
 1

Lease Based Consistency Scheme in the Web Environment

Byounghoon Lee Sunghwa Lim Jai-Hoon Kim
Graduate School of Information and Communication

Ajou University
Suwon, Republic of Korea

{componer, holyfire, jaikim}@ajou.ac.kr

Geoffrey C. Fox
Community Grids Lab

Indiana University
Bloomington, Indiana

gcf@indiana.edu

Abstract. There are many methods to maintain the consistency in the distributed

computing environment. Efficient schemes for maintaining consistency should ideally

take into account the following factors: lease duration of replicated data, data access

pattern and system parameters. Lease method is used to supply the strong consistency

in the web environment. During the proxy’s lease time from web server, web server

can notice the modification to the proxy by invalidation or update. In this paper, we

analyze the lease protocol performance by varying update/invalidation scheme, lease

duration and read rates. By using these analyses, we can choose the adaptive lease

time and proper protocol (invalidation or update scheme of the modification for each

proxy in the web environment). As the number of proxy for web caching increases

exponentially, more efficient method for maintaining consistency should be designed.

We also present 3-tier hierarchies on which each group and node independently and

adaptively choose proper lease time and protocol for each proxy cache. These classi-

fications of the scheme make proxy cache adaptive to client access pattern and system

parameters.

1. Introduction

As the number of the application and users grows exponentially in the web environ-

ment, server has the message overload problem which incurs the congestion of client

request and increases the response time. One approach to cope with the increment of

resource utilization is to cache data near client [1]. For an example, proxy for web

 2

caching has some advantages over reducing the overhead at the server and decreasing

in response time for clients. Proxy must keep the consistency of cached data to pre-

serve them from the stale information. Fig.1 shows web proxy architecture with lease

consistency. Information broadcasting system like stock trading, weather broadcast

and news is modified just at server side. Server provides the information to the proxy

to reduce the latency. Consistency between server and proxy is maintained by lease

and invalidation/update schemes.

There are many protocols to maintain the consistency. Lease method is used to

supply the strong consistency during the lease time. In the original lease approach, the

server grants a lease to each request from a proxy. The lease denotes the interval of

time during which the server agrees to notify the proxy if the object is modified [2].

However lease has some drawbacks. One of principal problems of the lease is that it

forces the system to keep strong consistency by notifying all modifications to a proxy.

If cached data is modified frequently during the lease, message overhead would in-

crease largely. Two conventional protocols are used to maintain data consistency for

notifying the modification.

 Update scheme: When a client tries to access a data from the server, the same

cached pages in every proxy are updated whenever server node modifies the

data page.

 Invalidate scheme: Whenever a remote node modifies a data, the local copy is

invalidated.

Fig. 1 Web Proxy Architecture with lease consistency

It is a critical part to choose invalidation or update for the notification method during

the lease time. In this paper we analyze the notification protocol overhead of main-

 3

taining cache consistency during the lease time. Efficient consistency maintaining

schemes should ideally take into account the following factors: lease duration, data

access pattern and system parameters (resources overhead such as CPU time, storage

cost and communication delay). Each factor is related with each other.

Fig. 2 Adaptive consistency maintenance flow

For an example, in general case invalidation scheme is efficient when many remote

updates are occurred consecutively. But in short lease time, update scheme could be

more efficient than invalidation because remaining remote updates are ignored after

lease expiration time. It is interesting to analyze how lease duration, modification

notice schemes (update scheme and invalidation scheme) affect on performance. Thus,

in this paper we analyze performance by varying lease duration, modification scheme

and local access ratio to remote modification. To reduce overhead, efficient lease

duration and modification notice scheme need to be adjusted according to data access

patterns and system parameters. By analyzing the cost of maintaining consistency

according to lease time, shared data access pattern and system parameters, we can

find proper lease time and choose alternative notice scheme of the modification. Each

proxy maintains the consistency of data stored in its cache and consistency mainte-

nance is performed efficiently by requesting the lease time and adopting proper notice

scheme of the modifications from the server. We demonstrate the efficiency of our

adaptive scheme through simulation as well as mathematical analysis by performance

modeling. Result of mathematical analysis matches closely with the simulation results.

When the number of proxy increases exponentially, more efficient consistent manag-

ing method should be designed. In this paper we also present 3 tier hierarchies, each

level is divided by lease duration property and notify scheme of modification. First

level is subdivided by short lease and long lease. And second level is subdivided by

 4

invalidation and update scheme for notifying the modification. These classifications

of the scheme make each proxy cache adaptive to each client access pattern.

Early papers[5,6] show the scheme that adjusts the lease duration to reduce the mes-

sage overhead according to the object lifetime, frequency of the update and read re-

quest. In this paper, we argue that to find optimal notification scheme in lease dura-

tion is a critical factor to reduce the message overhead because lease duration affects

to the efficient notification scheme. There is a tradeoff between data fault and local

update. As lease time increases data access fault (data miss) decreases while local

update cost increases by data update from server. On the other hand, as lease time

decreases, cases are reversed.

Research contributions of our work are as follows :

 Our work focuses on developing a dynamic notification scheme along with

read rates, read and write intensity, and to determine optimal lease duration

in lease based consistency mechanism. We analyze and simulate the rela-

tion of these factors.

