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Abstract

Typical size of the molecular dynamics (MD) trajectories from data-intensive

bio-molecular simulations ranges from gigabytes to terabytes. However, the

computational biophysics community misses effective use of high performance

computing (HPC) resources for efficiently analyzing these trajectories and more

importantly achieving linear scaling still remains a big challenge. ***oliver: We

will have to be a bit more careful how we phrase this because VMD can analyze

on thousands of cores and cpptraj is apparently also doing pretty well. There

is also HiMach.Benchmarks, however, are scarce. ***mahzad: Need to make

clear how this work distinguishes from their work, first it would require very lit-

tle to be installed by the end user. Second, it leverages Python?s strengths such

as its readability, maintainability, and the elimination of the need to compile

machine code. Present work aims to provide insights, guidelines and strategies

to the community on how to take advantage of the available HPC resources to

gain the best possible performance. We investigated a single program multiple

data (SPMD) execution model where each process executes the same program,
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to parallelize the Map-Reduce Root Mean Square Distance (RMSD) and Dihe-

dral Featurization algorithms for analysis of MD trajectories in the MDAnalysis

library. We employ the Python language because it is widely used in the bio-

molecular simulation field and focus on an MPI-based implementations. We

notice that straggler tasks negatively impact the performance and act as scala-

bility bottlenecks. Straggler tasks are a very common problem in heterogeneous

environments and are significantly slower than the mean execution time of all

tasks, impeding job completion time. Our initial analysis shows that accessing

a single file on the distributed file system leads to stragglers, and as a result,

prevents any scaling beyond one node. We introduce an important performance

parameter tCompute/tIO which determines whether we observe any stragglers.

In addition, we show that there are two factors that lead to stragglers including

I/O and communication. Taking advantage of Global Arrays (GA) toolkit we

have been able to obtain significant improvement in communication cost and

performance. In addition, we show two different approaches to overcome the

I/O bottleneck and compare their performance. First approach is splitting the

trajectory into as many trajectory segments as number of processes. The sec-

ond approach is through MPI-based approach using Parallel HDF5 where we

examine the performance through independent I/O. Applying these strategies,

we obtained near ideal scaling and performance.

Keywords: Python, MPI, HPC, MDAnalysis, Global Array, MPI I/O,

Straggler, Molecular Dynamic

2010 MSC: 00-01, 99-00

1. Introduction

The increase in computational power coupled with sophisticated algorithms

has lead rapid increase in the amount of data produced by MD simulations.

Typical trajectory sizes from MD simulations range from Gigabytes to Ter-

abytes [1]. Therefore, analyzing these trajectories has become a very tedious5

process in many workflows and as a result people are trying to look for state
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of the art HPC tools (MPI and OpenMP) or Big Data ecosystem to tackle this

problem. Therefore, executing analysis workflows in parallel becomes impor-

tant; however, efficiently programming for a parallel environment can be a very

daunting task.10

MDAnalysis [2, 3] is a widely used open-source Python library to analyze

molecular dynamics (MD) simulations. MDAnalysis allows analysis of different

file formats for trajectories generated by various packages for molecular dynamic

simulations.

In our previous study, we used a parallel map-reduce approach to study the15

performance of RMSD task [4]. We previously looked at the Dask library [5],

which splits a computation in tasks and generates directed acyclic graphs (DAG)

of these tasks that can be executed on a range of schedulers. We also imple-

mented the parallel analysis scheme with MPI, using the mpi4py package [6, 7].

For both Dask and MPI we found that our benchmark task, the calculation of20

the minimum Cα RMSD for a subset of the residues in the enzyme adenylate

kinase from a long MD simulation, only showed good strong scaling within a

single node (up to 24 cores on SDSC Comet). However, with a single compute

node we are limited by the resources for executing a given problem. Distributed

computing, allows parallelizing our problems for larger problem sizes and lead25

to performance gains. But, as soon as we extend the computation beyond a sin-

gle node, performance drops due to stragglers tasks, a subset of Dask worker

processes or MPI ranks that are significantly slower than the mean execution

time of all tasks, increasing the total time to solution. Stragglers significantly

impede job completion time and are a big challenge toward achieving improved30

performance.

MPI should have, in principle, close to ideal scaling for a pleasingly parallel

task such as the analysis of trajectory blocks, and does not require additional

considerations of, e.g., scheduler performance as for Dask. Therefore, in the

present study, we analyze the MPI case in more detail to better understand the35

origin of the stragglers.

We want to provide simple and robust parallelization approaches to ana-
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lyzing molecular dynamics (MD) trajectories, in order to remove a narrow-

ing bottle neck in the bio-molecular simulation field. We have selected two of

the algorithms in MDAnalysis one of which is I/O bound (RMSD) and the40

other is compute bound (Dihedral Featurization). We use SPMD paradigm to

parallelize theses two algorithms on HPC resources. With SPMD, each pro-

cess executes essentially the same code but on a different part of the data.

We use Python, a machine-independent, byte-code interpreted, object-oriented

programming (OOP) language, which is well-established in HPC parallel envi-45

ronments [8]. Based on our initial analysis there is an important performance

parameter, tCompute/tIO which is the ratio of computational to I/O load, as

measured by the time spent on the computation versus the time spent on read-

ing data from the file system, that determines whether we observe stragglers.

We show this behavior using RMSD and dihedral featurization algorithms. If50

tCompute/tIO � 1, the algorithm scales very well, otherwise it does not scale

beyond one node. For the algorithms with small tCompute/tIO, we need to come

up with strategies to improve scaling and overcome straggler problems. Look-

ing at the timing distribution across all ranks we noticed that communication

and I/O are the two main scalability bottlenecks.55

Taking advantage of Global Array toolkit we were able to reduce commu-

nication cost noticeably. In addition, our data shows that I/O time does not

scale beyond one node. In order to improve I/O scaling, we came up with two

approaches: MPI-based approach using Parallel HDF5 [9], and splitting our tra-

jectory to as many trajectory segments as the number of processes. We provide60

the detail on these approaches on the following sections. But, both approaches

significantly improved the performance and we were able to achieve near ideal

scaling.

2. Background & Related Works

***oliver: The lit. review is required for a proper scholarly treatment of65

the subject. Background/Related Work should contain a literature review of
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other approaches for analyzing MD trajectories on HPC: at a minimum: VMD,

HiMach, cpptraj (and pytraj), possibly mdtraj ? read the papers/websites and

check for benchmarks. Look for others (Giannis already mentioned some in his

paper and/or the workshop draft). ***mahzad: Giannis, Overal we need70

more references on here. In addition you mention the features of the library,

but we need to point out the strength and weakness of each library and make

them bold. Maybe a Table like what you have added in ICPP paper on the

comparison of frameworks that you mention what are their differences and how

they differ from each other will be good to be added here as well. Could you75

please add that to this section?

CPPTraj [10] offers three levels of parallelization. The two are through MPI

and the third through OpenMP. The MPI types of parallelization CPPTraj

supports are show in Figure 1. In more detail, CCPTraj allows the parallel

read between frames of the same trajectory or ensemble members of the same80

trajectory. When it is used to analyze a single trajectory, all frames of the

trajectory are equally distributed over the number of MPI process that are

used. Each process reads the frames that are assigned to it, executes and writes

the results of all processes to the same output file. When ensemble mode is

used, each ensemble member is assigned to an MPI process. As a consequence,85

there have to be as many MPI processes as ensemble members. The user has

the ability to increase CPPTraj’s throughput by assigning more than one MPI

processes per ensemble member. Each ensemble member is divided further the

same way as a single trajectory.

HiMach [11] was developed by D.E.Shaw Research group to provide a par-90

allel analysis framework for molecular dynamics simulations. HiMach extends

Google’s MapReduce to provide a scalable API for MD trajectory analysis.

HiMach API provides a series of Python classes that are used to define tra-

jectories, do per frame data acquisition (Map class) and cross-frame analysis

(Reduce class). After the user has defined all the above, HiMach’s runtime is95

responsible to parallelize and distribute the Map and Reduce classes to the as-

signed cores. Data transfers between Map and Reduce phases are done through
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Figure 1: CPPTraj MPI modes of execution. The right figure shows the case where a single
trajectory is given. The left figure shows the case where an ensemble of trajectories are given
for analysis

a communication protocol created specifically for HiMach and it is transparent

from the user.

3. Molecular Dynamics Analysis Applications100

3.1. MDAnalysis

Simulation data exist in trajectories in the form of three dimensional time

series (atoms positions and velocities), and these come in a plethora of different

and idiosyncratic file formats. MDAnalysis is a widely used open source Python

library to analyze these trajectory files with an object oriented interface. The105

package is written in Python (compatible with version 2.7 and 3.4+), with time

critical code in C/Cython.

