
1

FutureGrid Image Repository: A Generic Catalog
and Storage System for

Heterogeneous Virtual Machine Images
Javier Diaz, Gregor von Laszewski, Fugang Wang, Andrew J. Younge and Geoffrey Fox

Pervasive Technology Institute, Indiana University
2729 E 10th St., Bloomington, IN 47408, U.S.A.

Email: javidiaz@indiana.edu, laszewski@gmail.com

Abstract—FutureGrid (FG) is an experimental, high-
performance testbed that supports HPC, cloud and grid com-
puting experiments for both application and computer scientist.
FutureGrid includes the use of virtualization technology to allow
the support of a wide range of operating systems in order to
include a testbed for various cloud computing infrastructure
as a service frameworks. Therefore, efficient management of a
variety of virtual machine images becomes a key issue. Current
cloud frameworks do not provide a way to manage images for
different IaaS frameworks. They typically provide their own
image repositories, but in general they do not allow us to
store the needed metadata to handle other IaaS images. We
present a generic catalog and image repository to store images of
any type. Our image repository has a convenient interface that
distinguishes image types. Therefore, it is not only useful for
FutureGrid, but also for any application that needs to manage
images.

I. INTRODUCTION

FutureGrid (FG) [1] provides a testbed that makes it pos-
sible for researchers to tackle complex research challenges
in Computer Science related to the use and security of grids
and clouds. One of the goals of the project is to understand
the behavior and utility of cloud computing approaches. In
this sense, FutureGrid provides the ability to compare these
frameworks with each other while considering real scientific
applications. Hence, researchers will be able to measure the
overhead of cloud technology by requesting linked experi-
ments on both virtual and bare-metal systems.

Since we are not only interested in offering pre-installed
frameworks exposed through endpoints, we must provide
additional functionality to instantiate and deploy them on-
demand. Therefore, we need to offer dynamic provisioning
within FutureGrid not only within an IaaS framework but
allow the provisioning of such frameworks themselves. In this
project, we use the term “raining” instead of just dynamic
provisioning to indicate that we strive to dynamically provision
even the IaaS framework or the PaaS framework [2].

Most of the cloud technologies are based on the virtualiza-
tion of both resources and software, which makes the image
management a key component for them. In fact, each IaaS
framework provides its own local image repository specifically
designed to interact with such framework. This creates a
problem, from the perspective of managing multiple environ-
ments as done by FG, because these image repositories are

not designed to interact with each other. Tools and services
offered by the IaaS frameworks have different requirements
and implementations to retrieve or store images. Hence, we
present in FG the ability to catalog and store images in a
unified repository. This image repository offers a common
interface that can distinguish image types for different IaaS
frameworks, but also bare metal images that we term dis-
tributed raw appliances in support of HPC. This allows us
in FG to include a diverse image set not only contributed by
the FG development team, but also by the user community
that generates such images and wishes to share them. The
images can be described with information about the software
stack that is installed on them including versions, libraries,
and available services. This information is maintained in the
catalog and can be searched by users and/or other FG services.

The rest of the paper is organized as follows. In Section
II, we present an overview of image repositories provided by
different cloud frameworks and storage systems. In Section
III, we present the FG Image Repository by focusing on its
requirements, design and implementation details. Section IV
describes the tests performed to compare the different storage
systems supported by the image repository and Section V
collects the results of these tests. Finally, we present the
conclusions future directions in Section VI.

II. BACKGROUND

As previously commented, the images are a key component
in cloud technologies. Therefore, any cloud framework pro-
viding IaaS or PaaS has an image repository to manage them.
In general, IaaS frameworks like Eucalyptus [3], Nimbus [4],
OpenNebula [5] or OpenStack [6] provide the possibility to
interact with their image repositories. On the other hand, PaaS
frameworks like Windows Azure [7] hide all these details to
the users.

Another important detail to consider in the development
of an image repository is the storage system. Some of the
previous frameworks provide interesting storage systems like
Cumulus (Nimbus) [4], Walrus (Eucalyptus) [3] or Swift
(OpenStack) [6]. However, other applications like NoSQL
databases [8] can also be used to store information in dis-
tributed systems. These databases typically scale horizontally
and are designed to manage huge amounts of data. While they



2

are oriented to data mining in cloud, some of them also allow
to store BLOBS (Binay Large Objects). In this sense, the
most active projects are MongoDB [9], CouchDB [10] and
Riak [11].

