

DEVELOPING GIS VISUALIZATION WEB SERVICES FOR
GEOPHYSICAL APPLICATIONS

A. Sayar a,b. *, M. Pierce a, G. C. Fox a,b,c

a Community Grids Laboratory, Indiana University
501 N. Morton Suite 224, Bloomington, IN 47404

{asayar, gcf, mpierce}@cs.indiana.edu
b Computer Science Department, School of Informatics, Indiana University

c Physics Department, College of Arts and Sciences, Indiana University

Commission II, WG II/2

KEY WORDS: GIS, Geophysics, Visualization, Internet/Web, Interoperability, Networks, Distributed.

* Corresponding author.

ABSTRACT:

The Open Geospatial Consortium (OGC) defines a number of standards (both for data models and for online services) that have been
widely adopted in the Geographical Information System (GIS) community. In this paper we will describe our group's efforts to implement
GIS services according to OGC standard specifications in accordance with the Web Services approach. This paper focuses on the Web
Map Service (WMS), which we are coupling to problems in computational geophysics. Through the use of Web Services, we are able to
integrate GIS services with other families of services, including information, data management, and remote application execution and
management. We also describe WMS client building efforts that are suitable for integration with computational Web portals.

To be able to interact with non-Web Service versions of WMS, we have built bridging service for our extended WMS. Since Web Service
oriented WMS has a different request/response paradigm from non-Web Service versions, we have extended cascading WMS by adding
request handler functionality. This kind of WMS behaves like both a cascading WMS and a proxy to handle different types of requests to
overcome interoperability problems between different WMS systems.

1. INTRODUCTION

Geographical Information Systems (GIS) introduce methods and
environments to visualize, manipulate, and analyze geospatial
data. The nature of the geographical applications requires
seamless integration and sharing of spatial data from a variety of
providers. Interoperability of services across organizations and
providers is a main goal for GIS and also Grid computing [15,
23].

To solve the interoperability problems, the Open Geospatial
Consortium (OGC) has introduced standards by publishing
specifications for the GIS services. OGC is a non-profit,
international standards organization that is leading the
development of standards for geographic data related operations
and services. OGC has variety of contributors from different areas
such as private industry and academia to create open and
extensible software application programming interfaces for GIS
[1].

GIS services, such as defined by the OGC, are part of a larger
effort to build distributed systems around the principles of Service
Oriented Architectures (SOA). Such systems unify distributed
services through a message-oriented architecture, allowing loose
coupling, scalability, fault tolerance, and cross-organizational
service collections [21]. Web Service standards [3] are a common
implementation of SOA ideals, and Grid computing has
converging requirements [15, 23]. By implementing Web
Service versions of GIS services, we can integrate them directly
with scientific application grids [11, 30, 32].

This document gives the details about the design and architecture
of our Web Service refactoring of OGC specifications for the
Web Map Service. This is part of a larger effort by our group to
investigate translations of GIS services into Web Service
standards [2, 22]. Some earlier work in this area is reported in
WMS [13]. In these documents they define standard WSDL
description of the service interfaces.

In this document we first give some background information and
explain some related works. I this section we compare our basic
GIS services with OGC Web Services Specifications published
lately. Section 3 explains Web Services technologies and
advantages from the point of GIS view. In Section 4, we describe
general architecture for developing Web Service compatible
mapping services. Under this title as subtopics we describe
contributions of the Web Services to the GIS services, technical
challenges encountered during implementations, integrating Web
Services into OGC compatible GIS visualization, creating valid
requests to WMS services in case of using Web Services, bridging
capability of cascaded WMS, other services involved in proposed
visualization system and implementation details of WMS. Section
5 describes our generic and modular WMS client implementation
for the geophysics applications and gives a sample case scenario.
In Section 6, future work is described. Section 7 is the
conclusion.

2. BACKGROUND

After Web Services gain momentum and wide acceptance, some
entities working on GIS started to involve in Web Services area
and tried to integrate and/or convert their GIS servers and
applications into web services. Some of these entities are
commercial GIS leading companies such as ESRI, Cubewerx,
Demis and Intergraph. ESRI produced ArcWeb service package
for the GIS Web Services by using UDDI for the catalog and
registry services. Cubewerx, Demis and Intergraph provide WMS
transparent access to their Web Service mapping applications.

OGC as a GIS standards body published its Web Services
Common Implementation Specifications lately. We have some
differences with the latest OGC Web Service Specifications. In
our implementation of GIS Web Services, return types defined as
Strings for the WMS getCapabilities and getFeatureInfo. Returned
strings are structured data in XML. Strings are actually xml, plain
text, HTML or GML depending on the requested format. In case
of getMap request WMS returns image MIME type such as
image/jpeg as DataHandler object attached to SOAP message.
OGC has different return types defined for the different types of
requests. Our implementation for the return types will be
improved and changed in accordance with OGC Web Services
Specifications. When we first started to implement GIS Web
Services OGC did not have this new specification. We will be
adapting our request response object to their schemas.

