
Scalable, Fault-tolerant Management of Grid
Services

Harshawardhan Gadgil, Geoffrey Fox, Shrideep Pallickara, Marlon Pierce
Community Grids Lab, Indiana University, Bloomington IN 47404
(hgadgil, gcf, spallick, marpierc)@indiana.edu

Abstract— The service-oriented architecture has come a
long way in solving the problem of reusability of existing
software resources. Grid applications today are composed of
a large number of loosely coupled services. While this has
opened up new avenues for building large, complex
applications, it has made the management of the application
components a non-trivial task. Use of services existing on
different platforms, implemented in different languages and
presence of variety of network constraints further
complicates management.

This paper investigates problems that emerge when
there is a need to uniformly manage a set of distributed
services. We present a scalable, fault-tolerant management
framework. Our empirical evaluation shows that the
architecture adds an acceptable number of additional
resources for providing scalable, fault-tolerant management
framework.

Keywords: Scalable, Fault-tolerance, Service Oriented
Architecture, Web Services, Management

I. INTRODUCTION
The Service Oriented Architecture (SOA) [1] delivers

unprecedented flexibility and cost savings by promoting reuse
of software components. This has opened new avenues for
building large complex distributed applications by loosely
coupling interacting software services. A distributed
application benefits from properly managed (configured,
deployed and monitored) services. However the various
technologies used to deploy, configure, secure, monitor and
control distributed services have evolved independently. For
instance, many network devices use Simple Network
Management Protocol [2], Java applications use Java
Management eXtensions (JMX) [3] while servers implement
management using Web-based Enterprise Management [4] or
Common Information Model [5].

The Web Services community has addressed this
challenge by adopting a SOA using Web Services technology
to provide flexible and interoperable management protocols.
The flexibility comes from the ability to quickly adapt to
rapidly changing environments. The interoperability comes
from the use of XML based interactions that facilitate
implementations in different languages, running on different
platforms and over multiple transports.

A. Aspects of Resource / Service Management
Before we proceed further, we clarify the use of term

Resource in this paper. Distributed applications are composed
of components which are entities on the network. We consider
a specific case of distributed applications where such entities
can be controlled by zero or modest external state. We define

modest state as being one which can be exchanged using very
few messages (typically 1 message exchange). These entities
in turn can bootstrap and control components with much
higher state such as software services. We consider the
combination of such an entity and the component associated
with it as a Manageable Resource. An example of such an
entity is a Broker Service Adapter which bootstraps a broker
service in a distributed messaging system (the component)
using about 16KB of external state [6].

Note that we do not imply any relation to other
definitions of the term "resource" elsewhere in literature (e.g.
WS-Resource as defined by WSRF). Further, if the entity is a
service we add appropriate management interfaces else we
create a Web Service wrapper that augments a Web Service
based management interface to the manageable resource.

Next, we discuss the scope of management with respect
to the discussion presented in this paper. The primary goal of
Resource Management is the efficient and effective use of an
organization’s resources. Resource management can be
defined as “Maintaining the system’s ability to provide its
specified services with a prescribed quality of service”.
Resource management can be divided into two broad
domains: one that primarily deals with resource utilization and
other that deals with resource administration.

In the first category, resource management provides
resource allocation and scheduling with a specific goal such as
sharing resources fairly while maintaining optimal resource
utilization. For example, operating systems [7] provide
resource management by providing fair resource sharing via
process and memory management. Condor [8] provides
specialized job management for compute intensive tasks.
Similarly, Grid Resource Allocation Manager [9] provides an
interface for requesting and using remote system resources for
job execution.

The second category deals with appropriately configuring
and deploying resources / services while maintaining a valid
run-time configuration according to some user-defined
criteria. In this case management has static (configuring,
bootstrapping) and dynamic (monitoring and event handling)
aspects.

This paper deals with the second category of resource /
service management.

B. Motivation
The phenomenal progress of technology has driven the

deployment of an increasing number of devices ranging from
RFID devices to supercomputers. These devices are widely
deployed, spanning corporate administrative domains

typically protected by firewalls. Low cost of hardware has
made replication a cost-effective approach to fault-tolerance
especially when using software replication. These factors have
contributed to the increasing complexity of today’s
applications which are composed of ever increasing number
of resources: hardware (hard-drives, CPUs, networks) and
software (services). Management is required for maintaining a
properly running application; however existing approaches
have shown limitations to successfully manage such large
scale systems.