Finally, we would like to mention more traditional ap-
proaches used to provide networked and distributed file sys-
tems. Here, early examples are NFS and AFS with centralized
client-server design. More recent approaches focused on HPC
are LUSTRE [12] and PVFS (Parallel Virtual File System)
[13]. Both are parallel distributed file system, generally used
for large scale cluster computing.

III. FUTUREGRID IMAGE REPOSITORY

The image repository is one of two important services
within our image management. The other component is our
image generation tool [2] which deals with the generation of
template images that can be rained onto FG. Next we present
the different development phases of the FG image repository
namely requirements, design and implementation.

A. Requirements

To specify our requirements for the image repository we
have considered mostly the following four user groups: single
users that create images as part of the experiments they con-
duct on FG [2]; group of users that work together in the same
project and need to share the images within the group; system
administrators that maintain the image repository ensuring
backups and preserving space; FG services and subsystems
[2] like our rain framework which make use of the image
repository to integrate access and deployment of the images
as part of the rain workflow.

Based on our consideration for the target audience we
have identified a number of essential requirements that we
need to consider in our design. These requirement include
a simple, intuitive and user friendly environment; a unified,
extensible and integrated system design to manage various
types of images for different systems; built in fault tolerance
with proper accounting and information tools; and the ability
to be integrated with the FG security.

B. Design

The FutureGrid image repository provides a service to
query, store, and update images through a unique and common
interface. In Figure 1 we present its architecture.

To address extensibility in a flexible and modular way,
we have integrated a framework independent Storage Access
layer. This layer defines an interface to create transparent
plugins in support of different storage systems. Hence, a
bridge between the storage systems and the image repository
core functionality is provided. The Image Repository Core
contains the solutions to accounting including usage and quota
management, image management and metadata management.
The image management is focused on managing the image
files and the associated information (metadata) in order to
provide a consistent, meaningful and up to date image catalog.
The separation of this information is done on purpose in order

Fig. 1. FutureGrid Image Repository Architecture.

to support a variety of different storage systems that may
be chosen by the site administrator due to functionality or
integration requirements. Important to note is that the core
also registers the image usage and access. This allows the
repository to record information such as how many times
an image was accessed and by whom. Internally this data
may be used by a trigger service that cleanses the repository
from faulty or less frequently used images. It also allows
us to generate images from templates in case an image is
requested with certain functionality that does not yet exist.
Thus, instead of having a passive image repository, we move
towards an active image repository that can be augmented with
a number of triggers that get invoked dependent on the data
that is collected within the repository. In this way, we can
trigger events such as enforcing quota, automatically updating,
or even distributing images based on advanced reservation
events forwarded to us by the rain service. To access this
functionality, we provide a variety of service interfaces such as
an API, a command line interface, and REST services. These
interfaces are part of the Image Repository Service Interface
layer.

Finally, the security aspect is an essential component to
be considered in the design. Thus, the image repository will
provide the security functionality needed to integrate the
authentication and authorization with the FG ones (based on
LDAP).

C. Implementation

We are gradually implementing the features that are outlined
in our design. The implementation is based on a client-server
architecture to target a variety of different user communities
including end users, developers, administrators via web inter-
faces, APIs, and command line tools. In addition, the function-
ality of the repository is exposed through a REST interface,
which enables the integration with Web-based services such
as the FutureGrid portal.

Currently, our repository includes several plugins to support
up to four different storage systems including (a) MySQL
where the image files are stored directly in the POSIX file
system, (b) MongoDB where both data and files are stored
in the NoSQL database [9], (c) the OpenStack Object Store



3

TABLE I
INFORMATION ASSOCIATED TO THE IMAGES (METADATA). FIELDS WITH

ASTERISKS (*) CAN BE MODIFIED BY USERS

Field Name Description

imgId Unique identifier
owner Image’s owner
os* Operating system
description* Description of the image
tag* Image’s keywords
vmType* Virtual machine type
imgType* Aim of the image
permission* Access permission to the image
imgStatus* Status of the image
imgURI Image location
createdDate Upload date
lastAccess Last time the image was accessed
accessCount # times the image has been accessed
size Size of the image

(Swift) [6] and (d) Cumulus [14] from the Nimbus project
[4]. For (c) and (d) the data can be stored in either MySQL
or in MongoDB. These storage plugins not only increase the
interoperability of the image repository, but they can also
be used by the community as templates to create their own
plugins to support other storage systems.