Regarding to catalog registry services, instead of using OGC
WRS (Web Registry Services) [34] we utilize an alternative
Registry Information Model; the Universal Description,
Discovery, and Integration (UDDI) [29]. UDDI is domain-
independent standardized method for publishing/discovering
information about Web Services. As it is WS-Interoperability
(WS-I) compatible, UDDI has the advantage being interoperable
with most existing Grid/Web Service standards. WRS is an OGC
standard to discover/publish service information of geospatial
services. It presents a domain-specific registry capability for
geospatial information. UDDI is domain-independent
standardized method for publishing/discovering information about
Web Services.

Our approach to catalog registry services in GIS applications
takes into account the descriptive metadata, i.e. quality of service
attributes, into discovery process. The geospatial data being
provided by a geospatial service may be fitted with client’s
request, however, this does not necessarily guarantee whether the
service is sufficient for the desired quality of service
requirements. By matching Quality of Service attributes of service
discovery request and service descriptions, client is able to
distinguish geospatial services that match to their requirements.

Regarding to our Web Service based WFS, the format of the
request and response objects is String in the form of XML. Each
request and response has its own schema file. They are created
according to these schema files and given parameters. After
creating objects as XML, in the Web Service GIS environment,
XML objects are put into extensible SOAP envelope. Requests
and responses are carried in the SOAP message over the HTTP.
For the architecture details please see the Section 4

3. WEB SERVICES FOR GIS

Web Services give us a means of interoperability between
different software applications running on a variety of platforms.
Web Services support interoperable machine-to-machine
interaction over a network. Every Web Service has an interface
described in a machine-readable format. Web Service interfaces
are described in a standardized way by using Web Service
Description Language (WSDL) [17]. WSDL files define input and
output properties of any service and services’ protocol bindings.
WSDL files are written as XML documents. WSDL is used for
describing and locating Web Services. Web Services are defined
by the four major elements of WSDL, “portType”, “message”,
“types” and “binding”. Element portType defines the operations
provided by the Web Services and the messages involved for
these operations. Element message defines the data elements of
the operations. Element types are data types used by the Web
Service. Element binding defines the communication protocols.
Other systems interact with the Web Service in a manner as
described in WSDL using Simple Object Access Protocol (SOAP)
messages.

SOAP [16] is an XML based message protocol for exchanging the
information in distributed environment. It provides standard
packaging structure for transporting XML documents over a
variety of network transport protocols. It is made up of three
different parts. These are the envelope, the encoding rules and the
Remote Procedure Call (RPC) convention. SOAP can be used in
combination with some other protocols such as HTTP. OGC
compatible Web Services will be using SOAP over HTTP.

Advantages of the Web Services in GIS area can be grouped into
three categories:

Distribution: It will be easier to distribute geospatial data and
applications across platforms, operating systems, computer
languages, etc. They are platform and language neutral.

Integration: It will be easier for application developers to integrate
geospatial functionality and data into their custom applications. It
is easy to create client stubs from WSDL files and invoke the
services.

Infrastructure: We can take advantage of the huge amount of
infrastructure that is being built to enable the Web Services
architecture – including development tools, application servers,
messaging protocols, security infrastructure, workflow
definitions, etc [13]. Some of these features are being developed
by using Web Service infrastructure in Naradabrokering [24],
message based middleware system, developed in CGL
(Community Grids Lab.) at Indiana University. NaradaBrokering
aims to provide a unified messaging environment that integrates
grid services, web services, peer-to-peer interactions and
traditional middleware operations. In the near future we will be
utilizing these features in GIS visualization systems.

GIS services can be grouped into three different categories; these
are data services, processing services and registry, or catalog
services [33]. Data services are tightly coupled with specific data
sets and offer access to customized portions of the data.
Processing services provide operations for processing or
transforming data in a manner determined by user-specified
parameters. Registry or catalog services allow users and
applications to classify, maintain, register, describe, search and
access information about Web Services. In our development of
GIS web services for the geophysical applications, we use WFS
as data services, IS as catalog-registry services and WMS as
processing services. For the architecture details see the Section 4.

4. ARCHITECTURE

This section gives the details of the integrations of Web Services
technologies into OGC compatible GIS visualization Systems.