3.1.1. Root Mean Square Distance (RMSD)

The calculation of the root mean square distance (RMSD) for Cα atoms

after optimal superposition with the QCPROT algorithm [12, 13] is commonly110

required in the analysis of molecular dynamics simulations (Algorithm 1). The

task used for the purpose of our benchmark is the RMSD =
√

1
N

∑N
i=1 δ

2
i

implemented in MDAnalysis.analysis.rms module where δi is the distance be-

tween atom i and a reference structure (implemented in Cython [2]). This

function computes the RMSD between two sets of coordinates using the fast115

QCPROT algorithm to optimally superimpose two structures and then calcu-

lates the RMSD.
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To this, the protein structure (selected Cα atoms) in the initial frame will

be considered as the reference and as the mobile group at other time steps. The

superposition is done in the following way: First, the mobile group is translated120

so that its center of mass coincides with the one of reference. Second, a rotation

matrix is computed that spatially aligns the mobile group to reference which

minimizes the RMSD between the coordinates of the mobile group and reference

structure. Finally, all atoms in mobile group are shifted and rotated. For each

frame, a non-negative floating point number is calculated and the final result125

is a time-series of the RMSD. RMSD values show how rigid the domains in a

protein structure are, during the transition. The order of complexity for RMSD

algorithm 1 is T × N2 [14] where T is the number of frames in the trajectory

and N the number of particles in a frame.

***mahzad: Is it fine we have included MPI commands in the pseudo code?130

Is this how people write it?

Algorithm 1 MPI-parallel Multi-frame RMSD Algorithm
Input: size: Total number of frames
ref : mobile group in the initial frame which will be considered as reference
start & stop: Starting and stopping frame index
topology & trajectory: files to read the data structure from
Output: Calculated RMSD arrays

1: procedure Block RMSD(topology, trajectory, ref , start, stop)
2: u ← Universe(topology, trajectory) . u hold all the information of the physical system
3: g ← u.frames[start:stop]
4: for ∀iframe in g do
5: results[iframe]← RMSD(g, ref)
6: end for
7: return results
8: end procedure
9:

10: MPI Init
11: rank ← rank ID
12: index ← indices of mobile atom group
13: xref0 ← Reference atom group's position
14: out ← Block RMSD(topology, trajectory, xref0, start=start, stop=stop)
15:
16: Gather(out, RMSD data, rank ID=0)
17: MPI Finalize

3.1.2. Dihedral Featurization

As a real-world compute-bound task we investigated Dihedral featuriza-

tion [15] (Algorithm 2) whereby a time series of feature vectors consisting of the

two backbone dihedral angles per residue (φi and ψi) is calculated for all 212135
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non-terminal residues. For each frame, an array of dihedral angles is calculated

where for later convenience, an angle θi is actually represented as (cos θi, sin θi).

The order of complexity for Dihedral featurization algorithm (Algorithm 2) is

T×N . ***oliver: Write out the calculation, based on the 4 atoms ***mahzad:

What calculations? how residues are converted to dihedrals? or the procedure140

we perform in the algorithm? that one is explained in algorithm 2

Algorithm 2 MPI-parallel Multi-frame Dihedral Featurization Algorithm
Input: mobile: the desired atom groups to perform RMSD on them
start & stop: that tell which block of trajectory (frames) is assigned to each rank
topology & trajectory: files to read the data structure from
Output: Calculated Dihedral Angles

1: procedure angle2sincos(x)
2: return cos x, sin x
3: end procedure
4:
5: procedure residues to dihedrals(residues)
6: List angles
7: for ∀res in residues do
8: Append (φ(res), ψ(res)) in angles
9: end for

10: return angles
11: end procedure
12:
13: procedure featurize dihedrals(dihedrals)
14: List angles
15: for ∀dihedral in dihedrals do
16: Append value of dihedral in angles
17: end for
18: return angle2sincos(angles)
19: end procedure
20:
21: procedure Block Dihedral(topology, trajectory, ref , start, stop)
22: u ← Universe(topology, trajectory)
23: g ← u.frames[start:stop]
24: List results
25: for ∀frame in g do
26: Dangles ← featurize dihedrals(dihedrals)
27: Append Dangles in results
28: end for
29: end procedure
30:
31: MPI Init
32: residues ← residues of mobile atom group
33: dihedrals ← residues to dihedrals(residues)
34: rank ← rank ID
35: index ← indices of mobile atom group
36: xref0 ← Reference atom group's position
37: out ← Block Dihedral(topology, trajectory, xref0, start=start, stop=stop)
38:
39: Gather(out, RMSD data, rank ID=0)
40: MPI Finalize
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4. Benchmark Environment

The test system contained the protein adenylate kinase with 214 amino acid

residues and 3341 atoms in total [16]. The trajectory [17] was in Gromacs XTC

format trajectory (“600x” in Khoshlessan et al. [4]) with a size of about 30145

GB and 2,512,200 time frames (corresponding to 602.4 ∼ µs simulated time)

which represents a typical medium per-frame size but is very long for current

standards.

The experiments were executed on the XSEDE Supercomputers: SDSC

Comet, PSC Bridges and SuperMIC. SDSC Comet is a 2.7 PFlop/s cluster150

with 6,400 compute nodes in total. The standard compute nodes consist of In-

tel Xeon E5-2680v3 processors, 128 GB DDR4 DRAM (64 GB per socket). The

network topology is 56 Gbps FDR Infini-Band (IB).

PSC Bridges is a 1.35 PFlop/s cluster with four types of computational

nodes. Bridges computational nodes supply 1.3018 PFlop/s and 274 TiB RAM.155

The Regular Shared Memory (RSM) nodes consist of Intel Haswell (E5-2695 v3)

processors, 128 GB DDR4 DRAM (64 GB per socket). The network topology

is 12.37 Gbps Omni-Path Architecture (OPA).

LSU SuperMIC offers 360 compute nodes with Ivy Bridge Intel processors

(E5-2680). Each node has 64 GBs DDR3 RAM. SUperMIC’s nodes are con-160

nected 56 Gbps Infiniband Network. In addition, it offers 20 hybrid nodes

which provide an NVIDIA GPU. SuperMIC’s peak performance is measured at

557 TFlop/s. All the experiments are performed using standard compute nodes

on Comet, PSC Bridges and SuperMIC respectively in the present study.

Cluster Nodes Number CPUs RAM Network Topology
Scheduler and

Resource Manager

SDSC Comet Compute 6400
2 Intel Xeon (E5-2680v3) CPUs

12 cores/CPU, 2.5 GHz
128 GB DDR4 DRAM 56 Gbps IB SLURM

PSC Bridges RSM 752
2 Intel Haswell (E5-2695 v3) CPUs

14 cores/CPU, 2.3 GHz
128 GB, DDR4-2133Mhz 12.37 Gbps OPA SLURM

SuperMIC Standard 360
2 Intel Ivy Bridges (E5-2680) CPUs

10 cores/CPU, 2.8GB GHz
64 GB, DDR3-1866Mhz 56Gbps IB PBS

Table 1: List of benchmarked clusters and their system configuration
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4.1. Installing libraries on multi-user HPC systems165

***oliver: Include table with software and versions; add a paragraph in which

you mention software, summarize how it was compiled, and reference the table.

***mahzad: Are the following enough? Different packages and libraries are

used in the present study in order to achieve the desired performance. How-

ever, getting scientific libraries installed can be a very challenging task. Lack170

of documentation and good software engineering practices, non-standard instal-

lation procedures, and lots of dependencies can contribute to the challenge of

getting the libraries to work [???]. Scientists mostly care about the science and

they are often not software engineers or system administrators. Therefore, the

libraries and tools they need should be easily accessible. This is not always the175

case, though.

In fact, many domain specific packages are not available through package

manager in supercomputers and as a result, we spent considerable amount of

time getting packages dependencies to work in the process of our performance

study. As a result, we provide detail information on how we managed to build180

these libraries. This will let future works spend least amount of time for this

purpose. Detailed information regarding the version of each library, its depen-

dencies, the quality of its documentation, the time necessary for building and

installing the packages are given in Table 2.

From the libraries given in Table 2, MPI4py, H5py, MDAnalysis were the185

easiest to build. Users are able to get these packages installed through the

Conda package support. OpenMPI, GCC, can be easily configured and installed.

The configure script supports a lot of different command line options, but the

support for these libraries is very strong, they are widely used and the excellent

documentation and discussion mailing lists provide users with great resources190

for consult, troubleshooting and tracking issues.