We have already created a Command Line Interface (CLI)
to manage the image repository. Next, we illustrate the image
repository functionality.

a) User Management and Authentication: First, users
will have to authenticate to access the image repository. This
is not completed yet, but the access is going to be based on
roles and project/group memberships. Since FG provides much
of this information as part of an integrated portal and LDAP
server, we can utilize it to provide authorization to access
the repository while querying the FG account management
services for the needed metadata on project memberships and
roles.

As part of the user management, we currently maintain
information related with users such as the quota determining
the amount of disk space available for a particular user, the
user status (pending, activated, deactivated) and the user role
(admin or user). Repository administrators are the only ones
with the ability to add, remove and list users as well as
update the user’s quota, role and status. Thus, we have detailed
user-based and role-based access control to implement the
previously mentioned authentication mechanism.

b) Image Management: To manage the images we main-
tain a rich set of information associated with each image
(metadata). The current set of metadata is shown in Table I.

We provide the ability to upload an image by specifying
its location and its associated metadata. Defaults are provided
in case some metadata values are not defined. The metadata
includes also information about access permissions by users.
In this way, we can define if an image is private to the user
uploading the image, or shared with the public. Additionally,

we are going to implement the ability to share an image with a
selected number of users or a group/project as defined through
the FutureGrid portal.

Modifications to the metadata can be accomplished by
the owner of an image. However, some metadata cannot
be changed, such as the last time an image was accessed,
modified, or used.

We can retrieve images from the repository by name or by
Uniform Resource Identifier (URI). Nevertheless, as some of
our back-ends may not support URI’s, such as MongoDB [9],
the URI based access is not supported uniformly.

To remove images from the repository, users must own such
images. Admin users can remove any image, though.

Users can also query the image repository. It uses SQL
style queries to retrieve a list of images matching the query.
Currently, we provide a very simple interface that allows
us to conduct searches on the user exposed metadata using
regular expressions. For example, to retrieve a list of ima-
ges that match the OS to be Redhat and it is tagged with
hadoop, we can use the query string * where os=redhat,
tag=hadoop. Additionally, we can restrict the attributes of the
returned metadata by using queries such as field1,field2 where
field3=value, which returns only field1 and field2 of all images
where field3 equals to the value. To return all information,
users can simply pass a *. The use of this query language
allows us to abstract the back-end system delivering a uniform
search query across the different systems.

One additional very important property is the ability to sup-
port an accounting services while monitoring image repository
usage. Important information provide by this service relates
to the number of times that an image has been requested,
the last time that an image was accessed, number of images
registered by each user, disk space used by each user. Using
this information we can implement automatic triggers that
react upon certain conditions associated with the metadata.

c) Command Shell: We have also developed a command
shell for FG to unify the various commands and to provide a
structured mechanism to group FG related commands into a
single shell. The shell provides the ability to log experiments
conducted within the shell for replication. As scripts, pipes
and command line arguments can be used to pass commands
into the shell, it provides a very convenient way to organize
simple workflows as part of experiments within FutureGrid.

IV. METHODOLOGY

Since the image repository supports different storage sys-
tems, we need to know the expected performance of each sys-
tem while working with the image repository. Therefore, we
have conducted several performance tests to evaluate all these
storage back-ends for the image repository. The back-ends
include MongoDB, Swift, Cumulus, MySQL and an ext4 file
system. To distinguish the setup in our Results’ Section, each
configuration is labeled as image storage+metadata storage.
With this convention we have seven configurations: Cumu-
lus+MongoDB (Cumu+Mo), Cumulus+MySQL (Cumu+My),
Filesystem+MySQL (Fs+My), MongoDB with Replication
(Mo+Mo), MongoDB with No Replication (MoNR+MoNR),
Swift+MongoDB (Swi+Mo) and Swift+MySQL (Swi+My).



