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Abstract— Data-parallel primitives such as parallel reduction, 

sort, or scan are important building block for many data 

parallel applications such as Kmeans. The performance of 

these data parallel primitives can affect overall performance of 

applications if they take large proportion of the processing 

process. This paper studies the performance effect of global 

reductions primitives on Kmeans uses different parallel 

runtime tools including Hadoop, MPI, OpenMP, and Cuda. 
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I.  INTRODUCTION 

Data-parallel primitives such as parallel reduction, sort, 
or scan are important building block for many data parallel 
applications such as Kmeans. The performance of these data 
parallel primitives can affect overall performance of 
applications if they take large proportion of the processing 
process. This paper studies the performance effect of global 
reductions primitives on Kmeans. 

In data mining, K-Means clustering is a method of cluster 
analysis which aims to partition N observations with D 
dimensions into K clusters in which each observation 
belongs to the cluster with the nearest mean. In figure1, it 
shows the Kmeans algorithm consists of three main steps: 1) 
compute distance, 2) find the closest centroids, 3) compute 
new centroids. The step 1) and step 2) of Kmeans algorithm 
is of pleasingly parallel feature and can be parallelized 
among nodes. Step 3) can be parallelized, but it needs a 
global reduction step among nodes.  

Some Kmeans implementations use sequential code to 
run step 3), but this is not a scalable behavior as step 3) can 
take large proportion of whole process when more number of 
nodes or accelerators was involved in the computation. 
However, parallelize step 3) is not as easy as that in step 1) 
and step 2) because it requires a global reduction step among 
nodes during each iteration. The global reduction increases 
the complexity of programming effort, as the programmers 
need handle the parallelism among MPI and Pthreads, 
OpenMP, or CUDA; and they also need to handle the data 
movement among different memory hierarchy, such as copy 
data between CPU and GPU memory. Figure 2 illustrates the 
workflow of global reduction uses MPI and Hadoop. To 
solve the performance and programmability issue, we 
propose the GlobalReduction interface that can hide the 
implementation details of parallelism among MPI, Hadoop, 
OpenMP, Pthread and CUDA. 

 
 
 
 
 
 

Do { 
OldDelta  = Delta; 
Delta = 0; 
For j=1 to k 
   Mj = 0; Nj =0; 
Endfor; 
For i=1 to n 
 For j=1 to k 
 Compute squared Euclidean  
  Distance d^2(Xi,Mj); 
 Endfor; 
Find the closest centroid Mj to Xi; 
Mj = Mj+Xi; 
Nj= Nj+1; 
If(Mj!=Mj’) Delta+=1; 
For j= 1 to k 
 Nj = max(Nj,1); Mj= Mj/Nj; 
Endfor; 
}while (Delta<OldDelta) 

Figure 1, Sequential K-means Algorithm 
 
Computation complexity 
Tseq = (3NKD+NK+ND+KD)*Tflops  
Tseq ~ 3NKD if N is much larger than K and D 
 
Do{ 
 
OldDelta=Delta; 
Delta=0; 
For j=1to k 
 Mj=0;Nj=0; 
Endfor; 
 
For i= u*(N/P)  to (u+1)*(N/P) 
 For j = 1 to k 
  Compute squared Euclidean 
   Distance d^2(Xi,Mj); 
 Endfor; 
 Find the cloest centroid Mj to Xi; 
 Mj=Mj+Xi; Nj=Nj+1; 
 If(Mj!=Mj’) Delta+=1; 
Endfor; 

 
For j= 1 to #threads 
 For l=1 to  K 
  SumUp(Nj);Sumup(Mj); 
 
MPI_Allreduce(N,N,MPI_SUM); 
MPI_Allreduce(M,M,MPI_SUM); 
Figure 2, Parallel K-means Algorithm 
 
 



Computation complexity: 
Tparallel = (3NKD)*Tflop/P  +  DK*Tflops 
 

Speedup =  Tseq/Tparallel =  
{(3NKD)*Tflops}/{(3NKD)*Tflop/P+DK*Tflops} 

 
 

   
Figure 1: workflow of Kmeans algorithm 

II. KMEANS IMPLEMENTATION 

We implemented Kmeans with MPI and Hadoop. In MPI 

implementation, as shown in figure 2, MPI was used to run 

global reduction among nodes, CUDA and OpenMP were 

used to run distance computation, membership computation, 

and local reduction on single machine. The Kmeans CUDA 

code uses three CUDA Kernels – Distance Matrix, 

Membership value, and Local Reduction in order to increase 

the parallelism of SIMT code. The distance matrix 

calculates a (M*K) matrix that contains the Euclidean 

distance from each data point to every cluster center using 

MX[N/512] kernel grid: step 1). And it assigns the values 

for membership values for each data point: step 2). The 

kernel local reduction computes the new cluster size for step 

3) using a D*[K/4] kernel grid. Using D*M grid exposes 

more parallelism, but it needs more memory accesses which 

lead to low memory bandwidth utilization. Instead, we 

unroll 4 subsequent clusters so as to increase the memory 

bandwidth during the computation.  