Global Array, and PHDF5 have much slower installation especially because

the libraries are built from source and variable configure options are required

to support specific network interconnects and back-end run-time environments.
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Package Version Description Time to Result Documentation Installation Dependencies

GCC 4.9.4 GNU Compiler Collection Fast Excellent

via configuration
files, environment

or command line options,
minimal configuration

is required

–

OpenMPI 1.10.7 MPI Implementation Fast Excellent

via configuration
files, environment

or command line options,
minimal configuration

is required

–

Global Array 5.6.1 Global Array Slow Good

via configuration files, environment
or command line options,

several optional configuration
settings available

MPI 1.x/2.x/3.x
implementation like

MPICH or Open MPI
built with shared/dynamic

libraries, GCC

MPI4py 3.0.0 MPI for Python Very Fast Excellent Conda Installation

Python 2.7,
or above,

MPI 1.x/2.x/3.x
implementation like

MPICH or Open-MPI
built with shared/dynamic

libraries, Cython

GA4py 1.0 Global Array for Python Fast Average Python Setuptools

Python 2.7,
or above,

MPI 1.x/2.x/3.x
implementation like

MPICH or Open-MPI
built with shared/dynamic

libraries, Cython,
MPI4py, Numpy

PHDF5 1.10.1 Parallel HDF5 Slow Excellent

via configuration files, environment
or command line options,

several optional configuration
settings available

MPI 1.x/2.x/3.x
implementation like

MPICH or Open-MPI,
GNU, MPIF90,

MPICC, MPICXX

H5py 2.7.1 Pythonic wrapper around the HDF5 Very Fast Excellent Conda Installation
Python 2.7, or above,

PHDF5, Cython

MDAnalysis 0.17.0

Python library
to analyze

trajectories from
MD simulations

Very Fast Excellent Conda Installation
Python >=2.7, or <3,

Cython, GNU,
Numpy

Table 2: Detailed comparison on the dependency and installation of different packages used
in the present study on multi-user HPC systems

GA4py has only one release, and does not provide users with strong documen-195

tation and there are still room for improvement for this package.

We performed our benchmark on several HPC resources and therefore, we

had to install all the related packages and tools on all resources. However, there

are always differences in the resources because their set up and architectures

differ from each other. For example, on SuperMIC although tool installation200

was done in the same way as Comet and also passed initial testing, the execution

did not distribute the processes to all nodes. This was due to the fact that

our custom OpenMPI installation did not correctly parse the node list offered

by SuperMIC to our job. Thus, we had to manually pass the node lists to

MPIRUN. In addition, we found that the loaded modules, along with library205

path changes, did not propagate to all nodes from our OpenMPI installation.

OpenMPI’s execution engine could access the correct libraries and was not able

to launch the processes correctly. Reinstalling OpenMPI with enabling the flag

to use the Open Run-Time Environment (ORTE) by default and including the
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OpenMPI installation to BASHRC allowed for correct execution.210

Overall, the installation was successful on all clusters and we were able to

observe similar performances (will be discussed in the result section) which

shows the applicability of the libraries for achieving near ideal scaling.

5. Methods

5.1. MPI for Python mpi4py215

MPI for Python (mpi4py) is a Python wrapper written over Message Passing

Interface (MPI) standard and allows any Python program to employ multiple

processors [6, 7]. Python has several advantages that makes it a very attrac-

tive language including rapid development of small scripts and code prototypes

as well as large applications and highly portable and reusable modules and li-220

braries. In addition, Python's interactive nature, and other factors like lines of

codes (LOC), number of function invocation, and development time adds to its

attractiveness and clarifies why it is a good investment to extend Python use

to message-passing parallel programming applications. Based on the efficiency

tests [6, 7], the performance degradation due to using mpi4py is not prohibitive225

and the overhead introduced by mpi4py is far smaller than the overhead as-

sociated to the use of interpreted versus compiled languages [8]. In addition,

there are works on improving the communication performance in mpi4py and

it shows minimal overheads compared to C code if efficient raw memory buffers

are used for communication [6].230

5.2. Applications of Global Array

In shared-memory systems, regardless of the implementation, the shared-

memory paradigm eliminates the synchronization that is required when message-

passing is used to access shared data. A disadvantage of many shared-memory

models is that they do not expose the none-uniform memory access (NUMA)235

hierarchy of the underlying distributed-memory hardware.
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Global array (GA) toolkit allows manipulating physically distributed dense

multi-dimensional arrays without explicitly defining communication and syn-

chronization between processes. Global Arrays in NumPy (GAiN) extends

GA to python through Numpy [8]. The basic components of the Global240

Arrays toolkit are function calls to create global arrays (ga create), copy

data to (ga put), from (ga get), and between global arrays (ga distribution,

ga scatter), and identify and access the portions of the global array data that

are held locally (ga access). In addition, there are also functions to destroy

arrays (ga destroy) and free up the memory originally allocated to them [8].245

The global array itself is physically located in the local memory space of each

process [18]. User can get a pointer to this memory by using ga access function

or one of its variants. Using this pointer it is possible to directly modify the data

that is local to each process. The GA library keeps track of all these memory

locations by recording a list of them when a global array is created. When250

a process tries to access a block of data, it first does a decomposition of the

request into individual blocks representing the contribution to the total request

from the data held locally on each processor [19]. The requesting processor

then makes individual requests to each of the remote processors. The requests

are implemented using the native one-sided semantics inside the the infini-band255

Verbs library. OpenIB/infiniband uses sys5 shmem within the node and will

use the infiniband network card to communicate between nodes. Algorithm

3 describes RMSD algorithm in combination with the global array. In this

algorithm, we use global array instead of message passage paradigm to see if we

can reduce communication cost.260

5.3. MPI and Parallel HDF5

MPI-based applications work by launching multiple parallel instances of the

Python interpreter which communicate with each other via the MPI library.

HDF5 itself handles nearly all the details involved with coordinating file access

through MPI library. This is advantageous to avoid multiple processes to com-265

pete over accessing the same file on disk. In fact in python, MPI-IO opens shared

13



Algorithm 3 MPI-parallel Multi-frame RMSD using Global Arrays
Input:size: Total number of frames assigned to each rank Nb

g a: Initialized global array
xref0 : mobile group in the initial frame which will be considered as rerference
start & stop: that tell which block of trajectory (frames) is assigned to each rank
topology & trajectory: files to read the data structure from
Include: Block RMSD from Algorithm 1

1: bsize ← ceil(trajectory.number frames / size)
2: g a ← ga.create(ga.C DBL, [bsize*size,2], ”RMSD”)
3: buf ← np.zeros([bsize*size,2], dtype=float)
4: out ← Block RMSD(topology, trajectory, xref0, start=start, stop=stop)
5: ga.put(g a, out, (start,0), (stop,2))
6: if rank == 0 then
7: buf ← ga.get(g a, lo=None, hi=None)
8: end if

files with a mpio driver. In addition, MPI communicator should be supplied as

well and the users also need to follow some constraints for data consistency [9].

5.3.1. Collective Versus Independent Operations

MPI has two flavors of operation: collective, which means that all processes270

have to participate in the same order, and independent, which means each pro-

cess can perform the operation or not and the order also does not matter [9].

With HDF5, modifications to file metadata must be done collectively and al-

though all processes perform the same task, they do not wait until the others

catch up [9]. Other tasks and any type of data operations can be performed in-275

dependently by processes. In the present study, we use independent operations.

5.4. Timing observables

We model MPI performance based on the RMSD algorithm (1) and Dihedral

Featurization algorithm (2). The notation for our models is summarized in Table

3. Inside the code, relevant probs were taken and stored. We will abbreviate280

the timings in the following as variables tLn where Ln refers to the line number

in algorithm 1. Similar calculations can be used for all other algorithms.

We directly measured inside our code (in the function block rmsd()) the

“I/O” time for ingesting the data from the file system into memory, (tframeI/O =

tL4) and the “compute” time per trajectory frame to perform the computation285

(tframecomp = tL5). tI/O is the summation of “I/O” time per frame and tcompute

is the summation of “compute” time per frame for all the frames assigned to

each rank (Nframes). tend loop = tL6 + tL7 is the time delay between the end of

14



the last iteration and exiting the for loop. topening trajectory = tL2 + tL3 is the

time which data structures are initialized and topology and trajectory files are290

opened (problem setup).

tCommunicationMPI
= tL16 is the time “Shuffle” time to gather (“reduce”)

all data from all processor ranks to rank zero. The total time (for all frames)

spent in block rmsd() is tRMSD = tL1 + ...+ tL8. There are parts of the code

in block rmsd() that are not covered by the detailed timing information of295

tcompute and tI/O. To measure the un-accounted time we define the “overheads”.

tOverhead1 and tOverhead2 are the overhead of the calculations and they should

be ideally very small. The total time to completion for a single process on N

cores is tN , which is mathematically equivalent to tN ≡ tRMSD + tcomm.

5.5. Performance Measurement300

We also recorded the total time to solution ttotal(N) with N MPI processes

on N cores (which is effectively ttotal(N) ≈ max tN ). Strong scaling was quanti-

fied by calculating the speed-up relative to performance on a single core (using

MPI).

