Lease Based Consistency Scheme in the Web Environment
	Byounghoon Lee Sunghwa Lim Jai-Hoon Kim

Graduate School of Information and Communication
Ajou University
Suwon, Republic of Korea

{componer, holyfire, jaikim}@ajou.ac.kr

	Geoffrey C. Fox
Community Grids Lab

Indiana University

Bloomington, Indiana

gcf@indiana.edu

Abstract. There are many methods to maintain the consistency in the distributed computing environment. Efficient schemes for maintaining consistency should ideally take into account the following factors: lease duration of replicated data, data access pattern and system parameters. Lease method is used to supply the strong consistency in the web environment. During the proxy’s lease time from web server, web server can notice the modification to the proxy by invalidation or update. In this paper, we analyze the lease protocol performance by varying update/invalidation scheme, lease duration and read rates. By using these analyses, we can choose the adaptive lease time and proper protocol (invalidation or update scheme of the modification for each proxy in the web environment). As the number of proxy for web caching increases exponentially, more efficient method for maintaining consistency should be designed. We also present 3-tier hierarchies on which each group and node independently and adaptively choose proper lease time and protocol for each proxy cache. These classifications of the scheme make proxy cache adaptive to client access pattern and system parameters.
1. Introduction

As the number of the application and users grows exponentially in the web environment, server has the message overload problem which incurs the congestion of client request and increases the response time. One approach to cope with the increment of resource utilization is to cache data near client [1]. For an example, proxy for web caching has some advantages over reducing the overhead at the server and decreasing in response time for clients. Proxy must keep the consistency of cached data to preserve them from the stale information. Fig.1 shows web proxy architecture with lease consistency. Information broadcasting system like stock trading, weather broadcast and news is modified just at server side. Server provides the information to the proxy to reduce the latency. Consistency between server and proxy is maintained by lease and invalidation/update schemes.
There are many protocols to maintain the consistency. Lease method is used to supply the strong consistency during the lease time. In the original lease approach, the server grants a lease to each request from a proxy. The lease denotes the interval of time during which the server agrees to notify the proxy if the object is modified [2]. However lease has some drawbacks. One of principal problems of the lease is that it forces the system to keep strong consistency by notifying all modifications to a proxy. If cached data is modified frequently during the lease, message overhead would increase largely. Two conventional protocols are used to maintain data consistency for notifying the modification.
· Update scheme: When a client tries to access a data from the server, the same cached pages in every proxy are updated whenever server node modifies the data page.
· Invalidate scheme: Whenever a remote node modifies a data, the local copy is invalidated.

[image: image1.emf]Write request

Read Request

Invalidation/Update

Web Server

Proxy

Fig. 1 Web Proxy Architecture with lease consistency
It is a critical part to choose invalidation or update for the notification method during the lease time. In this paper we analyze the notification protocol overhead of maintaining cache consistency during the lease time. Efficient consistency maintaining schemes should ideally take into account the following factors: lease duration, data access pattern and system parameters (resources overhead such as CPU time, storage cost and communication delay). Each factor is related with each other.

[image: image2.emf]Lease Duration

Data Access Pattern

System Parameters

(CPU time, storage cost,

communication delay

Lease Adjustment

Choose Invalidation or update

Performance

Analysis

Fig. 2 Adaptive consistency maintenance flow
For an example, in general case invalidation scheme is efficient when many remote updates are occurred consecutively. But in short lease time, update scheme could be more efficient than invalidation because remaining remote updates are ignored after lease expiration time. It is interesting to analyze how lease duration, modification notice schemes (update scheme and invalidation scheme) affect on performance. Thus, in this paper we analyze performance by varying lease duration, modification scheme and local access ratio to remote modification. To reduce overhead, efficient lease duration and modification notice scheme need to be adjusted according to data access patterns and system parameters. By analyzing the cost of maintaining consistency according to lease time, shared data access pattern and system parameters, we can find proper lease time and choose alternative notice scheme of the modification. Each proxy maintains the consistency of data stored in its cache and consistency maintenance is performed efficiently by requesting the lease time and adopting proper notice scheme of the modifications from the server. We demonstrate the efficiency of our adaptive scheme through simulation as well as mathematical analysis by performance modeling. Result of mathematical analysis matches closely with the simulation results.
When the number of proxy increases exponentially, more efficient consistent managing method should be designed. In this paper we also present 3 tier hierarchies, each level is divided by lease duration property and notify scheme of modification. First level is subdivided by short lease and long lease. And second level is subdivided by invalidation and update scheme for notifying the modification. These classifications of the scheme make each proxy cache adaptive to each client access pattern.
Early papers[5,6] show the scheme that adjusts the lease duration to reduce the message overhead according to the object lifetime, frequency of the update and read request. In this paper, we argue that to find optimal notification scheme in lease duration is a critical factor to reduce the message overhead because lease duration affects to the efficient notification scheme. There is a tradeoff between data fault and local update. As lease time increases data access fault (data miss) decreases while local update cost increases by data update from server. On the other hand, as lease time decreases, cases are reversed.
Research contributions of our work are as follows :

· Our work focuses on developing a dynamic notification scheme along with read rates, read and write intensity, and to determine optimal lease duration in lease based consistency mechanism. We analyze and simulate the relation of these factors.
· Another advantage of our approach is that it applies the adaptive multi level structure classifying by notification scheme and lease duration. When the number of the proxy increases exponentially, this scheme not only reduces the message overhead but also decreases the latency time by adapting to running and system environments for each proxy.
2. Related Works
Caching by proxy is necessary to reduce the network overhead at the server. However if the object is transferred to many proxy and tries to update the object, it needs the consistency mechanism to reflect the changed data. Since web pages tend to be modified at origin servers, cached version of these pages can become inconsistent at the page change from the server. Lease, invalidation and update schemes are the common method to supply the consistency.
2.1 Invalidation and update[2,3]
If an object is modified during the lease time, server notifies the modification to the proxy. There are two methods to notify to clients. One is invalidation and the other is update. The former invalidates the proxy when it received the modification message. Therefore, subsequent read request make the proxy require the page from the server. When modification of the page occurs frequently in a short time, invalidation is very efficient. But when the object is modified infrequently, turnaround delay overhead for accessing the page increases. On the other hand, update doesn't need the turnaround delay because the object or modification part of object is sent upon each modification. This method has the drawback of the network overhead.

2.2 Competitive Update
In write-update protocol if cache data is loaded, proxy keep the cache data regardless of local data accesses. However, there is a problem that cached data block must be updated many times without local access. To resolve this problem while maintaining advantage of the write-update, local cache data should be invalidated after critical update count. Whenever a remote client requests an update, the update counter is increased. When the counter reaches to critical update count, the cache data is invalidated upon remote update[3]. Critical update counter to the each cache block could have a different value and be changed adaptively.

2.3 Adaptive Scheme
To reduce the network bandwidth and latency, invalidation and update scheme must be applied adaptively by the time-varying memory access patterns of an application [4]. Adaptive scheme chooses one of the invalidation protocol and competitive update protocol according to data access pattern and system parameters.
2.4 Lease Mechanism
Lease scheme is a time-based mechanism that maintains efficient consistent access of cached data in distributed systems [5]. The server assigns a lease on a page to every proxy and agrees to notify modifications of the page during the lease duration to the proxy. The client doesn't need to poll the server during the lease duration. It starts to poll when a read request arrives after lease expires [6].
Lease duration should be determined by considering the tradeoff between the server state space and network messages. As the lease duration become shorter, it needs lesser state space and more network messages. In contrast, it needs larger state space and needs lesser network message as the lease duration become longer.

