub-sub systems usually involves higher overhead than topic based pub-sub systems because the brokers has to inspect message content. Also content based pub-sub brokers are not popular and are not readily available for development.

Mires(Souto, Guimarães et al. 2006), TinySIP(Krishnamurthy 2006), DV/DRP(Hall, Carzaniga et al. 2006) are all publish/subscribe messaging middleware for WSNs. They address the different issues in connecting WSNs and communicating with sensors. MQTT-S(Hunkeler, Truong et al. 2008) is an open topic-based pub-sub protocol defined for transferring data from sensors. The protocol enables data transfer between sensors and traditional networks. In our work we assume that sensor data is available to be transported to cloud services and we handle transferring gathered data from devices to cloud services. For example a device connected to our system can send the data via a dedicated communication channel, public Internet etc. Also many devices can be connected in WSNs using above mentioned protocols and brokers and our platform can transfer this data to cloud services for processing.

The architecture for integrating sensors and cloud services has being discussed in the literature(Dash, Sahoo et al. 2012, Alamri, Ansari et al. 2013). In these reference architectures the sensors are connected to nodes and these nodes transfer the sensor data to cloud services via pub-sub messaging. Our architecture is similar to what is described in this work but we are targeted towards building a framework for real time processing of data in the cloud.
IOTCloud Architecture
We have developed a scalable distributed cloud based platform for processing the robotics data. Our architecture consists of three main layers.

1. Gateway Layer
2. Publish-Subscribe messaging layer
3. Cloud based big data processing layer

The overall architecture of the platform is shown in Figure 1. We consider a device as a set of sensors and actuators. User develops a driver that can communicate with the device and deploys it in a gateway. This driver doesn’t always have to physically connect to the device and get the data from it. It can connect to the device via a TCP connection or through a message broker and get the data from it. The data generated by the driver application is sent to the cloud-processing layer using publish-subscribe messaging brokers. The cloud processing layer process the data and send control messages back to the driver again using the message brokers. The driver converts the information to a format that suites the device and sends to the device.

[image:]
Figure 1 IOTCloud Architecture
[bookmark: _GoBack]Gateway
Drivers are deployed in gateways and gateways are responsible for managing the drivers. There can be multiple Gateways in the system and each gateway has a unique id. A Gateway master controls the gateways by issuing commands to deploy un-deploy drivers etc. A Gateway is connected to multiple message brokers and these brokers can be in a cluster configuration. By default the platform supports RabbitMQ, ActiveMQ and Kafka message brokers. Gateways manage the connections to the brokers and handle the load balancing of the sensor data to the brokers. Gateways update the master about the drivers deployed in it and status of the gateways. Master stores this information in a ZooKeeper cluster.
Driver
The driver is the bridge between a device and the cloud applications. Driver converts the data coming from the device to a format that the cloud applications expect. Also the driver converts the commands coming from the cloud applications to commands that the device understands. A driver has a name and a set of communication channels. When a driver is deployed, the running instance gets an instance id. This instance id is used for controlling the driver after the deployment. Same driver can be deployed multiple times and each of the instances will get a unique id. A driver can have multiple communication channels and each channel within a driver has a unique name. A communication channel connects the driver to publish-subscribe messaging brokers. When a driver is deployed, its information is saved in ZooKeeper. The default structure of driver information in ZooKeeper is

/iot/sensors/[driver_name]/[driver_instance_id]/[channel_name]

The ZNode with the driver instance id contains the information about the driver like its status, metadata etc. The ZNodes with channel name contains the information about the channels.

The framework allows shared and exclusive channels to be created. An exclusive channel can give faster communication between the drivers and the cloud processing. But in large-scale deployment of drivers an exclusive channel can result in large number of topics created in the brokers. Some applications don’t have strict latency requirements and can use shared communication channels consuming less system resources.
Brokers
The platform specifically focuses on Topic-Based publish-subscribe brokers rather than content-based publish-subscribe brokers. We chose Topic based brokers because of several reasons. 1. Stable, open source topic based brokers are available 2. Topic based brokers are simple to use and configure 3. The overhead introduces by the broker is minimal compared to content based brokers. For this project the most important factors were 1 and 3, because our applications require low latency and topics based brokers were the once readily available for use. The messaging layer of out platform needs to preserve the message ordering. This means multiple consumers cannot consume messages coming from the same driver.

There are many open source brokers available that fits our needs for the messaging infrastructure. Such brokers includes ActiveMQ, RabbitMQ(Videla and Williams 2012), Kafka(Kreps, Narkhede et al. 2011), (Goodhope, Koshy et al. 2012) Kestrel, HonertMQ etc. From these brokers ActiveMQ, RabbitMQ and Kafka are widely used topic based publish subscribe brokers. The preliminary studies shows that ActiveMQ and RabbitMQ have identical functionalities’ for our purposes and latter is capable of handling more load with less overhead. So we decided to go with RabbitMQ. Kafka broker has a very good clustering capabilities and it can handle parallel consumer reads for the same Topic. So we decided to support both these brokers in our platform.

Each communication channel created in a driver is connected with a topic created in the message broker. The framework supports two mappings of channels to topics hence creating two types of channels. In the first type each channel is mapped to a unique queue in the broker. We call this type of channels exclusive channels. In the other type of channels, set of channels share the same topic in the broker. This type of channels are called shared channels. At the moment we use a very simple rule to map the channels to a shared queue. We map the same channel from multiple instances of a driver deployed in one gateway to a single topic. This means following two holds for shared channels and exclusive channels.

