

Hybrid Grid Information Service

Mehmet S. Aktas1, 2, Geoffrey C. Fox1, 2, 3, Marlon Pierce1

1 Community Grids Laboratory, Indiana University

501 N. Morton Suite 224, Bloomington, IN 47404
{maktas, gcf, mpierce}@cs.indiana.edu

http://www.communitygrids.iu.edu/index.html
2 Computer Science Department, School of Informatics, Indiana University

3 Physics Department, College of Arts and Sciences, Indiana University

Abstract. We introduce a Grid Information Service Architecture which forms a

metadata replica hosting system to manage both highly-dynamic, small-scale

and relatively-large, static metadata associated to Grid/Web Services. We

present an empirical evaluation of the proposed architecture and investigate its

practical usefulness. The results demonstrate that the proposed replica hosting

system improves the quality of Grid Information Services in terms of high-

performance and fault-tolerance with negligible processing overheads. The re-

sults also indicate that efficient decentralized Grid Information Service Archi-

tectures can be built by utilizing publish-subscribe based messaging schemes.

1 Introduction

Information Services address the challenging problems of announcing and discover-

ing resources in Grids. Existing implementations of information services present some

challenges. For an example, most of the existing approaches to Information Services

have centralized components and do not address high performance and fault-tolerance

issues. Handling information requirements of dynamic Grid/Web Service collections

requires high performance, decentralized, and fault tolerant information systems.

Another example, existing Information Service mechanisms do not take into account

demand changes when making decisions on metadata access and storage. However,

replica hosting environments for information services should be able to relocate me-

tadata to nearby locations of interested entities in order to provide efficient access,

storage of the information. Therefore, we see a greater need for a system to facilitate

resource discovery in peer-to-peer/grid service-oriented architecture based applica-

tions. In order to address these challenges, we designed, built and evaluated a Grid

Information Service called Hybrid Grid Information Service (Hybrid Service) which

forms a replica hosting system. This paper focuses on the experiences gained in de-

signing and building the replica hosting system for the Hybrid Service.

The organization of the rest of the paper is as follows. Section 2 reviews the major

solutions in state of art of the studies covered in this study. It gives an extensive sur-

vey on the previous metadata management solutions for replica hosting systems. The

previous solutions are analyzed followed by discussions on the reasons why the pre-

vious solutions do not answer the research problem at hand. Section 2 also discusses

various concepts and paradigms that are taken into account in designing a solution

addressing the research problem. Section 3 gives a brief overview of the centralized

version of the Hybrid Service. Section 4-8 presents the Hybrid Service as the replica

hosting system. Section 4 discusses the decentralized architectural design details of

the system. Section 5-8 discusses important aspects of the replica hosting system

design. Section 9 analyzes the performance evolution of the prototype of the Hybrid

Service replica hosting system. It presents benchmarking on distribution, fault-

tolerance and consistency enforcement aspects of the system. Section 10 contains the

conclusions and future research directions.

2 Background

Web Services may have complex characteristics and interact with one or a set of ser-

vices. Service descriptions expressing these characteristics must be capable of accu-

rately representing these services. We use the term “context” to define all available

information associated with a Web Service. For the purposes of our research, context

is a piece of information (metadata) describing behavior, environment and characte-

ristics of a service. Context encapsulates not only activities that service is involved in

but also the service itself as an entity. From this point forward, we will be using con-

text and service metadata interchangeably, as they both refer to the information asso-

ciated with a service.

Context has dynamic characteristics, as it indicates volatile behavior of Grid/Web

Services. Moreover, context may have changing user demands over time and it needs

to be reallocated based on changing user demands and locations. This requires a Grid

Information Service that can meet with tight response-time requirements of dynamic

Grid/Web Service collections and that can support optimization techniques in metada-

ta access and move the highly requested metadata to where they wanted.

Locating resources of interest is a fundamental problem in resource intensive envi-

ronments. An effective methodology to facilitate resource discovery is to provide and

manage information about resources. Here, a resource corresponds to a service and

information associated to it refers to metadata of a service. Thus, we see a greater

need for metadata management solutions to make such metadata available in peer-to-

peer/grid environments. We can analyze existing solutions for metadata hosting envi-

ronments under several mainstream categories based on the ways they tackle with the

research issues in sub-processes of metadata management: a) architectural design for

storage handling b) formation of underlying networks.

Analysis of service metadata management research based on architectures: Ex-

isting service metadata discovery architectures can be broadly categorized as centra-

lized and decentralized by the way they handle with service information storage. In

centralized approach, there is a central look-up mechanism where all services are

dependent on one node. Mainstream service discovery architectures like JINI [1],

Salutation [2], and Service Location Protocol [3] have been developed to provide

discovery of remote services residing in distributed nodes in a wired network. Their

architectures are based on a central registry for service registration and discovery.

Limitations: The centralized registry approach presents a single point of failure and

is limited to a certain storage capability. It does not scale up to high number of servic-

es that in turn creates a performance and scalability bottleneck for the system.

In decentralized approach, there is no central database. This research trend mainly

focuses on decentralized search where all the peers of the system actively participate

the discovery process. Previous solutions with pure decentralized storage models

focused on the concept of distributed hash tables (DHT). This approach assumes the

possession of an identifier such as hash table that identifies the service to be discov-

ered. For instance, a DHT specifies a relation between a resource and a position in a

distributed network. A good example of DHT is the Chord [4] project. Each entity of

the network is hashed; therefore, the position of the entity in the network is deter-

mined through DHT. A message is routed to the closest entity to the final destination.

Inspired from peer-to-peer discovery model, there has been work conducted on to

develop peer-to-peer architectures [5, 6] for distributed information management.

Another decentralized approach, Bittorent is a peer-to-peer file distribution protocol

which is designed to distribute large amounts of widely distributed data. A Bittorent

network consists of three entites: a tracker, a torent file and peers. A tracker is a serv-

er that keeps track of which peers (seeds, downloaders) are in the network. A torent is

a metadata file that contains information about all the downloadable pieces of a data.

A peer is software, which implements the Bittorent protocol. Each peer is capable of

requesting, and transferring data across network. Peers are classified into two catego-

ries: seeds and downloaders. The former has the complete copy of the file and offers

it for download. The latter has the parts of the file and downloads the file from other

seeds or downloaders. An example peer-to-peer storage service, Amazon Simple

Storage Service (Amazon S3) is a web-scale storage which supports use of the Bitto-

rent protocol. It provides a simple web service interface used to provide storage and

retrieval of any data across widely distributed area. Limitations: As the resource

placement at nodes is strictly enforced in structured peer-to-peer networks, these

systems suffer from a heavy overhead on the bootstrap of the network. Pure decentra-

lized storage models have mainly focused on DHT approach. The DHT approach

provides good performance on routing messages to corresponding nodes. However, it

is limited to primitive query capabilities on the database operations [7]. Furthermore,

the DHT approach does not take into account changes in the client demands and load

balancing. The Bittorent approach and Amazon S3 storage service that utilizes the

Bittorent protocol have the following limitations. First, the overhead involved in

transferring small size data (e.g. in the order of kilobytes) is big. For example, the

total required bandwidth for necessary protocol messages for downloading a small

size data is high. Second, the tracker is a performance bottleneck and a single point of

failure in the network. Thus, the performance of a Bittorent network depends on the

capacity of the tracker. In addition, if the tracker fails, it is not possible for peers to

locate each other.

Discussion: The centralized storage scales better in performance for limited storage

capability compared to decentralized approach, whereas a decentralized approach can

scale up to high amount of metadata where centralized approach fails. Pure decentra-

lized storage models such as peer-to-peer service discovery architectures have fo-

cused on the concept of distributed hash tables (DHT). This method may provide

better performance as the database operation messages are routed fast, however, it

still does not provide the same performance to handle dynamic metadata as centra-

lized database does. In this research, we take as a design requirement that the pro-

posed system should support a) high performance by utilizing optimized request dis-

tribution techniques, b) fault-tolerance by increasing the availability of metadata, and

c) peer-to-peer message distribution strategy by utilizing a classic middleware ap-

proach; publish-subscribe based messaging system.

Metadata management research based on formation of underlying networks:
Another way of classifying service discovery architectures could be based on the

formation of the network and the way of handling with discovery request distribution.

In traditional wired networks, network formation is systematic since each node

joining the system is assigned an identity by another device in the system [8, 9]. Ex-

ample wired network discovery architectures such as JINI [1] and Service Location

Protocol [3] focus on discovering local area network services provided by devices like

printer.

In ad-hoc networks (unstructured peer-to-peer systems), there is no controlling

entity and there is no constraint on the resource dissemination in the network. Exist-

ing solutions [8, 10] for service discovery for ad-hoc networks (e.g. pervasive compu-

ting environments) can be broadly categorized as broadcast-driven and advertisement-

driven approaches [11]. In broadcast-driven approach, a service discovery request is

broadcasted throughout the discovery network. In this approach, if a node contains the

service, it unicast with a response message. In advertisement-driven approach, servic-

es advertise themselves to all available nodes. In this case, each node interested dis-

covering a service caches the advertisement of the service. The WS-Discovery Speci-

fication [12] supports both broadcast-driven and advertisement-based approaches. To

minimize the consumption of network bandwidth, this specification supports the exis-

tence of registries and defines a multicast suppression behavior if a registry is availa-

ble on the network. Limitations: The traditional wired-network based architectures

are limited, as they depend on a controlling entity, which assigns identifiers to partici-

pating entities. If the size of the network is too big, the broadcast-driven approach has

a disadvantage, since it utilizes significant network bandwidth, which in turn creates a

large load on the network. The advertisement-driven approach does not scale, as the

network nodes may have limited storage and memory capability. The WS-Discovery

approach is promising to handle metadata in peer-to-peer computing environment;

however, it has the disadvantage of being dependent on hardware multicast for mes-

sage dissemination. Discussion: Metadata discovery solutions designed for ad-hoc

networks are appropriate for Grid and peer-to-peer computing environments, as these

solutions do not have any constraints on resource dissemination in the network.