We first implemented pure OGC compatible WMS and WFS
servers. These servers were communicating over HTTP by
making HTTPGET/POST requests. Later, we developed a generic
conversion algorithm steps for converting HTTP based
visualization systems into service based counterparts. These steps
are listed below;

1. Define a WSDL for the OGC Web Services (OWS) as a
set of interface definitions for its functionalities.

2. Create appropriate XML Schema for all the requests
and responses that OWS provides. These schemas are
created according to the attributes and properties of
HTTP POST and HTTP GET requests defined in OGC
OWS specifications.

3. Create client stubs from the WSDL file of the target
OWS.

4. After creating stand-alone Web Services compatible
OGC GIS server, you are ready to bridge this kind of
server to other generic OGC servers. (See Section 4.4
for the WMS case)

As a case study we worked on WMS to apply these conversion
algorithms. For the step-1 you can crate service interface (WSDL)
by using some web service tools. Before doing that you need to
implement the functionalities in any language as you did in HTTP
based GIS services. For getting details for the other steps please
see the Section 4.1 and 4.4. Section 4.2 explains the other
components in the visualization systems, Section 4.3 gives the
architecture and implementation details of the main visualization
service, WMS.

4.1 Creating valid Request to WMS Services in Case of Using
Web Services

In developing Web Service versions of the WMS, we have
converted existing HTTP GET/P0ST conventions [4] into WSDL
interfaces. We have encountered some minor technical problems
in this conversion.

Internal implementations of the WMS services are compatible
with the current WMS specifications but service interfaces and
the way to invoke services are different. Services are invoked
through the SOAP over HTTP. Requests are created as XML
documents and wrapped into body part of the SOAP request
message. These requests are shown in Figure 1-3.

Invoking WMS operations should be according to specifications.
OGC compatible requests to WMS are well defined in the WMS
specifications [4]. Requests must have some parameters whose
names, numbers, and values should obey the rules defined in the
specifications to be OGC compatible. In this section we define
these requests in the form of XML schema files.

These schema files are created to be used during the invocation of
the operations implemented as Web Services at the WMS side
[13]. Requests are created at the WMS Client side. Clients create
these requests after getting required parameter from the user.
When request is ready, client sends this request to WMS as a
SOAP message. WMS has deployed Web Services for each
service, getMap, getCapabilities and getFeatureInfo. Clients use
client stubs created before to invoke these specific Web Services.
All these services in WMS take one String parameter. This String
parameter is request itself. These requests are actually XML
documents in String format.

Below schema files displayed in Figure 1-3 include all the
elements and attributes of corresponding OGC HTTPGET/POST
requests defined in OGC WMS specifications [4].

Figure 1 : GetCapabilities Request Schema.

GetMap request is created for our WMS implementation. We
have not implemented styling capability yet. Styling capability
will be added soon, for the current status and the future works
please see the Section 6. WMS supporting styling are called SLD-
enabled WMS. The Open GIS Consortium (OGC) Styled Layer
Descriptor (SLD) specification [6] defines a mechanism for user-
defined symbolization of feature. An SLD-enabled WMS
retrieves feature

Figure 2 : GetFeatureInfo Request Schema.

data from a Web Feature Service [7] and applies explicit styling
information provided by the user in order to render a map.

In our project, since we have just implemented Basic WMS, we
have not used elements related to styling in the WMS getMap
requests. For defining styling in the getMap request we use
StyledLayerDescriptor element. StyledLayerDescriptor has other
sub elements and attributes.

Figure 3 : GetMap Request Schema.

4.2 Other GIS Components Involved in Proposed
Visualization System

Our Web Service-compatible WMS depends upon Web Feature
Service [27] and (IS) Information Services [28] to accomplish its
required tasks. They are ongoing projects in CGL (Community
Grids Lab.). This section briefly describes the WMS interactions
with these other services.

A general picture of interactions between these three services is
displayed in Figure 4. Initial invocations are displayed as black
arrows. All the services are implemented as Web Services.

Figure 4 : Basic GIS Components Involved in Visualization

System.

4.2.1 Web Feature Service (WFS): WFS instances store
geospatial data and serve them upon request from clients. WFS
clients include Web Map Servers and other WFS instances (in
case of cascading WFS). WFS provide feature vector data. Vector
data are encoded in GML (Geographic Markup Language) [9], an
XML encoding for the transport and storage of geographic
information, including both the geometry and properties of
geographic features.

According to OpenGIS WFS specification, basic Web Feature
Services are getCapabilities, describeFeatureType and getFeature.
If WFS is transactional than this WFS provides two more
services. These are “transaction” and “lockFeature” services. Our
implementation of WFS is basic WFS, so it does not have
transaction and lockFeature capabilities.