S =
ttotal(N)

ttotal(1)
(1)

Additionally, we introduce another important performance parameter that305

determines whether we observe stragglers. We define this parameter as the ratio

of compute time to I/O time:

t̄framecomp

t̄frameIO

≈ tcompute

tI/O
(2)
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Item Definition

Nframes N total
frames/N

tend loop tL6 + tL7

topening trajectory tL2 + tL3

tcomp
∑Nframes

1 tframecomp

tIO
∑Nframes

1 tframeI/O

tall frame tL4 + tL5 + tL6

tRMSD tL1 + ...+ tL8

tCommunicationMPI
tL16

tCommunicationGA
tL5 + tL6 + tL7 + tL8

tOverhead1 tall frame − tIO final − tcomp final − tend loop
tOverhead2 tRMSD − tall frame − topening trajectory

tN tRMSD + tCommunication
ttotal max tN

Table 3: Summary of the notation of our performance modeling. Relevant probes in the
codes are taken and stored, which we will abbreviate in here as tLn where Ln refers to the
line number in the corresponding algorithm. tCommunicationMPI

and tCommunicationGA
are

both referred to tCommunication in the text

6. Performance Study

6.1. RMSD Benchmarks

RMSD algorithm for the present test case, represents a task for which com-310

putational workload per frame is smaller than I/O workload per frame (tframecompute

= 0.09 ms, tframeIO = 0.3 ms, thus tcompute/tI/O ≈ 0.3). We showed previously

that the RMSD task only scaled well up to 24 cores, on a single compute node

on Comet (and similarly also only on a single node on other machines), using

either dask or MPI [4]. Although, it is not clear that the root cause is the same315

for dask and MPI, here we focus on the MPI implementation (via mpi4py [6, 7])

for its greater simplicity than dask, in order to better understand the cause for

the poor scaling across nodes.

For both dask and MPI we observed stragglers, individual workers or MPI

ranks, that take much longer to complete than mean execution time of all other320

workers or ranks. Waiting for these stragglers destroys strong scaling perfor-

mance, as shown in Figure 2a, 2b for MPI.

In the example run in Figure 2d, ten ranks out of 72 take almost 65 s whereas

the remaining ranks only take about 40 s. The detailed breakdown of the time
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spent on each rank (Figure 2d) shows that time for the actual computation,325

tcompute, is fairly constant across ranks. The time spent on reading data from

the shared trajectory file on the Lustre file system into memory, tI/O, shows

variability across different ranks. Stragglers, however, appear to be defined by

occasional much larger communication times, tcomm (line 16 in 1), that are on

the order of 30 s in this example. For other ranks, tcomm varies across different330

ranks and for a few ranks tcomm < 10 s or is barely measurable. This initial

analysis (especially Figure 2d) indicates that communication is a major issue.

Identification of Scalability Bottleneck

Figure 2c shows the scaling of tcompute and tI/O individulally. As shown,

tcompute scales very well; however, tI/O does not show good scaling beyond a335

single node (24 cores) and that explains why we are seeing these variations in

tI/O across different ranks (Figure 2d). Considering the results in Figures 2

and 2c, we can conclude that communication and I/O are the root causes for

stragglers.

Hardware340

We did not discern any specific patterns that could be traced to the underly-

ing hardware. Stragglers were observed on SDSC Comet, TACC Stampede and

TACC Data Analytics System Wrangler (data not shown). There was also no

clear pattern in which certain MPI ranks would always be a straggler and we

could also not trace stragglers to specific cores or nodes (or at least our data345

did not reveal an obvious pattern). Therefore, the phenomenon of stragglers in

the RMSD test appears to be independent from the underlying hardware.

6.2. Dihedral Featurization Benchmarks

We briefly tested a much larger computational workload (tcomputeper−frame

= 40 ms, tIOper−frame
= 0.4 ms, thus tcompute/tI/O ≈ 100), namely dihedral350

featurization on Comet with Infiniband and Lustre file system.

The system scales linearly and close to ideal (Figure 3a, 3b, 3c). Although,

there is communication of large result arrays, which is costly for multiple ranks
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(d) Compute tcompute, IO tI/O, communi-
cation tcomm, ending the for loop tend loop,
opening the trajectory topening trajectory,
and overheads tOverhead1, tOverhead2 per
MPI rank (as described in methods). This
is typical data from one run of the 5 repeats

Figure 2: Performance of the RMSD task with MPI which is I/O-bound tcompute/tI/O ≈ 0.3.
Data are read from the file system (I/O included) and results are communicated back to rank
0 (communications included). Five repeats are performed to collect statistics. The error bars
show standard deviation with respect to mean. MPI ranks 0 and 63 to 72 are stragglers, i.e.,
their total time far exceeds the mean of the majority of ranks.

***oliver: This does not look like t comp/t IO = 0.3 ? looks more like 2/30 =
0.06; the next page says 4/26=0.16. Please make sure that all numbers are
consistent! ***mahzad: because t comp/t IO is per frame and it is also

average, what I have reported is only average.

(Figure 4), the speed-up curve (Eq. 1) in Figure 3b demonstrates very good

scaling with the number of cores (up to 72 cores on 3 nodes). The reason is355

that the communication cost (for MPI.Gather()-line 39 in 2) decreases with

increasing the number of cores because the result array size that has to be
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communicated also decreases (Figure 4). Based on Figure 4, communication

scales fairly well with the number of processes. This can be attributed to larger

array sizes compared to the RMSD task and according to [6] the overhead of360

the mpi4py package decreases as the array size to be communicated increases.

The dihedral featurization workload has larger array size for all processor sizes

(per task, a time series of feature vectors of size Nframes × (213 × 2 × 2) when

compared to the RMSD workload (per task a float array of length Nframes)

and therefore we are hypothesizing that the higher performance of mpi4py for365

larger array sizes has lead to better overall scaling. In addition, for higher

computational workloads the competition over accessing the file is less severe as

compared to lower computational workloads.

Overall, increasing the computational workload over I/O improves scaling.

For large compute-bound workloads such as the dihedral featurization task,370

stragglers are eliminated and nearly ideal strong scaling is achieved. The fact

that linear scaling is possible, even with expensive communications, makes par-

allelization a valuable strategy to reduce the total time to solution for large

computational workloads. In a real-world application to one of our existing

data sets on local workstations with Gigabit interconnect and Network File375

System (NFS) (using the Dask parallel library instead of MPI), analysis time

was reduced from more than a week to a few hours (data not shown).

6.3. Effect of tcompute/tI/O on Performance

The RMSD task turned out to be I/O bound, i.e.,

tcompute

tI/O
� 1.

and we were not able to achieve good scaling above a single node. However,

Dihedral featurization turned out to be compute bound and we were able to380

achieve near ideal scaling. We therefore, hypothesized that decreasing the rela-

tive I/O load with respect to compute load would also reduce the stragglers. We

therefore increased the computational load so that the work became compute
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(d) Compute tcompute, IO tI/O, communi-
cation tcomm, ending the for loop tend loop,
opening the trajectory topening trajectory,
and overheads tOverhead1, tOverhead2 per
MPI rank (as described in methods). This
is typical data from one run of the 5 repeats

Figure 3: Performance for the dihedral featurization workload, which is compute-bound
tcompute/tI/O ≈ 100. Data are read from the file system (I/O included) and results are
communicated back to rank 0 (communications included). Five repeats are performed to
collect statistics. The error bars show standard deviation with respect to mean. No straggler
is observed.

bound, i.e.,

tcompute

tI/O
� 1.

i.e., now processes are not constantly performing I/O and instead, I/O is in-385

terleaved with longer periods of computation. In order to artificially increase the
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Figure 4: Comparison of communication cost for different number of processes over 5 repeats
for the dihedral featurization workload (with communications included).

computational load we repeated the same RMSD calculation (line 10, algorithm

1) 40, 70 and 100 times in a loop respectively.

6.3.1. Increased workload (RMSD)

The RMSD workload was artificially increased forrty-fold (“40×” ), seventy-390

fold (“70×” ), and hundred-fold (“100×” ) and we measured performance as

before. These workloads correspond to tcompute/tI/O ratio of 12, 21, 30 respec-

tively as shown in Table 4. We performed this experiment to show the effect of

tcompute/tI/O ratio on performance (Figure 5). On average, each rank's work-

load is Nframes × tI/O (where Nframes = N total
frames/N is the number of frames395

per trajectory block, i.e., the number of frames processed by each MPI rank

for N processes) for I/O, and X × Nframes × tcompute for the RMSD calcula-

tion. X is the factor by which we increase the RMSD compute workload in our

experiment.