The expiration time of the lease is applied adaptively to the proxy cache. The lease duration is determined based on various objects and system properties. The policy of the lease duration decision is classified by the object life time, client access characteristics and server state space [6].

· Age-based leases: the number of update messages can be strongly reduced compared to the case where all leases have the same expiration time

· Renewal Frequency-Based leases: the overhead can be reduced by granting longer leases to proxies that have sustained interest in the object.

· State space overhead-Based leases: As longer leases are granted, the space which is needed to maintain the state of the object becomes larger. By granting shorter leases to popular objects, the server can adaptively control the amount of state needed to maintain.
2.5 Proactive DNS cache update protocol [9]
A dynamic lease technique is used for DNS cache update protocol to keep track of the local DNS name servers that matches the clients with an Internet server. Also dynamic lease reduces communication overhead and storage overhead and makes the DNS cache update protocol lightweight. Client query rate at DNS name servers is one of factors to decide whether or not to apply leases scheme.
To make the DNS name server reliable, the DNS name server grants and maintains the leases for the DNS resource records of the Internet service. The lease duration is dependent on the domain name to IP address mapping change frequency of the specific DNS resource record.

2.6 Consistency Maintenance in Service Discovery [8]
Devices for variable services can discover their environment by using the service discovery protocols. Service discovery protocols allow devices to detect and adapt to changes of the topology. Consistency maintenance in service discovery guarantees that Users get the correct services by discovering. To maintain the consistency, the User has to subscribe either directly to the Manager (2-party subscription) or to a Registry (3-party subscription) to receive updates. A subscription between the User and the Manager or between the User and the Registry remains valid until the subscription lease does not expire. Users send messages periodically to the lessee to show the interest with the service for maintaining a valid subscription lease.

The subscription between the entities may remain valid, even though update notification fails. This is because the entities may face short-term failures, and restore connectivity before the subscription lease expires. Therefore, it needs to continue subscription process for guaranteeing Users to maintain consistency. This type of recovery is subscription-recovery. When the subscription lease expires, consistency maintenance depends on the inherent capability of the service discovery protocol to detect, and rediscover purged nodes and services. Hence, this type of recovery is called purge-rediscovery.

3. Cost Analysis for Lease-based Efficient Notification Scheme
If an object is modified during the lease duration, lease server notifies the proxy of any modification made to the object. The client is not required to poll the server during the lease duration even if read operations occurred consecutively. If a page notification which is occurred after read operations is executed by remote write operation in lease duration, notification is processed by three methods, which are invalidation, update and competitive update. To determine which notification method should be used to maintain the consistency is a critical thing to reduce the message overhead. It is not easily manageable problem because it is based on the lease mechanism.
Early studies[3,4] showed analytical comparisons of invalidation, update and competitive update without the lease by using the segment model. We consider the cost of messages as the cost metric for the invalidation, update and competitive model. We assume that particular page P at the proxy cache is accessed by clients. These accesses can be partitioned into segments. A Segment is defined as a sequence of remote updates between two consecutive local accesses by a node. A new segment begins with the first access by a client following an update to the page by the server. Segments are defined from the point of view of each node[4]. Fig.3 shows how the segment is composed.

[image: image3.emf]Segment

Remote write

Local Read

Fig.3 Definition of the Segment
Parameter for analyze the cost are shown in Table1.

Table1. Parameter for analysis

	Parameters
	Description

	
[image: image4.wmf]control

C

	Cost to send the control message

	
[image: image5.wmf]upd

C

	Cost to update a page of the proxy cache

	
[image: image6.wmf]page

C

	Cost to replace a page in the proxy cache

	
[image: image7.wmf]comp

U

	Competitive update count

	
[image: image8.wmf]avg

u

	Average update count per segment

To compare the various notification protocol, we assume that
[image: image9.wmf]5

=

contorl

C

,
[image: image10.wmf]10

=

upd

C

,
[image: image11.wmf]35

=

page

C

 and
[image: image12.wmf]4

=

comp

U

. The cost of notification protocols in a segment are computed as follows:

Invalidate overhead cost
[image: image13.wmf])

(

page

control

C

C

+

=

Update overhead cost
[image: image14.wmf]upd

avg

C

u

=

Competitive update
[image: image15.wmf]upd

avg

C

u

=

(if Update Count
[image: image16.wmf]£

 4)

[image: image17.wmf])

(

page

control

upd

avg

C

C

C

u

+

+

=

 (if Update Count > 4)

Fig.4 shows an analytical comparison of message overhead for one segment. We assumed update count threshold 4 for competitive update protocol. When remote write occurred less than threshold count, competitive update protocol notifies to the proxy by update and when remote write occurred more than threshold count, it notifies by invalidation. Update and competitive update protocols are better choices if update count is smaller than 5. However, invalidation is the best choice when update count is greater than 5.
[image: image18.emf]0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13

Update Count

Message Overhead

Update

Invalidation

Competitive Update

Fig.4 Compare the notification scheme
In this paper we analyze the lease cooperated with the notification scheme, which are invalidation, update and competitive update. Analysis is divided by two subjects which are general cases(section 3.1) and web burst cases(section 3.2). In the Web environment, read and remote write access to the proxy have burst property. After that, we compare the performance in section 3.3 and 3.4.
3.1 General Case Analysis of the Lease based notification scheme
We assume that read interval of each node and write interval of the remote node follow exponential distribution. In this case, it is hard to extract the special feature for deciding the lease duration or the notification scheme. To analyze the cost, we divide general case into two cases. One case is that the lease duration is longer than segment length and the other case is that the lease duration is shorter than segment length. We use Markov model for cost analysis. Fig.5 describes the meaning of the state. X means how many times lease renewal is accomplished and Y means how many times remote write is performed consecutively. Fig.6 shows the Markov model based on rate of read/write operation.
Table 2. Parameters for simulation
	Parameter
	Description

	
[image: image19.wmf]r

l

	Occurrence rate of local read access with exponential distribution

	
[image: image20.wmf]w

l

	Occurrence rate of remote write with exponential distribution

	
[image: image21.wmf]lease

t

	Lease expiration time

[image: image22.emf]X Y

The number of

the write

The number of the

lease renewal

Fig.5 State description

[image: image23.emf]00 01 02 03

10 11 12 13

20 21 22 23

r



r



r



r



w



w



w



10 11 12 13

r



r



r



r



w



w



w



lease

t/ 1

...

...

...

.

.

.

.

.

.

.

.

.

.

.

