
Memo for GlobalReductions Study

School of Informatics and Computing, Pervasive Technology Institute

Indiana University Bloomington

Abstract— Data-parallel primitives such as parallel reduction,

sort, or scan are important building block for many data

parallel applications such as Kmeans. The performance of

these data parallel primitives can affect overall performance of

applications if they take large proportion of the processing

process. This paper studies the performance effect of global

reductions primitives on Kmeans uses different parallel

runtime tools including Hadoop, MPI, OpenMP, and Cuda.

Keyword: GlobalReduction, Kmeans

I. INTRODUCTION

Data-parallel primitives such as parallel reduction, sort,
or scan are important building block for many data parallel
applications such as Kmeans. The performance of these data
parallel primitives can affect overall performance of
applications if they take large proportion of the processing
process. This paper studies the performance effect of global
reductions primitives on Kmeans.

In data mining, K-Means clustering is a method of cluster
analysis which aims to partition N observations with D
dimensions into K clusters in which each observation
belongs to the cluster with the nearest mean. In figure1, it
shows the Kmeans algorithm consists of three main steps: 1)
compute distance, 2) find the closest centroids, 3) compute
new centroids. The step 1) and step 2) of Kmeans algorithm
is of pleasingly parallel feature and can be parallelized
among nodes. Step 3) can be parallelized, but it needs a
global reduction step among nodes.

Some Kmeans implementations use sequential code to
run step 3), but this is not a scalable behavior as step 3) can
take large proportion of whole process when more number of
nodes or accelerators was involved in the computation.
However, parallelize step 3) is not as easy as that in step 1)
and step 2) because it requires a global reduction step among
nodes during each iteration. The global reduction increases
the complexity of programming effort, as the programmers
need handle the parallelism among MPI and Pthreads,
OpenMP, or CUDA; and they also need to handle the data
movement among different memory hierarchy, such as copy
data between CPU and GPU memory. Figure 2 illustrates the
workflow of global reduction uses MPI and Hadoop. To
solve the performance and programmability issue, we
propose the GlobalReduction interface that can hide the
implementation details of parallelism among MPI, Hadoop,
OpenMP, Pthread and CUDA.

Do {
OldDelta = Delta;
Delta = 0;
For j=1 to k
 Mj = 0; Nj =0;
Endfor;
For i=1 to n
 For j=1 to k
 Compute squared Euclidean
 Distance d^2(Xi,Mj);
 Endfor;
Find the closest centroid Mj to Xi;
Mj = Mj+Xi;
Nj= Nj+1;
If(Mj!=Mj’) Delta+=1;
For j= 1 to k
 Nj = max(Nj,1); Mj= Mj/Nj;
Endfor;
}while (Delta<OldDelta)

Figure 1, Sequential K-means Algorithm

Computation complexity
Tseq = (3NKD+NK+ND+KD)*Tflops
Tseq ~ 3NKD if N is much larger than K and D

Do{

OldDelta=Delta;
Delta=0;
For j=1to k
 Mj=0;Nj=0;
Endfor;

For i= u*(N/P) to (u+1)*(N/P)
 For j = 1 to k
 Compute squared Euclidean
 Distance d^2(Xi,Mj);
 Endfor;
 Find the cloest centroid Mj to Xi;
 Mj=Mj+Xi; Nj=Nj+1;
 If(Mj!=Mj’) Delta+=1;
Endfor;

For j= 1 to #threads
 For l=1 to K
 SumUp(Nj);Sumup(Mj);

MPI_Allreduce(N,N,MPI_SUM);
MPI_Allreduce(M,M,MPI_SUM);
Figure 2, Parallel K-means Algorithm

Computation complexity:
Tparallel = (3NKD)*Tflop/P + DK*Tflops

Speedup = Tseq/Tparallel =
{(3NKD)*Tflops}/{(3NKD)*Tflop/P+DK*Tflops}

Figure 1: workflow of Kmeans algorithm

II. KMEANS IMPLEMENTATION

We implemented Kmeans with MPI and Hadoop. In MPI

implementation, as shown in figure 2, MPI was used to run

global reduction among nodes, CUDA and OpenMP were

used to run distance computation, membership computation,

and local reduction on single machine. The Kmeans CUDA

code uses three CUDA Kernels – Distance Matrix,

Membership value, and Local Reduction in order to increase

the parallelism of SIMT code. The distance matrix

calculates a (M*K) matrix that contains the Euclidean

distance from each data point to every cluster center using

MX[N/512] kernel grid: step 1). And it assigns the values

for membership values for each data point: step 2). The

kernel local reduction computes the new cluster size for step

3) using a D*[K/4] kernel grid. Using D*M grid exposes

more parallelism, but it needs more memory accesses which

lead to low memory bandwidth utilization. Instead, we

unroll 4 subsequent clusters so as to increase the memory

bandwidth during the computation.