In Hadoop implementation, as shown in figure 2, the task 

trackers invoke the Java, Cpp, and CUDA wrapper to run 

map tasks that run distance computation and local reduction 

on local machine with corresponding binary code. The child 

JVM of map tasks were sponsored by Hadoop task tracker, 

and it communicate with Cuda or Cpp binary code through 

pipe.  The global reduction was performed in reduce stage. 

One should note that, the data were loaded from disk to 

memory in each iteration for Java and Cpp implementation. 

And it takes extra data movement between CPU memory 

and GPU memory in each iteration for Cuda 

implementation. The centroids data were loaded from 

memory cache utility of Hadoop. After Map stage, all 

intermediate data were shuffled to one reduce task to 

perform global reduction using corresponding code. 

 

 

       
Figure 2:   workflow of the global reduction uses MPI-Cuda and Hadoop-Cuda



 
 (a)    (b)    (c) 

Figure 3: Overhead component of Kmeans with three local reduction approaches with OpenMP to run membership 

computation. (a) uses CUDA to run local reduction. (b) uses OpenMP to run local reduction. (c) uses sequential code 

(openmp uses 1core)  to run local reduction. 
 

 
 (a)    (b)      (c) 

Figure 4: Overhead component of Kmeans with three local reduction approaches with CUDA to run membership 

computation. (a) uses CUDA to run local reduction. (b) uses OpenMP to run local reduction. (c) uses sequential code 

(openmp uses 1 core) to run local reduction. 

 

III. EXPERIMENTS RESULTS 

We parallelize the Kmeans using 

MPI/Hadoop/OpenMP/CUDA and evaluate its performance 

on four compute nodes on Delta cluster on FutureGrid. The 

experiments use faked input data for Kmeans with 200K to 

3.2 million objects, 100 clusters, and 64 dimensions for each 

object. Figure 3 shows the performance results of Kmeans 

with three different local reduction approaches for step 3) 

including: sequential, openmp, and cuda. The step 1) and 

step2) use the openmp to run computation in parallel. The 

results indicate that use CUDA and OpenMP for step 3) can 

increase the overall performance by 10.3% and 9.1% 

respective as compared to using sequential version for step 

3).  

Figure 4 shows the performance results of Kmeans with 

the same three different local reduction approaches for step 

3), where the difference is that it uses CUDA to run he 

computation for step 1). The results show that using CUDA 

and OpenMP for step 3) can increase the overall 

performance by 61.5% and 48.3% respective as compared to 

using sequential version for step 3).  
 

 
Figure 5: performance of Kmeans with different runtime 

technologies. 

 

We also evaluate Kmeans application with different 

runtime technologies including mpi, hadoop and mahout on 

four nodes on Delta cluster. The results indicate that mpi-

cuda implementation can give a speedup of 14 over mpi-

openmp for large data sets. And hadoop-cuda is 1.15x and 

1.04x faster than hadoop-openmp and hadoop-java 

respectively. The hadoop-cuda didn’t have much 

performance improvement because it has to load data from 

disk to memory and then to gpu device memory during each 

iterations, while the mpi implementation can cache the static 

data in device memory during each iterations. The results 



also showed that the standard implementation mahout is 

1.76x slower than our hadoop implementation. This is 

because our Hadoop implementation uses much coarse 

granularity task, and it can get performance improvement by 

leveraging the local reduction, while mahout 

implementation uses much finer granularity for each map 

task, which trigger larger communication overhead during 

shuffle stage. The results also indicate that panda-cuda 

implementation is 132.13 times faster than Mahout, but is 

2.37 times slower than mpi-cuda implementation.  

Figure 6 illustrates the overhead of map, local reduce, 

shuffle stages of kmeans jobs using Hadoop and Mahout. 

The figure indicates that overhead of Map stage take a 

larger proportion in our Hadoop implementation than that in 

Mahout implementation, which means using local reduction 

can increase the parallel part of the computation.   

 

 
Figure 6: profiling of overhead of map, local reduce, 

shuffle, and reduce stages of kmeans job uses Hadoop and 

Mahout. 