 Another advantage of our approach is that it applies the adaptive multi level

structure classifying by notification scheme and lease duration. When the

number of the proxy increases exponentially, this scheme not only reduces

the message overhead but also decreases the latency time by adapting to

running and system environments for each proxy.

2. Related Works

Caching by proxy is necessary to reduce the network overhead at the server. However

if the object is transferred to many proxy and tries to update the object, it needs the

consistency mechanism to reflect the changed data. Since web pages tend to be modi-

fied at origin servers, cached version of these pages can become inconsistent at the

page change from the server. Lease, invalidation and update schemes are the common

method to supply the consistency.

 5

2.1 Invalidation and update[2,3]

If an object is modified during the lease time, server notifies the modification to the

proxy. There are two methods to notify to clients. One is invalidation and the other is

update. The former invalidates the proxy when it received the modification message.

Therefore, subsequent read request make the proxy require the page from the server.

When modification of the page occurs frequently in a short time, invalidation is very

efficient. But when the object is modified infrequently, turnaround delay overhead for

accessing the page increases. On the other hand, update doesn't need the turnaround

delay because the object or modification part of object is sent upon each modification.

This method has the drawback of the network overhead.

2.2 Competitive Update

In write-update protocol if cache data is loaded, proxy keep the cache data regardless

of local data accesses. However, there is a problem that cached data block must be

updated many times without local access. To resolve this problem while maintaining

advantage of the write-update, local cache data should be invalidated after critical

update count. Whenever a remote client requests an update, the update counter is

increased. When the counter reaches to critical update count, the cache data is invali-

dated upon remote update[3]. Critical update counter to the each cache block could

have a different value and be changed adaptively.

2.3 Adaptive Scheme

To reduce the network bandwidth and latency, invalidation and update scheme must

be applied adaptively by the time-varying memory access patterns of an application

[4]. Adaptive scheme chooses one of the invalidation protocol and competitive update

protocol according to data access pattern and system parameters.

 6

2.4 Lease Mechanism

Lease scheme is a time-based mechanism that maintains efficient consistent access of

cached data in distributed systems [5]. The server assigns a lease on a page to every

proxy and agrees to notify modifications of the page during the lease duration to the

proxy. The client doesn't need to poll the server during the lease duration. It starts to

poll when a read request arrives after lease expires [6].

Lease duration should be determined by considering the tradeoff between the

server state space and network messages. As the lease duration become shorter, it

needs lesser state space and more network messages. In contrast, it needs larger state

space and needs lesser network message as the lease duration become longer.

The expiration time of the lease is applied adaptively to the proxy cache. The lease

duration is determined based on various objects and system properties. The policy of

the lease duration decision is classified by the object life time, client access character-

istics and server state space [6].

 Age-based leases: the number of update messages can be strongly reduced com-

pared to the case where all leases have the same expiration time

 Renewal Frequency-Based leases: the overhead can be reduced by granting

longer leases to proxies that have sustained interest in the object.

 State space overhead-Based leases: As longer leases are granted, the space

which is needed to maintain the state of the object becomes larger. By granting

shorter leases to popular objects, the server can adaptively control the amount of

state needed to maintain.

2.5 Proactive DNS cache update protocol [9]

A dynamic lease technique is used for DNS cache update protocol to keep track of the

local DNS name servers that matches the clients with an Internet server. Also dy-

namic lease reduces communication overhead and storage overhead and makes the

DNS cache update protocol lightweight. Client query rate at DNS name servers is one

of factors to decide whether or not to apply leases scheme.

 7

To make the DNS name server reliable, the DNS name server grants and maintains

the leases for the DNS resource records of the Internet service. The lease duration is

dependent on the domain name to IP address mapping change frequency of the spe-

cific DNS resource record.

2.6 Consistency Maintenance in Service Discovery [8]

Devices for variable services can discover their environment by using the service

discovery protocols. Service discovery protocols allow devices to detect and adapt to

changes of the topology. Consistency maintenance in service discovery guarantees

that Users get the correct services by discovering. To maintain the consistency, the

User has to subscribe either directly to the Manager (2-party subscription) or to a

Registry (3-party subscription) to receive updates. A subscription between the User

and the Manager or between the User and the Registry remains valid until the sub-

scription lease does not expire. Users send messages periodically to the lessee to

show the interest with the service for maintaining a valid subscription lease.

The subscription between the entities may remain valid, even though update notifi-

cation fails. This is because the entities may face short-term failures, and restore con-

nectivity before the subscription lease expires. Therefore, it needs to continue sub-

scription process for guaranteeing Users to maintain consistency. This type of recov-

ery is subscription-recovery. When the subscription lease expires, consistency main-

tenance depends on the inherent capability of the service discovery protocol to detect,

and rediscover purged nodes and services. Hence, this type of recovery is called

purge-rediscovery.

3. Cost Analysis for Lease-based Efficient Notification Scheme

If an object is modified during the lease duration, lease server notifies the proxy of

any modification made to the object. The client is not required to poll the server dur-

ing the lease duration even if read operations occurred consecutively. If a page notifi-

cation which is occurred after read operations is executed by remote write operation

 8

in lease duration, notification is processed by three methods, which are invalidation,

update and competitive update. To determine which notification method should be

used to maintain the consistency is a critical thing to reduce the message overhead. It

is not easily manageable problem because it is based on the lease mechanism.