Among these solutions, the WS-Discovery approach is promising as it employs a pure

peer-to-peer approach where the messages (advertisement/discovery) are broadcasted

in the system. Inspired by WS-Discovery approach, we take as a requirement that the

proposed system should employ a broadcast-based metadata discovery approach.

Each message should include a unique identifier distinguishing the peer, which in-

itiated the request. On receipt of a message, only the nodes that have the requested

information should reply with a response message. Moreover, we also take as a re-

quirement that the proposed system should employ an advertisement-driven approach

for advertising the existence of network nodes. Apart from the WS-Discovery ap-

proach, the proposed system should use a software multicast based message dissemi-

nation for request distribution, metadata and network node advertisements.

Publish-subscribe paradigm: Most distributed systems rely on passing messages

between processes. Thus, system entities communicate with each other by exchanging

messages, which captures varying information such as search/storage requests, system

conditions and so forth. These systems can be categorized based on their messaging

infrastructures such as publish-subscribe systems, point-to-point communication sys-

tems, queuing systems, and peer-to-peer based systems [13]. Among them, publish-

subscribe paradigm principles have gained importance in recent years, as recently

released specifications such as Java Message Service [14] and WS-Eventing Specifi-

cation [15] benefit from publish-subscribe system principles to standardize develop-

ment of interoperable systems. The publish-subscribe paradigm uses an asynchronous

messaging. In a publish-subscribe system, publishers can broadcast each message

(e.g. through a topic), rather than addressing it to specific recipients. The messaging

system then sends the message to all recipients that subscribed to a topic. Advantag-

es: As it is asynchronous, a publish-subscribe system forms a loosely coupled archi-

tecture where the publishers do not know who the subscribers are. This messaging

scheme is more scalable architecture than point-to-point solutions, since message

senders only deal with creating the original message, and can leave the job of message

distribution to the messaging infrastructure. Limitations: Messages are typically

broadcasted over a network. This allows a more dynamic network topology. Howev-

er, as the volume of messages increase, this may result in overloading of the network

without appropriate pruning strategies. Discussion: In the architectural design of the

proposed system, we take as a requirement that the system should support the publish-

subscribe paradigm as a communication middleware for message exchanges between

system entities. NaradaBrokering [16-20] is an open-source and distributed messag-

ing infrastructure implementing the publish-subscribe paradigm. It establishes a hie-

rarchy structure at the network, where a peer is part of a cluster that is a part of a

super-cluster, which is in turn part of a super-super-cluster and so on. The organiza-

tion scheme of this scenario forms a communication between peers that increases

logarithmically with geometric increase in network size. The NaradaBrokering soft-

ware is the most appropriate solution for our design decision, since its entities, i.e.

brokers, specify constraints on the quality of service related delivery of events. It

provides a substrate of Quality of Services (security, reliability, etc.). In turn, this

enables various capabilities to the system such as order, duplicate elimination, reliable

message delivery, security and so forth. Note that these capabilities are not inherently

part of publish-subscribe paradigm.

Replication and consistency issues: Replication is a well-known and commonly

used technique to improve the quality of metadata hosting environments. One ap-

proach to replication is to keep a copy of a data at every node of the network (full

replication). The other approach is to keep a copy of a data only at a few number of

replica servers (partial replication) [21, 22]. Replication can further be categorized as

permanent-replication and server-initiated replication [22]. Permanent-replication

keeps the copies of a data permanently for fault-tolerance reasons, while the server-

initiated replication creates the copies of a data temporarily to improve the respon-

siveness of the system for a period of time during which the data is in high demand.

Sivasubramanian et al [21] give an extensive survey on designing and developing

replica hosting environments, as does Robinovich in [23], paying particular attention

to dynamic replication. As the nature of some of the targeted metadata domains of this

research is highly dynamic, we focus on replica hosting systems that are handling

with dynamic data. These systems can be discussed under following design issues: a)

distribution of client requests, b) selection of replica servers for replica placement,

and c) consistency enforcement.

Distribution of client requests is the problem of redirecting the request to the most

appropriate replica server. Some of the existing solutions to this problem rely on the

existence of a DNS-Server [23, 24]. These solutions utilize a redirector/proxy server

that obtains physical location of a collection of data-systems hosting a replica of the

requested data, and choose one to redirect client’s request.

Replica placement is another issue that deals with selecting data hosting environments

for replica placement and deciding how many replicas to have in the system. Some of

the existing solutions that apply dynamic replication, monitor various properties of

the system when making replica placement decisions [23, 25]. For instance, Radar

[26] replicates/migrates dynamic content based on changing client demands. Spread

[25] considers the path between the data-system and the client and makes decisions to

replicate dynamic content on that path.

The consistency enforcement issue has to do with ensuring all replicas of the same

data to be the same. A consistency enforcement model is a contract between a host-

ing environment and its clients [21]. Some classification approaches to categorize

existing research for consistency enforcement are discussed in [21, 22]. Tanenbaum

[22] differentiates consistency under two main classes: data-centric and client-centric.

In the data-centric approach, all copies of a data are updated regardless of whether

some client is aware of those updates. In the client-centric approach, consistency is

ensured from a client’s perspective. Client-centric consistency model allows copies of

a data to be inconsistent with each other as long as the consistency is ensured from a

single client’s point of view. The implementations of the consistency models can be

categorized as primary-based protocols (primary-copy approach) and replicated-write

protocols [22]. In primary-copy approach, updates are carried out on a single server,

while in the replicated-write approach; updates can be originated at multi servers. For

an example, Radar [23] applies the primary-copy approach, which suggests a copy of

a data item to be designated as primary-copy, to ensure consistency enforcement.

Updates can be transferred in different ways. One approach, for example, is to trans-

fer the whole content of a replica, while the other is to transfer the difference between

the previous copy and the updated copy. Update propagation can be initiated in dif-

ferent ways. For example, data may be pulled from an up-to-date server (pull).

Another example, an up-to-date server may keep track of the servers holding copies

of a data and push the updates onto those servers (push). Some update propagation

schemes combine pull and push methodologies. For instance, the Akamai project [24]

introduces versioning where a version number is part of the data identifier, so that the

client can only fetch the updated data (with a given identifier) from the corresponding

data hosting system.

Discussion: The proposed architecture should differ from previous solutions for web

replica hosting systems, as the intended use is not to be a web-scale hosting environ-

ment. Table 1 shows a summary of the useful strategies that we take as a design re-

quirement for our implementation design. As for the request routing mechanism, we

think that, broadcasting access requests would be the most appropriate request distri-

bution solution considering the dynamic characteristics of the metadata domain. Some

of the existing solutions to dynamic replication [23, 24] assume all data-hosting serv-

ers to be ready and available for replica placement and ignore “dynamism” both in the

network topology and in the data. In reality, data-systems can fail anytime and may

present volatile behavior, while the data can be highly updated. Thus, to capture such

“dynamism”, we take as a requirement that the proposed system should broadcast the

requests to the nodes holding the data under question. For message dissemination, the

system should employ a pure peer-to-peer approach, which is based on publish-

subscribe based messaging schemes to achieve a multi-publisher multicast mechan-

ism.

As for the replica placement methodology, we consider providing an architecture,

which would allow both partial and full replication to take place with negligible sys-

tem processing overheads. We also consider both permanent and server-initiated

replication as appropriate strategies for the proposed system. The permanent-

replication could provide a minimum required fault tolerance, while the server-

initiated replication could improve responsiveness of the system.

To minimize the cost of consistency enforcement, we take as a requirement that the

system should employ a client-centric consistency model, which suggests copies of a

context can be inconsistent with each other; however, they should be consistent from

a client’s perspective.

Design Issue The design requirements of the proposed system

Replica-content

placement

copies of a context should be kept permanently for fault tolerant reasons

(permanent replication)

copies of a context should be kept temporarily for a time period during

which the context is in demand to improve performance (server-initiated

replication)

Request routing client’s request should be broadcasted to those nodes holding the context in

question (broadcast-based request dissemination)

Consistency enforcement updates should be carried out on a single server (primary-copy approach) -
every update request should be assigned a synchronized timestamp, which

can later be used for ordering among the updates

copies of a context can be inconsistent with each other; however, they

should be consistent from a client’s perspective.

whole content of a context should be broadcasted by the primary-copy to the

redundant permanent-copy holders

Table 1 Summary of the replication and consistency enforcement strategies that we take as a requirement

for the proposed system implementation.

As for the consistency enforcement protocol, the primary-copy approach is utilized. In

the primary-copy approach, to perform an update operation just the primary-copy is

locked. Since primary copies are distributed at various data-systems, a single site will

not be overloaded with locking all its data for update operations. Thus, we take as a

requirement that the system should support the primary-copy approach at the imple-

mentation stage of consistency enforcement.

As for the way an update is initiated, the push approach could be an appropriate solu-

tion. The push approach has a disadvantage since it requires the primary-copy host to

store and keep track of the state of each replica server holding a copy of the replica.

To overcome this limitation, we take as a requirement that the system should intro-

duce an approach, which utilizes broadcast-based dissemination to send updates only

to those nodes holding the redundant copies of a context. Based on this scheme, the

primary-copy host could push the updates, when an update occurs. This multicast-

based approach does not require the primary-copy host to keep the state of the partial

replica set of a context.