First, the number of components susceptible to failure
increases as the size of an application increases in terms of
factors such as hardware components, software components
and geographical scale. An analysis [10] of causes of failure
in Internet services shows that most of the service’s downtime
can be attributed to improper management (such as wrong
configuration) while software failures come second.

Second, with the growing size and complexity of
applications, the cost of administration is increasing while the
difficulty of administration tasks approaches the limits of an
administrator’s skills.

Third, different types of resources in a system require
different resource specific management frameworks. As
previously discussed, the resource management systems have
evolved independently. This complicates application
implementation by requiring the use of different proprietary
technologies for managing different types of resources or
using ad-hoc solutions to interoperate between different
management protocols.

Finally, a central management system poses problems
related to scalability and vulnerability to a single point of
failure.

These factors motivate the need for a distributed
management infrastructure. We envisage a generic
management framework that is capable of managing any type
of resource. We implement Web service based protocols to
provide interoperable management. This enables us to
effectively integrate existing management systems. We
employ a hierarchical bootstrapping mechanism to scale the
management framework over a wide-area. The framework is
tolerant to failures within the framework itself while resource
failure is handled by executing user-defined failure handling
policies. Finally, we evaluate our system to show that to
manage N resources we require about 1% additional resources
which correspond to the components of the management
framework.

C. Desired Features
In this section, we provide a summary of the desired

characteristics of the management framework:
Fault-tolerance: As applications span wide area networks,
they become difficult to maintain. Resource failure is the
norm. Failure could be a result of the actual resource failure or
because of failure of some related component such as network
making resource inaccessible or even because of the failure of
the management framework itself. While the framework must
provide self-healing capabilities, resource failure must be

handled by providing appropriate policies to detect and handle
failures while avoiding inconsistencies.
Scalability: With the increase in number of manageable
resource, the framework must scale to accommodate the
management of additional resources. Also, the management
framework itself adds additional components which are
required to provide features such as fault-tolerance. The
framework must also scale in terms of additional management
framework components.
Performance: Runtime events are generated by resources and
the management system takes a finite amount of time to
respond to faults. The challenge is to achieve acceptable
performance in terms of recovery from failure and
responsiveness to faults as the number of manageable
resources and the additional components required increases.
Interoperability: As previously discussed, resources exist on
different platforms and may be written in different languages.
While proprietary management systems such as JMX and
Windows Management Instrumentation [11] have been quite
successful, they are not interoperable limiting their use in
heterogeneous systems and platforms. The management
framework must address the interoperability issue.
Generality: Resource management must be generic, i.e. the
framework must apply equally well to hardware as well as
software resources.
Usability: The management framework must be usable in
terms of autonomous operation provided by the framework
whenever possible. The framework must automatically detect
and correct failures within the management framework itself
by automatically instantiating new instances of failed
management framework components with minimum user
interaction.
The rest of the paper is organized as follows: We describe the
framework in Section II. We evaluate our system in Section
III and discuss the feasibility of the system. We present
related work in Section IV. Section V is conclusion and future
work.

II. ARCHITECTURE
Our approach uses intrinsically robust and scalable

management services and relies only on the existence of a
reliable, scalable service to store system state. The system
leverages well known strategies for providing fault-tolerance
(periodic check-pointing of system state, passive replication
and request retry), scalability (hierarchical organization,
asynchronous communication) and failure detection (service
heartbeats).

A. Hierarchical Distribution
The overall management framework consists of units

arranged hierarchically (Ref: Figure 1). Each unit is controlled
via a statically configured service called the bootstrap node.
The hierarchical organization of units makes the system
scalable in a wide-area deployment. The bootstrap node
mainly exists to serve as a starting point for all components of
the system.

The bootstrap node also functions as a key fault-
prevention component that ensures the management
architecture is always up and running. This is done by
periodically spawning a health-check service that checks the
system health and if some component has failed, the health-
check service reinstates that component. The leaf nodes of the
hierarchy are active bootstrap nodes. These nodes are
responsible for maintaining a working management
framework for the specified set of machines (domains). The
non-leaf nodes are passive bootstrap nodes and their only
function is to ensure that all registered bootstrap nodes which
are their immediate children are always up and running.