Early studies[3,4] showed analytical comparisons of invalidation, update and com-

petitive update without the lease by using the segment model. We consider the cost of

messages as the cost metric for the invalidation, update and competitive model. We

assume that particular page P at the proxy cache is accessed by clients. These ac-

cesses can be partitioned into segments. A Segment is defined as a sequence of re-

mote updates between two consecutive local accesses by a node. A new segment

begins with the first access by a client following an update to the page by the server.

Segments are defined from the point of view of each node[4]. Fig.3 shows how the

segment is composed.

Fig.3 Definition of the Segment

Parameter for analyze the cost are shown in Table1.

Table1. Parameter for analysis

Parameters Description

controlC Cost to send the control message

updC Cost to update a page of the proxy cache

pageC Cost to replace a page in the proxy cache

compU Competitive update count

avgu Average update count per segment

 9

To compare the various notification protocol, we assume that 5=contorlC ,

10=updC , 35=pageC and 4=compU . The cost of notification protocols in a

segment are computed as follows:

Invalidate overhead cost)(pagecontrol CC +=

Update overhead cost updavgCu=

Competitive update updavgCu= (if Update Count ≤ 4)

)(pagecontrolupdavg CCCu ++= (if Update Count > 4)

Fig.4 shows an analytical comparison of message overhead for one segment. We

assumed update count threshold 4 for competitive update protocol. When remote

write occurred less than threshold count, competitive update protocol notifies to the

proxy by update and when remote write occurred more than threshold count, it noti-

fies by invalidation. Update and competitive update protocols are better choices if

update count is smaller than 5. However, invalidation is the best choice when update

count is greater than 5.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13
Update Count

M
es

sa
ge

 O
ve

rh
ea

d

Update
Invalidation

Competitive Update

Fig.4 Compare the notification scheme

In this paper we analyze the lease cooperated with the notification scheme, which

are invalidation, update and competitive update. Analysis is divided by two subjects

which are general cases(section 3.1) and web burst cases(section 3.2). In the Web

environment, read and remote write access to the proxy have burst property. After

that, we compare the performance in section 3.3 and 3.4.

 10

3.1 General Case Analysis of the Lease based notification scheme

We assume that read interval of each node and write interval of the remote node fol-

low exponential distribution. In this case, it is hard to extract the special feature for

deciding the lease duration or the notification scheme. To analyze the cost, we divide

general case into two cases. One case is that the lease duration is longer than segment

length and the other case is that the lease duration is shorter than segment length. We

use Markov model for cost analysis. Fig.5 describes the meaning of the state. X

means how many times lease renewal is accomplished and Y means how many times

remote write is performed consecutively. Fig.6 shows the Markov model based on

rate of read/write operation.

Table 2. Parameters for simulation

Parameter Description

rλ Occurrence rate of local read access with exponential distribution

wλ Occurrence rate of remote write with exponential distribution

leaset Lease expiration time

Fig.5 State description

rλ

rλ rλ rλ
wλ wλ wλ

rλ

rλ rλ rλ
wλ wλ wλ

leaset/1

rλ

rλ rλ rλ
wλ wλ wλ

leaset/1

Fig. 6 Markov Chain model of the lease scheme

 11

3.1.1 Lease duration longer than segment length

In this case we assume that more than one segment is formed during the lease dura-

tion.

Parameters to analyze the cost are shown in Table 3.

Table3. Parameters for analysis

Parameters Description

N The number of the segment in lease (n>1)

controlC Cost to send the control message

updC Cost to update a page of the proxy cache

pageC Cost to replace a page in the proxy cache

compU Competitive update count

avgu Average update count per segment

)(kp Probability to be k’th consecutive update

σ Standard deviation of the number of the update

∫
∞

compu avg duuf),(σ Probability that updates are occurred more than compu

When each segment begins with first read, proxy cache needs to obtain the page by

sending a control message. If n segments are included during the lease, overhead cost

for lease invalidation case is as follows :

Lease Invalidate overhead cost =)(pagecontrol CCn +

In update case, page replacement cost is requested at the read of the first segment, and

every update requirement needs the update cost.

Lease Update overhead cost = pageupdavg CCun +)(

Cost of the lease competitive update varies by segment status in lease.

We assume that the average number of the update in a segment is avgu .

If update occurs above compu for a segment, it requires pageC for first reading cost in

the next segment.

 12

We assume that occurrence probability of the remote write is pdf (probability density

function) of normal distribution as follows:

])(
2
1exp[

2
1)(2

σπσ
avgux

xf
−

−= (x: the number of the consecutive write)

∫ ∞−
=

x
dttfxF)()(: cdf(cumulative distribution function) for the normal distribu-

tion

compU
compmoreC _complessC _

Fig.7 Competitive update cost compU =4

Fig.7 shows how total cost of the competitive update is composed. Overhead cost for

lease competitive as follows:

Lease Competitive Overhead cost =)(__ complesscompmore CCn +

compmoreC _ is the cost of case that the number of the remote write is larger than

compU and complessC _ is the cost of case that the number of the remote write is less

than compU . The probabilities that an update occurs above compU is ∫
∞

compu
dxxf)(

Therefore we can compute compmoreC _ and complessC _ as follows :

=compmoreC _ pageu
Cdxxf

comp
∫
∞

)(

complessC _ = ∑
=

=

compux

x
updCxxF

1
)(

 13

3.1.2 Lease duration shorter than segment length

We define system parameters to make a cost expression as shown in Table 4.