3 Overview of the Hybrid Grid Information Service

We designed and built a Hybrid Grid Information Service (Hybrid Service) to support

handling and discovery of metadata associated to Grid/Web Services in Grid applica-

tions. The Hybrid Service is an add-on architecture that interacts with the local infor-

mation systems and unifies them in a higher-level hybrid system.

Client

TUPLE SPACE API

TUPLE POOL (JAVA SPACES)

UNIFORM ACCESS INTERFACE

Request processor

Access Control Notification

A HYBRID GRID INFORMATION SERVICE

IN-MEMORY STORAGE

INFORMATION

RESOURCE MANAGER

PUB-SUB NETWORK

MANAGER

HYBRID SERVICE NETWORK

CONNECTED WITH PUB-SUB

SYSTEM

Resource

Handler

DB1

Resource

Handler

DB2

……

…

Extended

UDDI
WS-Context

Figure 1 This figure illustrates the Hybrid Service interacting with a client. The dashed box indicates the

Hybrid Service. It is an add-on architecture that runs one layer above information service implementations

(such as the extended UDDI XML Metadata Service (our implementation of UDDI Specification) and WS-
Context XML Metadata Service (our implementation of Context Manager component of the WS-Context

Specification)) to handle metadata associated to services. It utilizes an Information Resource Management

abstraction layer to interact with lower layer Information Services. The Hybrid Service forms a Replica

Hosting System to enable discovery, request distribution, replication and consistency enforcement across

the network. It utilizes a Pub-Sub Network Manager component to interact with the other network nodes.

The Hybrid Service provides a unifying architecture where one can assemble metada-

ta instances of different information services. In order to achieve this, the Hybrid

System Architecture introduces various abstraction layers for uniform access interface

and information resource management. The uniform access abstraction layer is im-

plemented to support one to many communication protocols. The information re-

source management abstraction layer is implemented to manage one to many informa-

tion service implementations. In the prototype implementation, we have shown that

the Hybrid Service is able to unify the two local information service implementations:

WS-Context and Extended UDDI and support their communication protocols. The

Hybrid Service Architecture is depicted in Figure 1. This figure illustrates a client

interacting with the Hybrid Service, which is running as an add-on component above

the Extended UDDI and WS-Context Information Services. The Hybrid Service uti-

lizes a Pub-Sub Network Manager component to interact with the rest of the informa-

tion service network. We discuss the Hybrid Service replica hosting system which

enables discovery, request distribution, replication and consistency enforcement

across the network nodes. The detailed discussion on the architectural design of the

centralized Hybrid Service is the focus of another paper.

4 Hybrid Service Replica Hosting System Architecture

We identify three fundamental issues of designing a replica hosting system: replica-

content placement, request routing and consistency enforcement. Replica content

placement has to do with creating a set of duplicated data replicas across the nodes of

a distributed system. Request routing has to do with redirecting a client request to the

most appropriate replica server. Consistency enforcement deals with ensuring data

coherency across replicas in the system. Figure 2 illustrates the decentralized version

of the architecture.

Subscriber

Publisher

Replica Server-2 Replica Server-N

Topic Based Publish-Subscribe
Messaging System

HTTP(S)

WSDL

Client

WSDL

Client

WSDL WSDL

Database

Replica Server-1

Database

Database

WSDL

HYBRID Service

WSDL

HYBRID Service

HYBRID Service

Ext UDDI

Database

WS-Context
...

Database

Ext UDDI

Database

WS-Context
...

Ext UDDI WS-Context
...

Figure 2 Distributed Hybrid Services. This figure illustrates N-node decentralized Hybrid Service from the
perspective of a single Hybrid Service (Replica Server-1) interacting with two clients.

Replica placement issue consists of two sub-problems: replica server placement and

replica content placement [21]. The former issue deals with the problem of finding

suitable locations for replica servers, while the latter issue handles with selecting

replica servers that should host a data. This study researched the latter problem, which

concerns with the selection of replica servers that must hold the data under considera-

tion. Replication can also be categorized by the manner in which replicas are created

and managed. One strategy is permanent replication: replicas are manually created,

managed and kept permanently. This strategy is mostly used for fault-tolerance rea-

sons. Another strategy is server-initiated (dynamic) replication: replicas are created,

managed and kept based on changing user behavior. This strategy is mostly used to

enhance system performance. The proposed system utilizes both permanent replica-

tion and dynamic replication techniques. The permanent replication is used to provide

fault-tolerance in terms of availability. Permanent copies are used to at least keep the

minimum required number of replicas for the same data. The dynamic replication

technique is used for performance optimization. It enhances performance by replicat-

ing data onto servers in the proximity of demanding clients that in turn reduces access

latency.

Request routing redirects the client request to most appropriate replica holder. Re-

quest routing can be done via unicasting or broadcasting. In unicast communication,

the request initiator needs to keep track of where each metadata is located. If the re-

quested metadata is located in N locations, the initiator sends N separate messages,

one to each server. This approach requires each server to keep and maintain the state

of the metadata system which is an expensive operation. In broadcast communication,

the request initiator sends only one message and the underlying broadcasting facility

takes care of the delivery of the message. Note that broadcasting a message to N serv-

ers is no more expensive than unicasting N messages. The proposed system introduces

efficient request distribution capabilities by employing a broadcast based request

distribution. If a query cannot be granted locally and requires external metadata, the

request is broadcasted to only those nodes hosting the requested metadata in the net-

work at least to retrieve one response satisfying the request. This way the service is

able to probe the network to look for a running server carrying the right information at

the time of the query.

Consistency enforcement is considered as a contract between the system and the users

to ensure data coherency across replicas in the system. To enforce consistency, the

proposed system employs the primary-copy approach, i.e., updates are originated

from a single site, to ensure all replicas of a data to be the same. Tanenbaum classifies

this approach as primary-based remote-write protocol [22]. This approach ensures that

the primary-copy of a metadata holds up-to-date version of the context under consid-

eration. All update operations are carried out on the primary-copy replica server and

the updates are propagated to the permanent-copy holders by the primary-copy.

An important aspect of the proposed system is that it utilizes a software multicasting

capability as a communication medium for sending out access and storage requests to

the network nodes. This is a topic-based publish-subscribe software multicasting

mechanism, and it is used to provide message-based communication. Any node can

publish and subscribe to topics, which in turn create a multi-publisher multicast bro-

ker network. The replica hosting architectural design of the system is built on top such

publish- subscribe based multicast broker network system as illustrated in Figure 2.

To achieve a multi-publisher, multicast communication mechanism, in our prototype,

we use an open source implementation of publish-subscribe paradigm (NaradaBroker-

ing [27]) for message exchanges between peers. The NaradaBrokering [16, 27] soft-

ware, an open-source, publish-subscribe based messaging infrastructure, to provide

such communication. We discuss the identified design issues of the proposed archi-

tecture in the following sections in detail.

5 Service Discovery

The Hybrid Service has a multicast discovery model to locate available services. In

this model, the communication between network nodes happens via message ex-

changes. These messages are Server-Information Request and Response messages.

Server-Information Request and Response messages: A Hybrid Service node adver-

tises its existence when it first joins the network with a message, the Server-

Information Request. The purpose of the Server-Information Request message is two-

fold. First purpose is to inform other servers about a newly joining server. Second

purpose is to refresh the replica-server-information data structure with the updated

information (such as proximity and server load information) every so often. This

message is broadcasted through publicly known topic to every other available net-

work nodes. The proximity between the initiator and the individual network nodes is

calculated based on the elapse-time between sending off the Server-Information Re-

quest and receiving the Server-Information Response message. The Service-

Information Response message is sent back by unicast over a unique topic to the in-

itiator. This message also contains the server load information of the responding net-

work node.

Service Discovery Model: Each Hybrid Service network node subscribes to the mul-

ticast channel (publicly known topic) to receive Server-Information Request messag-

es. On receiving this request message, each node sends a response message, Server-

Information Response message, via unicast directly to the newcomer Hybrid Service.

This way, each node makes itself discoverable to other nodes in the system at the

bootstrap. Each Hybrid Service node constructs a replica-server-information data

structure about other available replica servers in the system. This data structure con-

tains information about decision metrics such as server load and proximity.

Each node keeps its replica-server-information data structure refreshed. This is done

by sending out Server-Information Request messages periodically to obtain up-to-date

information. This model enables the system to keep track of proximity and server load

information of the available network nodes. This is required for decision-making

process of fundamental aspects of the decentralized system architecture such as repli-

ca-content placement and consistency enforcement.

Figure 3 - Message exchanges for Hybrid Service Discovery Model. Each newcomer node sends out a
multicast probe message to locate available services in the network. Each target node responds with a

unicast message to make themselves discoverable. This figure illustrates the interaction between the initia-

tor server and the target network nodes for service discovery model.

6 Replica-content placement

In a distributed system, data is replicated to enhance reliability and performance.

Replica content placement is a replication methodology that deals with replicating

newly inserted data onto other servers, which are capable for storage. After replica-

tion, there may only be two types of copies of a context in the system: permanent and

server-initiated (temporary). A permanent copy of a context is used as a backup facili-

ty to enhance reliability. A server-initiated copy is created temporarily and used to

enhance system performance. For the permanent-copy of a context, the Hybrid Ser-

vice subscribes to a unique topic to receive access/update request concerning the

context under consideration. For the server-initiated copy of a context, the Hybrid

Service does not subscribe to a topic to minimize the number of messages exchanged

for request distribution. The server-initiated copies are only used to enhance the sys-

tem performance. The Hybrid service uses messages to provide replica-content

placement. These messages are Context Storage Request and Response messages.