.

r



r



r



r



w



w



w



lease

t/ 1

Fig. 6 Markov Chain model of the lease scheme
3.1.1 Lease duration longer than segment length

In this case we assume that more than one segment is formed during the lease duration.
Parameters to analyze the cost are shown in Table 3.
Table3. Parameters for analysis

	Parameters
	Description

	N
	The number of the segment in lease (n>1)

	
[image: image24.wmf]control

C

	Cost to send the control message

	
[image: image25.wmf]upd

C

	Cost to update a page of the proxy cache

	
[image: image26.wmf]page

C

	Cost to replace a page in the proxy cache

	
[image: image27.wmf]comp

U

	Competitive update count

	
[image: image28.wmf]avg

u

	Average update count per segment

	
[image: image29.wmf])

(

k

p

	Probability to be k’th consecutive update

	
[image: image30.wmf]s

	Standard deviation of the number of the update

	
[image: image31.wmf]ò

¥

comp

u

avg

du

u

f

)

,

(

s

	Probability that updates are occurred more than
[image: image32.wmf]comp

u

When each segment begins with first read, proxy cache needs to obtain the page by sending a control message. If n segments are included during the lease, overhead cost for lease invalidation case is as follows :
Lease Invalidate overhead cost =
[image: image33.wmf])

(

page

control

C

C

n

+

In update case, page replacement cost is requested at the read of the first segment, and every update requirement needs the update cost.
Lease Update overhead cost =
[image: image34.wmf]page

upd

avg

C

C

u

n

+

)

(

Cost of the lease competitive update varies by segment status in lease.
We assume that the average number of the update in a segment is
[image: image35.wmf]avg

u

.
If update occurs above
[image: image36.wmf]comp

u

for a segment, it requires
[image: image37.wmf]page

C

for first reading cost in the next segment.

We assume that occurrence probability of the remote write is pdf (probability density function) of normal distribution as follows:

[image: image38.wmf]]

)

(

2

1

exp[

2

1

)

(

2

s

p

s

avg

u

x

x

f

-

-

=

 (x: the number of the consecutive write)

[image: image39.wmf]ò

¥

-

=

x

dt

t

f

x

F

)

(

)

(

: cdf(cumulative distribution function) for the normal distribution

[image: image40.emf]Invalidation

Update

comp

U

comp more

C

_

comp less

C

_

Time

: remote update

: local access

Fig.7 Competitive update cost
[image: image41.wmf]comp

U

=4
Fig.7 shows how total cost of the competitive update is composed. Overhead cost for lease competitive as follows:
Lease Competitive Overhead cost =
[image: image42.wmf])

(

_

_

comp

less

comp

more

C

C

n

+

[image: image43.wmf]comp

more

C

_

 is the cost of case that the number of the remote write is larger than
[image: image44.wmf]comp

U

 and
[image: image45.wmf]comp

less

C

_

 is the cost of case that the number of the remote write is less than
[image: image46.wmf]comp

U

. The probabilities that an update occurs above
[image: image47.wmf]comp

U

is
[image: image48.wmf]ò

¥

comp

u

dx

x

f

)

(

Therefore we can compute
[image: image49.wmf]comp

more

C

_

and
[image: image50.wmf]comp

less

C

_

as follows :

[image: image51.wmf]=

comp

more

C

_

[image: image52.wmf]
[image: image53.wmf]page

u

C

dx

x

f

comp

ò

¥

)

(

[image: image54.wmf]comp

less

C

_

=
[image: image55.wmf]å

=

=

comp

u

x

x

upd

C

x

xF

1

)

(

3.1.2 Lease duration shorter than segment length
We define system parameters to make a cost expression as shown in Table 4.
Table 4. Analysis Parameters for lease based invalidation
	Parameter
	Description

	
[image: image56.wmf]r

l

	Occurrence rate of local read access with exponential distribution

	
[image: image57.wmf]w

l

	Occurrence rate of remote write with exponential distribution

	
[image: image58.wmf]lease

w

r

t

e

)

(

1

l

l

+

-

-

	Probability that either local read or remote write occur before
[image: image59.wmf]lease

t

	
[image: image60.wmf]w

r

w

l

l

l

+

(
[image: image61.wmf]lease

w

r

t

e

)

(

1

l

l

+

-

-

)
	Probability that remote write is occurred before
[image: image62.wmf]lease

t

	
[image: image63.wmf])

(

,

w

r

T

l

	Elapsed time from the lease start to the
[image: image64.wmf]r

l

or
[image: image65.wmf]w

l

occurrence

	
[image: image66.wmf])

(

cos

t

INV

t

	Invalidation cost during
[image: image67.wmf]lease

t

- t

3.1.2.1 Invalidation

In this case, overhead cost of the invalidation is composed with the condition of occurring the write before lease expiration and after lease expiration.
· Cost when remote write is occurred before
[image: image68.wmf]lease

t

(Fig. 8)

[image: image69.emf]. . . .

lease expire

End of the segment

Segment

Fig.8 Lease expiration in remote write
Irrespective of the number of the update, there is the only page replacement overhead, (
[image: image70.wmf]page

control

C

C

+

). Probability that an update occurs more than once is
[image: image71.wmf]w

r

w

l

l

l

+

(
[image: image72.wmf]lease

w

r

t

e

)

(

1

l

l

+

-

-

)
Thus the cost of the lease based invalidation is calculated as follows

[image: image73.wmf])

0

(

cos

t

INV

=
[image: image74.wmf]w

r

w

l

l

l

+

(
[image: image75.wmf]lease

w

r

t

e

)

(

1

l

l

+

-

-

)(
[image: image76.wmf]page

control

C

C

+

)

· Cost when remote write is not occurred before
[image: image77.wmf]lease

t

[image: image78.emf]. . .

lease expire

End of the segment

) (

r

T



) (

r lease

T t

 

lease start

s

C

e

C

lease

t

Fig. 9 Lease expiration before remote write
Cost of the invalidation is divided into two parts. First part is the cost(
[image: image79.wmf]s

C

) between lease start and local access event. Second part is the cost(
[image: image80.wmf]e

C

) between local access event and lease expiration. Second part is recursively composed with successive local access. Fig. 9 shows both cases of the cost.

[image: image81.wmf])

0

(

cos

t

INV

=
[image: image82.wmf]s

C

+
[image: image83.wmf]e

C

Probability that local read occur before
[image: image84.wmf]lease

t

(
[image: image85.wmf]lease

w

r

t

e

)

(

1

l

l

+

-

-

)(
[image: image86.wmf]w

r

r

l

l

l

+

)
So
[image: image87.wmf]s

C

is calculated as

[image: image88.wmf]s

C

=(
[image: image89.wmf]lease

w

r

t

e

)

(

1

l

l

+

-

-

)(
[image: image90.wmf]control

w

r

r

C

l

l

l

+

)

[image: image91.wmf]e

C

is the cost that is iterated between
[image: image92.wmf])

(

r

T

l

 and
[image: image93.wmf]lease

t

.