For a shared channel the corresponding topic name is of the format, gateway_id.driver_name.queue_name. For an exclusive channel the topic name is of the format gateway_id.driver_name.driver_id.queue_name.
RabbitMQ
RabbitMQ is a message broker primarily supporting the Advanced Message Queuing Protocol (AMQP). Even though the core of the RabbitMQ is designed to support AMQP protocol, the broker has being extended to support other message protocols like STOMP, MQTT etc. RabbitMQ is a written in Erlang programing language and support low latency high throughput messaging. RabbitMQ has a rich API and architecture for developing consumers and publishers. The RabbitMQ topics are easy to create and manage using its APIs. Those topics are light weight and can be created without much burden to the broker. We allow both shared channels and exclusive channels to be created for RabbitMQ. The metadata about the messages are sent using RabbitMQ message headers. The metadata includes sensor id, gateway id and custom properties.
Kafka
Kafka is publish-subscribe message broker backed by a commit log. The messages sent by the producers are appended to a commit log and the consumers read the messages from this commit log. Kafka implements its own message protocol and doesn’t support standard protocols like AMQP or MQTT. At the core of Kafka messaging is the concept of a Topic. A topic is divided into multiple partitions and a message is sent to a single partition. In our platform the partition for a message is chosen using a key accompanying a message. So messages with the same key goes to the same partition. Consumers consume messages from partitions. Partitions of a single topic can spread across a cluster of Kafka servers. Furthermore a single partition is replicated in a Kafka cluster for reliability. Kafka guarantees ordering of messages in a partition and doesn’t guarantee ordering across partitions. Because a topic consists of multiple partitions consumers can read from the same topic in parallel without affecting the message ordering for a single message key. In this platform we use the driver id as the key for a message.

In IoTCloud we need to send metadata with a message such as the driver id, site id and some properties. Because Kafka only supports byte messages without any headers we use a Thrift based message format to send the metadata about the message. Because we are using driver id as the key, messages belonging to a single driver instance will always be in one partition and the consumer of that partition can consume messages in the order they are produced. The platform only support shared channels for Kafka. Because Kafka topics can be partitioned we will have the parallel read capability and write capabilities for multiple drivers.
Cloud Processing
As the primary cloud-processing framework we are using Apache Storm, which is a distributed stream processing engine. Storm provides a DAG structure for processing the streaming data coming from the devices. The storm framework acts as a gateway to the data coming from the robots to the cloud. Storm can be used to process the data and send responses back immediately or it can be used to do some pre-processing of the data and store them for later processing by batch engines like Apache Hadoop. We use FutureGrid as our cloud platform for deploying the Storm Cluster. Futuregrid has an OpenStack based could implementation and we provision VM images using the OpenStack tools.

The real time data processing algorithms are written as Storm topologies. A Storm topology is a set of Spouts and Bolts written with the data processing algorithm and connected in a dag like structure. The components of this dag can be run in parallel in different computation nodes. Data enters a topology through Spouts and the processing happens in bolts. Pub-sub is a common pattern for ingesting data in to a Storm topology. Usually the last bolts in the topology DAG write the results to a DB or send the results to remote nodes using pub-sub messaging.

To ease the development of such topologies we allow the external communication points of a Storm Topology to be defined in a configuration file. Here is an example of such configuration file for a Kafka based topology. The topology has two external communication channels. One is the sentence_receive spout where we get the input data from devices and other is the count_send where we send output information back to the sensors. We can use the above configuration to build the outer layer of a topology automatically. We need to connect the middle bolts that do the processing using Java programming.

zk.servers: ["localhost:2181"]
zk.root: "/iot/sensors"
topology.name: "wordcount"
spouts:
 sentence_receive:
 broker: "kafka"
 driver: "wordcount"
 channel: "sentence"
 fields: ["sentence", "sensorID", "time"]
 properties:
 broker.zk.servers: "localhost:2182=1"
 broker.zk.root: "/brokers"
bolts:
 count_send:
 broker: "kafka"
 driver: "wordcount"
 channel: "count"
 fields: ["count", "sensorID", "time"]
 properties:
 metadata.broker.list: "localhost:9090"

Discovery
Because Storm is a parallel processing framework, it requires coordination among the processing units. For example when a communication channel is created in the broker for a device the parallel units responsible for communicating with that channel should pick a leader because multiple units reading from the same channel can lead to data duplication and out of order processing. Also the distributed processing units should be able to detect when the drivers come online and go offline. To adapt to such a distributed dynamic processing environment we need discovery and coordination. We use Apache ZooKeeper(Hunt, Konar et al. 2010) for achieving both. When drivers come online the information about the drivers is saved in the ZooKeeper. The discovery component discovers and connects this information to the cloud processors dynamically at the runtime. This allows the processing layers to automatically distribute the load and adjust accordingly to the changes in the data producer side.

A storm Topology is deployed with a number of parallel Spouts and Bolts that send and receive data from the pub-sub brokers. We can change the parallelism of a Spout or Bolt at the runtime as well. When a topology is deployed its external communication components (Spout and Bolts) doesn’t know about the physical addresses of the topics or how many topics it has to listen to. So at the very beginning the topology doesn’t have any listeners or message senders active. The topology knows that it has to exchange messages with a set of drivers deployed in the gateways. The topology has information about the ZooKeeper and the drivers that it is interested in. The topology uses this information to dynamically discover the topics that it has to listen and add those consumers and producers to the running topology.
Processing Parallelism
The processing parallelism is bound to the message brokers and how we can distribute the topics across the brokers. A Storm topology gets its messages through the spouts. Same spout can run multiple instances in parallel to read the messages coming from multiple devices connected to the system. A spout always reads the messages from a single channel of a device. If a processing algorithm requires input from multiple channels, the topology must have multiple spouts. A running instance of a Spout can connect to multiple topics to read the messages, but all these topics must be connected to a channel with the same name and driver. When a spout needs to read from multiple topics, the topology distributes the topics equally among the running instances of the spout dynamically at the runtime. The message flow through the Storm topology happens primarily using the driver ids. The bolts that are communicating with the brokers know about all the topics in the system and they can send a message to an appropriate topic by selecting the correct topic using the driver id.
RabbitMQ
There is a limit to the number of parallel spouts that we can run due to the number of topics created per channel. Following gives an upper bound on number of spouts we can run when RabbitMQ brokers are used.