Table 4. Analysis Parameters for lease based invalidation

Parameter Description

rλ Occurrence rate of local read access with

exponential distribution

wλ Occurrence rate of remote write with exponential

distribution

leasewr te)(1 λλ +−− Probability that either local read or remote write

occur before leaset

wr

w

λλ
λ
+

(leasewr te)(1 λλ +−−)
Probability that remote write is occurred before

leaset

)(,wrT λ Elapsed time from the lease start to the

rλ or wλ occurrence

)(cos tINV t Invalidation cost during leaset - t

3.1.2.1 Invalidation
In this case, overhead cost of the invalidation is composed with the condition of oc-

curring the write before lease expiration and after lease expiration.

 Cost when remote write is occurred before leaset (Fig. 8)

Fig.8 Lease expiration in remote write

 14

Irrespective of the number of the update, there is the only page replacement overhead,

(pagecontrol CC +). Probability that an update occurs more than once is

wr

w

λλ
λ
+

(leasewr te)(1 λλ +−−)

Thus the cost of the lease based invalidation is calculated as follows

)0(cos tINV =
wr

w

λλ
λ
+

(leasewr te)(1 λλ +−−)(pagecontrol CC +)

 Cost when remote write is not occurred before leaset

)(rT λ

)(rlease Tt λ−

sC eC

leaset

Fig. 9 Lease expiration before remote write

Cost of the invalidation is divided into two parts. First part is the cost(sC) between

lease start and local access event. Second part is the cost(eC) between local access

event and lease expiration. Second part is recursively composed with successive local

access. Fig. 9 shows both cases of the cost.

)0(costINV = sC + eC

Probability that local read occur before leaset

(leasewr te)(1 λλ +−−)(
wr

r

λλ
λ
+

)

So sC is calculated as

sC =(leasewr te)(1 λλ +−−)(
control

wr

r C
λλ

λ
+

)

eC is the cost that is iterated between)(rT λ and leaset .

eC = tINVcos (leaset -)(rT λ)

 15

3.1.2.2 Update
Probability that remote write is occurred x times consecutively before leaset is as

follows:

∫ −lease
leasew

t t
w dte

0

λλ = leasewte λ−−1

Probability that remote write occurs in lease duration is

wp = leasewte λ−−1

Probability that remote write doesn’t occur in lease duration is

wp = wp−1 = leasewte λ−

Probability that first remote write occurs in first lease duration is

)0(wp = leasewte λ−−1

Probability that first remote write occurs in second lease duration is

)1(wp = ww pp =)1(leasewleasew tt ee λλ −− −

We can yield the equation as follow

)(npw = w
n

w pp)(=)1(leasewleasew ttn ee λλ −− −

)(npw means probability that first remote write is occurred after n count lease dura-

tion.

Update overhead cost is as follows:

tUPcos = ∑
∞

=

+
0

)(
x

updavgcontrolw CUCxxp

3.2 Burst Case Analysis of the Lease based notification scheme at Web

environment

The Web server has the property that read or write are occurred successively if the

read/write operation is once started. For an example, news site updates the contents at

specific time and a subscriber reads the news not desultorily but intensively.

 16

3.2.1 Lease based update

Message cost varies by the lease expiration condition. Update after consecutive local

reads incurs pageC , which is the page replacement cost. Then it produces the update

cost updC on each update. Updates occurred after lease expiration are excluded from

the overhead cost. Besides, entire update cost is excluded if lease is expired before

first update occurs. To compute the lease based update cost, leaseUP , it needs to add

the lease renewal costs that are generated on each lease request.

localT wrtbefT _ wrtmidT _ wrtaftT _

Fig. 10 Lease expiration case at the segment

Fig. 9 shows how the segment area is separated. Lease is expired at any mo-

ment(localT , wrtbefT _ , wrtmidT _ and wrtaftT _) in a segment. Therefore, lease based

update cost per time is composed with four cost event cases. Each case is classified

with lease expiration timing. First case is expired at localT that is occurred in the mid-

dle of consecutive local access. Second case is expired at wrtbefT _ that is occurred

before the remote write. Third case is expired at wrtmidT _ that is occurred in the mid-

dle of consecutive remote write. Last case is expired at wrtaftT _ that is occurred be-

tween last remote write and first local read of next segment. Total time of the segment

is composed as follows

segT = wrtaftwrtmidwrtbeflocal TTTT ___ +++

 17

Table 5. Analysis Parameter for Burst case

Parameter Description

localP localT period ratio in a segment

wrtbefP _ wrtbefT _ period ratio in a segment

wrtmidP _ wrtmidT _ period ratio in a segment

wrtaftP _ wrtaftT _ period ratio in a segment

W Average remote write count happened in a segment

localC Cost occurred during localT period

wrtbefC _ Cost occurred during wrtbefT _ period

wrtmidC _ Cost occurred during wrtmidP _ period

wrtaftC _ Cost occurred during wrtaftP _ period

^
w

The number of consecutive write group

(same meaning with the segment)