[image: image94.wmf]e

C

=
[image: image95.wmf]t

INV

cos

 (
[image: image96.wmf]lease

t

-
[image: image97.wmf])

(

r

T

l

)
3.1.2.2 Update
Probability that remote write is occurred x times consecutively before
[image: image98.wmf]lease

t

 is as follows:

[image: image99.wmf]ò

-

lease

lease

w

t

t

w

dt

e

0

l

l

=
[image: image100.wmf]lease

w

t

e

l

-

-

1

Probability that remote write occurs in lease duration is

[image: image101.wmf]w

p

=
[image: image102.wmf]lease

w

t

e

l

-

-

1

Probability that remote write doesn’t occur in lease duration is

[image: image103.wmf]w

p

=
[image: image104.wmf]w

p

-

1

=
[image: image105.wmf]lease

w

t

e

l

-

Probability that first remote write occurs in first lease duration is

[image: image106.wmf])

0

(

w

p

=
[image: image107.wmf]lease

w

t

e

l

-

-

1

Probability that first remote write occurs in second lease duration is

[image: image108.wmf])

1

(

w

p

=
[image: image109.wmf]w

w

p

p

=
[image: image110.wmf])

1

(

lease

w

lease

w

t

t

e

e

l

l

-

-

-

We can yield the equation as follow

[image: image111.wmf])

(

n

p

w

=
[image: image112.wmf]w

n

w

p

p

)

(

=
[image: image113.wmf])

1

(

lease

w

lease

w

t

t

n

e

e

l

l

-

-

-

[image: image114.wmf])

(

n

p

w

 means probability that first remote write is occurred after n count lease duration.
Update overhead cost is as follows:

[image: image115.wmf]t

UP

cos

 =
[image: image116.wmf]å

¥

=

+

0

)

(

x

upd

avg

control

w

C

U

C

x

xp

3.2 Burst Case Analysis of the Lease based notification scheme at Web environment

The Web server has the property that read or write are occurred successively if the read/write operation is once started. For an example, news site updates the contents at specific time and a subscriber reads the news not desultorily but intensively.
3.2.1 Lease based update
Message cost varies by the lease expiration condition. Update after consecutive local reads incurs
[image: image117.wmf]page

C

, which is the page replacement cost. Then it produces the update cost
[image: image118.wmf]upd

C

 on each update. Updates occurred after lease expiration are excluded from the overhead cost. Besides, entire update cost is excluded if lease is expired before first update occurs. To compute the lease based update cost,
[image: image119.wmf]lease

UP

, it needs to add the lease renewal costs that are generated on each lease request.

[image: image120.emf]Write

Read

local

T

wrt bef

T

_

Time

wrt mid

T

_

Segment

wrt aft

T

_

Fig. 10 Lease expiration case at the segment
Fig. 9 shows how the segment area is separated. Lease is expired at any moment(
[image: image121.wmf]local

T

,
[image: image122.wmf]wrt

bef

T

_

,
[image: image123.wmf]wrt

mid

T

_

 and
[image: image124.wmf]wrt

aft

T

_

) in a segment. Therefore, lease based update cost per time is composed with four cost event cases. Each case is classified with lease expiration timing. First case is expired at
[image: image125.wmf]local

T

 that is occurred in the middle of consecutive local access. Second case is expired at
[image: image126.wmf]wrt

bef

T

_

that is occurred before the remote write. Third case is expired at
[image: image127.wmf]wrt

mid

T

_

 that is occurred in the middle of consecutive remote write. Last case is expired at
[image: image128.wmf]wrt

aft

T

_

that is occurred between last remote write and first local read of next segment. Total time of the segment is composed as follows

[image: image129.wmf]seg

T

=
[image: image130.wmf]wrt

aft

wrt

mid

wrt

bef

local

T

T

T

T

_

_

_

+

+

+

Table 5. Analysis Parameter for Burst case
	Parameter
	Description

	
[image: image131.wmf]local

P

	
[image: image132.wmf]local

T

 period ratio in a segment

	
[image: image133.wmf]wrt

bef

P

_

	
[image: image134.wmf]wrt

bef

T

_

 period ratio in a segment

	
[image: image135.wmf]wrt

mid

P

_

	
[image: image136.wmf]wrt

mid

T

_

 period ratio in a segment

	
[image: image137.wmf]wrt

aft

P

_

	
[image: image138.wmf]wrt

aft

T

_

 period ratio in a segment

	
[image: image139.wmf]W

	Average remote write count happened in a segment

	
[image: image140.wmf]local

C

	Cost occurred during
[image: image141.wmf]local

T

 period

	
[image: image142.wmf]wrt

bef

C

_

	Cost occurred during
[image: image143.wmf]wrt

bef

T

_

 period

	
[image: image144.wmf]wrt

mid

C

_

	Cost occurred during
[image: image145.wmf]wrt

mid

P

_

 period

	
[image: image146.wmf]wrt

aft

C

_

	Cost occurred during
[image: image147.wmf]wrt

aft

P

_

 period

	
[image: image148.wmf]^

w

	The number of consecutive write group

(same meaning with the segment)

Overhead weight of each event case varies by event period ratio and each period ratio is calculated as follows :

[image: image149.wmf]local

P

 =
[image: image150.wmf]seg

local

T

T

[image: image151.wmf]wrt

bef

P

_

 =
[image: image152.wmf]seg

wrt

bef

T

T

_

[image: image153.wmf]wrt

mid

P

_

=
[image: image154.wmf]seg

wrt

mid

T

T

_

[image: image155.wmf]wrt

aft

P

_

=
[image: image156.wmf]seg

wrt

aft

T

T

_

Total cost of lease based update is derived from joining all cases together and is calculated as follows:

[image: image157.wmf]time

lease

UP

/

=
[image: image158.wmf]wrt

aft

wrt

aft

wrt

mid

mid

wrt

bef

bef

local

local

P

C

P

C

P

C

P

C

_

_

_

exp

_

_

exp

_

+

+

+

At the
[image: image159.wmf]wrt

bef

C

_

, it doesn’t need the update cost because lease is expired before the update, so average update cost is subtracted from the page replacement cost with the
[image: image160.wmf]rest

P

/ 2 ratio. Lease based update cost is calculated as follows :

[image: image161.wmf]wrt

bef

C

_

=
[image: image162.wmf])

,

max(

2

seg

lease

upd

avg

page

t

t

C

u

C

-

[image: image163.wmf]local

C

 is the overhead cost to request more lease time when local access still remains after lease expiration.

[image: image164.wmf]local

C

=
[image: image165.wmf]lease

control

t

C

[image: image166.wmf]exp

_

mid

C

 removes the ignored update overhead from the page replacement cost and it is calculated by subtracting
[image: image167.wmf]ign

C

from
[image: image168.wmf]page

C

. Details of the
[image: image169.wmf]exp

_

mid

C

 is illustrated in Fig. 11.

[image: image170.wmf]exp

_

mid

C

 =
[image: image171.wmf])

,

max(

seg

lease

ign

page

t

t

C

C

-

[image: image172.wmf]ign

C

is the ignored cost which is occurred after lease expiration.