Exclusive Channels:
We cannot do parallel reads from a topics because of the ordering constrains.

[image:]
Figure 2 RabbitMQ Exclusive Channels & Storm
[image:]
Figure 3 RabbitMQ Shared Channels & Storm
Kafka
Kafka topics are more heavy weight than RabbitMQ. For every topic in the system Kafka has to create a log files and index files in the file system for its partitions. If the replication is enabled for fault tolerance these files have to be replicated in the Kafka cluster. Kafka also supports parallel reads for a single topic. Because of these reasons we only support shared channels for Kafka. In Kafka the number of spouts possible depends on the number of partitions for a topic.

[image:]
Figure 4 Kafka Shared Channels & Storm

TurtleBot Follower Application

In order to explore possible configurations for the IoTCloud framework, we have used the Microsoft Kinect(Zhang 2012) and TurtleBot(Garage 2011). The Microsoft Kinect consists of an IR camera, an RGB camera, an IR emitter, and several auxiliary features. Our project was not concerned with the details of the hardware but complete discussions of the Kinects specifications and method of depth calculation are available. Currently, there are numerous open-source projects and academic studies utilizing the Kinect, due to the sensors affordability and host of applications. Not only this, but a well-documented robot incorporating the Kinect is already available, the TurtleBot by Willow Garage. It is because of these many resources that the Kinect and TurtleBot were chosen as a subject for the development of a sensor to cloud processing framework.
[image: https://lh6.googleusercontent.com/42nr2G6g7n9P6LGxU33MVLjM-1JXmoWVqIbfPmzcXbolWHrMGkB-LORPLmbhThbMz4R7pNB5-LwsN_JC4KAhNDi9ceDXpXjxEoAq3gm_0kvMmhfWw_yy2-3eKMJUuPfsgzS8]
The TurtleBot follows a target in-front of it by trying to maintain a constant distance to the target. The depth images of the Kinect camera is sent to the cloud and the Storm topology calculates a point cloud of the TurtleBot’s field of view. The algorithm running in Storm uses the point cloud to calculate an average point, the centroid, of a hypothetical box in front of the TurtleBot. Shifts in the centroid are calculated and command messages, in the form of vectors, are sent back to the Turtlebot. The Turtlebot then actuates these vectors in order to maintain a set distance from the centroid.
Reading Distance from the Kinect
The initial step in developing our application utilizing the Kinect depth camera was finding a driver to read in the Kinect data stream. The TurtleBot is operated with ROS, the open-source robotics operating system, which has an available Kinect driver. The ROS Kinect driver is built on OpenKinect’s libfreenect(openkinect 2014) driver so in order to avoid any unnecessary overhead, libfreenect was used pure. Libfreenect is an open-source Kinect driver that provides a Java interface to both the IR and RGB cameras. Methods are provided to start a depth stream and handle frames. Libfreenect was originally implemented in C++, although a Java JNA wrapper is now available.

All the literature indicates that the Kinect should stream each frame as 307,200 11-bit disparity values, 2047 being sent to indicate an unreadable point. But upon inspection of received disparity values, the highest value observed was 1024. When this value was treated as the unreadable flag, the depth map displayed appeared normal. Depth shadows were rendered correctly along with the minimum and maximum readable distances. The code was then adjusted to expect only 10-bit disparity values and everything functions normally. The full range of the Kinect, 80 cm – 400 cm can be encoded with only 10-bit values. Further contributing to this imbroglio, the functionally equivalent libfreenect example in C++ uses 11-bit disparity values. Thus, the Kinect does appear capable of sending 11-bit disparity values. It is unclear whether the 10-bit values are a result of the Java libfreenect wrapper or faulty code, but our programs are fully functional and the issue was left unresolved. An explanation of this phenomenon would no doubt prove beneficial and may be a point of latter investigation.
Compression
In the course of the project several compression schemes were tested. In the early stages the LZ4, Snappy(Google 2014) and JZlib Java compression libraries were tested. Snappy, the better of the two in terms of time, achieved less compression but was faster than the other two. Ultimately, we chose a two-stage compression process using Mehrotra et al’s(Mehrotra, Zhang et al. 2011) inversion technique as the first stage and Snappy as the second. Mehrotra et al’s(Mehrotra, Zhang et al. 2011) inversion technique takes advantage of the error endemic to the depth camera. The depth camera’s accuracy decreases proportional to the inverse of the squared depth. Hence, multiple values may be encoded to the same number without any loss in fidelity(Mehrotra, Zhang et al. 2011). Just from using this inversion technique every two-byte disparity can be compressed to one byte. It is worth noting however that the inversion algorithm takes distance as an input, not disparity. Thus additional computation is required in the compression step, including converting from a byte array to an integer array and back. Despite this, Mehrotra et al. achieve a startling 5ms compression time for their whole 3-step process with little optimization. For the sake of expediency, our project used an existing java compression library (Snappy) rather than Mehrotra et al’s RLE/Golomb-Rice compression.