Context Storage Request and Response messages: A Hybrid Service node advertises

the need for storage with a request message, the Context Storage Request. The pur-

pose of the Context Storage Request message is two-fold. First purpose is to assign

handling of the storage operation to those Hybrid Service nodes that are selected

based on the replica-server selection policy. The second purpose is to ask another

Hybrid Service node to replicate or take over maintaining a context to enhance the

overall system performance. Note that with this message, the system is able to relo-

cate/replicate contexts in the proximity of demanding clients. It is used in dynamic

replication process and enables relocation/replication of contexts due to changing

client demands. The Context Storage Request message is unicast over a unique topic

to the selected replica server(s). By listening to its unique topic, each existing node

receives a Context Storage Request message, which in turn includes the context under

consideration. On receipt of a Context Storage Request message, a Hybrid Service

Initiator
node

Target
node Server-Information Request / multicast

Server-Information Response / unicast
time

node stores the context and sends a Context Storage Response message to the initia-

tor. The Hybrid Service stores the context either as a permanent-copy or server-

initiated (temporary) copy based on whether the context is being created for fault-

tolerance reasons or performance reasons. The purpose of the response message is to

inform the initiator that the answering node hosts the context under consideration.

This message is also sent out by unicast directly to the initiator over a unique topic.

By listening to this topic, the initiator receives response messages from the nodes that

handled the storage request.

Decision metrics: The Hybrid Service uses some measurements to decide on replica-

content placements. It takes both server load and proximity decision metrics into

account when making replica-content placement decisions. The server load metric is a

decision metric, which may be represented with multiple factors. We used the follow-

ing two factors: a) topical information (i.e. number of unique topics, which the Hybrid

Service subscribe to) and b) message rate (i.e. number of messages, issued by end-

users, within a unit of time). If the number of topics, which a Hybrid Service sub-

scribes to, is high, it is likely that the Hybrid Service will receive high number of

access/update messages. If the message rate on a given Hybrid Service is increased,

its performance will start dropping down. Therefore, we take into consideration the

topical and message rate information as server load metrics. Each node can estimate

its own server load based on these two factors. Server load is periodically recorded

and it reflects the average load of a Hybrid Service at a given time interval. Note that,

each nodes keeps decision metrics information about other nodes in the system. The

server load information is obtained periodically by sending a Server-Information

Request message to other available network nodes in the system. The proximity me-

tric is the decision metric, which is used to indicate the distance in network space

between Hybrid Service instances. The proximity metric information is obtained

periodically by sending ping requests (Server-Information Requests) to the available

network nodes in the system through publish-subscribe system topics. The latency in

the ping request gives the proximity information between the two Hybrid Service

instances.

Permanent Replication: When there is a newly inserted context into Hybrid Ser-

vice, it starts the replica-content placement process (i.e. the distribution of copies of a

context into replica hosting environment). This is needed to create certain number

(predefined in the configurations file) of permanent replicas. We must note that, on

receipt of a client’s publish request, an existing node checks if it can handle the re-

quest under consideration. Each existing node decides if it is able to store the context

by checking the server instantaneous-server-load against the maximum-server-load-

watermark. Those replica-servers, which are capable of handling the request, perform

the operation. However, if the node is overloaded, then this operation is forwarded to

the best possible server. Figure 4 depicts message exchanges between an initiator

Hybrid Service node and a target Hybrid Service node for replica content placement.

Figure 4 - Message exchanges for Storage (Replica content placement). This figure illustrates the interac-
tion between the initiator server and the target network nodes to complete replica-content placement.

Our replica server selection policy takes into account two decision metrics: server

load and proximity. To enforce our selection policy and select replica servers for

replica-content placement, we adopt the replica selection algorithm introduced by

Rabinovic et al [23] and integrate it with our implementation. The replica server se-

lection process is repeated on target replica servers, until the initiator selects prede-

fined number (minimum-fault-tolerance-watermark) of replica servers for replica-

content placement. The initiator Hybrid Service chooses the best-ranked server among

the selected replica-servers as the primary-copy to enforce consistency.

Once the replica-server selection is completed, the initiator sends unicast message

(Context Storage Request message) to the selected replica-servers. On receipt of a

storage request, a replica server stores the context as a permanent-copy, followed by

sending a response (acknowledgement) message directly to the initiator (via unicast).

The newly-selected primary-copy holder receives its Context Storage Request mes-

sage with a flag indicating that it is the primary-copy holder of that context. Note that,

the purpose of storing permanent-copy is for fault-tolerance. The number of perma-

nent replicas is predefined with minimum-fault-tolerance-watermark in the configura-

tions file and will remain the same for fault-tolerance reasons. We also utilize the

dynamic replication methodology, which is discussed in the next section. This is a

performance optimization technique that may move/replicate permanent-copies of a

replica onto servers if it is only beneficial for client proximity. This way, the system

improves its responsiveness in terms of minimizing the access latency, as the copies

of a replica are moved onto servers where the requests are originated.

Dynamic replication: In order to take into consideration sudden changes in client

demands, we use dynamic replication as a performance optimization technique. Dy-

namic replication deals with the problem of dynamically placing temporary replicas in

regions where requests are coming from. This is a push-based replication methodolo-

gy where a dynamically generated replica is pushed (replicated/migrated) onto a rep-

lica server. Such replicas are also referred as push caches [28]. Dynamic replication

decisions are made autonomously at each node without any knowledge of other cop-

Initiator
node

Target
node

Context Storage Request / unicast

Context Storage Response /unicast time

ies of the same data. In our implementation, we adopt the dynamic replication metho-

dology introduced by Rabinovich et al [23]. This methodology introduces an algo-

rithm, which is used for the Web Hosting Systems, which maintain widely distributed,

high-volume, rarely updated and static information. The dynamic replication algo-

rithm by Rabinovich et al considers two issues: a) a replication can take place to re-

duce the load on a replica server and b) a replication can take place due to changes in

the client demands. Our main interest is to provide an optimized performance by

replicating temporary-copies of contexts to replica servers in the proximity of de-

manding clients. To this end, we only focus on the second issue, which concerns with

creating replicas if it is only beneficial for client proximity.

Figure 5 - Message exchanges for Dynamic Replication/Migration. The dynamic replication/migration

process replicates/migrates data if the demand exceeds certain thresholds. This figure illustrates the interac-
tion between a hosting server and demanding server to complete replica placement/migration for context x.

Each Hybrid Service S runs the dynamic replication algorithm with certain time inter-

vals (dynamic-replication-time-interval) and re-evaluates the placement of the con-

texts that are locally stored. It checks the local Hybrid Service if there are contexts

that can be migrated or replicated onto other servers in the proximity of clients that

presented high demand for these contexts. It does this by comparing the access re-

quest count for each context against some threshold values. If the total demand count

for a replica C at a Hybrid Service S (cntS (C)) is below a deletion-threshold(S, C)

and the replica is a temporary-copy, that replica will be deleted from local storage of

Hybrid Service S. If, for some Hybrid Service X, a single access count registered for a

replica C at a Hybrid Service S (cntS(X, C)) exceeds a migration-ratio, that service

(service X) is asked to host the replica C instead of service S. (Note that the migration-

ratio is needed to prevent a context migrate back and forth between the nodes. In our

investigation, we chose the migration-ratio value as % 60 based on the study intro-

duced in [23]). This means service S wants to migrate replica C to service X which is

in the proximity of clients that has issued enough access requests within the prede-

fined time interval (dynamic-replication-time-interval). In this case, replica C will be

migrated to service X. To achieve this, a Context Storage Request is sent directly to

service X by service S. On receipt of a Context Storage Request, service X creates a

permanent copy of the context, followed by sending a Context Storage Response

message. If the total demand count for a replica C at service S (cntS (C)) is above a

replication-threshold(S, C), then the system checks if there is a candidate Hybrid

Service, which has requested replica C. If, for some Hybrid Service Y, a single access

count registered for a replica C at service S (cntS(Y, C)) exceeds a replication-ratio,

that service (service Y) is asked to host a copy of replica C. (Note that, in order dy-

namic replication to ever take place, the replication-ratio is selected below the migra-

A node hosting a context
x

Context Storage Request / unicast

Context Storage Response / unicast

A node demanding context x

time

tion-ratio [23]. In our investigation, we chose the replication-ratio value as % 20.)

This means service S wants to replicate replica C to service Y that is in the proximity

of clients that has issued access requests for this context.

7 Consistency enforcement

At any given snapshot of the Hybrid Service network, the system may contain tempo-

rary and permanent of copies of a context. On one hand, temporary copies are kept for

performance reasons. On the other hand, permanent-copies are kept for fault-tolerance

reasons. Each Hybrid Service assigns/creates unique topics for each individual per-

manent-copy (to receive access and update requests), while it creates no topics for the

temporary copies (to avoid flooding the network with access messages). This creates

an environment where the system may have different versions of the context, as the

temporary copies are not updated. To achieve consistency from the target applications

perspective, the Hybrid Service introduces different models to address consistency

requirements of different applications. The first model is mainly for read-mostly ap-

plications. For these applications, different copies of the context are considered to be

consistent and the Hybrid Service allows clients to fetch any copies of the context

(permanent or temporary). The second model is for the applications where the update-

ratio is high and the consistency enforcement is important. In this case, the Hybrid

Service requires the applications to subscribe unique topics of the metadata that they

are interested. This way, these applications will be informed of the state changes

happening in the metadata immediately after an update occurs. In this model, the

primary-copy holder broadcasts the updates through the unique topic corresponding to

the metadata under consideration.