As the tcompute/tI/O ratio increases, speed-up and performance improves and400

show overall better scaling than the I/O-bound workload, i.e. 1× RMSD (Figure

5a). When tcompute/tI/O ratio increases, the RMSD calculation consistently

scales up to larger numbers of cores (N = 56 for 70× RMSD). Figures 5b

and 5c shows the improvment in performance more clearly. In fact, as the
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Workload tcompute/tI/O

RMSD 1× 0.3
RMSD 40× 12
RMSD 70× 21
RMSD 100× 30

Table 4: Change in tcompute/tI/O ratio with change in the RMSD workload. We artificially
increased the RMSD workload in order to examine the effect of compute to I/O ratio on the
performance.

tcompute/tI/O ratio increases, the values of speed-up and efficiency get closer to405

their ideal value for each number of processor count.
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Figure 5: Performance change of the RMSD task with MPI with different tcompute/tI/O
ratios. We tested performance for tcompute/tI/O ratios of 0.3, 12, 21, 30 which correspond
to 1× RMSD, 40× RMSD, 70× RMSD, and 100× RMSD respectively (communication is
included)

Even for moderately compute-bound workloads such as the 40× and 70×

RMSD tasks, increasing the computational workload over I/O reduced the im-

pact of stragglers even though they still contribute to large variations in timing

across different ranks and thus to somewhat erratic scaling.410

Given the results for Dihedral featurization and RMSD algorithms (Algo-

rithms 2, and 1) and X× RMSD (Figure 5) we hypothesize that MPI competes

with Lustre on the same network interface, which would explain why com-

munication appears to be primarily a problem in the presence of I/O when

tcompute/tI/O is small. In fact, decreasing the I/O load relative to the compute415
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load should open up the network for communication.

6.4. Communication Cost and Application of Global Array

As discussed in the previous sections, Figure 2d, for small tcompute/tI/O

communication acts as the scalability bottleneck. In fact, when the processes

communicate result arrays back to the master process (rank 0), some processes420

take much longer as compared to other processes. Now we want to know what

strategies can be used to avoid communication cost.

We used global array instead of collective communication in MPI and exam-

ined the change in the performance. In global array, we define one large RMSD

array, and each MPI rank updates its associated block in the global RMSD425

array using ga put. At the end, when all the processes exit block rmsd()

function and update their local block in the global array, rank 0 will access the

whole global array using ga access. In fact, in global arrays the time for com-

munication is tga put + tga access. Given the speed up plots (Figure 6b) and

total time scaling (Figure 6a) global array improves strong scaling performance.430

Although communication time has significantly decreased using global array

(compare Figure 6d to Figure 2d), the existing variation in the dominant I/O

part of the calculation plus two delayed MPI ranks due to the delay in opening

the trajectory would still prevent ideal scaling (Figure 6c). This figure shows

only one repeat out of 5 we performed for our benchmark study. Opening the435

trajectory was not a problem in other repeats. In fact, although communica-

tions were performed using global arrays, scaling is still far from ideal as a result

of slow processes due to I/O variation and the delay in opening the trajectory.

***oliver: In Fig 8c it is the trajectory opening step that creates stragglers.

This was not a problem before. Is this now ALWAYS the problem when using440

GA? Needs to be discussed. ***mahzad: no only happened in one repeat.

Does not seem to me to be a problem with GA These slow processes take about

50 s, which are slower than the mean execution time of all ranks, i.e. 17 s.
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(d) Compute tcompute, IO tI/O, communi-
cation tcomm, ending the for loop tend loop,
opening the trajectory topening trajectory,
and overheads tOverhead1, tOverhead2 per
MPI rank (as described in methods). This
is typical data from one run of the 5 repeats

Figure 6: Performance of the RMSD task with MPI using global array (tcompute/tI/O ≈ 0.3).
Data are read from the file system (I/O included). All ranks update the global array and rank
0 accesses the whole RMSD array. Five repeats are performed to collect statistics. The error
bars show standard deviation with respect to mean. MPI ranks 20 and 56 are stragglers, i.e.,
their total time far exceeds the mean of the majority of ranks.

6.5. I/O Cost

We showed previously that the I/O system can have a large effect on the par-445

allel performance of the RMSD task [4], especially because the average time to

perform the computation tcompute (about 0.09 ms) is about three times smaller

than the I/O time tI/O (about 0.3 ms) (Figures 2c and 2). In fact, poor I/O

performance is responsible for the stragglers, and the question is “are stragglers

waiting for file access?”. Due to the large file size and memory limit, processes450

are not able to load the whole trajectory into memory at once and as a result
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each process is only allowed to load one frame into memory at a time. The

test trajectory has about 2, 512, 200 frames in total and as a result there will be

2, 512, 200 file access requests. Thus, when the compute time is small with re-

spect to I/O, then I/O can be a major issue as we also see in our results (Figures455

2c and 2). Read throughput might be limited by the available bandwidth on the

Infini-band network interface that serves the Lustre file system and access to

files might be throttled. We show that depending on the cluster and its capabil-

ities the throughput might become a problem for achieving good performance

and we also show ways to overcome this problem and improve performance. In460

fact, we need to come up with ways and strategies to avoid the competition over

file access across different ranks when tcompute/tI/O ratio is small. To this aim,

we experimented two different ways for reducing I/O cost and examined their

effect on the performance. These two ways include: Splitting the trajectory file

into as many segments as number of processes and MPI-based Parallel HDF5.465

We discuss these two approaches in detail in the following sections.

6.5.1. Splitting the Trajectories

In all the previous benchmarks all processes were using a shared trajectory

file. In order to test our hypothesis that I/O and communication compete over

the network resources with small tcompute/tI/O ratio, we splitted our trajectory470

file into as many trajectory segments as the number of processes. This means

that if we have N processes, the trajectory file is splitted into N segments and

each segment will have Nb frames in it. Through this approach, each process

will have access to its own segment and there will be no competition over file

accesses. For reference, the necessary time for splitting the trajectory file is475

given in Appendix A.

Performance without Global Array

We ran a benchmark up to 8 nodes (192 cores) and, we observed rather better

scaling behavior with efficiencies above 0.6 (Figure 7a and 7b) and the delay time

for stragglers has also reduced from 65 to about 23 (Compare Figure 7c to 2d).480
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However, the scaling is still far from ideal due to the communication. Although

the delay due to communication is much smaller as compared to RMSD with

a shared trajectory file (Compare Figure 7c to Figure 2d), it is still delaying

several processes and as a result leads to longer job completion time (Figure

7c). These delayed tasks impact performance as well and hence the speed-up is485

not still close to ideal scaling (Figure 7b).

Performance using Global Array

Previously, we showed that global array significantly reduces the communi-

cation cost (Section 6.4). We want to see how the performance looks like if we

split our trajectory file and take advantage of global array as well. Again, we490

ran our benchmark up to 8 nodes (192 cores) and, we observed near ideal scaling

behavior with efficiencies above 0.9 (Figure 7a and 7b) with no straggler tasks

(Figure 7d). The present results show that contention for a file impacts the

performance. The initial results with splitting the trajectory file suggests that

there is in fact an effect, which possibly also interferes with the communications495

when tcompute/tI/O � 1 (i.e. with a I/O bound workload).

6.5.2. Chain-Reader

6.5.3. MPI-based Parallel HDF5

Another approach we examined to improve I/O scaling is MPI-based Parallel

HDF5. We converted our XTC trajectory file into HDF5 format so that we can500

test the performance of parallel IO with HDF5 file format. The time it took

to convert our XTC file with 2, 512, 200 frames into HDF5 format was about

5400 s in our local resources with network file system (NFS). Again, we ran

our benchmark up to 8 nodes (192 cores) and, we observed near ideal scaling

behavior with efficiencies above 0.8 (Figure 9a and 9b) with no straggler tasks505

(Figure 9d). When we split our trajectory, scaling is better as compared to that

of parallel I/O (Compare Figure 9b to Figure 7b). However, both methods scale

very well up to 8 nodes and have comparable performance.
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7. Performance Comparison of the RMSD task on different clusters

In this section we try to compare the performance of RMSD task on differ-510

ent HPC resources to examine the robustness of the methods we used for our

performance study. HPC resources used for this purpose and their system con-

figuration are given in Table 1. We perform these comparisons for several cases

discussed previously. These cases include: Splitting the trajectories with col-

lective communications in MPI, Splitting the trajectories with global array for515

communications, and MPI-based Parallel HDF5.