Since we have implemented basic WFS, WMS uses basic WFS
services: getCapabilities, describeFeatureType, and getFeature.
WMS sends a getCapabilities requests to WFS to learn which
feature types WFS can service and what operations are supported
on each feature type. The getCapabilities request can also be
mediated by the aggregating Information Services (IS). WMS
makes its request to IS to get a specific WFS address that provides
needed feature. Please see Section 4.2.2 for the details about the
interconnection between WMS and IS.

When any WMS client sends a getFeatureInfo request to WMS,
WMS creates a getFeature request and sends it to WFS. The URL
address of the WFS is found by using IS. After choosing
appropriate WFS, the WMS makes a getFeature requests to get
feature data. A sample request is shown in Figure 5 . The GML
file encoded in XML is returned in a SOAP envelope as a
response to this request.

Figure 5 : Sample GetFeature Request from WMS to WFS.

4.2.2 IS (Information-Discovery Services): An OGC Catalog
[14] is a collection of descriptive information (metadata)
regarding the data stored in a geographic database. OGC catalog
service is specific to OGC domain. Each GIS Service provides
access to geographic data. An important factor that characterizes
GIS Services is the metadata about the data. Thus, metadata act as

properties that can be queried and requested through catalog
services. A catalog service provides discovery of GIS services
through the metadata of the data that these services provide. The
OGC Catalog Service provides useful GIS metadata and registry
capabilities, but we are interested in making several extensions.
For instance, the registry should also allow discovery of services
based on non-functional requirements of services such as Quality
of Service attributes. Also, OGC Catalog Service should be
consistent with other existing and more general registry models
such as UDDI or ebXML.

To overcome these limitations, we utilize a Registry model which
is being developed in CGL as a general registry model for Web
Services, Fault Tolerant High Performance Information Services
(FTHPIS) [28]. IS is a general service registry and discovery
model based on UDDI specifications [29]. UDDI is WS-I
approved specifications, in other words, it is inter operable with
other Web Service based standards. An IS provides both
publishing and discovery services for Web Services and (WS-
Context) [19] contextual information of GIS Services. Since IS
stores both functional metadata (metadata about GIS data) and
non-functional metadata (metadata about Quality of Services of
data, such as high throughput), it provides more complex query
abilities when discovering GIS services.
A map server interacts with Information Services to dynamically
discover available Web Feature Services. We can summarize the
interaction between an Information Service, Web Feature Service
and Web Map Server as following.

All GIS Web Feature Services are expected register themselves
into an existing IS in order to be "discoverable". Once the registry
is completed, the IS starts interacting with WFS to retrieve more
information about their capabilities. So, IS stores information
about the functionalities of each WFS.

A Web Map Server queries an Information Service to find
available WFS. Apart from discovery of the services, WMS can
create capabilities file of a WFS on the fly, as the IS provide
extensive information about the capabilities of WFS. An IS
provides consistent and uniform API for publishing and
discovering OpenGIS Web Services, and it is defined by a
WSDL. Once the WFS are dynamically discovered through IS,
WMS can then invoke corresponding WFS to retrieve the features
that it needs.

4.3 Visualization Service – WMS

WMS is the key service to the GIS visualization system. WMS
produce maps from the geographic data. A map is not the data
itself. Maps create information from raw geographic data, vector
or coverage data. Maps are generally rendered in pictorial formats
such as jpeg (Joint Photographic Expert Group), GIF (Graphics
Interchange Format), PNG (Potable Network Graphics). WMS
also produce maps from vector-based graphical elements in
Scalable Vector Graphics (SVG) [18].

WMS provide three main services; these are getCapabilities
(Section 4.3.1), getMap (Section 4.3.2) and GetFeatureInfo
(Section 4.3.3). GetCapabilities and getMap are required services
to produce a map but GetFeatureInfo is an optional service. These
services and our implementations are explained in the following
subsections.

4.3.1 GetCapabilities from WMS: Before a WMS Client
requests a map from WMS, it should know what layers WMS
provides in which bounding boxes. GetCapabilities request
enables WMS Clients to obtain this type of information about the
contacted WMS. GetCapabilities request allows the server to
advertise its capabilities such as available layers, supported output
projections, supported output formats and general service
information. After getting this request, WMS returns an XML
document with the metadata about the WMS Server. This
capabilities file is kept in the local file system and sent to clients
upon getCapabilities request.

After getting the request WMS parses it to derive parameters. If
WMS verifies that request, than it sends the capabilities file to the
WMS Client as a SOAP attachment. If WMS encounters any
problem during handling of the request than it sends exception
message in SOAP back to the WMS Client. Basic getCapabilities
request are pictured out at Figure 6.

Figure 6 : getCapabilities work flow.