We divide the implementation of consistency enforcement into two categories: “up-

date distribution” and “update propagation”. The “update distribution” deals with how

the Hybrid Service implements an update operation that take place on the distributed

metadata store. The “update propagation” deals with how the Hybrid Service imple-

ments the methodology for propagation of updates. To achieve consistency enforce-

ment the Hybrid Service uses messages. These messages are Primary-Copy Selection

Request and Response messages, Primary-Copy Notification message, and Context

Update Request and Propagation messages.

Primary-Copy Selection Request and Response messages: In order to provide consis-

tency across the copies of a context, updates are executed on the primary-copy host. If

the primary-copy host of a context is down, a Hybrid Service node advertises the need

for selection of primary-copy host of the context with following message: Primary-

Copy Selection Request. This message is sent out by multicast by the initiator Hybrid

Service node only to those servers holding the permanent-copy of the context under

consideration. The purpose of the Primary-Copy Selection Request message is used to

select a new primary-copy host if the original is considered to be down. The Primary-

Copy Selection Request message is disseminated over a unique topic corresponding to

the metadata under consideration. We use the metadata key (UUID) as the topic,

which all nodes, holding the permanent-copy of the metadata, within the system sub-

scribe to. By listening to this topic, each existing node receives this message. On

receipt of a Primary-Copy Selection Request message, each node responds with the

Primary-Copy Selection Response message directly to the initiator node. The purpose

of this message is to inform the initiator about the permanent-copy of the context

under consideration and give some information (such as hostname, transport protocols

supported, communication ports) regarding how other nodes should communicate

with the answering node. The response message is sent out by unicast directly to the

initiator over a unique topic. By listening to this topic, the initiator receives the re-

sponse message from the answering node.

Primary-Copy Notification message: A Hybrid Service node uses a Primary-Copy

Notification message to notify the newly selected primary-copy holder. This Notifica-

tion message is disseminated by unicast directly to the newly selected node. By listen-

ing to its unique topic, each existing node may receive a primary-copy notification

message, which in turn includes the assignment for being the primary-copy of the

context under consideration. Each primary-copy holder of a given context subscribes

to a unique topic (such as UUID/PrimaryCopy) to receive messages aimed to the

primary-copy holder of that context.

Context Update Request and Propagation messages: A Context Update Request mes-

sage is sent by a replica server to the primary-copy host to ask for handling the up-

dates related with the context under consideration. This message is sent out via un-

icast by the initiator Hybrid Service node directly to the primary-copy host over a

unique topic. By listening to this topic, the primary-copy-host receives the context

update request message. A Context Update Propagation message is sent by the prima-

ry-copy host only to those servers holding the context under consideration. This mes-

sage is sent via multicast to the unique topic of the metadata immediately after an

update is carried out on the primary-copy to enforce consistency. By listening to this

topic, each existing permanent-copy holder node receives a Context Propagation

message, which in turn includes the updated version of the context under considera-

tion.

Update distribution: On receiving client publication requests, a Hybrid Service node

first checks if the request contains a system-defined context key. If not, the system

treats the request as if it is a new publication request. Otherwise, the system treats

publication request as if it is an update request.

The system assigns a synchronized timestamp to each published context (newly writ-

ten or updated). This is achieved by utilizing NaradaBrokering NTP protocol based

timing facility. By utilizing this capability, we give sequence numbers to published

data to ensure an order is imposed on the concurrent write operation that take place in

the distributed data store. Based on this strategy, a write operation could take place on

a data item, only if the timestamp of the updated context was bigger than the version

number of the most recent write. This ensures that write/update requests are carried

out on a data item x at primary-copy host s, in the order in which these requests are

published into the distributed metadata store.

Figure 6 - Message exchanges for update operation of a context. This figure illustrates the interaction

between the initiator server and the primary-copy host node of context x.

An update operation is executed offline, i.e., just after an acknowledgement is sent to

the client. The update distribution process is executed to perform updates on the pri-

mary-copy holder of a context. If the primary-copy host is the initiator node itself,

then the update is handled locally. If the primary-copy host is another node, then the

update is forwarded to the primary-copy holder. The initiator service sends a message,

Context Update Request, by unicast directly to the primary-copy-host for handing

over the update handling of a context. The Context Update Request message means

that the initiator node is interested in updating the primary-copy replica. This message

is sent via unicast offline of the publication request. This message includes the up-

dated version of the context under consideration. On receipt of a Context Update

Request message, first, the primary-copy host extracts the updated version of the

context from incoming message. Then, it updates the local context if the timestamp of

the updated version is bigger than the timestamp of the primary-copy. After the up-

date process is completed, a Context Update Propagation message is sent to only

those servers holding the permanent-copy of the context under investigation. The

purpose of the Context Update Propagation is to reflect updates to the redundant cop-

ies immediately after the update occurs. On receipt of a Context Update Propagation

message from the primary-copy, the initiator Hybrid Service node changes the status

of the context under consideration from “updated” to “normal”. If there is no response

received from primary-copy host within predefined time interval (timeout_period) in

response to Context Update Request, the primary-copy host is decided to be down. In

this case, the initiator node should select a new primary-copy host. After a new prima-

ry-copy host is selected, the aforementioned update distribution process is re-

executed.

We utilize synchronized timestamps to label published metadata. This allows us to

impose an order on the actions that take place in the distributed metadata store. In our

implementation, we combine the synchronized timestamps with the primary-based

consistency protocol approach. Based on this strategy, each published context is given

a synchronized timestamp. An update operation could take place on a data item, only

Initiator
node

Context Update Request / unicast

Context Update Propagation / multicast

time

Primary-copy hosting node of context x

if the timestamp of the newly published update is bigger than the version number of

the most recent update. This way, all write operations can be carried out on the prima-

ry-copy host, in the same order they were published in to the system. However, this

approach has also some practical limits, as the update rate is bounded by the time-

stamp accuracy of the synchronized timestamps. To achieve ordering among the dis-

tributed updates, we use NTP protocol based synchronized timestamps provided by

the NaradaBrokering software timing libraries [29].

Update propagation: In a distributed data-system, an update propagation process can

either be initiated by the server which is in need for the up-to-date copy and wants the

pull updates from primary-copy host (pull methodology) or by the server that holds

the update and wants to push to other replica servers (push methodology) [30]. In our

prototype implementation, we utilized push methodology for update propagation and

multicast technique for dissemination of updates. Based on this methodology, when-

ever an update occurs the primary-copy immediately reflects the changes to the re-

dundant copies in order to keep them up-to-date. Updates can be distributed in two

ways: unicast and multicast [22]. In unicast update propagation, the primary copy

server sends its updates to replica holders by sending separate messages. In multicast

update propagation, it sends its updates using an underlying multicasting facility,

which in turn takes care of sending messages to the network. For dissemination of

updates, we use the multicast approach and publish the update to the unique topic

corresponding to the metadata. This way, the system is able to send the updates only

to those permanent-copy holding servers.

Primary-copy selection: The primary-copy selection process is used to select a new

primary-copy host for consistency enforcement reasons, if the original primary-copy

host is down at the moment. A primary-copy host of a context is considered down, if

no answer is received in response to a message (such as Context Update Request

message) that is directed to it. When the primary-copy host of a context is considered

down, the primary-copy selection process is executed step-by-step as depicted in

Figure 7 and explained as in the following.

Figure 7 - Message exchanges for Primary-Copy Selection process. This figure illustrates the interaction

between the initiator server and the target network nodes to complete the primary-copy selection process.

Time arrow is down.

Say, a Hybrid Service node finds out that a primary-copy of a context is down. In this

case, the initiator broadcasts a Primary-Copy Selection Request message to only those

servers holding the context to select the primary-copy host. On receipt of a Primary-

Copy Selection Request message, each replica-holding server that maintains a “per-

manent” copy of the context under consideration, issues a Primary-Copy Selection

Response message. Here, the purpose of a Primary-Copy Selection Response message

is to inform the initiator that the answering node contains a permanent copy of the

context under investigation. On receipt of the Primary-Copy Selection Response mes-

sages, the initiator obtains the information about nodes carrying the permanent copy

of the context. Then the initiator selects the best replica server based on a replica

server selection process, which is described earlier, as the primary-copy server. In this

case, A Primary-Copy Notification message is sent to the selected server indicating

that it is selected as the new primary-copy host for the context under investigation. On

receipt of a Primary-Copy Notification message, the permanent-copy holder becomes

the primary-copy holder and subscribe the unique address (/UUID/PrimaryCopy)

corresponding to the primary-copy of the context under consideration.

8 Access request distribution

On receipt of a client’s inquiry request, a Hybrid Service node looks up for the re-

quested context within local storage. If the context exists in local storage, then the

inquiry is satisfied and a response message is sent back to the client. If the inquiry

asks for external metadata, the system performs the request distribution (access)

process, which is discussed in the next section in length. The communication between

network nodes for request access distribution happens via message exchanges. These

messages are Context Access Request and Response messages.

Context Access Request and Response messages: A Hybrid Service node advertises

the need for context access with the Context Access Request to the system. The pur-

pose of the Context Access Request message is to ask those servers, holding the con-

Initiator
node

Target
node

Primary-Copy Selection Request /multicast

Primary-Copy Selection Response / unicast

Primary-Copy Notification / unicast

time

text under demand, for query handling. This message is disseminated to only those

nodes holding the context under consideration. This is done by multicasting the mes-

sage through the unique topic corresponding to the metadata. (Note that we use UUID

of the metadata as topic). By listening to this topic, each node, holding the context

under consideration, receives a Context Access Request message, which in turn in-

cludes the context query under consideration. On receipt of a Context Access Request

message, each Hybrid Service sends a Context Access Response message, which

contains the context under demand, to the initiator. This message is sent out by un-

icast directly to the initiator over a unique topic. (Note that we use IP address of the

initiator as topic to send responses via unicast back to the initiator). By listening to

this topic, the initiator receives the response messages from nodes that answered the

access request.