7.1. Splitting the Trajectories

Figure 10 shows how RMSD task scales with the increase in the number of

cores on different HPC resources. When we split the trajectories the scaling

follows the same pattern on both Comet and SuperMIC with global array and520

without global array. Both Comet and SuperMIC scales very well using Global

array. RMSD task still scales on both clusters without global array; however,

scaling is far from ideal scaling due to the communication cost (Refer to section

6.5.1 and Figure 7c). Overal, the scaling of the RMSD task is better on Su-

perMIC and the performance gap increases as we increase the number of cores.525

This is expected for the following reasons: First, CPU speed on SuperMIC is

2.8 GHz vs 2.5 GHz on Comet. This is ≈ 12% performance difference in favor

of SuperMIC. Second, for the same network speed the number of cores per node

on SuperMIC (20 cores per node) is smaller than Comet (24 cores per node).

Therefore, access to memory per core should be factor of 12/10 ≈ 20% faster530

on SuperMIC.

7.2. MPI-based Parallel HDF5

Figure 11 shows how RMSD task scales with the increase in the number of

cores on different HPC resources using MPI-based parallel HDF5. The scaling

follows the same pattern on both Comet and SuperMIC. Both Comet and Su-535

perMIC scales very well. Overal, the scaling of the RMSD task is better on

SuperMIC for the reasons that discussed above. Bridge performance is different
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from Comet and SuperMIC. Bridge has 28 cores per compute node and when

we use all cores for our calculations there is no scaling. However, decreasing

the number of cores per node and having uniform workload distributions across540

all nodes can lead to significant improvements in the scaling as shown in Fig-

ure 11. The reason for performance difference between Comet and Bridge can

be explained as below: First, CPU speed on Bridge is 2.3 GHz vs 2.5 GHz on

Comet. This is ≈ 8.6% performance difference in favor of Comet. Second, for

the same network speed the number of cores per node on Bridge (28 cores per545

node) is larger than Comet (24 cores per node). Therefore, access to memory

per core should be factor of 14/12 ≈ 16% faster on Comet. The memory access

effect is obvious on the timing distribution across different rank shown for one

run of the 5 repeats (Figure 12). Based on Figure 12 the I/O time distribution

is pretty small and uniform across all ranks on Comet and SuperMIC (Figures550

12b & 9d). However, on Bridge the I/O time is on average about two and a half

times larger and the I/O time distribution is also erratic across different ranks

(Figure 12a).

7.3. Comparison of Compute & I/O Scaling Across Different Clusters

Comparison of compute & I/O scaling across different clusters for different555

test cases and algorithms is shown in Table 5. The corresponding plots for com-

pute and I/O scaling are shown in related sections. These plots together with

Table 5 allow both quantitative and qualitative comparison of the compute and

I/O time scaling. As can be seen in Table 5 for MPI-based parallel HDF5,

both compute and I/O time on Bridge is larger than its corresponding value560

on Comet and SuperMIC. For example, with one core the corresponding com-

pute and I/O time are about (387, 1318) versus (225, 423) and (273, 503) on

Comet and SuperMIC respectively. This performance difference becomes more

obvious as the number of cores increases. When the trajectories are splitted

and global array is used for communication both Comet and SuperMIC show565

similar performance at small number of cores and the their performance differ-

ence increases as the number of cores increases. The reason why we see these
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performance differences is explained in previous sections.

NProcesses

Cluster Calculation Load Ratio Gather File Access Time 1

Comet: 24

Bridges: 24

SuperMIC: 20

Others: 48

Bridges: 48

SuperMIC: 40

Comet: 72

Bridges: 60

SuperMIC: 80

Comet: 96

Bridges: 78

Comet: 144

Bridges: 84

SuperMIC: 160

Comet: 192
Comet: 384

SuperMIC: 320

Comet
Dihedral

Featurization
100 MPI Single

tI/O

tcompute

2880 ± 0
272000 ± 0

40 ± 1.63
12440 ± 200.78

20 ± 1.22
6305 ± 38.13

15 ± 3.91
4225 ± 83.41

– – – –

Comet RMSD 1X 0.3 MPI Single
tI/O

tcompute

799 ± 5.22
225 ± 5.4

49 ± 3.45
11 ± 0.75

29 ± 1.3
6 ± 0.35

26 ± 9.19
4 ± 0.48

– – – –

Comet RMSD 1X 0.3 GA Single
tI/O

tcompute

820 ± 18.49
219 ± 9.8

41 ± 8.99
10 ± 0.3

23 ± 4.14
5 ± 0.48

15 ± 2.06
3 ± 0.54

– – – –

Comet RMSD 1X 0.3 MPI Splitting
tI/O

tcompute

799 ± 5.22
225 ± 5.4

37 ± 1.22
11 ± 0.31

18 ± 0.18
5 ± 0.07

12 ± 0.14
3 ± 0.04

9 ± 0.3
3 ± 0.11

6 ± 0.66
2 ± 0.23

4 ± 0.23
1 ± 0.07

–

SuperMIC RMSD 1X 0.3 MPI Splitting
tI/O

tcompute

1013.75 ± 2.8
304.26 ± 2.55

39.99 ± 0.36
12.41 ± 0.22

19.18 ± 0.25
5.99 ± 0.09

9.61 ± 0.28
3.08 ± 0.13

–
4.83 ± 0.06
1.5 ± 0.01

– –

Comet RMSD 1X 0.3 GA Splitting
tI/O

tcompute

820 ± 18.5
219 ± 9.5

36 ± 0.78
9 ± 0.22

17 ± 0.3
4 ± 0.07

11 ± 0.23
3 ± 0.04

10 ± 1.7
2 ± 0.4

5 ± 0.14
1 ± 0.05

4 ± 0.07
1 ± 0.02

–

SuperMIC RMSD 1X 0.3 GA Splitting
tI/O

tcompute

1027.62 ± 10.32
305.78 ± 3.47

39.62 ± 0.2
12.16 ± 0.1

19.66 ± 0.1
6.01 ± 0.007

9.57 ± 0.1
2.97 ± 0.1

–
4.86 ± 0.05
1.51 ± 0.03

– –

Comet RMSD 1X 0.3 MPI PHDF5
tI/O

tcompute

423 ± 5.88
225 ± 6.55

19 ± 0.3
10 ± 0.12

9 ± 0.13
5 ± 0.1

6 ± 0.06
3 ± 0.04

5 ± 0.12
2 ± 0.05

3 ± 0.2
1 ± 0.04

3 ± 0.25
1 ± 0.03

1.57 ± 0.29
0.76 ± 0.09

Bridges RMSD 1X 0.3 MPI PHDF5
tI/O

tcompute

1318.87 ± 10.42
387.8 ± 5.51

67.93 ± 0.52
21.97 ± 0.38

37.37 ± 0.2
12.12 ± 0.34

30.35 ± 0.15
9.79 ± 0.24

24.16 ± 0.89
7.72 ± 0.03

22.5 ± 0.17
7.18 ± 0.08

– –

SuperMIC RMSD 1X 0.3 MPI PHDF5
tI/O

tcompute

503.69 ± 2.57
273.54 ± 4.7

12.96 ± 0.06
23.44 ± 0.29

6.46 ± 0.02
12.22 ± 0.43

3.2 ± 0.01
7.3 ± 0.85

–
1.64 ± 0.01
4.59 ± 0.96

–
0.82 ± 0.004
1.55 ± 0.009

Table 5: Comparison of the compute and I/O scaling for different test cases and number of
processes. Five repeats are performed to collect statistics. The mean value and the standard
deviation with respect to mean are reported for each case.

8. Guidelines on the Parallel Analysis of Three Dimensional Time

Series570

Here we provide practical guidelines for parallel analysis of the three dimen-

sional time series (MD trajectories) on HPC resources.

Rule 1 Calculate the value of tcompute/tI/O to see whether the task is compute

bound (
tcompute

tI/O
� 1) or IO bound (

tcompute

tI/O
� 1). As discussed in Section

6.3 for I/O bound problems both communication and I/O will be a problem575

and the performance of the task will be affected by the straggler tasks which

delay job completion time.

Rule 2 For
tcompute

tI/O
> 100 the task is compute bound and the task will scale

very well as we showed in Section 6.2. However, if the size of the data

to be communicated to rank 0 using the blocking collective communication580

(MPI.Gather()) is small, one might consider using global arrays to achieve

near ideal scaling behavior (Section 6.4). In fact the overhead of mpi4py is

large with respect to C for small array size [6]. Application of Global array

is useful in the sense that it replaces message-passing interface with a dis-

tributed shared array where its blocks will be updated by the associated rank585

in the communication domain (Algorithm 3).
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Rule 3 For
tcompute

tI/O
6 100 the task is I/O bound and then one need to take the

following steps:

Rule 3.1 If there is access to HDF5 format the recommended way will be to

use MPI-based Parallel HDF5 (Section 6.5.3). Since converting the XTC590

file to HDF5 is expensive if the trajectory file formats are not in HDF5

form then one might prefer to split the trajectories. MD trajectories

are often re-analyzed and therefore we suggest to incorporate trajectory

conversion into the beginning of standard workflows for MD simulations.