4.3.2 GetMap from WMS: Another service interface that WMS
provides is GetMap request. The getMap service interface allows
the retrieval of the map. Chained processes to produce maps are
illustrated in Figure 7. This request is done by the client after
finishing getCapabilities request and defining the available layers.
After getting the getMap request, the WMS goes over the flow
depicted in Figure 7 and if everything succeeds, then returns the
result as an image in a format defined in the getMap request. All
the supported image formats are defined in WMS Capabilities
document. Requests for the image formats should be made in
accordance with the WMS’s Capabilities file. The image is
returned back to the WMS Client as an attachment to SOAP
message. If the WMS encounters any problem during handling of
the request, it sends an exception message in SOAP back to the
WMS Client.

WMS first parses the parameters and get their values from the
getMap. Depending on these parameters, WMS might need to
make some requests to some other WMS services. WMS first
determines what layers are requested, in which bounding box, in
which form, and so forth. After determining all the request
parameters, it makes find_service and getAccess_point requests to
IS to determine the WFS providing requested feature data. These
requests are done as SOAP messages to IS service interfaces
implemented as Web Services. GetAccess_point returns the Web
Service access point address of the WFS that provides the

requested feature. WMS makes getFeature request to the returned
WFS and gets the requested feature data in GML format. If the
parameter defining returned image format in getMap request is
Scalable Vector Graphics (SVG), then WMS creates SVG from
returned feature data by using its geometry elements. If the
requested image is not in SVG format, we first create the SVG
image and then convert it into the desired image formats (such as
PNG, GIF, or JPEG). Apache Batik provides libraries for this
conversion. Batik is a Java(tm) technology based toolkit for
applications or applets that use images in the SVG format for
various purposes, such as viewing, generation or manipulation.
By using these schema files we derive geometry elements from
the GML file to visualize the feature data. These geometry
elements in GML [9] are basically Point, Polygon, LineString,
LinearRing, MultiPoint, MultiPolygon, MultiGeometry, etc.

To create the images from the features returned from the WFS, we
have used Java Graphics2D and Java AWT libraries. For each
layer we create a different graphics object. If you assign each
layer to different graphics object than Java libraries allow you to
overlay these graphic objects.

Figure 7 : getMap work flow.

4.3.3 GetFeatureInfo from WMS: This is an optional WMS
service. It is not necessary to create a map. It is used only when a
user needs further information about any feature type on the map.
However, we have found this very useful when building
interactive user interfaces to geophysical applications. The
GetFeatureInfo method allows us to send additional information
(such as earthquake fault dimensions and material properties) to
simulation codes that use these as inputs [10, 11].

The GetFeatureInfo works as follows: the user supplies an (x, y)
Cartesian coordinate and the layers of interest and gets the
information back in the form of HTML, GML or ASCII format.
All these supported formats are defined again in WMS
Capabilities file. Figure 8 illustrates the successive processes done
by the WMS to respond to getFeatureInfo requests from the WMS

Client. To make the presentation more concrete in the figure, we
assumed the feature information is requested in text/HTML
format. This value is defined in parameter “info_format” in
getFeatureInfo request. GetFeatureInfo service interface supports
two more info_formats as well. These are plain text and GML
formats. Since HTML creation requires a generic XSL [26] file
and XSLT transformation, we have chosen this type of requests to
demonstrate getFeatureInfo request processing in Figure 8.
All the processes explained in Section 4.3.2 for the getMap until
getting requested features from WFS are same for the
getFeatureInfo processing. Again all the remote invocations are
done by using SOAP messages.

After getting the feature collections data from the WFS, instead of
producing map as explained in Figure 7, WMS lists all the non-
geometry elements and attributes in the returned GML file. For
the getMap request WMS deal with geometry elements of the
returned GML file but for the getFeatureInfo WMS deal with non-
geometry elements. From the list of non-geospatial elements,
WMS creates a new XML file to be able to transform non-
geometry elements into HTML. This XML file is simply another
form of GML which includes just non-geometry elements,
properties and attributes. To display all of the processes involved
in getFeatureInfo handling (Figure 8), we assumed information is
requested in HTML format. After creating new XML file from the
non-geo elements, WMS creates HTML file from newly created
XML file by using generic XSL file and XSLT transformation
machine. For the detailed documentation about the
getFeatureInfo, please see our project page [2].

Figure 8 : getFeatureInfo work flow.

4.4 Bridging Web Service Oriented WMS to other WMS
Instances

This section explains the architecture to combine Web Services
based implementation of WMS systems with the third party WMS
systems. Third party systems use HTTP as distributed computing
platform.

Cascading WMS is the key issue to enable bridging of these two
groups of visualization systems. A cascading WMS is a WMS
which aggregates the contents of several individual WMS into
one service that can be accessed by clients. Cascading WMS acts
like a client to the other WMS and as a server to the clients [4].
The client does not need to keep track of several WMS servers; it
only has to be aware of one. The client application does not need
to know the ultimate source of all images.