Request distribution: The prototype implements a request distribution methodology,

which is based on broadcast dissemination where the requests are distributed to only

those servers holding the context under consideration. This approach does not require

keeping track of locations of every single data located in the system. It makes use of

copies of a data that are not frequently accessed and kept only for fault-tolerant rea-

sons. In turn, this improves the responsiveness of the system. In this scenario, the

initiator node issues a Context Access Request message to the multicast group, if the

client’s access request is not satisfied in the local storage. This message contains

minimum required information (such as context key) regarding the context in de-

mand. The Context Access Request means that the initiator node is interested in dis-

covering the qualified replica servers that may contain the requested context and an-

swer with a response.

Figure 8 - Message exchanges for context access. This figure illustrates the interaction between the initiator

and a target node hosting the context for request distribution. Time arrow is down.

On receipt of a Context Access Request message, a replica-holding Hybrid Service

issues a Context Access Response message. The purpose of a Context Access Re-

sponse message is to send a response with the context satisfying the query. (Note that,

each server keeps track of the count of access requests and the locations where access

requests come from for each context. In turn, this enables the system to apply dynam-

ic replication process and adapt to sudden bursts of client demands coming from a

Context Access Request / multicast

Context Access Response / unicast

Initiator
node

Target
node

time

remote replica. This is why, if the access request is granted, each server registers the

incoming access request in the access-demanding-server-information data structure

and increments the total access-request-count of the context under investigation.) On

receiving first Context Access Response message, the initiator Hybrid Service node,

obtains the context that can satisfy the query under consideration. Then a response

message is sent back to inquiring client. The initiator only waits for responses that

arrive within the predefined timeout value. If there is no available Hybrid Service

node that can satisfy the context query within the timeout duration, the access process

ends and a “not found” message is sent to the client.

9 Prototype Evaluation

This section presents an evaluation of the prototype implementation of the Hybrid

System Replica Hosting Architecture and investigates its practical usefulness. In this

section, the following research questions are being addressed:

• What is the cost of the access request distribution in terms of the time re-

quired to fetch a copy of a data (satisfying an access request) from a remote

location?

• What is the effect of dynamic replication in the cost of the access request

distribution in terms of the time required to fetch a copy of a data?

• What is the cost of the storage request distribution for fault-tolerance in

terms of the time required to create replicas at remote locations?

• What is the cost of consistency enforcement in terms of the time required to

carry out updates at the primary-copy holder?

Experimental setup environment: For the decentralized setting experiments (such

as distribution, fault-tolerance and consistency enforcement), we have selected nodes

that are separated by significant network distances. The machines, used in these expe-

riments, are summarized in Table 2.

 Summary of Machine Configurations

 Location Processor RAM OS

gf6.ucs.indiana.edu

Bloomington,

IN, USA

Intel® Xeon™

CPU (2.40GHz)

2GB total GNU/Linux

(kernel release

2.4.22)

complexity.ucs.indiana.edu
Indianapolis,

IN, USA

Sun-Fire-88,

sun4u sparc SUNW

16GB total SunOS 5.9

lonestar.tacc.utexas.edu

Austin,

TX, USA

Intel(R) Xeon(TM)

CPU 3.20GHz

4GB total GNU/Linux

(kernel release

2.6.9)

tg-login.sdsc.teragrid.org

San Diego,

CA, USA

Genuine Intel IA-64,

Itanium 2,

4 processors

8GB total GNU/Linux

vlab2.scs.fsu.edu

Tallahassee,

FL, USA

Dual Core AMD

Opteron(tm)

Processor 270

2GB total GNU/Linux

(kernel release

2.6.16)

Table 2 Summary of the machines used in decentralized setting experiments

We wrote all our code in Java, using the Java 2 Standard Edition compiler with ver-

sion 1.5. In the experiments, we used Tomcat Apache Server with version 5.5.8 and

Axis software with version 2 as a container. The maximal heap size of the JVM was

set to 1024MB by using the option –Xmx1024m. The Tomcat Apache Server uses

multiple threads to handle concurrent requests. In the experiments, we increased the

default value for maximum number of threads to 1000 to be able to test the system

behavior for high number of concurrent clients. As backend storage, we use MySQL

database with version 4.1. We used the “nanoTime()” timing function that comes with

Java 1.5 software.

Analyzing the results gathered from the experiments, we encountered some outliers

(abnormal values). Due to outliers, the average may not be representative for the

mean value of the observation times. This in turn may affect the results. For example,

these outliers may increase the average execution time and the standard deviation. In

order to avoid abnormalities in the results, we removed the outliers by utilizing the Z-

filtering methodology. In Z-filtering, first, the average and standard deviation values

are calculated. Then a simple test is applied. [abs(measurement_i-

measurement_average)] / stdev > z_value_cutoff. This test discards the anomalies.

After first filtering is over, the new average and standard deviation values are calcu-

lated with the remaining observation times. This process was recursively applied until

no filtering occurred.

Simulation Parameters: In order to investigate the research questions related with

provide replica-content placement, access distribution, dynamic replication and con-

sistency enforcement, the focus of the simulation experiments was on key-based pub-

lish (save operation) and inquiry (retrieve operation) capabilities. In the experiments,

we used the following simulation parameters.

metadata size and volume: We chose average values for the size and volume of the

metadata which were used in the simulation from a real life application Pattern Infor-

matics in which the Hybrid Service is used. To this end, this metadata sample has a

fixed size of 1.7Kbyte and the volume of the metadata is a thousand.

dynamic-replication-time-interval: In order to provide dynamic replication, metadata

instances in a Hybrid Service are replicated in replica-hosting environment in a dy-

namic fashion within certain time intervals (dynamic-replication-time-interval). The

trade-off in choosing the value for dynamic-replication-time-interval is similar to the

one for backup-time-interval. If the dynamic-replication-time-interval is chosen to be

too small, then the system performance will be affected. If this time interval is too

big, then the system will not adapt well to changes in client demands such as sudden

bursts of request that come in from an unexpected location. (Rabinovich et al intro-

duced an extensive study on choosing values for the dynamic-replication tunable

parameters. In our investigation, we chose the simulation parameters relying on their

study in [23].)

minimum-fault-tolerance-watermark: To provide a certain level of fault-tolerance,

we use a minimum-fault-tolerance-watermark indicating minimum required degree of

replication. The trade-off in choosing the value for minimum-fault-tolerance-

watermark is the following. If the value is chosen to be high, then the time and system

resources required completing replica-content placement and keeping these replicas

up-to-date would be high. If the value is chosen to be too small, then the degree of

replication (fault-tolerance level) will below.

timeout-period: The tunable timeout-period value indicates the amount of time that a

Hybrid Service node is willing to wait to receive response messages. The trade-off in

choosing this number is the following. If the timeout-period is too small, the initiator

of a request will not wait enough for the context access responses coming from a

multicast group. For example, if there are two replica servers, one in U.S. and the

other in Australia, the query initiator located in U.S. may miss the result coming from

the node located in Australia with a small timeout-period. If the timeout-period is too

big, then the query initiator may have to wait for a long time unnecessarily for some

information that does not exist in the replica-hosting environment.

deletion-threshold: If a temporary-copy (server-initiated) of a context is in low de-

mand and its demand count is below deletion-threshold, then this temporary copy

needs to be deleted. The deletion-threshold determines the rate for migration and

replication occurring in the system. If a deletion-threshold is selected too low, the

system will create more temporary copies, which will lead into high number of mes-

sage exchanges in the system. If a deletion-threshold is too high, the system will keep

low-demand temporary copies of a context unnecessarily. In our investigation, we

chose the deletion-threshold value based on the study introduced in [23].

replication-threshold: If a context is in high demand and its demand count is above a

replication-threshold, then the context is replicated as a temporary-copy. If the repli-

cation-threshold is selected to be too high, then the system will not adapt well to high

number of client demands. If the replication-threshold is too low, the system will try

to create temporary replicas at every remote replica where small number of requests

comes in. This may cause unnecessary consumption of system resources. (Rabinovich

et al [23] discusses the dependency between replication and deletion thresholds that in

turn indicates that the value of replication-threshold must be selected above deletion-

threshold. In our investigation, we chose the replication-threshold value based on the

study introduced in [23].)

simulation parameters values

metadata-size 1.7 KBytes

metadata-volume 1000

time-out value 10000 seconds

replication-threshold 0.18 requests per second

deletion-threshold 0.03 requests per second

minimum-fault-tolerance-watermark 3

dynamic-replication-time-interval every 100 second

 Table 3 Simulation parameters for the experiments

Distribution experiment: In this experiment, we conducted various testing cases to

investigate the cost of distribution. We measured the cost of distributing access re-

quest into remote servers separated with significant network distances.

NB
node

Hybrid

Service
instance

Hybrid
Service
instance

Bloomington, IN 3 different instance located 3
different remote locations:

1 - Indianapolis, IN

2- Tallahassee, FL

3- San Diego, CA

Hybrid
Service
instance

Hybrid
Service

instance

Bloomington, IN 3 different instance located 3
different remote locations:

1 - Indianapolis, IN

2- Tallahassee, FL

3- San Diego, CA

NB
node

NB
node

Figure 9 The design of the distribution experiment. The rounded shapes indicate NaradaBrokering nodes.

The rectangle shapes indicate Hybrid Service instances located at different locations. The first test was

conducted with one broker where the broker is located before the Hybrid Service instance in Bloomington,

IN, while the second test was conducted with two broker nodes each sitting on the same machine before the

Hybrid Service instance.