The last decision left was whether to implement the prediction strategy mentioned in Mehrotra et al. The prediction strategy takes advantage of the heterogeneous nature of the depths of objects. This translates into long runs of values in the depth data. The prediction strategy is simple and converts any run into a run of 0’s. For an RLE this will have a clear advantage but when tested with Snappy the gain was negligible and thus not worth the added computation.

Ultimately, we were able to achieve a compression ratio of 10:1 in a time of 10ms. This compares favorably to Mehrotra et al’s 7:1 ratio in 5ms. But the Huffman coding is not well suited to this data, since the range is small and each value has a high probability of occurring, especially 0. Therefore, using an encoding better suited to such a distribution, such as an RLE, could potentially improve both the compression ratio and time.
Calculation of Velocity
The Storm topology for our scenario consists of 3 processing units. One spout receives the data, a bolt un-compresses this data and calculate the vectors vector required by the TurtleBot to move and last bolt send these vectors to the TurtleBot. The application creates a point cloud using the depth frames it receives. There are techniques for creating a point cloud from the depth data. We are using an approximation mentioned in(Hunt, Konar et al. 2010) to create the point cloud. The application defines a virtual box in the TurtleBot field of view. The average point of this box is calculated and a velocity vector is generated for TurtleBot to move towards or away from this average point. This way TurtleBot always tries to keep a fixed distance to an object in front of it.
Controlling the TurtleBot
The ROS API is used to control the TurtleBot. The velocity vectors coming from the cloud applications are converted to commands that the TurtleBot understands and sent to the TurtleBot. We use a Java version of ROS available for interfacing with ROS, which is primarily written in Python.
Experiments & Results
We primarily focused on the latency of the system and the scalability of the system. Series of experiments were conducted to measure the latency and how well the system performs under deployment of multiple of sensors. We used Futuregrid(Fox, von Laszewski et al. 2013) as our cloud platform and deployed the setup on Futuregrid openstack medium flavors. An instance of medium flavor has 2 VCPUs, 4GB of memory and 40 GB of hard disk.

	Server
	No of Instances

	Storm Nimbus and ZooKeeper
	1

	Gateway Servers
	2

	Storm Supervisors
	3

	Broker Nodes
	2

For testing the latency we deployed 4 driver applications on the two Gateways that produce data at a constant rate. This data were relayed through the two brokers deployed and injected to a Storm topology. The Storm topology passes the data back to the Gateways and it was running 4 spout instances in parallel to get the data and 4 bolts in parallel to send the data out. The Storm topology was running in 3 nodes in the Cloud. The round-trip latency was measured at the gateways for each message. This setup repeatedly done for different message sizes and message rates. We tested the system with RabbitMQ and Kafka brokers. For measuring the scalability we progressively increased the number of drivers deployed in the gateways and observed how may devices be able to be handled by the system.

The TurtleBot application is a real application deployed on the FutureGrid. We could observe that the TurtleBot smoothly following a human in front of it when this application was deployed. We tested the TurtleBot application through the Indiana University network and measured the latency observed.

Figure 5 shows the latency observed when running the tests through RabbitMQ server. Up to 200KB messages, the latency was at a considerably lower value for all the message rates we tested. At 300KB messages the latency started to grow rapidly. Figure 6 shows the latency variation in the observed latencies for a particular message size and rate. The variation in latency was also minimal for message sizes up to 200KB. After that there is a large variation in the latency.

Figure 7 shows the average latency observed while running through the Kafka broker. The Kafka broker had some ups and downs in the latency. In average the system was running with a considerably low latency. But we observed some drastically high values frequently. The frequency of these values increases the average latency considerably. The Kafka broker is better suited to be run in machines with very high disk IO rates. We ran our tests on computation nodes that doesn’t have very good IO performance. But there are other performance results of Kafka that were done on high disk IO nodes that shows some large variations in latency as well . In our setup Kafka broker latency was started to increase far more quickly than the RabbitMQ brokers.

Figure 5

Figure 6

Figure 7
Scalability

In the test we did for observing the scalability of the system we deployed 1000 mock drivers in two gateways and measured the latency. These drivers can generate 100byte messages at a rate of 5 message per second. We use very low values for both message rate and size so that we can make sure the system doesn’t slow down due to large amount of data produced. For RabbitMQ the latency observed was little higher than the previous test we did with 4 drivers but it was consistent for the 1000 drivers and stayed within reasonable range. The increase in latency can be attributed to increased use of resources. At 1000 sensors the latency started to increase. Because this test was done in shared channel mode, only 2 spouts were actively reading from the 2 queues created.

For Kafka we did the same test. Because we partitioned each topic in to 4, all 4 spouts were actively reading from the Topics. This is the advantage of having Kafka like distributed broker. The latency observed is shown in Figure 9. As expected the there was a big variations in the latencies observed. We tried to remove these big numbers and draw the graph to see how they affect the average latency. Figure 9 shows graphs with values > 200 removed. We can observe that the average latency is at a considerable low range after these very high values are removed.

Figure 8

Figure 9
TurtleBot

Because of the latency requirements, we used the RabbitMQ broker for the TurtleBot application. The TurleBot was functioning properly under the latencies we’ve observed. Figure 10 show the latency values we observed for 1500 Kinect frames. In average latency fluctuated between 35ms and 25ms. There were some outliers that went to like 50ms. These were not frequent but can be seen occurring with some high probability. We couldn’t recognize any patterns in such high latency observations and some of the reasons for these increases include network congestions, Java garbage collections.