Alternatively, it will be a good idea to keep the trajectories in smaller595

chunks, e.g. when running simulations on HPC resources using Gromacs

[??], users can run their simulations with “-noappend” option which will

automatically store the output trajectories in small chunks.

Rule 3.2 If there is not access to HDF5, the trajectory file should be splitted

into as many trajectory segments as the number of processes. Splitting600

the trajectories is fast and does not take much time (Appendix A).

Rule 3.3 The appropriate parallel implementation along with Global Array

should be used on the trajectory segments (Section 6.5.1) to achieve near

ideal scaling.

9. Conclusion605

***mahzad: Add chain-reader later There are currently many freely avail-

able libraries for the analysis and processing of three-dimensional time series.

However, dramatic increases in the size of trajectories combined with the serial

nature of these libraries necessitates use of state of the art high performance

computing tools for rapid analysis of these time series.610

To this aim, we tested our benchmark on RMSD (I/O bound) and Dihedral

featurization (compute bound) algorithms in MDAnalysis. Our initial analy-

sis showed that for sufficiently large per-frame workloads (tcompute/tI/O ≈ 100),

close to ideal scaling was achievable (Figure 4). However the I/O bound work-

load (tcompute/tI/O ≈ 0.3) does not scale due to the appearance of stragglers.615
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This means that the ratio between compute load and I/O load has a crucial

effect on the performance.

Different factors like opening the trajectory file, or other sources of overheads

can be responsible for observing stragglers for I/O bound workload. But, for

the I/O bound workload, both communication and I/O appeared to be the620

main scalability bottlenecks when using a shared file. Our data suggest that

stragglers are due to the competition between MPI and the Lustre file system

on the shared Infini-band interconnect. ***oliver: We/I put this hypothesis

forward originally but I don?t think that we really have enough evidence to

corroborate it. We know that we have a problem with multiple ranks accessing625

the same file but we don?t have this problem with splitting or parallel I/O. I

think that?s really all we can say right now. ***mahzad: I think we have

enough evidences, I tried to explain it in a better way. please have a look and

let me know if it is still not clear from my reasoning ***oliver: Can you look

in the literature to see what is known about Lustre and accessing a single file?630

Papers on parallel I/O should discuss this problem. ***mahzad: Will have a

look

This is because when we remove I/O, communication does not appear to be

the scalability bottleneck anymore (data not shown here). In fact, communica-

tion time, tcomm, could take much longer for stragglers than for “normal” MPI635

ranks when I/O has to be performed through a shared trajectory file (Figure

2d).

Additionally, the number of I/O requests is a function of number of frames

in the trajectory. For I/O bound task and compute bound task with the same

number of frames per trajectory the frequency of sending the I/O requests makes640

a big difference. For sufficiently large per-frame compute workload, the I/O

requests interfere much less often with communication than an I/O bound task.

This is why both communication and I/O appear to prevent us from achieving

the near ideal scaling for an I/O bound task.

It should be also noted that, the effect of communication was less pronounced645

when the work became more compute-bound and this is because with compute-
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bound tasks there is less competition over accessing the shared trajectory file.

We showed this effect by changing the ratio between compute load and I/O load

and studying its impact on the performance.

Therefore, for I/O bound tasks we needed to come up with solution to over-650

come stragglers. We were able to achieve much better performance in our RMSD

benchmark when we used global array toolkit instead of message-passing inter-

face for communication. Using global array, we did not observe any delayed task

due to communication (Figure 6) and it significantly reduced the communica-

tion cost. However, reducing communication cost was not enough for achieving655

near ideal scaling because I/O is more dominant for an I/O bound task.

We showed several approaches to improve I/O scaling. We were able to

improve I/O through splitting the shared trajectory file and MPI-based parallel

I/O through HDF5 file (Figures 7 and 9). In both cases we were able to achieve

near ideal scaling. With splitting the trajectories, effect of communication is660

still apparent on the performance; however together with global array toolkit

we could achieve near ideal scaling (Figure 7). ***oliver: I actually do not

understand why we need GA for splitting but not for parallel MPI. ***mahzad:

I mentioned before in my presentation in Spidal meeting that I myself do not

have an answer for this.665

All the above strategies, provides the bio-molecular simulation community

the means to perform a wide variety of parallel analyses on data generated from

computational simulations. The guidelines provided in the present study, help

people to tackle their problem depending on the workload being I/O bound

or compute bound. The analysis indicates that splitting the trajectories in670

combination with global array or parallel I/O will make it feasible to run a I/O

bound task on scalable computers up to 8 nodes and achieve near ideal scaling

behavior. In addition, we have examined all these benchmarks on several HPC

resources in order ensure the robustness of our approach.
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(d) Examples of timing per MPI rank using
global array

Figure 7: Comparison on the performance of the RMSD task with MPI when the trajectories
are splitted using global array and without global array (tcompute/tI/O ≈ 0.3). Data are
read from the file system (I/O included). In case of global array, all ranks update the global
array (gaput) and rank 0 accesses the whole RMSD array through the global memory address
(gaget).

***oliver: The compute/IO ratio is about 1:4 judging from the graph, i.e.,
0.25 ? or did you calculate the ratio for the serial version? ***mahzad: Yes,

this is based on serial version
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Figure 9: Performance of the RMSD task with MPI-based parallel HDF5 (tcompute/tI/O ≈
0.3). Data are read from the file system from a shared HDF5 file instead of XTC format
(Independent I/O).
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Figure 10: Comparison of the performance of the RMSD task with MPI (tcompute/tI/O ≈ 0.3)
when the trajectories are splitted using global array and without global array across different
clusters. Data are read from the file system. Five repeats are performed to collect statistics.
The error bars show standard deviation with respect to mean.
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Figure 11: Comparison of the performance of the RMSD task with MPI (tcompute/tI/O ≈ 0.3)
across different clusters. Data are read from a shared HDF5 file instead of XTC format
(Independent I/O) and results are communicated back to rank 0 (communications included).
Five repeats are performed to collect statistics. The error bars show standard deviation with
respect to mean.
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Figure 12: Examples of timing per MPI rank for RMSD task with MPI-based parallel HDF5
(tcompute/tI/O ≈ 0.3) on PSC Bridge (Top) and SuperMIC (Buttomn). This is typical data
from one run of the 5 repeats.
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Appendix A. Detailed timing for splitting the trajectories740

Table A.6 shows the necessary time for splitting the trajectory file using MPI on SDSC

Comet.

Number of trajectory segments Np used for writing the segments time (s)

24 24 89.92
48 48 46.79
72 72 33.7
96 96 25.12
144 144 43.7
196 196 13.49

Table A.6: The wall-clock time spent for writing Np trajectory segments using Np processes
using MPI on SDSC Comet

Appendix B. Python codes used for the benchmark study

Appendix B.1. Python code used for RMSD task with MPI for Python

745

1 import sys

2 import numpy as np

3 import MDAnalysis as mda

4 from MDAnalysis.analysis import rms

5 import time750

6 from shutil import copyfile

7 import glob, os

8 import mpi4py

9 from mpi4py import MPI

10 #---------------------------------------755

11 MPI.Init

12

13 comm = MPI.COMM_WORLD

14 size = comm.Get_size()

15 rank = comm.Get_rank()760

16 #------------------------------------------

17 j = sys.argv[1]

18

19 def block_rmsd(index, topology, trajectory, xref0, start=None, stop=None, step=C

None):765

20 clone = mda.Universe(topology, trajectory)

21 g = clone.atoms[index]

22
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23 bsize = int(stop-start)

24 results = np.zeros([bsize,2], dtype=float)770

25

26 for iframe, ts in enumerate(clone.trajectory[start:stop:step]):

27 results[iframe, :] = ts.time, rms.rmsd(g.positions, xref0, center=True, C

superposition=True)

28775

29 return results

30 #-----------------------------------------------------------------------

31 # Check the files in the directory

32 PSF = os.path.abspath(os.path.normpath(os.path.join(os.getcwd(),’files/adk4AKE.C

psf’)))780

33 longXTC = os.path.abspath(os.path.normpath(os.path.join(os.getcwd(),’newtraj.xtcC

’)))

34 longXTC1 = os.path.abspath(os.path.normpath(os.path.join(os.getcwd(),’files/C

newtraj{}.xtc’.format(j))))

35785

36 if rank == 0:

37 copyfile(longXTC, longXTC1)

38 u = mda.Universe(PSF, longXTC1)

39 print(len(u.trajectory))

40790

41 MPI.COMM_WORLD.Barrier()

42 #----------------------------------------------------------------------

43 u = mda.Universe(PSF, longXTC1)

44 mobile = u.select_atoms("(resid 1:29 or resid 60:121 or resid 160:214) and name C

CA")[1:147]795

45 index = mobile.indices

46 topology, trajectory = mobile.universe.filename, mobile.universe.trajectory.C

filename

47 ref0 = mobile

48 xref0 = ref0.positions-ref0.center_of_mass()800

49

50 # Create each segment for each process

51 frames_seg = np.zeros([size,2], dtype=int)

52 bsize = int(np.ceil(mobile.universe.trajectory.n_frames / float(size)))

53 for iblock in range(size):805

54 frames_seg[iblock, :] = iblock*bsize, (iblock+1)*bsize

55

56 d = dict([key, frames_seg[key]] for key in range(size))

57

58 start, stop = d[rank][0], d[rank][1]810

59

60 # Block-RMSD in Parallel

61 out = block_rmsd(index, topology, trajectory, xref0, start=start, stop=stop, C

step=1)
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63 if rank == 0:

64 data1 = np.zeros([size*bsize,2], dtype=float)

65 else:

66 data1 = None

67820

68 comm.Gather(out[0], data1, root=0)

69

70 if rank == 0:

71 data = np.zeros([size,5], dtype=float)

72 else:825

73 data = None

74

75 comm.Gather(np.array(out[1:], dtype=float), data, root=0)

76

77 MPI.Finalize830

Appendix B.2. Python code used for RMSD task using global array with MPI

for Python.