Figure 1 Achieving scalability through hierarchical arrangement

Note that the individual units are functionally identical.
Thus while they work on separate sets of resources and have
separate manager processes, they are expected to perform
similarly in situations such as responding to runtime events.

B. Components of a unit of management framework

Figure 2 Overview showing components of a unit of Management Framework

We now describe the main components of each domain of
the framework. The unit of management framework consists
of one or more manageable resources, their associated

resource managers, one or more messaging nodes (to provide
a scalable messaging substrate) and a scalable, fault-tolerant
database which serves as a registry.

The arrangement of these components is shown in Figure
2. We now describe each of these components in detail. We
will then provide an overview of the consistency scheme and
means to address security issues in the system.

1) Resource: As defined in Section I.A we refer to resource
as the component that requires management. We employ a
service-oriented management architecture and hence we
assume that these resources have a Web Service based
management interface. In the case where the resource is not a
Web Service we augment the resource with a Web service
adapter that serves as a management service proxy. The
service adapter is then responsible for exposing the managed
resource.

2) Service Adapter: Service adapter serves as a mediator
between the resource manager and the resource. Service
adapter is responsible for
1. Sending periodic heartbeats to the associated Manager
2. Providing a transport neutral connection to the manager

(possibly via a messaging node). If there are multiple
brokers, the service adapter may try different messaging
nodes to connect to, should the default messaging node be
unreachable after several tries. An alternate way of
connecting to the best available messaging node is to use
the Broker Discovery Protocol [12]

3. Hosting a service oriented messaging based management
processor protocol such as WS Management (Refer [13]
for details on our implementation). The WS –
Management processor provides basic management
framework and a resource wrapper is expected to provide
the correct functionality (mapping WS Management
messages to resource-specific actions).

Additionally the service adapter may provide an interface to a
persistent storage to periodically store the state to recover
from failures. Alternatively, recovery may be done by
implementing user-defined policies to address failure. Such
policies are executed by a resource-specific manager.

3) Manage: A manager is a multi threaded process and can
manage multiple resources at once. Typically, one resource-
specific manager module thread is responsible for managing
exactly one resource and is also responsible for maintaining
the resource configuration. Since every resource-specific
manager only deals with the state specific to the resource it is
managing, it can independently checkpoint the runtime state
of the resource to the registry. Manager processes usually
maintain very little or no state as the state can be retrieved
easily by either querying the resource or looking up in the
registry. This makes the managers robust as they can be easily
replaced on failure.

The manager process also runs a heartbeat thread that
periodically renews the manager in the registry (discussed in
Section 4). This allows other manager processes to check the
state of the currently managed resources and if a manager

process has not renewed its existence within a specified time,
all resources assigned to the failed manager are then
distributed among other manager processes. On failure, a
finite amount of time is spent in detecting failure and re-
assigning management to new manager processes (passive
replication). When no communication is received from a
managed resource, the manager always verifies if it is still
responsible for managing the resource before re-establishing
management ownership with the resource. This helps in
preventing two managers from managing the same resource.

4) Registry: The registry stores system state. System state
comprises of runtime information such as availability of
managers, list of resources and their health status (via periodic
heartbeat events) and system policies, if any. General purpose
information such as default system configuration may also be
maintained in the registry. The registry is assumed to be
scalable and fault-tolerant. The registry also provides the
necessary logic for invalidating managers that have not
renewed within a predefined time frame, generating a unique
Instance ID for every new instance of resource and manager
and assigning resources to managers.

5) Messaging Node: Messaging nodes consist of statically
configured NaradaBrokering [14] broker nodes. The
messaging node provides a transport-independent scalable
message routing substrate to route messages between the
managers and service adapters. Scalability comes from the use
of a publish/subscribe based communication system that
multiplexes requests to multiple endpoints using a single
connection channel. NaradaBrokering can use multiple types
of transports such as TCP, UDP, HTTP and SSL. This allows
a resource, present behind a firewall or a NAT router, to be
managed (for e.g. connecting to the messaging node and
utilizing tunneling over HTTP/SSL through a firewall).