Average Latency: 33.26
Standard Deviation: 2.91

Figure 10
Conclusions

The paper introduces a scalable distributed architecture for connecting device data to cloud services and process in real time. The paper also talks about a robotics application built on top of this framework. We investigated how to scale the system with Topic Based publish-subscribe brokers and a distributed stream processing engine in the cloud. We measured the performance characteristics of the system and showed that we can achieve reasonable latencies for doing processing at remote locations for these devices. Also the results indicate we can scale the architecture to hundreds of connected applications. We believe our architecture is with RabbitMQ broker is suited for applications with very low latency requirements. Applications involving massive amount of devices and doesn’t have very strict latency requirements can benefit from the scalability of Kafka brokers. The cloud based robotics applications introduce new challenges for middleware that connects the robots to the cloud services due to the volume of data, real time requirements and fault tolerance.

Future Work

A primary concern for real time applications is the recovery from faults. A robot guided by a cloud application should mask the application level failures and middleware level failures from the robot as much as possible. We would like to explore different fault tolerant techniques for making our platform more robust. The discovery is of devices is coarse grained at the moment and we would like to enable more fine grained discovery of devices at the cloud processing layer. For example selecting devices that meet specific criteria like geographical locations for processing is important for some applications. We observed that there are variations in the latency observed in our applications. In some applications it is required to have processing latency with hard upper bounds. It will be interesting to look at methods for enabling such guarantees for our applications. We would build new robotics applications for our framework and we are working on a Drone based application.

References

[bookmark: _ENREF_1]Alamri, A., et al. (2013). "A survey on sensor-cloud: architecture, applications, and approaches." International Journal of Distributed Sensor Networks 2013.
	
[bookmark: _ENREF_2]Armbrust, M., et al. (2010). "A view of cloud computing." Communications of the ACM 53(4): 50-58.
	
[bookmark: _ENREF_3]Dash, S. K., et al. (2012). Sensor-cloud: assimilation of wireless sensor network and the cloud. Advances in Computer Science and Information Technology. Networks and Communications, Springer: 455-464.
	
[bookmark: _ENREF_4]Eugster, P. T., et al. (2003). "The many faces of publish/subscribe." ACM Computing Surveys (CSUR) 35(2): 114-131.
	
[bookmark: _ENREF_5]Fox, G., et al. (2013). "FutureGrid—A reconfigurable testbed for Cloud, HPC and Grid Computing." Contemporary High Performance Computing: From Petascale toward Exascale, Computational Science. Chapman and Hall/CRC.
	
[bookmark: _ENREF_6]Garage, W. (2011). "TurtleBot." Website: http://turtlebot. com/last visited: 11-25.
	
[bookmark: _ENREF_7]Goodhope, K., et al. (2012). "Building LinkedIn's Real-time Activity Data Pipeline." IEEE Data Eng. Bull. 35(2): 33-45.
	
[bookmark: _ENREF_8]Google (2014). "snappy." 2014, from https://code.google.com/p/snappy/.
	
[bookmark: _ENREF_9]Hall, C. P., et al. (2006). DV/DRP: A content-based networking protocol for sensor networks, Technical Report 2006/04, Faculty of Informatics, University of Lugano.
	
[bookmark: _ENREF_10]Hassan, M. M., et al. (2009). A framework of sensor-cloud integration opportunities and challenges. Proceedings of the 3rd international conference on Ubiquitous information management and communication, ACM.
	
[bookmark: _ENREF_11]Hunkeler, U., et al. (2008). MQTT-S—A publish/subscribe protocol for Wireless Sensor Networks. Communication Systems Software and Middleware and Workshops, 2008. COMSWARE 2008. 3rd International Conference on, IEEE.
	
[bookmark: _ENREF_12]Hunt, P., et al. (2010). ZooKeeper: Wait-free Coordination for Internet-scale Systems. USENIX Annual Technical Conference.
	
[bookmark: _ENREF_13]Kreps, J., et al. (2011). Kafka: A distributed messaging system for log processing. Proceedings of the NetDB.
	
[bookmark: _ENREF_14]Krishnamurthy, S. (2006). TinySIP: Providing seamless access to sensor-based services. Mobile and Ubiquitous Systems-Workshops, 2006. 3rd Annual International Conference on, IEEE.
	
[bookmark: _ENREF_15]Mehrotra, S., et al. (2011). Low-complexity, near-lossless coding of depth maps from kinect-like depth cameras. Multimedia Signal Processing (MMSP), 2011 IEEE 13th International Workshop on, IEEE.
	
[bookmark: _ENREF_16]openkinect (2014). "Open Kinect." 2014, from http://openkinect.org/.
	
[bookmark: _ENREF_17]Souto, E., et al. (2006). "Mires: a publish/subscribe middleware for sensor networks." Personal and Ubiquitous Computing 10(1): 37-44.
	
[bookmark: _ENREF_18]Videla, A. and J. J. Williams (2012). RabbitMQ in action, Manning.
	
[bookmark: _ENREF_19]Zhang, Z. (2012). "Microsoft kinect sensor and its effect." MultiMedia, IEEE 19(2): 4-10.
	