Overhead weight of each event case varies by event period ratio and each period ratio

is calculated as follows :

localP =
seg

local

T
T

wrtbefP _ =
seg

wrtbef

T
T _

wrtmidP _ =
seg

wrtmid

T
T _

wrtaftP _ =
seg

wrtaft

T
T _

Total cost of lease based update is derived from joining all cases together and is cal-

culated as follows:

timeleaseUP / = wrtaftwrtaftwrtmidmidwrtbefbeflocallocal PCPCPCPC ___exp__exp_ +++

 18

At the wrtbefC _ , it doesn’t need the update cost because lease is expired before the

update, so average update cost is subtracted from the page replacement cost with the

restP / 2 ratio. Lease based update cost is calculated as follows :

wrtbefC _ =
),max(2 seglease

updavgpage

tt
CuC −

localC is the overhead cost to request more lease time when local access still remains

after lease expiration.

localC =
lease

control

t
C

exp_midC removes the ignored update overhead from the page replacement cost and it

is calculated by subtracting ignC from pageC . Details of the exp_midC is illustrated in

Fig. 11.

exp_midC =
),max(seglease

ignpage

tt
CC −

ignC is the ignored cost which is occurred after lease expiration.

ignC = updavg
localseg

leaseremotesegavg Cu
Pt

tPtu
)

2/
,

2
max(

−

ignore

lease expire

ignCpageC

Fig.11 exp_midC details

 19

localseg

leaseremoteseg

Pt
tPt 2/−

means the ratio that an update would occur after lease expired.

wrtaftT _ area includes all remote writes in a segment. Average remote write count per

segment is W , so wrtaftC _ is updWC

Then we can compute the cost per segment as follows :

segleaseUP / = ^
/

w

tUPlease

3.2.2 Lease based invalidation

Parameters to analyze the lease based invalidation cost leaseINV per time is de-

scribed in Table 6.

Table 6. Analysis parameters for invalidation case

Parameter Description

localP localT period ratio in a segment

invbefP _ invbefT _ period ratio in a segment

invmidP _ invmidT _ period ratio in a segment

invaftC _ Cost when the lease is expired after the consecutive remote write

invbefC _ Cost when the lease is expired before the first remote write

localC Lease renewal cost per time

^
w

The number of consecutive write group

(same meaning with the number of segment)

 20

localT invbefT _ invaftT _
Fig.12 Lease expiration case at the segment

Segment is composed as shown in Fig.12.

segT = invaftinvbeflocal TTT __ ++

Overhead weight of each event case varies by event period ratio. Each period ratio is

calculated as follows :

localP =
seg

local

T
T

invbefP _ =
seg

invbef

T
T _

invaftP _ =
seg

wrtaft

T
T _

Total cost of lease based update is derived from joining all cases together and it is

calculated as follows :

leaseINV = invaftinvaftinvbefinvbeflocallocal PCPCPC ____ +−

localC is the overhead cost to request more lease time when local accesses are still

remained at proxy after lease expiration.

localC =
lease

control

t
C

If lease is expired before the remote write, it is not needed to check the consistency.

Thus control cost per time is removed from the total cost.

invbefC _ =
),max(2 seglease

control

tt
C

If invalidation for remote write is occurred more than once, server should replace the

page after sending the control message.

 21

invaftC _ =
),max(

)(
^

seglease

pagecontrol

tt
CCw +

 Invalidation cost per segment is as follows :

segleaseINV / = ^
w

INVlease

3.3 Performance Comparison

3.3.1 General Case Simulation for the Lease based notification scheme

Lease invalidation is efficient when the remote write ratio is larger than local read

ratio, because the updates of the proxy cache don’t need to be transferred until read

request is received. Low frequency of the local read accesses decreases the frequency

of the lease renewal and incurs small cost of the read request. When frequent remote

write and infrequent local reads are happened, invalidation cost is fixed and lease

renewal cost is not a burden to the proxy cache. Lease based invalidation scheme is

the most efficient scheme when read rates is low. Update scheme is inefficient in low

read rates because update scheme increases the overhead in proportion to the update

count. Simulation conditions are described in table 7.

Table 7. Default Parameters for simulation

Parameter Value

Lease time 200

Local access interval 40

contorlC 5

updateC 10

pageC 40

compU 4

Segmentation Count 9000

 22

Fig. 13 shows that lease based invalidation scheme is the most efficient at low read

rates. Low read rates means that remote write is occurred frequently and local read is

occurred infrequently. In this case, invalidation scheme is efficient because update

scheme requires overhead in proportion to update counts.

0

50

100

150

200

250

300

350

400

450

500

0.05 0.07 0.10 0.12 0.15 0.17

Read rates

O
ve

rh
ea

d/
Ti

m
e.

Comp
LeaseInval
LeaseUpdate
LeaseComp

Fig. 13 Overhead of low read rates

Fig. 14 shows that lease based update scheme is the most efficient at high read

rates. High read rates means that remote write is occurred infrequently while local

read is occurred frequently. In this case, update is efficient because the proxy doesn’t

need to request the page replacement for infrequent remote write.

0

5

10

15

20

25

30

35

40

0.50 0.75 0.84 0.88 0.90 0.92 0.93 0.94

Read rates

O
ve

rh
ea

d/
Ti

m
e

.