One may employ multiple messaging nodes to achieve
fault-tolerance as the failure of the default node automatically
causes the system to fall back to the backup messaging node.
Further, these nodes rarely require a change of configuration
and can be restarted automatically using the default static
configuration for that node.

6) User: The user component of the system is the service
requestor. A user (system administrator for the resources
being managed) specifies the system configuration per
resource. This information is consistently maintained by the
registry. The managers are then responsible for bootstrapping
and managing the resources appropriately in accordance with
the user-defined configuration.

C. Consistency
While the framework handles the basic fault-tolerance

and scalability issues, it still faces many consistency issues
such as duplicate requests and out of order messages. This
leads to a number of consistency issues such as:
1. Two or more managers managing the same resource
2. Old messages reaching after new requests
3. Multiple copies of same resource existing at the same

time. This especially happens in the case where a user-

defined policy dictates automatic instantiation of a
service after the service is unreachable for more than the
specified time duration.

To handle these issues, we assume the request processor in
registry to generate a monotonically increasing unique
Instance ID (IID) for each instance of resource (managed
resource or resource specific manager). Every outgoing
message is tagged with a message id that comprises of the
sender’s instance id and a monotonically increasing sequence
number. This allows us to resolve consistency issues as
follows:
1. Requests from manager A is considered obsolete when

IID(A) < IID(B).
2. An entity stores the last successfully processed message’s

message id (which is composed of the sender’s IID and a
monotonically increasing sequence number) allowing it to
distinguish between duplicates and obsoletes.

3. A service adapter periodically renews its existence within
the registry. In response to the renewal, the registry sends
back the currently known instance id of the resource.
When multiple copies of same resource exist, the older
resource sees that its instance id is < current instance id
and hence the service adapter causes the older service to
shut down.

D. Security
A distributed system gives rise to several security issues

such as but not limited to denial of service, unauthorized
access to resources and modification of messages when
traveling over insecure intermediaries. Although we have
currently not implemented any security framework, our use of
NaradaBrokering allows us to leverage the security features of
the substrate to cope with such attacks. The Topic Creation
and Discovery mechanism [15] ensures that physical location
(host and port) of any entity is never revealed. The security
framework [16] provides end-to-end secure delivery of
messages. Encrypted communication prevents unauthorized
access to messages while use of digital signatures help detect
possible message modifications.

III. PERFORMANCE EVALUATION
In this section we analyze the system from scalability

point of view. Failure recovery of framework components is
currently based on timeouts while correctness is handled as
described in Section II.C. We describe our benchmarking
approach and include observed measurements. All our
experiments were conducted on the Community Grids Lab’s
GridFarm cluster (GF1 – GF8). The Gridfarm machines
consist of Dual Intel Xeon hyper-threaded CPUs (2.4 GHz), 2
GB RAM running on Linux (Linux 2.4.22-1.2199.nptlsmp).
They are interconnected using a 1 Gbps network. The Java
version used was Java Hotspot™ Client VM (build 1.4.2_03-
b02, mixed mode).

The most important deciding factor which determines the
maximum number of requests a manager process can handle is
how the response time varies as the number of resources being
managed by a single process increases. As previously

described, the individual units (leaf domains) in the
framework would perform similarly given similar set of
conditions (machines, network and resource behavior and
requirements). In this section, we evaluate our system by
observing the worst case scenario (where all resources
managed by a manager process generate events concurrently)
for a single unit of framework.

Further, this would also enable us to formulate the
number of manager processes that are required and the
number of resources that can be managed within a single
domain (unit) of the management architecture.

A. Test Setup and Observations
The test setup is shown in Figure 3. As shown in the

figure, we increase managers on a single machine (Setup A)
and multiple machines (Setup B). The testing methodology
was as follows. The resources run via a thread-pool that sends
pre-generated events to the managers. A timer is started just
before sending these events. In response to the events, the
resource-specific manager thread responds back to the
resource. When all resources get their corresponding response,
we stop the timer and the difference corresponds to the overall
response time.

Figure 3 Test Setup

The measured response time shows a case with
catastrophic failures, one in which every single resource being
managed generates an event. As expected, with an increase in
the number of managed resources, the average response time
increases. In our case, there was no registry access during
processing of the event, however this behavior is resource
specific and may require one or more registry accesses in
certain cases.