Average Latency for different message sizes - RabbitMQ

100	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	3.6804166666666598	3.6487500000000002	3.50999999999999	3.39333333333333	3.39	3.3529166666666601	3.4199999999999902	3.375	3.3683333333333301	3.3204166666666599	3.2816666666666601	3.2816666666666601	3.1808333333333301	3.2266666666666599	3.2079166666666601	3.157083333333329	3.1324999999999901	3.08791666666666	3.0987499999999901	3.0941666666666601	10000	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	4.4587500000000002	4.3049999999999891	4.1033333333333299	4.0541666666666591	4.00124999999999	4.0033333333333303	4.0795833333333302	4.0974999999999993	4.0383333333333304	3.992083333333329	3.90458333333333	3.94749999999999	3.9587500000000002	3.8054166666666598	3.9779166666666601	3.8433333333333302	3.8058333333333301	3.8829166666666599	3.8554166666666601	3.9458333333333302	40000	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	6.3716666666666599	6.1087499999999899	6.1466666666666603	5.8166666666666602	5.8724999999999898	5.7674999999999992	5.6195833333333303	5.5737500000000004	5.6724999999999994	5.6429166666666584	5.7208333333333297	5.8924999999999992	5.7295833333333297	5.91166666666666	5.6937499999999899	5.6195833333333303	5.50875	5.6945833333333287	5.5445833333333301	5.7104166666666591	80000	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	9.31	8.4991666666666603	8.6758333333333297	8.2995833333333326	8.4716666666666605	8.0945833333333308	8.2391666666666605	8.4941666666666595	8.2074999999999907	8.4729166666666593	8.4854166666666604	8.6150000000000002	8.5066666666666606	7.9199999999999902	8.5320833333333308	8.4	8.2249999999999908	8.3312499999999972	8.3562499999999904	8.5804166666666593	100000	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	10.2495833333333	9.9175000000000004	9.5987499999999972	9.6099999999999905	9.4758333333333304	9.7895833333333293	9.6708333333333307	9.5024999999999906	9.5525000000000002	9.6416666666666604	9.7283333333333282	9.4554166666666593	9.8266666666666644	9.3541666666666607	9.6054166666666596	9.5687499999999908	9.6570833333333308	10.0683333333333	9.99	10.3562499999999	200000	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	17.922083333333291	16.3041666666666	16.995000000000001	17.236249999999899	16.933333333333291	16.317083333333301	15.5825	16.465	15.81	16.92708333333329	16.385000000000002	17.845416666666601	18.5616666666666	18.7225	19.9954166666666	21.0341666666666	23.740221088435302	21.545256744995601	24.776145203111401	300000	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	22.602916666666601	24.67625	22.05125	22.105	23.17	23.5275	22.131250000000001	22.21125	23.84458333333329	26.94875	38.543617545588901	42.799999999999898	46.9224999999999	44.380400890868593	46.572878228782201	147.26272814601299	138.73566357181789	103.874640598044	150.127420362273	500000	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	36.313333333333297	35.731250000000003	34.503749999999897	37.535416666666592	38.437083333333291	45.083842794759803	76.529356505401466	100.43469879518	88.684280936454755	94.881195908733204	135.47138397502599	234.667071688942	347.355182926829	319.40438871473299	366.74057971014389	398.831230283911	514.12518853695303	Messages per Second

Latency

Latency Standard Deviation - RabbitMQ

100	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	0.92373327304057296	1.51119382305294	0.85482941768127796	0.75737851977870696	1.0521723559695899	0.882250810742364	0.68454364360498898	0.77955649784562298	1.2852356031309899	0.79230664921412597	0.80353213307802096	0.814860247049911	0.80299396358599195	0.858946383011715	0.90398414056270104	0.70998227188350804	0.73763840509200096	0.76932047487088695	0.81383768088811503	0.86040647693723304	10000	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	1.5939882174909199	0.97312640494438496	1.23023936243679	1.02570267242618	0.81163319147259705	0.92825403611054702	3.8198930822370198	0.88909715442125303	0.88564320631327498	0.83237851549373798	0.81321112042870503	0.84345149040513001	0.81109911282982705	0.82566376917133	0.80151668295522704	0.89328358070412295	0.85477051826143302	0.83568823516241297	0.97912154151340003	1.04581673293598	40000	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	1.45236492965401	2.376851580873339	1.70102583428026	1.1977989072554101	1.1545173955669299	1.1169648233792699	1.06177516125382	1.0418225716662901	1.11963256621684	1.12156504926027	1.1197020312962001	1.2298822775642599	1.1440970936604	1.1360152092095901	1.1176437733762301	1.1335195159570799	1.10412413440095	1.1341534257125601	1.20264111842319	1.35488923030219	80000	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	1.8281775989584099	1.5601813908075599	1.76184069622904	1.8431856009968901	2.02361818423228	1.59315326519105	1.4970412949845	1.8096867055438599	1.81437144763689	1.6805554120752999	1.6009749091482399	1.7158889824228201	3.9098110212927302	1.6024252452662699	1.5947217081324601	1.86413518823072	1.70764213659264	1.7192120591034199	1.55622489939596	2.0793107415011902	100000	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	2.5205405821745499	2.079429509104199	1.8044616290831199	2.0837626224372601	1.95688936126246	1.9479411763163901	1.92331726596408	1.71852468220077	1.8994939018942201	2.0095432040364098	1.96690040983834	1.88516462403746	1.8903144947042201	1.9745208631181499	2.66187039373734	1.87112446695385	1.8615382957083799	2.1034488874755799	2.1383170952877899	2.2649876977222898	200000	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	3.2640995174354202	3.5376521365007991	3.5519912255897399	3.1655072164662399	3.9543927754109398	3.2544648550961299	3.218285322445249	3.428742480852129	3.0392817133877599	4.1375435336749602	3.2950885167675499	4.0111121474875588	5.1210705803463492	4.7638038460177592	5.0628940004430492	4.4501497321875396	20.42876160297989	11.1124835379989	16.4228907644491	300000	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	5.0609855588007484	5.3949608528854682	4.3633271064062988	4.6241008134916086	5.5355156339164591	5.0530595105011997	5.02956493521061	5.2351335644374588	6.2749843818973394	8.1686059665954982	36.485536537988096	52.798740703425302	43.564930396095697	56.846212017817692	31.378481159987299	170.818171986301	139.40353562995591	99.575391440820084	109.59827845250901	500000	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	8.9274943604325774	6.6307885481919193	7.5172569867051493	8.8762555352123105	10.981774666527601	19.323107670258501	59.468620881308802	86.325614737741788	127.26730350804399	115.315238786069	111.296229217071	164.55629349067999	191.00079109455791	137.76109248052799	223.15318896352599	186.79789235785799	310.110515524937	Messages per Second