Comp
LeaseInval
LeaseUpdate
LeaseComp

Fig. 14 Overhead of high read rates

 23

Fig. 15 shows all the cases for lease duration and notification schemes with read rates.

As read rates increases, frequency of the object modification is decreased. We can see

two consistency properties from Fig. 15. One of consistency properties is that update

scheme shows better performance by reducing the message overhead as remote writes

happened infrequently. The other property is related with the lease scheme. As read

request occurs frequently, lease scheme shows better performance than other consis-

tency maintenance schemes without lease.

3

8

13

18

23

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Read rates

M
es

sa
ge

 O
ve

rh
ea

d/
Ti

m
e_

Comp
Update
Invalidate
LeaseComp
LeaseInvalid
LeaseUpdate
LeaseAdaptive

Fig. 15 Overhead of read rates

Overhead of the Lease based invalidation increases in accordance with the number

of segments. The number of segments has the maximum value at 50% of the read

rates. Thus the overhead increases till 50% of read rates, after that point overhead

decreases. Page replacement patterns at the lease invalidation protocol are varied by

the read rates and affect to the cost. Fig. 16 shows the page replacement patterns.

pageC
pageC pageC pageC pageC

Fig. 16 Page replacement occurrence case with read rates.

(pageC : cost for page replacement)

 24

Fig. 15 shows that lease based update is the best when read rates is smaller than

0.3 and lease based invalidation is best read rates is larger than 0.2. If we can predict

the access pattern by analyzing, we can apply the notification scheme adaptively to

the proxy cache. Analyzing for access pattern incurs the overhead to process the data.

But overhead for analyzing is trivial compared with the overhead which is reduced by

adaptive notification scheme.

0

5

10

15

20

25

30

35

20 40 60 80 100 120 140 160 180
Lease Time

M
es

sa
ge

 O
ve

rh
ea

d/
Ti

m
e_

Comp
Update
Invalidate
LeaseInvalid
LeaseUpdate
LeaseComp

Fig. 17 Overhead of Lease duration (read rates : 90)

Fig.17 shows that lease based update scheme has the least message overhead among

various consistency schemes when lease time is above 50. When read requests are

occured more frequently than write request, lease based scheme is very efficient.

3.3.2 Burst Case Simulation of the Lease based notification scheme in Web

environments

Lease duration should be determined by considering the tradeoff between the lease

renewal overhead and update overhead. As the lease duration become small, the lease

renewal overhead become large and the update overhead become small. In contrast,

as the lease duration becomes large, the lease renewal overhead becomes small and

the update overhead become large.

 25

Lease based update simulation is composed with some factors. Table 8 describes the

simulation parameters.

Table 8. Simulation Parameters

Parameter Description

localP Ratio that lease is expired in the middle of consecutive local access

wrtbefP _ Ratio that lease is expired before the remote write

wrtmidP _ Ratio that lease is expired in the middle of consecutive remote write

wrtaftP _ Ratio that lease is expired between last remote write and first local

read of next segment

0

50

100

150

200

250

300

350

2 10 50 100 150 200 250 300 350 400 450 500
Lease time

M
es

sa
ge

 O
ve

rh
ea

d/
Ti

m
e

LeaseInvalid
LeaseUpdate
LeaseComp

Fig. 18 Message Overhead of the three lease based scheme

(Ratio of periods are localP :30%, wrtbefP _ :20%, wrtmidP _ :30%, wrtaftP _ :20%)

Fig. 18 shows that message overhead decrease in lease based invalidation scheme

until lease time is less than 10. Because larger the lease duration, it makes lesser the

lease renewal overhead with increasing little update. But when lease time is above 10,

it incurs a number of the update with reducing little renewal overhead. At the lease

base invalidation case, proxy cache needs to replace page just once regardless of the

number of remote update during lease time. So Fig. 18 shows that message overhead

is fixed around 20 after lease time 100. Lease based competitive is similar with lease

based invalidation but it has the gap of the overhead for competitive update count .

 26

0

50

100

150

200

250

300

350

2 10 50 100 150 200 250 300 350 400 450 500
Lease time

M
es

sa
ge

 O
ve

rh
ea

d/
tim

e
LeaseInvalid
LeaseUpdate
LeaseComp

Fig. 19 Message Overhead of the three lease based scheme

(Ratio of periods are localP :21%, wrtbefP _ :29%, wrtmidP _ :22%, wrtaftP _ :28%)

Fig.19 shows that the lease update cost increase more slowly than Fig.18. As

wrtbefP _ become larger and wrtmidP _ become small, it decreases the remote write

count that is included during lease duration. Reducing update count during the lease

time decreases the message overhead. Lease invalidation and lease competitive is

similar with the Fig. 18.

0

50

100

150

200

250

300

2 10 50 100 150 200 250 300 350 400 450 500

LeaseInvalid
LeaseUpdate
LeaseComp

Fig. 20 Message Overhead of the three lease based scheme

(Ratio of periods are localP :14%, wrtbefP _ :36%, wrtmidP _ :14%, wrtaftP _ :36%)

 27

Fig. 20 shows that message overhead of the lease update increases more slowly

than Fig. 19. Lease invalidation and lease competitive scheme shows similar per-

formances with the Fig. 19.