[image: image173.wmf]ign

C

=
[image: image174.wmf]upd

avg

local

seg

lease

remote

seg

avg

C

u

P

t

t

P

t

u

)

2

/

,

2

max(

-

[image: image175.emf]ignore

lease expire

ign

C

page

C

Fig.11
[image: image176.wmf]exp

_

mid

C

details

[image: image177.wmf]local

seg

lease

remote

seg

P

t

t

P

t

2

/

-

means the ratio that an update would occur after lease expired.
[image: image178.wmf]wrt

aft

T

_

 area includes all remote writes in a segment. Average remote write count per segment is W , so
[image: image179.wmf]wrt

aft

C

_

 is
[image: image180.wmf]upd

WC

Then we can compute the cost per segment as follows :

[image: image181.wmf]seg

lease

UP

/

 =
[image: image182.wmf]^

/

w

t

UP

lease

3.2.2 Lease based invalidation
Parameters to analyze the lease based invalidation cost
[image: image183.wmf]lease

INV

 per time is described in Table 6.
Table 6. Analysis parameters for invalidation case
	Parameter
	Description

	
[image: image184.wmf]local

P

	
[image: image185.wmf]local

T

 period ratio in a segment

	
[image: image186.wmf]inv

bef

P

_

	
[image: image187.wmf]inv

bef

T

_

 period ratio in a segment

	
[image: image188.wmf]inv

mid

P

_

	
[image: image189.wmf]inv

mid

T

_

 period ratio in a segment

	
[image: image190.wmf]inv

aft

C

_

	Cost when the lease is expired after the consecutive remote write

	
[image: image191.wmf]inv

bef

C

_

	Cost when the lease is expired before the first remote write

	
[image: image192.wmf]local

C

	Lease renewal cost per time

	
[image: image193.wmf]^

w

	The number of consecutive write group
(same meaning with the number of segment)

[image: image194.emf]Write

Read

local

T

inv bef

T

_

Time

inv aft

T

_

Segment

Fig.12 Lease expiration case at the segment

Segment is composed as shown in Fig.12.

[image: image195.wmf]seg

T

=
[image: image196.wmf]inv

aft

inv

bef

local

T

T

T

_

_

+

+

Overhead weight of each event case varies by event period ratio. Each period ratio is calculated as follows :

[image: image197.wmf]local

P

 =
[image: image198.wmf]seg

local

T

T

[image: image199.wmf]inv

bef

P

_

 =
[image: image200.wmf]seg

inv

bef

T

T

_

[image: image201.wmf]inv

aft

P

_

=
[image: image202.wmf]seg

wrt

aft

T

T

_

Total cost of lease based update is derived from joining all cases together and it is calculated as follows :

[image: image203.wmf]lease

INV

 =
[image: image204.wmf]inv

aft

inv

aft

inv

bef

inv

bef

local

local

P

C

P

C

P

C

_

_

_

_

+

-

[image: image205.wmf]local

C

 is the overhead cost to request more lease time when local accesses are still remained at proxy after lease expiration.

[image: image206.wmf]local

C

=
[image: image207.wmf]lease

control

t

C

If lease is expired before the remote write, it is not needed to check the consistency. Thus control cost per time is removed from the total cost.

[image: image208.wmf]inv

bef

C

_

=
[image: image209.wmf])

,

max(

2

seg

lease

control

t

t

C

If invalidation for remote write is occurred more than once, server should replace the page after sending the control message.

[image: image210.wmf]inv

aft

C

_

=
[image: image211.wmf])

,

max(

)

(

^

seg

lease

page

control

t

t

C

C

w

+

 Invalidation cost per segment is as follows :

[image: image212.wmf]seg

lease

INV

/

 =
[image: image213.wmf]^

w

INV

lease

3.3 Performance Comparison
3.3.1 General Case Simulation for the Lease based notification scheme

Lease invalidation is efficient when the remote write ratio is larger than local read ratio, because the updates of the proxy cache don’t need to be transferred until read request is received. Low frequency of the local read accesses decreases the frequency of the lease renewal and incurs small cost of the read request. When frequent remote write and infrequent local reads are happened, invalidation cost is fixed and lease renewal cost is not a burden to the proxy cache. Lease based invalidation scheme is the most efficient scheme when read rates is low. Update scheme is inefficient in low read rates because update scheme increases the overhead in proportion to the update count. Simulation conditions are described in table 7.
Table 7. Default Parameters for simulation

	Parameter
	Value

	Lease time
	200

	Local access interval
	40

	
[image: image214.wmf]contorl

C

	5

	
[image: image215.wmf]update

C

	10

	
[image: image216.wmf]page

C

	40

	
[image: image217.wmf]comp

U

	4

	Segmentation Count
	9000

Fig. 13 shows that lease based invalidation scheme is the most efficient at low read rates. Low read rates means that remote write is occurred frequently and local read is occurred infrequently. In this case, invalidation scheme is efficient because update scheme requires overhead in proportion to update counts.
[image: image218.emf]0

50

100

150

200

250

300

350

400

450

500

0.05 0.07 0.10 0.12 0.15 0.17

Read rates

Overhead/Time.

Comp

LeaseInval

LeaseUpdate

LeaseComp

Fig. 13 Overhead of low read rates
Fig. 14 shows that lease based update scheme is the most efficient at high read rates. High read rates means that remote write is occurred infrequently while local read is occurred frequently. In this case, update is efficient because the proxy doesn’t need to request the page replacement for infrequent remote write.
[image: image219.emf]0

5

10

15

20

25

30

35

40

0.50 0.75 0.84 0.88 0.90 0.92 0.93 0.94

Read rates

Overhead/Time .

Comp

LeaseInval

LeaseUpdate

LeaseComp

Fig. 14 Overhead of high read rates
Fig. 15 shows all the cases for lease duration and notification schemes with read rates. As read rates increases, frequency of the object modification is decreased. We can see two consistency properties from Fig. 15. One of consistency properties is that update scheme shows better performance by reducing the message overhead as remote writes happened infrequently. The other property is related with the lease scheme. As read request occurs frequently, lease scheme shows better performance than other consistency maintenance schemes without lease.

[image: image220.emf]3

8

13

18

23

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Read rates

Message Overhead/Time_

Comp

Update

Invalidate

LeaseComp

LeaseInvalid

LeaseUpdate

LeaseAdaptive

1

2

3

Fig. 15 Overhead of read rates
Overhead of the Lease based invalidation increases in accordance with the number of segments. The number of segments has the maximum value at 50% of the read rates. Thus the overhead increases till 50% of read rates, after that point overhead decreases. Page replacement patterns at the lease invalidation protocol are varied by the read rates and affect to the cost. Fig. 16 shows the page replacement patterns.

[image: image221.emf]1

page

C

page

C

page

C

page

C

page

C

 Low read rates

Half read rates High read rates

2 3

Fig. 16 Page replacement occurrence case with read rates.

(
[image: image222.wmf]page

C

: cost for page replacement)
Fig. 15 shows that lease based update is the best when read rates is smaller than 0.3 and lease based invalidation is best read rates is larger than 0.2. If we can predict the access pattern by analyzing, we can apply the notification scheme adaptively to the proxy cache. Analyzing for access pattern incurs the overhead to process the data. But overhead for analyzing is trivial compared with the overhead which is reduced by adaptive notification scheme.
[image: image223.emf]0

5

10

15

20

25

30

35

20 40 60 80 100 120 140 160 180

Lease Time

Message Overhead/Time_

Comp

Update

Invalidate

LeaseInvalid

LeaseUpdate

LeaseComp

Fig. 17 Overhead of Lease duration (read rates : 90)
Fig.17 shows that lease based update scheme has the least message overhead among various consistency schemes when lease time is above 50. When read requests are occured more frequently than write request, lease based scheme is very efficient.

3.3.2 Burst Case Simulation of the Lease based notification scheme in Web environments
Lease duration should be determined by considering the tradeoff between the lease renewal overhead and update overhead. As the lease duration become small, the lease renewal overhead become large and the update overhead become small. In contrast, as the lease duration becomes large, the lease renewal overhead becomes small and the update overhead become large.