A cascading map server reports the capabilities of the other WMS
as its own and aggregates the contents and capabilities of several
distinct WMS servers into one service. In most cases, the
cascading map server can work on different WMS servers that
cannot serve particular projections and formats themselves [5].

Figure 9 : Bridging of the Web Service-compatible WMS and

other WMS.
Clients make their requests to cascaded WMS. Cascaded WMS
services are implemented as Web Services. Clients create their
requests and send them in SOAP messages over HTTP. WMS
parse coming requests by request handlers. Request handlers
derive all the parameters from the request and trigger the
responsible modules in the WMS. Figure 9 gives a general
depiction.

After getting and parsing the requests WMS defines the requested
layers’ names. WMS determines if the requested layers are
cascaded or not by looking at its capability file. If layer is
cascaded than WMS defines the other third party WMS providing
requested layer by looking at the capabilities file. If the layer is
not cascaded than WMS determines the addresses of the WFS
services that provide these layers by making geo-query to IS. For
the cascaded layers, requests to the other (non-Web Service)
WMS instances are done over HTTP as defined in OGC
specifications, HTTP GET and POST.

As it is shown in Figure 9, proxy cascading WMS integrate
SOAP and HTTP based GIS environments. Clients do not have to
prepare different versions of requests for the different types of
WMSs. Clients just send their requests to the cascading proxy
WMS and get the result. In the architecture shown in Figure 9
proxy WMS can be an internal node or an external node of either
HTTP based GIS networks or Web Service based GIS networks.

Figure 10 illustrates this. We have combined earthquake seismic
data as feature from a WFS server with Landsat 7 satellite
imagery map from WMS at NASA OnEarth [25]. WMS from
OnEarth provides access to the World map via OGC compatible
HTTP GET and POST requests. We are using these clients to set
up geophysical simulation runs, as initially described in [10, 11].

5. GEOPHYSICAL APPLICATIONS CASE SCENARIO

In this section we first describe our WMS Client and explain the
quality of services for the geophysical applications. Then we give
a sample geophysical application scenario on this client.

WMS Client for the Geophysics Applications: We have
developed a portlet-based browser client to our Web Service
based standard visualization system for testing and the
demonstration purposes. A sample WMS client is shown in Figure
10. Several capabilities are implemented for the user to access and
display geospatial data. Our WMS client enables the user to zoom
in, zoom out, measure distance between two points on the map for
different coordinate reference systems, to get further information
by making getFeatureInfo requests for the attributes of the
features on the map, and drag and drop the map to display
different bounding boxes. Users can also request maps for the
area of interest by selecting predefined options clicking the drop-
down list. The user interface also allows the user to change the
map sizes from the drop-down lists or enable them to give
specific dimensions. Zoom-in and zoom-out features let the user
change the bounding box values to display the map in more or
less details. Each time user change the bounding box values, user
interface shows the updated bounding box values at the each side
of the map.

We created generic and application independent WMS client. It
can support more than one geophysics application at the same
time. Each geophysics application is bound to a set of layers.
These bindings are defined in structured xml properties file. Users
navigate over the applications by selecting set of layers from the
dropdown list. Set of layers in the dropdown list created
according to communicated WMS. Binding properties are updated
based on the set of supported layers of the communicated WMS.

Our implementation of the client is modular. In order to interact
with a specific geophysics application we integrate a plug-in with
a modular client. In order to interact with corresponding
geophysics application, each component adds various application
specific features to WMS client. Each plug-in can be defined by
user it creates a sort of abstraction layer where users can define
how to interact with geophysics application.

We created our visualization client to interact with Web Services
based visualization systems (architecture is explained in Section
4) but it can also be used for the HTTP based OGC WMSs.

Client interface gives the end users lots of functionality required
by the geophysics applications by using Java Server Pages (JSP),
Cascading Style Sheets (CSS) and Java Script technologies. We
have also developed a portlet version of the WMS Client to be
able to deploy in a JSR 168-compatible portlet container. This
simplifies distribution of our client application.

WMS services are stateless services. Each time a user makes a
request, the WMS client creates a new request object and invokes
remote WMS. All the requests are created according to schema
files defined in Section 0 and wrapped into the SOAP envelope.
After creating SOAP message it is sent over HTTP to the remote
WMS.

Figure 10: Project Demo page with the geophysics

application. It uses Turkey’s Earthquake Seismic data.
We started to upgrade the client and visualization architecture to
provide scientific visualizations, real time streaming, and
collaborative mappings. For the detailed future works please see
the Section 6.