0

50

100

150

200

250

300

350

2 10 50 100 150 200 250 300 350 400 450 500
Lease time

M
es

sa
ge

 o
ve

rh
ea

d/
tim

e

LeaseUpdate(Pr=40)
LeaseUpdate(Pr=57)
LeaseUpdate(Pr=72)

P=40%
P=57%
P=72%

Fig. 21 Message Overhead for the variable period ratio (P = wrtbefP _)

Fig. 21 shows that update overhead cost increases rapidly as wrtbefP _ decreases.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12
lease time

ov
er

he
ad

/t
im

e_

LeaseUpd_Anal(P=20)

LeaseUpd_Anal(P=28)

LeaseUpd_Sim(P=20)

LeaseUpd_Sim(P=28)

Fig. 22 Compare analysis with simulation (P = wrtbefP _)

Fig.22 shows that our analysis for lease based update approximates our simulation

results. It means that lease based notification scheme has the proper lease time and

 28

employ proper modification notifying scheme dynamically for efficient consistency.

To achieve the efficient consistency, it needs to determine the lease time and choose

the notification scheme adaptively. To improve the efficiency, it needs to classify the

server group by lease duration and notification scheme and to make the hierarchical

structure to apply the proxy adaptively by server group.

3.4 Adaptive scheme

Above simulation results show that lease duration and notification scheme need to be

adaptive according to the various patterns of server access and request patterns of

client. If cache data has the property of periodic modification and read access pattern,

we can apply the consistency maintaining scheme efficiently by analyzing the sample

period of the cache data. Lease duration and notification scheme is determined adap-

tively by predicted data access pattern.

3

8

13

18

23

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
R/W Ratio

M
es

sa
ge

 O
ve

rh
ea

d/
Ti

m
e

Comp
Update
Invalidate
LeaseComp
LeaseInvalid
LeaseUpdate

Lease based
invalidation is efficient

Lease based update
is efficient

Read rates

Fig. 23 Efficient notification scheme along with the read rates

Fig.23 shows that invalidation is more efficient at low read rates. On the other hand,

update is more efficient at high read rates. So if we make the adaptive notification

group by read rates, we can maintain the consistency with less overhead. Through the

analysis, we can choose suitable lease time and notification method.

 29

4. Hierarchical Consistency maintenance

When the number of proxy increases exponentially, more efficient consistent manag-

ing method should be designed. In this paper we present 3 tier hierarchies in which

each level is divided by lease duration property and notification scheme. First level is

subdivided by short lease and long lease. Second level is subdivided by invalidation

and update for notifying the modification. These classifications of the scheme make

proxy cache adaptive to client access pattern

4.1 Notification Method Based Consistency Hierarchy

A server handles a lot of proxy caches in the web. Therefore, it is necessary to reduce

network bandwidth for transferring the cache object modification. 2-tier scheme is

efficient for many proxy caches. Members of the group is classified by the efficient

notification scheme. Proxy leader broadcasts the modification to the group member.

Efficient notification method to the proxy cache is determined by the remote access

pattern. When a number of the consecutive remote write accesses without local read

are happened, invalidation will be efficient. On the other hand updates scheme will

produce better performance for frequently requested objects with infrequent remote

write.

Table 9. Parameter for adaptive group

Parameters Description

updU Average update count for update proxy

invU Average update count for invalidation proxy

P The number of the entire proxy

R
Update/Invalidation proxy group ratio (

invupd

upd

NN
N
+

)

updN The number of update proxy (PR)

invN The number of invalidation proxy (P(1-R))

updateT Total cost when group sever broadcast by update(2-tier update)

invalidT Total cost group when sever broadcast by invalidation(2-tier invalidation)

 30

 Case that all proxies are included in single group

Fig.24 2-tier Notification structure by homogeneous group

2-tier update structure applies the update scheme to all the proxy including invalida-

tion proxy. Update proxy and invalidation proxy has different average write count as

updU and invU .

updateinvinvupdateupdupdupdate CNUCNUT +=

updN and invN is substituted for RP ⋅ and)1(RP −⋅

updateinvupdateupdupdate CRPUCRPUT ⋅−⋅⋅+⋅⋅⋅=)1(

invalidT is calculated with regardless of the remote write count. It just needs the page

replacement cost.

PCCT pagecontrolinvalid ⋅+=)(

 Notification adaptive group division case

Fig.25 2-tier Notification structure by heterogeneous group

Total cost of the adaptive group sums up the update group cost and invalidation group

cost.

 31

)(pagecontrolinvupdateupdupdadap CCNCNUT +⋅+⋅⋅=

)()1(pagecontrolupdateupdadap CCRPCRPUT +⋅−⋅+⋅⋅⋅=

Fig. 26 Update proxy rates 50%

Fig.26 shows an example where proxy for update and proxy for invalidation are

mixed. In this case, employing only one notification method(update in this example)

statically from the server would be inefficient even if broadcasting form the server to

proxies can decrease the message overhead. So it needs to broadcast by using adap-

tive notification server like Fig. 27.

Fig. 27 Notification by adaptive group

We define system parameters to analyze as shown in Table 10.