Lease based update simulation is composed with some factors. Table 8 describes the simulation parameters.
Table 8. Simulation Parameters
	Parameter
	Description

	
[image: image224.wmf]local

P

	Ratio that lease is expired in the middle of consecutive local access

	
[image: image225.wmf]wrt

bef

P

_

	Ratio that lease is expired before the remote write

	
[image: image226.wmf]wrt

mid

P

_

	Ratio that lease is expired in the middle of consecutive remote write

	
[image: image227.wmf]wrt

aft

P

_

	Ratio that lease is expired between last remote write and first local read of next segment

[image: image228.emf]0

50

100

150

200

250

300

350

2 10 50 100 150 200 250 300 350 400 450 500

Lease time

Message Overhead/Time

LeaseInvalid

LeaseUpdate

LeaseComp

Fig. 18 Message Overhead of the three lease based scheme

(Ratio of periods are
[image: image229.wmf]local

P

:30%,
[image: image230.wmf]wrt

bef

P

_

:20%,
[image: image231.wmf]wrt

mid

P

_

:30%,
[image: image232.wmf]wrt

aft

P

_

:20%)
Fig. 18 shows that message overhead decrease in lease based invalidation scheme until lease time is less than 10. Because larger the lease duration, it makes lesser the lease renewal overhead with increasing little update. But when lease time is above 10, it incurs a number of the update with reducing little renewal overhead. At the lease base invalidation case, proxy cache needs to replace page just once regardless of the number of remote update during lease time. So Fig. 18 shows that message overhead is fixed around 20 after lease time 100. Lease based competitive is similar with lease based invalidation but it has the gap of the overhead for competitive update count .
[image: image233.emf]0

50

100

150

200

250

300

350

2 10 50 100 150 200 250 300 350 400 450 500

Lease time

Message Overhead/time

LeaseInvalid

LeaseUpdate

LeaseComp

Fig. 19 Message Overhead of the three lease based scheme

(Ratio of periods are
[image: image234.wmf]local

P

:21%,
[image: image235.wmf]wrt

bef

P

_

:29%,
[image: image236.wmf]wrt

mid

P

_

:22%,
[image: image237.wmf]wrt

aft

P

_

:28%)

Fig.19 shows that the lease update cost increase more slowly than Fig.18. As
[image: image238.wmf]wrt

bef

P

_

 become larger and
[image: image239.wmf]wrt

mid

P

_

 become small, it decreases the remote write count that is included during lease duration. Reducing update count during the lease time decreases the message overhead. Lease invalidation and lease competitive is similar with the Fig. 18.
[image: image240.emf]0

50

100

150

200

250

300

2 10 50 100 150 200 250 300 350 400 450 500

LeaseInvalid

LeaseUpdate

LeaseComp

Fig. 20 Message Overhead of the three lease based scheme

(Ratio of periods are
[image: image241.wmf]local

P

:14%,
[image: image242.wmf]wrt

bef

P

_

:36%,
[image: image243.wmf]wrt

mid

P

_

:14%,
[image: image244.wmf]wrt

aft

P

_

:36%)

Fig. 20 shows that message overhead of the lease update increases more slowly than Fig. 19. Lease invalidation and lease competitive scheme shows similar performances with the Fig. 19.

[image: image245.emf]0

50

100

150

200

250

300

350

2 10 50 100150 200250300350 400450 500

Lease time

Message overhead/time

LeaseUpdate(Pr=40)

LeaseUpdate(Pr=57)

LeaseUpdate(Pr=72)

P=40%

P=57%

P=72%

Fig. 21 Message Overhead for the variable period ratio (
[image: image246.wmf]P

=
[image: image247.wmf]wrt

bef

P

_

)
Fig. 21 shows that update overhead cost increases rapidly as
[image: image248.wmf]wrt

bef

P

_

decreases.
[image: image249.emf]0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

lease time

overhead/time_

LeaseUpd_Anal(P=20)

LeaseUpd_Anal(P=28)

LeaseUpd_Sim(P=20)

LeaseUpd_Sim(P=28)

Fig. 22 Compare analysis with simulation (
[image: image250.wmf]P

=
[image: image251.wmf]wrt

bef

P

_

)
Fig.22 shows that our analysis for lease based update approximates our simulation results. It means that lease based notification scheme has the proper lease time and employ proper modification notifying scheme dynamically for efficient consistency. To achieve the efficient consistency, it needs to determine the lease time and choose the notification scheme adaptively. To improve the efficiency, it needs to classify the server group by lease duration and notification scheme and to make the hierarchical structure to apply the proxy adaptively by server group.
3.4 Adaptive scheme
Above simulation results show that lease duration and notification scheme need to be adaptive according to the various patterns of server access and request patterns of client. If cache data has the property of periodic modification and read access pattern, we can apply the consistency maintaining scheme efficiently by analyzing the sample period of the cache data. Lease duration and notification scheme is determined adaptively by predicted data access pattern.

[image: image252.emf]3

8

13

18

23

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R/W Ratio

Message Overhead/Time

Comp

Update

Invalidate

LeaseComp

LeaseInvalid

LeaseUpdate

Lease based

invalidation is efficient

Lease based update

is efficient

Read rates

Fig. 23 Efficient notification scheme along with the read rates
Fig.23 shows that invalidation is more efficient at low read rates. On the other hand, update is more efficient at high read rates. So if we make the adaptive notification group by read rates, we can maintain the consistency with less overhead. Through the analysis, we can choose suitable lease time and notification method.
4. Hierarchical Consistency maintenance
When the number of proxy increases exponentially, more efficient consistent managing method should be designed. In this paper we present 3 tier hierarchies in which each level is divided by lease duration property and notification scheme. First level is subdivided by short lease and long lease. Second level is subdivided by invalidation and update for notifying the modification. These classifications of the scheme make proxy cache adaptive to client access pattern

4.1 Notification Method Based Consistency Hierarchy
A server handles a lot of proxy caches in the web. Therefore, it is necessary to reduce network bandwidth for transferring the cache object modification. 2-tier scheme is efficient for many proxy caches. Members of the group is classified by the efficient notification scheme. Proxy leader broadcasts the modification to the group member. Efficient notification method to the proxy cache is determined by the remote access pattern. When a number of the consecutive remote write accesses without local read are happened, invalidation will be efficient. On the other hand updates scheme will produce better performance for frequently requested objects with infrequent remote write.
Table 9. Parameter for adaptive group
	Parameters
	Description

	
[image: image253.wmf]upd

U

	Average update count for update proxy

	
[image: image254.wmf]inv

U

	Average update count for invalidation proxy

	P
	The number of the entire proxy

	R
	Update/Invalidation proxy group ratio (
[image: image255.wmf]inv

upd

upd

N

N

N

+

)

	
[image: image256.wmf]upd

N

	The number of update proxy (PR)

	
[image: image257.wmf]inv

N

	The number of invalidation proxy (P(1-R))

	
[image: image258.wmf]update

T

	Total cost when group sever broadcast by update(2-tier update)

	
[image: image259.wmf]invalid

T

	Total cost group when sever broadcast by invalidation(2-tier invalidation)

· Case that all proxies are included in single group

[image: image260.emf]Server

Group

(update)

P P

P P

. . .

Upd Upd Upd

Upd

Server

Group

(Invalidation)

P P

P P

. . .