Sample Geophysical Application scenario (PI): We use
proposed visualization architecture for the Pattern Informatics
(PI) geophysics applications [31] in the SERVOGrid project [30].
SERVOGrid project integrates historical, measured, and
calculated earthquake data with simulation codes. SERVOGrid
resources are located at various institutions across the country.
The SERVOGrid Complexity and Computational Environment
(CCE) [32] is an environment to build and integrate different
domains of Grid and Web Services into a single cooperating
system. As a part of SERVOGrid CCE environment, we chose the
PI application which is used to produce the well-publicized “hot
spot” grid-values published by SERVO team member Prof. John
Rundle and his group at the University of California-Davis. Hot
spot values are returned from a remote server running PI
algorithms.

In this geophysics application scenario, WMS client gets the
output of the PI server as grid-values, interprets it and overlay as
another layer over the current map. Overlay layer for the hot spots
is created by assigning different colors for each grid cell
according to their values (Figure 11). These colors represent the
different ranges of probabilities of the earthquake for the seismic
point in the future. These jobs are done by the PI module
deployed in WMS client. As we mentioned before, each

geophysics application has its own module to fulfill the
application specific tasks.

Figure 11: Overlaid layer created by PI module in WMS
client after running PI geophysics application over the map

displayed in Figure 10.

6. FUTURE WORK

We plan to implement Web Coverage Service (WCS) [13],
Coverage Portrayal Service (CPS) [20] and Styled Layer
Descriptor (SLD) Service. All these services have corresponding
OGC specifications and they should be implemented according to
the specifications to become OGC compatible. All should have
well defined service interface described in their WSDL files. Each
of these services can be implemented as a standalone application,
but we will be deploying them in our project step by step. First we
will finish implementation according to specifications and then
handle the interoperability issues between these and already used
OGC services.

We plan to use our WMS services for scientific visualization. To
be able to adapt WMS to scientific visualization we need to
handle high volume of data. This requires us to solve performance
problems by motivating distributed High Performance Computing
and collaborative shared WMS supporting multiple simultaneous
Clients.

We will be working on optimization and performance algorithms
of the system. To accomplish this, we will need to handle image
pipelining, faster rendering, caching or client rendering.

7. CONCLUSION

The spatial data between different districts and different
departments need to be shared and to be made interoperable.
ISO/TC211 and OGC have defined interface specifications and
standards to ensure sharing and interoperable capability of the
spatial data. By adapting these to Web Service standards, we

simplify the interoperation of GIS services with other service
domains.

In this document we have described our efforts to build an OGC
compatible GIS Services by using Web Service technologies and
OGC specifications.

The Web Services model of the GIS systems provides users with
just the services and data they need, without having to install,
learn, or pay for any unused functionalities. Geophysical
applications such as SERVOGrid project involve various kinds of
data processors and data providers distributed geographically. By
using service oriented GIS architecture, we can integrate new
servers into our geophysics applications seamlessly. Web services
are platform neutral, operating system neutral, language neutral
and easily extendable.

We can extend OGC OpenGIS specifications as much as we can,
but we need to consider the performance issue. This will be an
important issue for us in upcoming work. Since images and
capabilities documents can be too large and transferring these data
over the internet is cumbersome, our first priority will be
researching techniques for improving WMS performance.
Visualization can be slow as overlays or even basic maps become
large. Complicated maps also require large capabilities files, and
parsing these can be a bottleneck. Such efficiency and
performance issues will be important to our investigations of
streaming map servers.

8. ACKNOWLEDGEMENTS

This work is supported by the Advanced Information Systems
Technology Program of NASA's Earth-Sun System Technology
Office and the National Science Foundation’s National
Middleware initiative.

9. REFERENCES

[1] OGC (Open Geospatial Consortium) official web site

http://www.opengeospatial.org/
[2] GIS Research at Community Grids Lab, Project Web Site:

http://www.crisisgrid.org.
[3] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion,

M., Ferris, C., and Orchard, D. “Web Service Architecture.”
W3C Working Group Note, 11 February 2004. Available
from http://www.w3c.org/TR/ws-arch.

[4] Jeff De La Beaujardiere, OpenGIS Consortium Web
Mapping Server Implementation Specification 1.3, OGC
Document #04-024, August 2002.

[5] Kris Kolodziej, OGC OpenGIS consortium, OpenGIS Web
Map Server Cookbook 1.0.1, OGC Document #03-050r1,
August 2003.

[6] Lalonde, W. (ed.), Styled Layer Descriptor(SLD)
Implementation Specification 1.0.0, OGC Document #02-
070, August 2002

[7] Vretanos, P. (ed.), Web Feature Service Implementation
Specification (WFS) 1.0.0, OGC Document #02-058,
September 2003.