 32

Table 10. Simulation parameter for adaptive group

Parameters Value

updU 2

invU 6

P 100

updateC 9

pageC 40

contorlC 1

Fig. 28 shows that adaptive group server is more efficient than single notification

server employing only one of invalidation or update.

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Update Proxy Rates

M
es

sa
ge

 O
ve

rh
ea

d/
Ti

m
e_

Group(Invalid)
Group(Update)
Group(Adaptive)

Fig. 28 Compare the notification structures

(by increasing update proxy group rates)

4.2 Lease Duration Based Consistency Hierarchy

We can determine the duration of the lease considering a tradeoff between the server

state space and network messages. As the lease duration becomes short, the state

space becomes small while the number of network messages becomes large. In con-

 33

trast, as the duration of the lease becomes large, the state space at the server becomes

large and the number of network messages becomes small.

Group of the Proxy cache is determined by the property of the proxy cache.

0

50

100

150

200

250

300

350

2 10 50 100 150 200 250 300 350 400 450 500
Lease time

M
es

sa
ge

 o
ve

rh
ea

d/
tim

e

LeaseUpdate(Pr=40)
LeaseUpdate(Pr=57)
LeaseUpdate(Pr=72)

0

5

10

15

20

25

30

35

20 40 60 80 100 120 140 160 180
Lease Time

M
es

sa
ge

 O
ve

rh
ea

d

Comp
Update
Invalidate
LeaseInvalid
LeaseUpdate
LeaseComp

Short lease is efficeint

Long lease is efficient

(P=40)

(P=57)
(P=72)

Fig. 29 Lease adjustment by data access pattern(rP = wrtbefP _)

From Fig.30, we see that efficient lease time varies by data access pattern.

Server

Group
(long lease)

Group
(short lease)

P P P P P P.
longlong long shortshort short

Fig.30 2-tier Lease duration structure

4.3 Complex Consistency Hierarchy

Modification pattern property of the cache object affects on the notification scheme

and local read access pattern affects on the lease duration. In the web environment,

there are various servers and great number of proxies for the client. Each proxy cache

would have specific consistency property like infrequent remote write and frequent

local read. The purpose of this paper is also to offer adaptive structure of a proxy by

complex consistency scheme.

 34

Server

Leader
(long lease)

Leader
(short lease)

Leader
(update)

Leader
(invalidate)

Leader
(update)

Leader
(invalidate)

Fig.31 3-tier Structure for Complex consistency

Each proxy cache joins in the most suitable group with considering the local read

pattern and remote write pattern. Complex consistency structure with 3-tier form

offers the sufficient group for consistency property.

5. Conclusion

In this paper we analyze the notify protocol overhead to maintain cache consistency

during the lease time. While previous studies have addressed in lease duration and

just compared the update and invalidation, we analyze the performance combined

with lease duration, modification scheme and local access ratio to remote modifica-

tion. By analyzing the access pattern, we can employ the adaptive lease time and

alternative notice scheme of the modification.

We also present 3-tier hierarchies in which each level is divided by lease duration

property and notify scheme of modification. First level is subdivided by short lease

and long lease. Second level is subdivided by invalidation and update for notifying

the modification. These classifications of the scheme make proxy cache adaptive to

client access pattern.

 35

6. References

[1] J. Gwertzman and M. Seltzer, “World-wide web cache consistency” in
Proc. 1996 USENIX Tech. Conf. San Diego, CA, Jan. 1996.

[2] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham, and R. Tewari. “Scal-
able Consistency Maintenance in Content Distribution Networks Using
Cooperative Leases”. IEEETKDE, July 2003.

[3] Hakan Grahn, Per Stenstrom and Michel Dubois. “Implementation and
evaluation of update-based cache protocols under relaxed memory consis-
tency models”. Future Generation Computer Systems, 11(3), June 1995

[4] J.-H. Kim and N. H. Vaidya, “A cost-comparison approach for adaptive
distributed shared memory” in Proc. of 1996 International Conference on
Supercomputing, pp. 44-51, May. 1996.

[5] C. Gray and D. Cheriton. “Leases: An efficient Fault-Tolerant Mechanism
for Distributed File Cache Consistency” in Proc. of Twelfth ACM Sympo-
sium on Operating Systems Principles, pp. 202-210,1989.

[6] V. Duvvuri, “Adaptive Leases: A Strong Consistency Mechanism for the
World Wide Web” MS thesis, Univ. of Mass., Jun. 1999.

[7] K. S. Byun, S. H. Lim and J.-H. Kim, “Two-Tier Checkpointing Algo-
rithm Using MSS in Wireless Network” IEICE transactions on Communi-
cations Vol. E86-B No. 7 pp. 1-7, Jul. 2003.

[8] Sundramoorthy, V., J. Scholten, P.G. Jansen and P.H. Hartel, “On Consis-
tency Maintenance In Service Discovery”, 4th Int. Conf. on Information,
Communications and Signal Processing and 4th IEEE Pacific-Rim Conf.
On Multimedia, Vol. 3, IEEE Computer Society Press, Los Alamitos, Cali-
fornia, 2006.

[9] Xin Chen, Haining Wang, Shansi Ren and Xiaodong Zhang, “Maintaining
Strong Cache Consistency for the Domain Name System”, IEEE Transac-
tions on Knowledge and Data Engineering, Vol. 19, No. 8, Aug. 2007.

