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ABSTRACT

The near surface layer signatures in polar firn are preserved
from the glaciological behaviors of past climate and are im-
portant to understanding the rapidly changing polar ice sheets.
Identifying and tracing near surface internal layers in snow
radar echograms can be used to produce high-resolution accu-
mulation maps. This process is typically performed manually,
however, requiring time-consuming, dense hand-selection in
each echogram and interpolation between echogram sections.
We have developed an approach for semi-automatically esti-
mating near surface internal layers in snow radar echograms,
and we have applied it to echograms acquired from Antarc-
tica. Our solution utilizes an active contour (“snakes”) model
to find high-intensity edges likely to correspond to layer
boundaries, while simultaneously imposing constraints on
smoothness of layer depth and parallelism among layers.

Index Terms— Radar Image Processing, Near Surface
Internal Layers

1. INTRODUCTION

The IPCC Fourth Assessment reports considerable uncer-
tainty associated with projected sea level rise over the coming
decade and century [1]. Understanding the ice flow dynamics
in Greenland and Antarctica poses a significant challenge,
but the uncertainty can be substantially reduced by more and
better observations of the polar ice sheets’ internal structure.

The Center for Remote Sensing of Ice Sheets (CReSIS)
developed a snow radar system for operation in NASA’s
2011 Operation Ice Bridge Ice program in order to image
near-surface internal layers and produce high-resolution ac-
cumulation maps (such as in Figure 1(a)). Identifying near
surface internal layers in radar imagery is important for study-
ing climate variability, but finding layers in these echograms
by hand is labor-intensive and subjective. The data growth
from past and projected field campaigns will require auto-
mated techniques in order to provide results to the polar
science community in a timely manner. However, automatic
layer-finding is challenging due to the limited resolution,
large degree of noise, faint layer boundaries, and confusing
structures that exist in these echograms.

In this paper, we present an approach that automates
the most labor-intensive part of layer finding. Our semi-
automatic approach requires a human to estimate some global
parameters of an echogram, such as the number of layers that
are visible. Our approach then attempts to trace layers using
automated image processing techniques that also apply high-
level constraints, such as that the ice-air boundary should be
most prominent and that snow layers should be roughly par-
allel. We evaluate the technique on several echograms from
Antarctica.

2. RELATED LITERATURE

There has been relatively little work on estimating near sur-
face snow layers from echograms acquired in either Green-
land or Antarctica; most related work has focused on finding
basal boundaries or other coarse properties of echograms. For
example, Freeman et al. [2] and Ferro and Bruzzone [3] inves-
tigated how shallow ice features can be automatically detected
in icy regions from echograms of Mars. In other work, Ferro
and Bruzzone [4] used echograms of the Martian subsurface
to detect basal returns. Approaches to identifying surface and
bedrock layers in polar radar imagery include Reid et al. [5],
Ilisei et al. [6], and Crandall et al. [7].

More relevant to the internal layer finding problem we
study here, Fahnestock et al. [8] developed an algorithm
which uses cross-correlation and a peak-following routines
to trace near surface internal layers in northern Greenland.
Karlsson and Dahl-Jensen [9] present a ramp function-based
approach for predicting internal layers. Sime et al. [10] de-
veloped a technique to obtain layer dip information from two
Antarctic datasets: the ground-based Fletcher Promontory
and the airborne-based Wilkes Subglacial Basin. They ap-
plied a horizontal averaging technique to reduce layer noise,
identified layers, isolated individual ‘layer objects,’ measured
the orientation and other object properties, and collected valid
dip information. They obtain good results in finding and char-
acterizing dips, but do not attempt to trace the complete layers
that are useful in other applications. We propose a novel ap-
proach to trace complete layers, by combining ‘off-the shelf’
computer vision techniques for estimating high intensity near
surface internal layers from snow radar echograms.



(a) (b)

(c) (d)

Fig. 1. Illustration of the steps of layer-finding: (a) Original snow radar image, (b) Result of Canny edge detection to find ice
surface, (c) Result of curve point classification (close-up of a portion of the echogram for ease of visualization), (d) Detected
layers (green) and maximum curve points (blue asterisks). Figure best viewed in color.