The average response time is shown in Figure 4. The
figure shows the metrics when multiple concurrent failures are
handled by a single manager process. As we increase the
number of managers, we see a huge performance benefit by
increasing the processes from 1 to 2 as the number of
concurrent requests increases beyond 200. We note that, if 4
manager processes are used on same machine instead of 2, we
see that the average response time slightly. The reason is
primarily due to the fact that our test machines had only 2

physical processors and the system takes time to context
switch between various processes. We conclude that adding
more manager processes than the number of available
processors on a particular node, does not necessarily improve
system performance especially when handling multiple
concurrent events.

Figure 4 Average response time when handling multiple concurrent requests
by increasing manager processes (on the same machine)

Figure 5 Average response time when handling multiple concurrent requests
by increasing manager processes (1 per machine)

In case of increasing managers on multiple machines (1
per machine, Refer Figure 5), there is a performance
improvement when using 4 managers instead of 2. Figure 6
shows the performance of 2 and 4 managers when we increase
the number of concurrent requests beyond 300. We note that a
similar pattern emerges whereby a single manager saturates
when the number of concurrent requests increases beyond
200.

Figure 6 Response time comparison (Increasing manager processes on same
vs. multiple machines)

B. Performance Model

Figure 7 Model representing components of average response time as seen by
resources

 Figure 7 shows the components of the average response
time. We now discuss the various factors:

To compute the broker transit time (TX), we measured the
maximum throughput a single broker process can provide. We
note that a single broker when not saturated, can give a
throughput up to 5000 messages / sec for payload size of 512
bytes and in excess of 4500 messages / sec for a payload size
of 1024 bytes. Thus on average TX is < 1 ms and can be
considered a constant if the broker is not saturated. The
latencies between manager and broker (LMB) and between
broker and resource (LBR) is dependent on the network
conditions but can be considered an unvarying constant for an
unsaturated network. Since we use pre-created requests, the
resource processing time TR corresponds to un-marshalling of
the received response only and can be considered a constant.
Thus we get
Time = T + [T + 2*(L + L + T)] P R BR MB X

= T + K P

where the 2 multiplier corresponds to a request and response.
Further T P (which is the processing time at the manager)

is composed of the following 3 components:
T =CPU a resource-specific activity that includes necessary
processing of the event including un-marshalling of the event
request and marshalling of the corresponding response
T =EXTERNAL time taken when additional services such as
registry requests are invoked in order to process the event.

T =SCHEDULING time taken by a processor to schedule the
manager processes. This factor becomes significant when
there are a lot of CPU intensive processes (e.g. more manager
processes than the number of available processors). Thus in
our test setup we note that the average response time for 4
managers is slightly higher than the average response time for
2 manager when running on a single machine (Ref: Figure 4).
Thus,
T = T + T + TP CPU EXTERNAL SCHEDULING

In our case, we did not have any dependency on external
service for processing an event and hence T = 0EXTERNAL .
Further, for a single manger process, T SCHEDULING is very
small and can be ignored.

On hyper-threaded processors, multiple requests can be
processed simultaneously. If C is the number of threads than
can be simultaneously active, then up to C requests can be
processed in time TP. Thus the average time for processing C
requests is TP and the total time for processing N requests is
T = (N/C)*TPROC P.

Also, the maximum request processing rate by a single
multithreaded manager process is
D = C/T requests / secP .

A manager process will not be overloaded as long as the
total requests to be processed are <= maximum outgoing rate,
i.e. <= D. We see degradation in performance when the
manager is managing more than D concurrent requests. Hence,
D determines the maximum number of concurrent requests
that a single manager can handle with linear increase in
response time.

Figure 8 Saturation point for a single manager

As an illustration, we collected the average event
processing times for 150 resources using a single manager on
1 machine and we get the average value of TP to be ≈ 8.37
msec. Our test setup ran on hyper-threaded CPUs which can
run 2 threads simultaneously. Thus, we get
D = C/T * 1000 P

 = (2/8.37) * 1000 ≈ 239 req. / sec.
To determine the saturation point for the manager in our

test setup, we steadily increase the number of concurrent

requests. As shown in Figure 8, a single manager saturates
around 210 concurrent requests.