In particular, we performed this experiment to answer following questions: a) what is

the cost of access request distribution in terms of time required to fetch copies of a

data (satisfying an access query) from remote locations?, b) how does the cost of

distribution change when using multiple intermediary brokers for communication?, c)

how does the performance of the distribution change for continuous, uninterrupted

operations?

Results of the distribution experiment: We conduct distribution experiments for three different locations

corresponding to three different network spaces.

Figure 10 illustrates the experiment between Bloomington/IN and Indianapolis/IN.

We repeat this test for two other locations as well. We extract the processing time

involved for access request distribution. We depict the time spent in various sub-

activities of distribution in

 Figure 11 and list the results in

Table 4. By analyzing the results, we observe that regardless of how the Hybrid Ser-

vice instances are distributed, the system showed the same stable performance, which

is around 3.6 ms when using one intermediary broker. This time includes the Hybrid

Service system processing overhead and overhead of using an intermediary broker as

part of publish-subscribe system. We observe that the overhead of access request

distribution increases only by 1.2 ms when we use an additional intermediary broker.

The results also indicated that the system performs well for continuous, uninterrupted

request distribution operations.

Figure 10 The Distribution Experiment Results between Bloomington and Indianapolis - Each point in the

graph corresponds to average of 1000 observations.

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

T
im

e
 (

m
s
)

Every 1000 observations

Bloomington - Indianapolis Access Distribution Chart

Average - Latency

STDev - Latency

Average - One Broker

STDev - One Broker

Average - Two Brokers

STDev - Two Brokers

 Figure 11 Time spent in various sub-activities of the request distribution scheme of the Hybrid Service

 one broker two brokers latency

bloomington-indianapolis 3.59 4.79 2.42

bloomington-tallahassee 3.55 4.78 36.05

bloomington-san diego 3.63 4.92 66

Table 4 Statistics for Figure 11. Overhead of request distribution. Average timings in milliseconds
.

Dynamic replication experiment: In this experiment, we conducted a testing case to

investigate the performance of dynamic replication. We used the dynamic replication

for performance optimization to replicate temporary copies of contexts to where they

wanted. In this experiment, we simulated a workload, where we have a thousand

metadata in the Hybrid Service instance located at Indianapolis, IN. In this testing

case, metadata from the Indianapolis instance was requested randomly by the Hybrid

Service instance located at Bloomington. If the remote metadata is replicated to local

site, the system simply obtains the data from local in-memory storage. We conducted

two testing cases to answer the following questions: a) What is the cost of access

distribution to fetch copies of a context from the remote location (Indianapolis), when

the dynamic replication is disabled, b) What is the cost of access distribution to fetch

copies of a context from the remote location (Indianapolis), when dynamic replication

is enabled.

0

10

20

30

40

50

60

70

bloomington-indianapolis bloomington-tallahassee bloomington-san diego

T
im

e
 (

m
s
)

overhead of distribution when using one intermediary broker

overhead of distribution when using two intermediary brokers

latency

NB

node

Hybrid

Service

instance

Hybrid

Service
instance

Bloomington, IN Indianapolis, IN

Test-1 Distribution with Dynamic Replication Disabled

Test-2 Distribution with Dynamic Replication Enabled

NB
node

Hybrid

Service
instance

Hybrid

Service
instance

Bloomington, IN Indianapolis, IN

Figure 12 The design of the dynamic replication experiment. The rounded shapes indicate NaradaBrokering
nodes. The rectangle shapes indicate Hybrid Service instances located at different locations. In the first

testing case, dynamic replication capability is disabled. In the second testing case, dynamic replication

capability is enabled.

Results of the dynamic replication experiment: Based on the results depicted in

Figure 13, in this experiment, we observed that the dynamic replication methodology

could actually move highly requested metadata to where they wanted. We observed

that the system stabilized after around 16 minutes. Here, the system managed to move

half of the metadata to the local site after around 8 minutes, where we observed the

highest peak in the standard deviation values. This is simply because half of the

access requests were granted locally, while the other half were granted at the remote

location.

 Figure 13 The results of the dynamic replication experiment.

Fault-tolerance experiment: In this experiment, we conducted various testing cases

to investigate the cost of fault-tolerance when moving from centralized system to a

decentralized replica hosting system. In particular, we performed our testing cases to

answer following questions: a) What is the cost of replica-content placement for fault-

tolerance in terms of the time required to create replicas at remote locations?, b) How

does the system behavior change for continuous, uninterrupted replica-content place-

ment operations?. To answer these questions, we conducted two testing cases: The

first test was conducted with one broker when the broker was located before the Hy-

brid Service instance at Bloomington, IN. The second test was conducted with two

brokers each sitting on the same machine before the Hybrid Service instances. In this

experiment, we increased the fault tolerance level gradually and measured end-to-end

latency for replica-content placement.

0

1

2

3

4

5

6

7

0 5 10 15 20 25

L
a
te

n
c
y
 (

m
s
)

Every 100 second

Dynamic Replication Performance Chart - Distribution between
Bloomington, IN and Indianapolis, IN

Average -
Distribution with
Dynamic
Replication

STDev -
Distribution with
Dynamic
Replication

Average -
Distribution

STDev -
Distribution

Hybrid

Service
instance

Hybrid
Service

instance

Bloomington, IN

NB node NB node

Hybrid

Service

instance
NB node

Hybrid
Service

instance
NB node

Indianapolis, IN

Tallahassee, FL

San Diego, CA

Hybrid

Service

instance

Hybrid

Service

instance
Bloomington, IN

NB node

Hybrid

Service
instance

Hybrid

Service

instance

Indianapolis, IN

Tallahassee, FL

San Diego, CA

Test - 1

Test - 2

Figure 14 The design of the fault tolerance experiment. The rounded shapes indicate NaradaBrokering
nodes. The rectangle shapes indicate Hybrid Service instances located at different locations. In the first

testing case, we measure the end-to-end latency for varying number replica-content creation with only one

broker. In the second case, we repeat the same test with two brokers.

Results of the fault-tolerant experiment: We conduct this testing case for one to

three replica creations. Figure 15 illustrates the results from one replica creation test.

Based on the testing results, we extract the processing time involved to provide fault-

tolerance by utilizing publish-subscribe based messaging schemes. We depict the time

spent in various sub-activities of replica creation in Figure 16 and list in Table 5. By

analyzing the results, we observe that the system presents a stable performance over

time for replica creation. We observe that the time required for one replica creation is

only four milliseconds. The cost of replica creation time includes the Hybrid Service

system processing overhead and overhead of using an intermediary broker as part of

publish-subscribe system. We also observe that the time required for replica creation

increases, as the number of replica copies increases. This is because; the system has to

perform an additional unicast message for each additional replica creation. The time

required for a unicast message is less than one millisecond. The results also indicated

that, the overhead of replica-content creation increases only by 1.2 ms, when we use

an additional intermediary broker.

Figure 15 Fault Tolerance Experiment results when one replica is created at Indianapolis, IN. Each point in

the graph corresponds to average of 1000 observations.

Figure 16 Time spent in various sub-activities of the replica-content creation scheme of the Hybrid Service.

one

broker

two

brokers

end-to-end

latency

1 replica (Indianapolis) 4.02 5.27 2.43

2 replicas (Indianapolis–Tallahassee) 4.54 5.67 36.05

3 replicas (Indianapolis–Tallahassee –San Diego) 5.13 6.24 65.90

 Table 5 Statistics for Figure 16. Overhead of replica-content creation. Average timings in milliseconds.

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25

T
im

e
 (

m
s
)

Every 1000 observations

1 replica creation at remote location: Indianapolis, IN

Average - Latency

STDev - Latency

Average - One
Broker

STDev - One Broker

Average - Two
Brokers

STDev - Two
Brokers

0

10

20

30

40

50

60

70

1 replica creation (Indianapolis) 2 replica creation
(Indianapolis, IN -
Tallahassee, FL)

3 replica creation (Indianapolis-
IN, Tallahassee-FL, San Diego-

CA)

T
im

e
 (

m
s
)

overhead of replica creation when using one intermediary broker

overhead of replica creation when using two intermediary brokers

end-to-end latency

Consistency enforcement experiment: The design of the consistency enforcement is

similar to the distribution experiment depicted in Figure 9. In this experiment, our aim

is to answer the following questions: a) What is the cost of consistency enforcement

in terms of the time required to carry out updates at the primary-copy holder?, b) How

does the system behavior change for continuous, uninterrupted update operations (for

consistency enforcement)? To this end, we conducted two tests: The first test was

conducted with one broker where the broker is located before the Hybrid Service

instance in Bloomington, IN, while the second test was conducted with two broker

nodes each sitting on the same machine before the Hybrid Service instances. In this

experiment, we measured the time required to distribute an update request to the pri-

mary-copy holder of the context under consideration for consistency enforcement

reasons.

Consistency enforcement experiment results: We conduct this testing case for three

different locations. Figure 17 depicts the results from Bloomington-Indianapolis test-

ing case. Based on the results, we extract the processing time involved to provide

consistency enforcement using publish-subscribe based messaging schemes. We de-

pict the time spent in various sub-activities of distributing and carrying out the update

request at the primary-copy holder in Figure 18 and list in Table 6. This cost of con-

sistency enforcement includes the Hybrid Service system processing overhead (for

distributing update request to primary-copy holder) and overhead of using an inter-

mediary broker as part of publish-subscribe system. We observe that the time required

for consistency enforcement does not change regardless of how Hybrid System in-

stances are distributed. Similar to our results in the previous two experiments, we

observe that the overhead of consistency enforcement increases only by 1.2 ms when

we use an additional intermediary broker. By analyzing the results, we also observe

that the system presents a stable performance over time for continuous consistency

enforcement operations.