Inv Inv Inv

Inv

(a) 2-tier Update hierarchy

(b) 2-tier Invalidation hierarchy

Fig.24 2-tier Notification structure by homogeneous group
2-tier update structure applies the update scheme to all the proxy including invalidation proxy. Update proxy and invalidation proxy has different average write count as
[image: image261.wmf]upd

U

and
[image: image262.wmf]inv

U

.

[image: image263.wmf]update

inv

inv

update

upd

upd

update

C

N

U

C

N

U

T

+

=

[image: image264.wmf]upd

N

and
[image: image265.wmf]inv

N

is substituted for
[image: image266.wmf]R

P

×

and
[image: image267.wmf])

1

(

R

P

-

×

[image: image268.wmf]update

inv

update

upd

update

C

R

P

U

C

R

P

U

T

×

-

×

×

+

×

×

×

=

)

1

(

[image: image269.wmf]invalid

T

 is calculated with regardless of the remote write count. It just needs the page replacement cost.

[image: image270.wmf]P

C

C

T

page

control

invalid

×

+

=

)

(

· Notification adaptive group division case

[image: image271.emf]Server

Group

(update)

Group

(invalidate)

P P P

Upd Upd Upd

P P

P

Inv Inv Inv

.

Fig.25 2-tier Notification structure by heterogeneous group
Total cost of the adaptive group sums up the update group cost and invalidation group cost.

[image: image272.wmf])

(

page

control

inv

update

upd

upd

adap

C

C

N

C

N

U

T

+

×

+

×

×

=

[image: image273.wmf])

(

)

1

(

page

control

update

upd

adap

C

C

R

P

C

R

P

U

T

+

×

-

×

+

×

×

×

=

[image: image274.emf]Proxy1

Proxy1 Proxy1

Proxy1

Update

Server

Fig. 26 Update proxy rates 50%

Fig.26 shows an example where proxy for update and proxy for invalidation are mixed. In this case, employing only one notification method(update in this example) statically from the server would be inefficient even if broadcasting form the server to proxies can decrease the message overhead. So it needs to broadcast by using adaptive notification server like Fig. 27.

[image: image275.emf]Proxy1

Proxy1 Proxy1

Proxy1

Update

Group

Invalidate

Group

Server

Fig. 27 Notification by adaptive group
We define system parameters to analyze as shown in Table 10.
Table 10. Simulation parameter for adaptive group

	Parameters
	Value

	
[image: image276.wmf]upd

U

	2

	
[image: image277.wmf]inv

U

	6

	P
	100

	
[image: image278.wmf]update

C

	9

	
[image: image279.wmf]page

C

	40

	
[image: image280.wmf]contorl

C

	1

Fig. 28 shows that adaptive group server is more efficient than single notification server employing only one of invalidation or update.
[image: image281.emf]1500

2000

2500

3000

3500

4000

4500

5000

5500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Update Proxy Rates

Message Overhead/Time_

Group(Invalid)

Group(Update)

Group(Adaptive)

Fig. 28 Compare the notification structures

(by increasing update proxy group rates)
4.2 Lease Duration Based Consistency Hierarchy
We can determine the duration of the lease considering a tradeoff between the server state space and network messages. As the lease duration becomes short, the state space becomes small while the number of network messages becomes large. In contrast, as the duration of the lease becomes large, the state space at the server becomes large and the number of network messages becomes small.
Group of the Proxy cache is determined by the property of the proxy cache.

[image: image282.emf]0

50

100

150

200

250

300

350

2 10 50 100150 200250300350 400450500

Lease time

Message overhead/time

LeaseUpdate(Pr=40)

LeaseUpdate(Pr=57)

LeaseUpdate(Pr=72)

0

5

10

15

20

25

30

35

20 40 60 80 100 120 140 160 180

Lease Time

Message Overhead

Comp

Update

Invalidate

LeaseInvalid

LeaseUpdate

LeaseComp

Short lease is efficeint

Long lease is efficient

(P=40)

(P=57)

(P=72)

Fig. 29 Lease adjustment by data access pattern(
[image: image283.wmf]r

P

=
[image: image284.wmf]wrt

bef

P

_

)
From Fig.30, we see that efficient lease time varies by data access pattern.

[image: image285.emf]Server

Group

(long lease)

Group

(short lease)

P

P P

P P

P

.

long long long short short short

Fig.30 2-tier Lease duration structure
4.3 Complex Consistency Hierarchy
Modification pattern property of the cache object affects on the notification scheme and local read access pattern affects on the lease duration. In the web environment, there are various servers and great number of proxies for the client. Each proxy cache would have specific consistency property like infrequent remote write and frequent local read. The purpose of this paper is also to offer adaptive structure of a proxy by complex consistency scheme.

[image: image286.emf]Server

Leader

(long lease)

Leader

(short lease)

Leader

(update)

Leader

(invalidate)

Leader

(update)

Leader

(invalidate)

Fig.31 3-tier Structure for Complex consistency
Each proxy cache joins in the most suitable group with considering the local read pattern and remote write pattern. Complex consistency structure with 3-tier form offers the sufficient group for consistency property.
5. Conclusion

In this paper we analyze the notify protocol overhead to maintain cache consistency during the lease time. While previous studies have addressed in lease duration and just compared the update and invalidation, we analyze the performance combined with lease duration, modification scheme and local access ratio to remote modification. By analyzing the access pattern, we can employ the adaptive lease time and alternative notice scheme of the modification.
We also present 3-tier hierarchies in which each level is divided by lease duration property and notify scheme of modification. First level is subdivided by short lease and long lease. Second level is subdivided by invalidation and update for notifying the modification. These classifications of the scheme make proxy cache adaptive to client access pattern.
6. References
[1] J. Gwertzman and M. Seltzer, “World-wide web cache consistency” in Proc. 1996 USENIX Tech. Conf. San Diego, CA, Jan. 1996.
[2] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham, and R. Tewari. “Scalable Consistency Maintenance in Content Distribution Networks Using Cooperative Leases”. IEEETKDE, July 2003.
[3] Hakan Grahn, Per Stenstrom and Michel Dubois. “Imple

 HYPERLINK "http://citeseer.nj.nec.com/grahn95implementation.html" mentation and evaluation of update-based cache protocols under relaxed memory consistency models”. Future Generation Computer Systems, 11(3), June 1995

[4] J.-H. Kim and N. H. Vaidya, “A cost-comparison approach for adaptive distributed shared memory” in Proc. of 1996 International Conference on Supercomputing, pp. 44-51, May. 1996.
[5] C. Gray and D. Cheriton. “Leases: An efficient Fault-Tolerant Mechanism for Distributed File Cache Consistency” in Proc. of Twelfth ACM Symposium on Operating Systems Principles, pp. 202-210,1989.
[6] V. Duvvuri, “Adaptive Leases: A Strong Consistency Mechanism for the World Wide Web” MS thesis, Univ. of Mass., Jun. 1999.
[7] K. S. Byun, S. H. Lim and J.-H. Kim, “Two-Tier Checkpointing Algorithm Using MSS in Wireless Network” IEICE transactions on Communications Vol. E86-B No. 7 pp. 1-7, Jul. 2003.
[8] Sundramoorthy, V., J. Scholten, P.G. Jansen and P.H. Hartel, “On Consistency Maintenance In Service Discovery”, 4th Int. Conf. on Information, Communications and Signal Processing and 4th IEEE Pacific-Rim Conf. On Multimedia, Vol. 3, IEEE Computer Society Press, Los Alamitos, California, 2006.
[9] Xin Chen, Haining Wang, Shansi Ren and Xiaodong Zhang, “Maintaining Strong Cache Consistency for the Domain Name System”, IEEE Transactions on Knowledge and Data Engineering, Vol. 19, No. 8, Aug. 2007.