4

Figure 2 shows how we have deployed the image repository
(IR) and the storage systems for our experiments. Within the
experiments we have used 16 machines that are equipped with
the image repository client tools. The image repository has
been configured on a separate machine containing services
such as the IR server, the Swift proxy, MySQL server and
the MongoDB scheduler. We have also used three additional
machines to store the images and to create a replication
mechanism. However, only Swift and MongoDB made use of
the three machines, because they are the only ones that support
replica service. In the case of Cumulus and the normal file
system, we have only used one machine to store the images.
Moreover, to allow comparison, we have also deployed Mon-
goDB using a single machine without the replication service
and therefore without the scheduler and configuration services.
This deployment is labeled with MoNR+MoNR. However, in
the case of Swift we could not avoid the use of replication
since it needs a minimum of three replicas.

Fig. 2. Test deployment Infrastructure. Each gray box is a different machine.

We have considered five different image sizes: 50MB,
300MB, 500MB, 1GB and 2GB in order to covers realistic
image sizes in use by FutureGrid users. We have compared
both read and write performance for each storage system
by uploading and retrieving images using a single client. In
addition, we have tested a distributed scenario that involves 16
clients retrieving images concurrently. We have measured the
average time that the clients need to retrieve or upload their
images while running the test five times.

Tests have been carried out on FutureGrid while using the
FG Sierra supercomputer at UCSD (University of California,
San Diego). This cluster is composed by 84 machines with
quad-core Intel Xeon processors and 32GB of memory. The
cluster is connected using Infiniband DDR and 1 Gb Ethernet
networks. The operating system is RHEL 6 and the file system
format is ext4. The software used is Cumulus from Nimbus
2.7, Swift 1.4.0 (OpenStack Object Storage), MongoDB 1.8.1,
and MySQL 5.1.47. Since the image repository is written
in python, we use the corresponding python APIs to access
to the storage systems. Thus, we use Boto 2.0b4 to access
Cumulus [15], Rackspace cloudfiles 1.7.9.2 for Swift [16],
Pymongo 1.10.1 for MongoDB [17], and pymysql 0.4 to

access MySQL [18].

V. RESULTS

First, we uploaded images to the repository to study the
write performance of each storage system. The results are
shown in Figure 3. We observe that the Cumulus configura-
tions offer the best performance, which is up to 4.5% and 54%
better than MongoDB with no replication (MoNR+MoNR) and
Swift, respectively. Unfortunately, Cumulus does not provide
any data-scalability and fault tolerance mechanism, which was
in our experiments not a notable drawback. On the other
hand, if we use MongoDB with replication (Mo+Mo), its
performance degrades significantly resulting in a 70% worse
performance for the 2GB case. This is due to two main factors,
(a) the needed to send the same file to several machines and (b)
the large amount of memory that this software requires. In fact,
doing the same tests in machines with only 8GB of memory,
the performance started to decrease even in the 300MB case.
The reason of this performance degradation is that the memory
usage is that MongoDB uses memory-mapped files to access
data and is naturally memory bound. Once we hit the memory
limitation, performance drastically declines. Finally, we had
many problems with Swift due to errors when trying to upload
larger files. Indeed, starting with the 600Mb case, the failure
rate was more than 50% and for the 2GB case we were not
able to upload a single image using the Python API. For this
reason, we performed the last two tests by calling directly the
command line tool included in Swift called st. It demonstrated
that the documentation of the API is not yet sufficient and that
the utilization of the provided command line tools is at this
time a preferred choice for us.

Fig. 3. Upload Images to the Repository. Asterisks mean that those tests
were done using the command line tool instead of the Python API.

Next, we study the performance of the different storage
systems retrieving images. Since this is the most frequent use
case for our image repository, we have performed two set of
tests involving one or multiple clients.

Figure 4 shows the results of requesting images from a
single client. We observe that Cumulus provides us with the
best performance. It is up to 13% better than MongoDB with
no replication (MoNR+MoNR). Once again, by introducing
replication to MongoDB (Mo+Mo), its performance degrades
around a 30% due to the higher complexity of the deployed
infrastructure. Finally, we can see that Swift performs quite
well considering that it has to manage a more complex



5

infrastructure involving replication and it is only 15% worse
than Cumulus.

Fig. 4. Retrieve Images from the Repository.