Figure 17 Consistency Enforcement Experiment Results when an update request (originated from Bloo-
mington, IN) is carried out on the primary-copy holder located in Indianapolis, IN. Each point in the graph

corresponds to average of 1000 observations.

Figure 18 Time spent in various sub-activities of the Hybrid Service consistency enforcement scheme. The
results analyze the overhead of distributing update requests to the primary-copy holder where the update

requests take place for consistency enforcement reasons.

 one broker two brokers

end-to-end

latency

Bloomington – Indianapolis 4.05 5.32 2.42

Bloomington – Tallahassee 3.83 5.03 36.05

Bloomington – San Diego 4.07 5.49 66

Table 6 Statistics for Figure 18. Statistics for overhead of update distribution. Average timings in millise-

conds.

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25

A
v
e
ra

g
e
 T

im
e
 (

m
s
)

Every 1000 observations

Bloomington - Indianapolis Consistency Enforcement Chart

Average - Latency

Average - One
Broker

Average - Two
Brokers

STDev - Latency

STDev - One Broker

STDev - Two Brokers

0

10

20

30

40

50

60

70

bloomington-indianapolis bloomington-tallahassee bloomington-san diego

T
im

e
 (

m
s
)

overhead of consistency enforcement when using one intermediary broker

overhead of consistency enforcement when using two intermediary brokers

latency

10 Conclusions and Future Research Directions

This research presented the Hybrid Grid Service architecture as a replica hosting

environment and evaluated its performance. To achieve decentralization, we utilized

publish-subscribe based messaging schemes to provide interaction among the distri-

buted instances of the Hybrid System. We utilized a topic based publish-subscribe

messaging communication to implement fundamental aspects of decentralized infor-

mation systems such as fault-tolerance, distribution, and consistency enforcement. To

improve the overall performance of the system, we have also used performance opti-

mization techniques such as dynamic migration/replication, which improves overall

system performance by moving/replicating highly requested metadata to where they

wanted.

The evaluation of the system pointed that Hybrid Service presents stable behavior for

access request distribution, replica creation and consistency enforcement over a high

number continuous operations. The results indicated that, with our solution, the cost

of achieving distribution, fault tolerance and consistency enforcement is in the order

of milliseconds. We also observed that the cost of fault tolerance is higher than both

the cost of distribution and the cost of consistency enforcement. This is because; there

is an additional time required for performing additional unicast messages for higher

fault-tolerance levels. The results also pointed out that we can achieve performance

optimization by employing dynamic replication technique in decentralized metadata

management. The results indicated that the cost of repetitive access requests could be

reduced by moving temporary copies of contexts to where they wanted. Finally, this

study pointed out the trade-off between performance and fault-tolerance. Here the

fault-tolerance is considered in terms of availability (i.e. degree of replication). The

results indicated that the cost of replica-content creation increases, when the degree of

fault-tolerance increased.

To complete the system, we intend to research an information security mechanism for

the distributed replica hosting system. This research should investigate the security

concerns related to communication between network nodes and users, as well as secu-

rity concerns related to authorization to deal with access control.

Acknowledgement: We thank Dr. Plale for stimulating discussions and her feedback

on this research. This work is supported by the Advanced Information Systems Tech-

nology Program of NASA’s Earth-Sun System Technology Office.

Bibliography

1. Ken Arnold, A.W., Byran O’Sullivan, Robert Scheifler, and Jim Waldo, The

JINI Specification. 1999: Addison-Wesley, Reading, MA.

2. The_Salutation_Consortium_Inc., Salutation architecture specification (part

1), version 2.1 edition available at http://www.salutation.org. 1999.

3. Guttman, E., Perkins, C., Veizades, J., Service Location Protocol, RFC 2165,

available at http://rfc.net/rfc2165.html. 1997.

4. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F.,

Dabek, F., Balakrishnan, H. Chord: A Scalable Peer-to-Peer Lookup Proto-

col for Internet Applications. in IEEE/ACM Trans. on Networking. 2001.

5. Ripeanu, M., Foster, I. Mapping the Gnutella Network: Macroscopic Proper-

ties of Large Scale Peer-to-Peer Systems. in In 1st International Workshop

on Peer to Peer Systems. 2002.

6. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S. Search and Replication in

Unstructured Peer to Peer Networks. in In 16th ACM International Conce-

rence on SuperComputing. 2002. New York, USA.

7. Milojicic, D.S., et al. , Peer-to-Peer Computing, in HP Labs Technical Re-

port HPL-2002-57. 2002, HP Labs.

8. S. Helal, N.D., and C. Lee. Konark-A Service Discovery and Delivery Pro-

tocol for Ad-Hoc Networks. in In Third IEEE Conference on Wireless

Communications Network (WCNC). March 2003. New Orleans, USA.

9. Marin-Perianu, R., Hartel, P., Scholten, J. A Classification of Service Dis-

covery Protocols. in Technical Report TR-CTIT-05-25 Centre for Telematics

and Information Technology, University of Twente, Enschede. ISSN 1381-

3625 2005.

10. R. Hermann, D.H., M. Moser, M. Nidd, C. Rohner, A. Schade, DEAPspace--

Transient ad hoc networking of pervasive devices. Computer Networks

2001. Volume 35 p. pp 411-428.

11. Tang, D., Chang, D., Tanaka, K., Baker, M., Resource Discovery in Ad-Hoc

Networks, in CSL-TR-98-769. 1998, Stanford University.

12. Beatty, J., Kakivaya, G., Kemp, D., Kuehnel, T., Lovering, B., Roe, B., St.

John, C., Schlimmer, J., Simonnet, G., Walter, D., Weast, J., Yarmosh, Y.,

and Yendluri, P. , Web Services Dynamic Discovery (WS-Discovery) avail-

able from http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-

discovery.pdf. 2004.

13. Pallickara, S., H. Gadgil, and G. Fox. On the Discovery of Topics in Distri-

buted Publish/Subscribe systems. in Proceedings of the IEEE/ACM GRID

2005 Workshop, http://pat.jpl.nasa.gov/public/grid2005/ pp 25-32. Seattle,

WA. 2005.

14. Happner, M., Burridge, R., Sharma, R., Java Message Service Specification

available at http://java.sun.com/products/jms. 2000, Sun Microsystems.

15. Box, D., Cabrera, L., Crithchley, C., Curbera, F., Ferguson, D., Geller, A.,

Graham, S., Hull, D., Kakivaya, G., Lewis, A., Lovering, B., Mihic, M., Nib-

lett, P., Orchard, D., Saiyed, J., Samdarshi, S., Schlimmer, J., Sedukhin, I.,

Shewchunk, J., Smith, B., Weerawarana, S., Wortendyke, D. , Web Service

Eventing available at http://ftpna2.bea.com/pub/downloads/WS-

Eventing.pdf. 2004, Microsoft, IBM & BEA.

16. Pallickara, S. and G. Fox. NaradaBrokering: A Middleware Framework and

Architecture for Enabling Durable Peer-to-Peer Grids. in Lecture Notes in

Computer Science. 2003: Springer-Verlag.

17. Pallickara, S., et al., A Framework for Secure End-to-End Delivery of Mes-

sages in Publish/Subscribe Systems. 2005.

18. Pallickara, S., et al., Support for High Performance Real-time Collaboration

within the NaradaBrokering Substrate. 2005.

19. Fox, G., S. Pallickara, and X. Rao. A scaleable event infrastructure for peer

to peer grids. in JGI '02: Proceedings of the 2002 joint ACM-ISCOPE confe-

rence on Java Grande. 2002: ACM.

20. Fox, G. and S. Pallickara, Deploying the NaradaBrokering substrate in aid-

ing efficient web and grid service interactions. Proceedings of the IEEE,

2005. 93(3): p. 564-577.

21. Sivasubramanian, S., Szymaniak, M., Pierre, G., Steen, M., Replication for

Web Hosting Systems. ACM Computing Surveys, 36(3):291--334, 2004.

22. Tanenbaum, A., Van Steen, M., Distributed Systems Principles and Para-

digms. 2002. Cited in page 326.

23. Rabinovich, M., Rabinovich, I., Rajaraman, R., Aggarwal, A. A Dynamic

Object Replication and Migration Protocol for an Internet Hosting Service.

in Proc. 19th Int'l Conf. Distributed Computing Systems. 1999.

24. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B.,

Globally distributed content delivery. IEEE Internet Computing, 2002: p. pp

50-58.

25. Rodriguez, P., Sibal, S. , SPREAD: Scalable Platform for Reliable and Effi-

cient Automated Distribution. Computer Networks, 2000. vol. 33, nos. 1-6:

p. pp. 33-49.

26. Rabinovich, M., Aggarwal, A. RaDaR: A Scalable Architecture for a Global

Web Hosting Service. in WWW8. May 1999.

27. Pallickara, S., Fox, G. NaradaBrokering: A Distributed Middleware Frame-

work and Architecture for Enabling Durable Peer-to-Peer Grids. in Proceed-

ings of ACM/IFIP/USENIX International Middleware Conference Middle-

ware-2003. 2003. Rio Janeiro, Brazil.

28. Gwertzman, J.a.S., M. The Case for Geographical Push-Caching. in Proc.

Fifth Workshop Hot Topics in Operating Systems, IEEE, 1996. pp. 51-55.

Cited on page 327. 1996.

29. Bulut, H., S. Pallickara, and G. Fox. Implementing a NTP-Based Time Ser-

vice within a Distributed Brokering System. in ACM International Confe-

rence on the Principles and Practice of Programming in Java, June 16-18,

2004 Las Vegas, NV. 2004.

30. Rabinovich, M. Issues in Web Content Replication. in Bulleting of the IEEE

Computer Society Technical Committee on Data Engineering. 1998.