Latency variation

Average Latency for Difference Message Sizes - Kafka

100	1	5	10	15	20	25	30	35	20.606750711671399	19.559740785743202	32.643398484244088	9.1306122448979501	15.241284403669701	7.7927461139896304	12.859166666666599	28.35	1000	1	5	10	15	20	25	30	35	17.935365853658499	17.965600971266589	29.261618589743499	7.9593495934959302	23.251154201292699	6.3397129186602799	6.8266228430566898	24.018333333333288	10000	1	5	10	15	20	25	30	35	19.667206477732702	18.4302981466559	31.999601434834499	45.837837837837803	20.4321723189734	9.7755102040816304	8.1690617075232392	18.938611111111101	20000	1	5	10	15	20	25	30	35	15.8346741753821	20.401052205584701	46.361625100563103	13.259259259259199	53.461678004535102	10.8134715025906	8.7926112510495305	97.7430555555555	30000	1	5	10	15	20	25	30	35	17.735682819383189	28.713647441104701	22.702901512055501	11.8752475247524	10.5166742804933	10.171875	149.699749791492	67.900000000000006	40000	1	5	10	15	20	25	30	35	20.697572622363701	39.968054993934402	90.600479424690292	237.838056680161	12.2472527472527	11.170731707317	166.160862354892	64.238055555555491	50000	1	5	10	15	20	25	30	35	24.2723593686766	69.157011586096587	189.93979797979699	12.3722772277227	15	13.517073170731701	11.8047973531844	24.285555555555501	70000	1	5	10	15	20	25	30	35	22.47826086956519	61.996442687746992	242.062923138191	14.8346613545816	16.2645719489981	14.4974358974358	13.964794635373	75.5625	Messages per Second

Latency in Milliseconds

Latency with Number of devices - RabbitMQ

Average	100	200	300	400	500	600	700	800	900	1000	7.1011046746598394	8.3525589225589201	8.0492726946215285	8.5416849052156607	8.5214276094275991	7.6015712682379286	6.7819624819624797	8.2737106155879303	8.2188194449640388	15.702020202020201	STDEV	6.1921021185318397	6.5053082586036304	6.8095126988339301	7.2364083900087799	6.9649554794417776	9.5266109542762507	13.0160152875143	15.384886465757999	28.597408236638891	40.433436707732	

Average Latency with Number of devices - Kafka

all values	100	200	300	400	500	600	700	800	900	1000	65.250774242850767	25.76942269793339	47.865949144996897	37.745655608214797	156.14991041586799	186.608596291476	446.43642147282588	403.475825819644	359.441740890468	152.20939429237001	excluding values 	>	 200	26.844600742334691	18.749842999630491	22.362269715335	15.774858919853401	11.3631453809696	19.510082421854701	12.534310577355299	9.5858728387001602	12.994379814011699	44.286077837310998	STDEV-ALL	173.31186326265299	56.145888856133404	114.000011959552	111.64980375270601	528.32775131927201	515.97103201548498	1228.8077674470401	1094.2088574407901	996.69566133240892	240.42794822488099	STDEV-Exclude 	>	 200	31.448230985719089	22.521056312729002	26.803879881898801	21.899136117024099	17.786293319513799	34.005757418979698	21.7890358808569	13.3185886285225	21.3101942809168	48.776869213229297	