The last set of tests shows the average time that each of the
16 clients spent to retrieve an image from the repository, see
Figure 5. In this case, the Fs+My configuration has the best
performance which is up to 53% better than any of the others.
This is because Fs+My, unlike the other implementations,
does not suffer form any performance degradation due to the
overhead introduced by the software itself. We observe that the
performance of Cumulus degrades when requesting the largest
files. Hence, Swift provides a better performance in this case.
However, Swift experienced significant reliability problems
resulting in 31% and 43% of the clients not to receive
their images. With respect to MongoDB, both configuration
(MoNR+MoNR and Mo+Mo) had problems to manage the
workload and in the 2GB case any client got the requested
image due to connection errors. Therefore, only Cumulus and
the Filesystem+MySQL configurations were able to handle the
workload properly.

Fig. 5. Retrieve Images from the Repository using 16 client concurrently.

VI. CONCLUSIONS

In this paper we have introduced the FutureGrid Image
Repository. We focused on the requirements and design to
establish the important features that we have to support. We
present a functional prototype that implements most of the
designed features. We consider that a key aspect of this image
repository is the ability to provide a unique and common
interface to manage any kind of image. Its design is flexible
enough to be easily integrated not only with FutureGrid but

also with other frameworks. The Image Repository features
are enclosed and offered through a command line interface to
provide an easy access to them. Furthermore, we provide an
API to develop applications on top of the image repository.

We have studied the performance of the different storage
back-ends supported by the image repository to determine
which one is the best for our users in FutureGrid. Although
none of them was a perfect match because of performance
problems and high memory usage in the case of MongoDB,
too many errors in Swift or missing fault tolerance/scalability
like in Cumulus. Despite of the previous problems, we think
that the candidates to be our default storage system are
Cumulus because is still quite fast and reliable and Swift
because has a good architecture to provide fault tolerance and
scalability. Furthermore, we have an intense relationship with
the Cumulus group as they are funded in part by FutureGrid
and we can work with them to improve their software. We
will have to monitor the development of swift closely due to
the rapid evolution of OpenStack as part of a very large open
source community. Our work also shows that we have the abil-
ity to select different systems based on future developments if
needed.

We are presently developing a REST API to the image
repository and integrating the automatic image generation.
We would also like to provide compatibility with the Open
Virtualization Format (OVF) to describe the images.

ACKNOWLEDGMENT

This material is based upon work supported in part by the
National Science Foundation under Grant No. 0910812.

REFERENCES

[1] “FutureGrid Portal,” Webpage. [Online]. Available:
http://portal.futuregrid.org

[2] G. von Laszewski, G. C. Fox, F. Wang, A. J. Younge, A. Kulshrestha,
G. G. Pike, W. Smith, J. Voeckler, R. J. Figueiredo, J. Fortes, K. Keahey,
and E. Delman, “Design of the futuregrid experiment management
framework,” in GCE2010 at SC10, IEEE. New Orleans: IEEE, 2010.

[3] “Open Source Eucalyptus,” Webpage. [Online]. Available:
http://open.eucalyptus.com/

[4] “Nimbus Project,” Webpage. [Online]. Available:
http://www.nimbusproject.org

[5] “OpenNebula,” Webpage. [Online]. Available: http://opennebula.org/
[6] “OpenStack,” Webpage. [Online]. Available: http://openstack.org/
[7] D. Chappell, “Introducing windows azure,” David Chappell & Asso-

ciates White Paper, 2010.
[8] “NoSQL Databases,” Webpage. [Online]. Available: http://nosql-

database.org/
[9] “MongoDB,” Webpage. [Online]. Available: http://www.mongodb.org/

[10] “Apache CouchDB Project,” Webpage. [Online]. Available:
http://couchdb.apache.org/index.html

[11] “Basho Riak,” Webpage. [Online]. Available:
http://www.basho.com/Riak.html

[12] “LUSTRE ,” Webpage. [Online]. Available: http://www.lustre.org/
[13] “PVFS,” Webpage. [Online]. Available: http://www.pvfs.org/
[14] J. Bresnahan, K. Keahey, T. Freeman, and D. LaBissoniere, “Cumulus:

Open source storage cloud for science,” SC10 Poster, 2010.
[15] “Boto: python interface to Amazon Web Services,” Webpage. [Online].

Available: http://code.google.com/p/boto/
[16] “Rackspace interface for Swift,” Webpage. [Online]. Available:

https://github.com/rackspace/python-cloudfiles
[17] “MongoDB python API,” Webpage. [Online]. Available:

http://api.mongodb.org/python/
[18] “Pymysql: Pure Python MySQL client,” Webpage. [Online]. Available:

http://code.google.com/p/pymysql/