In Hadoop implementation, as shown in figure 2, the task

trackers invoke the Java, Cpp, and CUDA wrapper to run

map tasks that run distance computation and local reduction

on local machine with corresponding binary code. The child

JVM of map tasks were sponsored by Hadoop task tracker,

and it communicate with Cuda or Cpp binary code through

pipe. The global reduction was performed in reduce stage.

One should note that, the data were loaded from disk to

memory in each iteration for Java and Cpp implementation.

And it takes extra data movement between CPU memory

and GPU memory in each iteration for Cuda

implementation. The centroids data were loaded from

memory cache utility of Hadoop. After Map stage, all

intermediate data were shuffled to one reduce task to

perform global reduction using corresponding code.

Figure 2: workflow of the global reduction uses MPI-Cuda and Hadoop-Cuda

 (a) (b) (c)

Figure 3: Overhead component of Kmeans with three local reduction approaches with OpenMP to run membership

computation. (a) uses CUDA to run local reduction. (b) uses OpenMP to run local reduction. (c) uses sequential code

(openmp uses 1core) to run local reduction.

 (a) (b) (c)

Figure 4: Overhead component of Kmeans with three local reduction approaches with CUDA to run membership

computation. (a) uses CUDA to run local reduction. (b) uses OpenMP to run local reduction. (c) uses sequential code

(openmp uses 1 core) to run local reduction.

III. EXPERIMENTS RESULTS

We parallelize the Kmeans using

MPI/Hadoop/OpenMP/CUDA and evaluate its performance

on four compute nodes on Delta cluster on FutureGrid. The

experiments use faked input data for Kmeans with 200K to

3.2 million objects, 100 clusters, and 64 dimensions for each

object. Figure 3 shows the performance results of Kmeans

with three different local reduction approaches for step 3)

including: sequential, openmp, and cuda. The step 1) and

step2) use the openmp to run computation in parallel. The

results indicate that use CUDA and OpenMP for step 3) can

increase the overall performance by 10.3% and 9.1%

respective as compared to using sequential version for step

3).

Figure 4 shows the performance results of Kmeans with

the same three different local reduction approaches for step

3), where the difference is that it uses CUDA to run he

computation for step 1). The results show that using CUDA

and OpenMP for step 3) can increase the overall

performance by 61.5% and 48.3% respective as compared to

using sequential version for step 3).

Figure 5: performance of Kmeans with different runtime

technologies.

We also evaluate Kmeans application with different

runtime technologies including mpi, hadoop and mahout on

four nodes on Delta cluster. The results indicate that mpi-

cuda implementation can give a speedup of 14 over mpi-

openmp for large data sets. And hadoop-cuda is 1.15x and

1.04x faster than hadoop-openmp and hadoop-java

respectively. The hadoop-cuda didn’t have much

performance improvement because it has to load data from

disk to memory and then to gpu device memory during each

iterations, while the mpi implementation can cache the static

data in device memory during each iterations. The results

also showed that the standard implementation mahout is

1.76x slower than our hadoop implementation. This is

because our Hadoop implementation uses much coarse

granularity task, and it can get performance improvement by

leveraging the local reduction, while mahout

implementation uses much finer granularity for each map

task, which trigger larger communication overhead during

shuffle stage. The results also indicate that panda-cuda

implementation is 132.13 times faster than Mahout, but is

2.37 times slower than mpi-cuda implementation.

Figure 6 illustrates the overhead of map, local reduce,

shuffle stages of kmeans jobs using Hadoop and Mahout.

The figure indicates that overhead of Map stage take a

larger proportion in our Hadoop implementation than that in

Mahout implementation, which means using local reduction

can increase the parallel part of the computation.

Figure 6: profiling of overhead of map, local reduce,

shuffle, and reduce stages of kmeans job uses Hadoop and

Mahout.