TurtleBot Latency

45	46	28	33	31	29	26	29	29	37	27	31	27	34	35	33	27	25	31	28	25	25	29	28	26	25	29	29	27	32	30	29	27	25	31	29	26	25	29	27	33	24	29	26	25	31	29	27	26	31	29	27	25	31	30	30	25	32	23	25	26	29	27	33	26	30	27	27	25	30	29	28	27	31	30	27	26	32	30	30	24	29	29	32	32	28	31	27	25	28	29	26	25	25	29	29	26	26	31	29	37	32	30	28	25	30	29	28	26	32	29	26	25	30	28	26	25	29	27	27	25	29	27	27	29	29	26	26	31	28	27	25	32	30	27	25	26	30	27	25	25	29	27	27	25	33	36	26	31	28	28	26	26	30	28	26	32	30	29	27	25	30	30	28	26	26	31	28	25	25	30	27	26	28	29	27	27	24	32	29	35	33	24	30	28	27	25	30	28	27	25	30	27	34	26	29	29	27	25	25	29	28	26	31	30	28	27	29	29	28	25	26	31	28	32	29	29	27	25	30	29	27	27	30	28	27	25	29	26	25	29	29	31	25	31	28	27	32	30	27	28	25	29	27	25	24	29	26	26	24	29	26	26	29	30	27	26	29	29	27	26	29	30	33	32	29	29	25	25	30	27	25	25	29	28	33	24	29	28	27	25	30	27	35	24	30	28	29	26	30	30	34	25	24	30	27	27	31	29	28	27	26	29	27	27	25	24	29	28	25	29	28	27	26	25	29	28	28	26	30	33	27	25	33	29	29	26	34	33	27	27	31	28	29	27	24	30	29	28	26	30	29	28	25	31	29	28	25	24	29	29	26	25	31	26	26	25	28	26	26	25	29	27	26	34	29	27	25	30	27	25	25	29	27	27	30	29	27	27	24	29	26	25	31	29	27	27	28	27	24	25	30	27	25	25	29	28	26	30	28	27	25	30	27	35	25	30	28	27	25	29	27	25	24	30	28	29	30	27	27	32	29	27	26	24	29	27	25	25	25	28	27	31	29	28	25	31	29	28	25	29	27	27	25	30	27	34	26	29	27	25	25	28	28	22	23	24	23	34	34	30	33	32	30	26	27	31	29	34	32	29	28	26	31	28	26	26	30	29	26	25	31	29	28	25	29	29	28	25	25	29	28	25	32	30	26	35	25	29	28	25	30	30	33	34	30	29	28	25	24	29	35	25	25	29	26	33	25	29	28	27	25	29	29	28	26	29	29	28	29	24	29	27	33	25	24	28	26	25	24	28	27	25	29	29	27	34	25	31	29	27	25	24	29	26	24	25	30	26	27	25	29	27	26	25	33	29	26	32	33	29	27	27	29	29	27	24	24	29	27	27	24	30	28	28	24	30	29	26	26	24	29	28	26	25	30	28	27	33	30	35	27	25	29	29	28	26	25	29	28	26	24	29	26	27	24	31	29	27	25	29	29	27	25	29	28	27	24	28	29	29	34	24	31	29	27	26	31	28	28	27	24	29	28	27	26	29	26	34	32	30	29	27	24	29	29	28	26	31	30	28	27	32	31	27	27	26	24	29	28	25	24	29	28	26	24	29	31	27	32	30	29	27	24	29	30	26	26	25	29	29	25	25	29	27	27	25	28	29	27	26	31	29	26	26	25	29	26	26	28	29	30	27	26	28	27	27	26	33	28	28	25	26	35	36	24	25	30	25	33	30	28	34	32	30	29	28	26	31	29	29	27	25	30	26	26	25	29	29	27	24	29	28	34	25	26	29	36	27	31	33	29	27	34	31	28	27	26	30	28	28	25	31	29	27	24	25	29	28	26	32	32	49	21	32	29	26	34	24	24	29	27	25	30	29	27	24	29	29	27	24	29	27	27	31	30	27	32	25	29	29	25	31	29	27	28	31	29	26	27	31	27	34	24	29	28	25	32	30	28	25	25	28	27	25	30	27	27	25	29	29	25	29	29	26	31	29	27	26	29	29	28	26	29	29	28	25	28	29	26	25	31	27	27	27	30	29	34	26	29	27	26	24	31	27	26	31	29	28	27	29	28	31	31	29	27	24	25	29	28	33	30	38	27	30	30	28	25	30	28	27	25	29	27	26	25	28	26	32	31	26	25	28	28	27	33	28	28	26	47	31	39	42	30	27	26	24	29	28	26	25	30	28	27	25	30	29	27	31	29	27	27	25	29	33	27	32	33	26	26	32	32	28	32	29	27	27	26	29	30	33	31	29	27	27	30	35	28	25	25	30	27	26	31	29	33	26	25	28	27	26	24	30	27	26	31	30	28	26	25	30	28	26	26	31	29	26	25	24	29	26	24	24	28	26	26	24	28	28	26	25	29	28	27	24	30	29	27	25	30	29	27	26	33	29	27	25	31	29	27	33	23	29	28	26	34	31	27	25	28	29	28	25	25	32	27	24	32	29	27	25	31	29	27	34	32	31	27	25	26	29	28	26	25	31	28	27	25	31	29	26	27	24	29	27	27	30	28	27	25	31	28	28	29	25	28	27	26	31	28	30	27	32	30	29	28	26	31	28	25	32	30	26	25	32	27	25	25	30	29	25	29	27	36	25	29	26	26	31	29	27	25	29	27	26	24	30	28	26	31	29	27	26	32	27	32	24	28	27	27	30	29	27	25	30	28	26	24	25	28	28	31	35	34	34	29	28	35	32	29	26	33	27	26	30	27	27	32	28	27	26	30	29	27	25	29	29	25	24	28	28	26	30	29	27	31	29	26	27	24	30	29	28	32	32	28	26	28	29	28	26	24	29	28	27	32	31	28	25	24	28	28	26	30	30	28	27	25	30	27	26	30	29	27	24	29	28	32	30	27	26	25	29	28	27	25	31	29	26	25	32	23	28	25	29	29	27	25	29	31	27	26	24	28	27	25	24	29	27	26	25	28	27	26	24	28	27	25	28	29	30	25	29	29	27	31	29	28	26	29	30	27	26	29	27	32	25	30	27	27	25	30	27	26	29	27	28	25	30	28	34	25	29	27	33	25	29	29	26	25	29	29	27	25	31	29	28	26	31	34	32	24	30	26	25	30	29	28	25	24	27	28	32	31	29	27	27	32	28	27	26	25	29	34	25	28	29	30	25	31	28	36	24	30	28	28	27	25	29	26	25	24	29	41	25	33	31	29	25	30	30	28	33	29	29	27	26	31	30	27	25	31	29	28	24	24	29	27	24	24	29	28	25	23	30	28	27	25	30	29	27	24	30	28	27	31	29	27	26	24	30	28	27	30	29	28	36	26	29	27	27	32	30	29	27	26	29	29	28	26	28	28	27	25	23	28	27	26	23	29	27	26	25	29	27	26	24	29	28	25	25	29	27	26	25	29	28	26	25	29	27	27	24	29	26	27	25	30	28	27	25	30	26	33	32	29	28	28	29	29	28	34	26	30	30	27	26	29	29	29	25	30	28	28	25	30	30	28	26	28	Messages

Latency

image2.png

image3.png

image4.png

image5.png

image1.png