[8] Ahmet Sayar, Marlon Pierce, Geoffrey Fox OGC
Compatible Geographical Information Services Technical
Report (Mar 2005), Indiana Computer Science Report
TR610

[9] Simon Cox , Paul Daisey, Ron Lake, Clemens Portele, Arliss
Whiteside, Geography Language (GML) specification 3.0,
Document #02-023r4., January 2003.

[10] Galip Aydin, Marlon Pierce, Geoffrey Fox, Mehmet Aktas
and Ahmet Sayar “Implementing GIS Grid Services for the
International Solid Earth Research Virtual Observatory”.
Submitted to Journal of Pure and Applied Geophysics.

[11] Mehmet Aktas, Galip Aydin, Andrea Donnellan, Geoffrey
Fox, Robert Granat, Lisa Grant, Greg Lyzenga, Dennis
McLeod, Shrideep Pallickara, Jay Parker, Marlon Pierce,
John Rundle, Ahmet Sayar, and Terry Tullis “iSERVO:
Implementing the International Solid Earth Research Virtual
Observatory by Integrating Computational Grid and
Geographical Information Web Services” Technical Report
December 2004, to be published in Special Issue for Beijing
ACES Meeting July 2004.

[12] John D. Evans, OGC Web Coverage Service (WCS)
Specifications 1.0.0, Document #03-065r6 August 2003

[13] Jérôme Sonnet, Charles Savage. OGC Web Service Soap
Experiment Report 0.8 Document#03-014, Jan 2003.

[14] Douglas Nebert, Arliss Whiteside, OpenGIS Consortium
Catalogue Services Specifications 2.0. OGC Document# 04-
021r2, May 2004.

[15] Fran Berman, Geoffrey C, Fox, Anthony J. G. Hey., Grid
Computing: Making the Global Infrastructure a Reality. John
Wiley, 2003.

[16] Don Box, David Ehnebuske, Gobal Kakivaya, Andrew
Layman, Dave Winer., Simple Object Access Protocol
(SOAP) Version 1.1, May 2000,.

[17] Christiensen, Francisco Curbera, Greg Meredith, Sanjiva
Weerawarana, Web Service Description Language (WSDL)
Version 1.1, March 2001.

[18] Ferraiolo, Dean Jackson, Scalable Vector Graphics (SVG)
Sprcification 1.1., January 2003.

[19] Mark Little, Eric Newcomer, Greg Pavlik., OASIS Web
Services Context Specifications (WS-Context) 0.8.
November 2004.

[20] Jeff Lansing., OWS1 Covarage Portrayal Service (CPS)
Specifications 1.0.0, Document #02-019r1 February 2002.

[21] A Note on Distributed Computing, S. C. Kendall, J. Waldo,
A. Wollrath, G. Wyant, A Note on Distributed Computing,
Sun Microsystems Technical Report TR-94-29, November
1994. Available from
http://research.sun.com/techrep/1994/abstract-29.html.

[22] Web Services Technologies http://www.w3.org/2002/ws/.
[23] Foster, I. and Kesselman, C., (eds.) The Grid 2: Blueprint for

a new Computing Infrastructure, Morgan Kaufmann (2004).
[24] Message based middleware project at Community Grids Lab,

Project Web Site: http://www.naradabrokering.org/
[25] Project OnEarth at NASA JPL (Jet Propulsion Lab)

http://onearth.jpl.nasa.gov/
[26] W3C XSL Web Site : http://www.w3.org/Style/XSL/
[27] Aydin G., SERVOGrid WFS implementation web page:

http://www.crisisgrid.org/html/wfs.html
[28] Aktas M., SERVOGrid Information Services Web Site,

http://grids.ucs.indiana.edu/~maktas/fthpis
[29] Bellwood, T., Clement, L., and von Riegen, C. (eds) (2003),

UDDI Version 3.0.1: UDDI Spec Technical Committee
Specification. Available from http://uddi.org/pubs/uddi-
v3.0.1-20031014.htm

[30] Marlon Pierce, Choonhan Yoon and Geoffrey Fox:
Interacting Data Services for Distributed Earthquake
Modeling. ACES Workshop at ICCS June 2003 Australia.

[31] Tiampo, K. F., Rundle, J. B., McGinnis, S. A., &
Klein, W. Pattern dynamics and forecast methods in
seismically active regions. Pure Ap. Geophys. 159,
2429-2467 (2002).

[32] Geoffrey Fox, et al, Complexity Computational Environnent
(CCE) Architecture. Technical Report available from
http://grids.ucs.indiana.edu/ptliupages/publications/CCE%20
Architecture.doc

[33] Alameh N., Chaining Geographic Information Web Services,
IEEE Internet Computing, Sept-Oct 2003, 22-29.

[34] Open GIS Consortium Inc. OWS-1 Registry Service.
2002-07-26.