3. METHODOLOGY

We use observations about how domain experts detect layer
boundaries in order to develop a semi-automated algorithm
to mimic these behaviors. As shown in Figure 1(a) and as
is typical for our experimental images, the surface reflection
is very strong and near surface layer intensity generally de-
creases as depth increases. Also, near surface layers are ap-
proximately parallel, but may have modest changes in slope
both to one another and to the ice surface. We thus propose a
technique that first attempts to find the prominent surface re-
flection, and then searches for similar (but invariably weaker)
layer structures below the surface. We use each layer as an es-
timate of the appearance of the layer below it, and then use an
active contours (“snakes”) to snap to the correct layer struc-
ture given this estimate. We describe the process of detecting
the surface, estimating layer location using curve point detec-
tion and then refining the estimate using snakes in subsections
3.1, 3.2, and 3.3, respectively, and use Figure 1 as a running
demonstration of the proposed approach.

3.1. Edge Detection

We first find the location of the surface boundary, which is
typically the most prominent edge in the echogram. We use
a Canny edge detector [11] because of its performance in de-
tecting strong intensity contrasts for our near surface dataset
(see Figure 1(b)). In detecting this initial ice curve, we used

the following fixed Canny parameters: a sigma of 2 for the
standard deviation of the Gaussian filter and a low and high
thresholds of 0.7 and 1.8, respectively. Since the ice surface is
symmetrical to subsequent layers, it provides a good starting
template.

3.2. Curve Point Classification

While the surface layer can be readily detected by edge detec-
tion, using edge detection to detect internal layers is not pos-
sible because of the very weak layer boundaries and the noise
inherent in echograms. We thus instead use the approach of
Steger [12] to identify points in an echogram that are likely
to be part of curvilinear structures. In short, this approach
computes statistics on gradient structure within local image
patches, in particular looking for areas with prominent gradi-
ents in a coherent direction. We identify peaks in the scores
computed by Steger (shown as blue asterisks in Figure 1(d))
and use these to suggest initial curve positions for estimating
the near surface internal layers. To handle the first layer, we
take the surface layer estimated above and shift it down (in
the y direction) so that it intersects the first maximum point.
This process is repeated until the number of layers specified
by the human operator has been found. This process gives
initial estimates of the layer positions and shapes, which we
refine in the next step.
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Fig. 2. Sample results of our approach on three snow radar echograms.

3.3. Active Contours (Snakes)

To refine the curve shape and position estimates from the last
section, we used the active contours (snakes) model [13], a
procedure for allowing an initial contour to gravitate towards
an object boundary. Briefly summarized, the snakes model
defines an energy function that computes the “cost” of a par-
ticular curve (sequence of points). The function is defined
to encourage the curve to align with high-gradient edge pix-
els, but to discourage the curve from having discontinuities or
sharps bends. These two goals are often in tension, and the
energy minimization function is used to find the curve with
the best trade-off between them. An iterative gradient descent
(hill-climbing) algorithm is used to find the curve with the
best (local) minimum, given an estimate of the correct answer
as initialization.

In our methodology, active contours are used to warp the
initial templates from the last section into a refined estimate

that better matches the local image data. For this to succeed,
the initial contour must be close to the actual layer in order
for the snake to find the correct boundary, and not be con-
fused by noise or other edges in the image. A layer is fit when
the energy function converges to a minimum or when a max-
imum number of iterations has reached its threshold. Using
active contours requires setting several parameters (α, β, and
γ values – these are weights on the terms in the energy mini-
mization function and control the trade-off between the forces
mentioned above). We tuned these parameters empirically to
find values that work well on most images, and then also al-
low the human operator to further tune them on a per-image
basis if needed.

4. RESULTS

Figure 3 shows the result of layer-finding on the echogram
of Figure 1. We observe that it has successfully found over



Fig. 3. Estimated near surface internal layers from the
echogram in Figure 1.

a dozen layers correctly, although it misses some of the very
faint layers towards the bottom of the echogram. Figure 2
shows results on three additional echograms. While the al-
gorithm works quite well for layers near the surface, it does
miss or incorrectly identify some of the deeper layers (such as
the discontinuities in Figure 1(c)) in which the estimates skip
from one layer boundary to another).

5. CONCLUSION AND FUTURE WORK

We have developed a semi-automated approach to estimating
near surface layers in snow radar imagery. Our solution uti-
lizes an active contour model in addition to edge detection and
Steger’s curve classification. Our technique is a step towards
the ultimate goal of unburdening domain experts from the task
of dense hand selection. By providing tools to the polar sci-
ence community, high resolution accumulation maps can be
readily processed to determine the contribution of global cli-
mate change on sea level rise. In the future, we intend to
explore automated algorithms for determining internal layers
in other data products, and to develop metrics to allow us to
quantify the quality of our layer-finding approaches and eval-
uate them against other methods (including hand-tracing by
domain experts).
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