PAGE
6

_1243872937.vsd
00

01

02

03

10

11

12

13

20

21

22

23

10

11

12

13

...

...

...

.
.
.

.
.
.

.
.
.

.
.
.

_1248048672.unknown

_1255974619.unknown

_1255976612.unknown

_1255992985.unknown

_1256030715.unknown

_1256138619.unknown

_1256138643.unknown

_1256138652.unknown

_1256138634.unknown

_1256121363.vsd
P=40%

P=57%

P=72%

_1256128686.vsd
Short lease is efficeint

Long lease is efficient

(P=40)

(P=57)

(P=72)

_1256028101.vsd
1

2

3

_1256029727.vsd
Lease based invalidation is efficient

Lease based update is efficient

Read rates

_1256030417.unknown

_1256028239.vsd
1

 Low read rates

Half read rates

High read rates

2

3

_1255994278.unknown

_1255977264.unknown

_1255978051.unknown

_1255978070.unknown

_1255978152.unknown

_1255978176.unknown

_1255978119.unknown

_1255978058.unknown

_1255977949.unknown

_1255976888.unknown

_1255976933.unknown

_1255977157.unknown

_1255976905.unknown

_1255976665.vsd
Time

Write

Read

Segment

_1255975851.unknown

_1255975949.unknown

_1255976178.unknown

_1255975915.unknown

_1255975193.vsd
Write

Read

Time

Segment

_1255975846.unknown

_1255974658.unknown

_1248088814.unknown

_1255941689.vsd
�

�

�

Choose Invalidation or update

Lease Duration

Data Access Pattern

System Parameters
(CPU time, storage cost, communication delay

Lease Adjustment

Performance
Analysis

_1255966945.unknown

_1255974604.unknown

_1255966881.unknown

_1248088863.unknown

_1248109027.vsd
lease expire

ignore

_1248136338.unknown

_1248136816.unknown

_1248099887.vsd
Update

Invalidation

Time

: remote update

: local access

_1248088830.unknown

_1248048932.unknown

_1248049172.unknown

_1248086448.unknown

_1248088764.unknown

_1248049225.unknown

_1248049342.unknown

_1248049112.unknown

_1248049132.unknown

_1248049101.unknown

_1248049004.unknown

_1248048879.unknown

_1248048921.unknown

_1248048731.unknown

_1244154537.unknown

_1244252273.vsd
�

�

�

�

�

�

�

�

_1245333774.unknown

_1245336024.unknown

_1247935855.vsd
Segment

Remote write

Local Read

_1248047938.unknown

_1245427246.vsd
Server

Group
(update)

Group
(invalidate)

P

P

P

Upd

Upd

Upd

P

P

P

Inv

Inv

Inv

. . .

. . .

_1247505862.unknown

_1245427167.vsd
Server

Group
(update)

P

P

P

P

. . .

Upd

Upd

Upd

Upd

Server

Group
(Invalidation)

P

P

P

P

. . .

Inv

Inv

Inv

Inv

(a) 2-tier Update hierarchy

(b) 2-tier Invalidation hierarchy

_1245334896.unknown

_1245335011.unknown

_1245334879.unknown

_1244254333.unknown

_1244255204.vsd
. . .

lease expire

End of the segment

lease start

_1244255242.unknown

_1244255054.unknown

_1244254216.unknown

_1244254225.unknown

_1244254202.unknown

_1244155039.unknown

_1244155254.unknown

_1244155547.unknown

_1244226531.unknown

_1244234012.unknown

_1244235432.unknown

_1244233919.unknown

_1244226502.unknown

_1244226420.unknown

_1244226472.unknown

_1244155448.unknown

_1244155458.unknown

_1244155441.unknown

_1244155240.unknown

_1244155246.unknown

_1244155226.unknown

_1244154994.unknown

_1244155031.unknown

_1244154973.unknown

_1244039223.unknown

_1244047666.unknown

_1244136504.unknown

_1244153135.unknown

_1244153146.unknown

_1244153121.unknown

_1244112065.unknown

_1244114713.unknown

_1244135260.unknown

_1244136176.unknown

_1244136275.unknown

_1244135414.unknown

_1244114723.unknown

_1244112129.unknown

_1244105323.unknown

_1244111998.unknown

_1244105308.unknown

_1244047887.unknown

_1244047183.unknown

_1244047427.unknown

_1244047437.unknown

_1244047496.unknown

_1244047391.unknown

_1244047415.unknown

_1244046551.unknown

_1244047138.unknown

_1244039265.unknown

_1244038649.unknown

_1244039138.unknown

_1244039116.unknown

_1244038521.unknown

_1244038540.unknown

_1243877021.unknown

_1240338206.unknown

_1242653001.unknown

_1243865443.unknown

_1243866008.unknown

_1243866304.unknown

_1243866675.unknown

_1243866681.unknown

_1243866104.unknown

_1243865548.unknown

_1243865956.unknown

_1243865493.unknown

_1243190520.unknown

_1243857177.unknown

_1243865407.unknown

_1243858551.unknown

_1243849707.vsd
. . . .

lease expire

End of the segment

Segment

_1243161137.unknown

_1243190423.unknown

_1242752923.vsd
Proxy1

Proxy1

Proxy1

Proxy1

Update
Server

_1242753095.vsd
Proxy1

Proxy1

Proxy1

Proxy1

Update
Group

Invalidate
Group

Server

_1242643072.vsd
X Y

The number of the write

The number of the lease renewal

_1242649825.unknown

_1242652541.unknown

_1242652978.unknown

_1242649700.unknown

_1242069640.unknown

_1242069760.unknown

_1242081935.unknown

_1242085702.unknown

_1242069693.unknown

_1240338282.unknown

_1241613451.unknown

_1241856134.unknown

_1240855561.unknown

_1240927602.vsd
Server

Group
(long lease)

Group
(short lease)

P

P

P

long

long

long

P

P

P

short

short

short

. . .

. . .

_1240855543.unknown

_1240338243.unknown

_1237156437.unknown

_1237207163.unknown

_1237207228.unknown

_1239196476.unknown

_1237156591.unknown

_1237154482.unknown

_1237156275.unknown

_1237156368.unknown

_1237155815.unknown

_1237154558.unknown

_1236889328.unknown

_1237154336.unknown

_1236891472.unknown

_1236891942.unknown

_1236887736.unknown

_1236888029.unknown

_1236888124.unknown

_1234603952.unknown

_1234606462.unknown

_1234608887.unknown

_1234604497.unknown

_1210150846.unknown

_1210151412.unknown

_1234548999.vsd
Server

Leader
(long lease)

Leader
(short lease)

Leader
(update)

Leader
(invalidate)

Leader
(update)

Leader
(invalidate)

_1210150687.unknown