1 import sys835

2 import numpy as np

3 import MDAnalysis as mda

4 from MDAnalysis.analysis import rms

5 import time

6 from shutil import copyfile840

7 import glob, os

8 import mpi4py

9 from mpi4py import MPI

10 from ga4py import ga

11 from ga4py import gain845

12 #---------------------------------------

13 ga.initialize()

14 comm = gain.comm()

15

16 size = ga.nnodes()850

17 rank = ga.nodeid()

18 #------------------------------------------

19 j = sys.argv[1]

20

21 def block_rmsd(index, topology, trajectory, xref0, start=None, stop=None, step=C855

None):

22 clone = mda.Universe(topology, trajectory)

23 g = clone.atoms[index]
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24

25 print("block_rmsd", start, stop, step)860

26 bsize = int(stop-start)

27 results = np.zeros([bsize,2], dtype=float)

28

29 for iframe, ts in enumerate(clone.trajectory[start:stop:step]):

30 results[iframe, :] = ts.time, rms.rmsd(g.positions, xref0, center=True, C865

superposition=True)

31

32 return results

33 #---------------------------------------------------------------------------

34 PSF = os.path.abspath(os.path.normpath(os.path.join(os.getcwd(),’files/adk4AKE.C870

psf’)))

35 longXTC = os.path.abspath(os.path.normpath(os.path.join(os.getcwd(),’newtraj.xtcC

’)))

36 longXTC1 = os.path.abspath(os.path.normpath(os.path.join(os.getcwd(),’files/C

newtraj{}.xtc’.format(j))))875

37

38 if rank == 0:

39 copyfile(longXTC, longXTC1)

40 u = mda.Universe(PSF, longXTC1)

41 print(len(u.trajectory))880

42

43 ga.sync()

44 #----------------------------------------------------------------------

45 u = mda.Universe(PSF, longXTC1)

46 mobile = u.select_atoms("(resid 1:29 or resid 60:121 or resid 160:214) and name C885

CA")

47 index = mobile.indices

48 topology, trajectory = mobile.universe.filename, mobile.universe.trajectory.C

filename

49 ref0 = mobile890

50 xref0 = ref0.positions-ref0.center_of_mass()

51 bsize = int(np.ceil(mobile.universe.trajectory.n_frames / float(size)))

52 g_a = ga.create(ga.C_DBL, [bsize*size,2], "RMSD")

53 buf = np.zeros([bsize*size,2], dtype=float)

54895

55 # Create each segment for each process

56 frames_seg = np.zeros([size,2], dtype=int)

57 bsize = int(np.ceil(mobile.universe.trajectory.n_frames / float(size)))

58 for iblock in range(size):

59 frames_seg[iblock, :] = iblock*bsize, (iblock+1)*bsize900

60

61 d = dict([key, frames_seg[key]] for key in range(size))

62

63 start, stop = d[rank][0], d[rank][1]
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65 # Block-RMSD in Parallel

66 out = block_rmsd(index, topology, trajectory, xref0, start=start, stop=stop, C

step=1)

67

68 ga.put(g_a, out[0][:,:], (start,0), (stop,2))910

69

70 if rank == 0:

71 buf = ga.get(g_a, lo=None, hi=None)

72

73 if rank == 0:915

74 data = np.zeros([size,5], dtype=float)

75 else:

76 data = None

77

78 comm.Gather(np.array(out[1:], dtype=float), data, root=0)920

79

80 ga.destroy(g_a)

81 ga.terminate()

Appendix B.3. Python code used for Dihedral Featurization task with MPI for925

Python

1 import MDAnalysis as mda

2 import numpy as np

3 import glob930

4 from itertools import chain

5 import time

6 from shutil import copyfile

7 import glob, os

8 import mpi4py935

9 from mpi4py import MPI

10 import sys

11 #---------------------------------------

12 MPI.Init

13940

14 comm = MPI.COMM_WORLD

15 size = comm.Get_size()

16 rank = comm.Get_rank()

17 #------------------------------------------

18 j = sys.argv[1]945

19

20 def angle2sincos(x):

21 """Convert angle x to (cos x, sin x).
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22

23 Parameters950

24 ----------

25 x : float or array_like

26

27 Returns

28 -------955

29 feature_vector : array

30 1D feature vector ‘‘[cos(x[0]), sin(x[0]), cos(x[1]), sin(x[1]), ...]‘‘.

31 """

32 x = np.deg2rad(x)

33 return np.ravel(np.transpose([np.cos(x), np.sin(x)]))960

34

35 def residues_to_dihedrals(residues):

36 """Return list of [phi1, psi1, phi2, psi2, ...] dihedral objects"""

37 return list(chain.from_iterable(

38 (res.phi_selection().dihedral, res.psi_selection().dihedral) for resC965

in residues))

39

40 def featurize_dihedrals(dihedrals):

41 angles = [dihedral.value() for dihedral in dihedrals]

42 return angle2sincos(angles)970

43

44 def block_dihedrals(index, topology, trajectory, start=None, stop=None, step=C

None):

45 start00 = time.time()

46 clone = mda.Universe(topology, trajectory)975

47 g = clone.atoms[index]

48 residues = g.residues[1:-1]

49 dihedrals = residues_to_dihedrals(residues)

50

51 print("block_rmsd", start, stop, step)980

52 print(len(clone.trajectory))

53 bsize = stop-start

54 results = []

55

56 for iframe, ts in enumerate(clone.trajectory[start:stop:step]):985

57 results.append(featurize_dihedrals(dihedrals))

58

59 return np.array(results)

60 #----------------------------------------------------------------------

61 PSF = os.path.abspath(os.path.normpath(os.path.join(os.getcwd(),’files/adk4AKE.C990

psf’)))

62 longXTC = os.path.abspath(os.path.normpath(os.path.join(os.getcwd(),’newtraj.xtcC

’)))
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63 longXTC1 = os.path.abspath(os.path.normpath(os.path.join(os.getcwd(),’files/C

newtraj{}.xtc’.format(j))))995

64

65 if rank == 0:

66 copyfile(longXTC, longXTC1)

67 u = mda.Universe(PSF, longXTC1)

68 print(len(u.trajectory))1000

69

70 MPI.COMM_WORLD.Barrier()

71 #----------------------------------------------------------------------

72 u = mda.Universe(PSF, longXTC1)

73 mobile = u.select_atoms("protein")1005

74 index = mobile.indices

75

76 topology, trajectory = mobile.universe.filename, mobile.universe.trajectory.C

filename

77 bsize = int(np.ceil(mobile.universe.trajectory.n_frames / float(size)))1010

78

79 # Create each segment for each process

80 frames_seg = np.zeros([size,2], dtype=int)

81 bsize = int(np.ceil(mobile.universe.trajectory.n_frames / float(size)))

82 for iblock in range(size):1015

83 frames_seg[iblock, :] = iblock*bsize, (iblock+1)*bsize

84

85 d = dict([key, frames_seg[key]] for key in range(size))

86

87 start, stop = d[rank][0], d[rank][1]1020

88

89 out = block_dihedrals(index, topology, trajectory, start=start, stop=stop, stepC

=1)

90

91 if rank == 0:1025

92 data1 = np.zeros([size*bsize,848], dtype=float)

93 else:

94 data1 = None

95

96 comm.Gather(out[0], data1, root=0)1030

97

98 if rank == 0:

99 data = np.zeros([size,5], dtype=float)

100 else:

101 data = None1035

102

103 comm.Gather(np.array(out[1:], dtype=float), data, root=0)

104

105 MPI.Finalize

47
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