C. Discussion
A single manager process can manage a large number of

resources however can only process a finite number of
concurrent requests (run-time events) from managed
resources. To provide quality of service to managed resources,
we choose to put a limit on the number of resources assigned
to a single manager process. This limit is D (= 210) in our
case, note that the number 210 is illustrative with respect to
our test setup and could easily be higher especially in the case
where event processing is involves interaction with external
services. Finally as an illustration we note that, in order to
prevent manager process saturation in the worst case scenario,
one would consider assigning only about 210 resources to a
single manager process.

Further, most resources do not require constant
management (e.g. on millisecond scale) hence running more
managers per processor is still acceptable. The graphs indicate
a very specific case of catastrophic failure where every single
resource being managed generates an event. Additionally,
note that the benchmark results presented here deal with only
one unit of management infrastructure. We expect multiple
independent units in a wide area deployment (Ref. Figure 1)
to behave similarly.

D. Amount of Management Infrastructure Required
We now try to answer the research question, “How much

Management Infrastructure is required to handle N
Resources?” We define the term “Management
Infrastructure” as the additional resources required for
providing fault-tolerant management.

Let N be the number of resources requiring management. If
D is the maximum number of resources assigned to a single
manager process, then we require at-least N/D manager
processes. Let M be the maximum number of resources that a
single messaging node can support. Thus to manage N
resources we require CEILING (N/M) messaging nodes.
With 1 messaging node per leaf domain we require N/M leaf
domains. Further, we need at least M/D manager processes per
leaf domain. Let R be the number of registry replicas used to
provide fault-tolerant scalable registry. Thus total number of
management infrastructure processes at the lowest leaf level is
(R registry + 1 messaging node + 1
bootstrap node + M/D managers) * (N/M
such leaf domains)
= (2 + R + M/D)*N/M

In our measurements a single broker could reliably
support about (M = 800) simultaneous TCP connections. To
scale to a larger number of resources, a different protocol such
as UDP may be used that improves the value of M. However,
additional logic must be used to account for dropped messages
via message retry and timeouts. The second approach is to use
a cluster of strongly connected messaging nodes however this
requires additional management in setting up links between
the various messaging nodes and maintaining them in a fault-

tolerant fashion. A third way is to redistribute resources such
that they are managed in different management domains.

To manage the N/M leaf domains, an additional number
of passive bootstrap nodes are required. Typically the number
of passive nodes would be << N/M and we ignore it for the
purpose of this analysis. Thus for managing N resources we
require an additional (2 + R + M/D)*N/M processes.
Thus, the percentage of management infrastructure required
with respect to number of resources N is
MGMT INFRASTRUCTURE

= [(2 + R + M/D)*N/M]/N * 100 %
= [(2+R)/M + 1/D] * 100 %
As an illustration, if D = 200, R = 4 and M = 800,
then
MGMT INFRASTRUCTURE

= [(2+4)/800 + 1/200] * 100 %
= 1.2 %

Note that, when the number of resources N is small (e.g.
N = 10), we still require the basic infrastructure (consisting
of 1 manager, 1 bootstrap node, 1 messaging node and R
registries) to manage them. Assuming R = 4, the minimum
infrastructure components are 7. Thus the architecture scales
when N * 1.2% = 7, i.e. N ≈ 600. Thus we conclude
that when N is large (> 600), we can achieve fault-tolerant
management by adding approximately 1% additional
resources. Finally, as previously discussed, the value of D
may be suitably adjusted which would determine the number
of manager processes required which in turn affects
percentage of extra resources (MGMTINFRASTRUCTURE).

IV. RELATED WORK
The Web Services Resource Framework (WSRF) [17] is

a suite of specifications that align the OSGI conceptual model
to be in agreement with existing Web standards. WSRF
defines a WS-Resource as a “composition of Web Service and
a stateful Resource”. The WSRF defines conventions for
managing state in distributed system comprising of such WS-
Resources. The WSRF community has adopted Web Services
Distributed Management (WSDM) that defines a complete
management model that includes Management of Web
Services (MOWS) [18] and Management using Web
Services(MUWS) [19]. By contrast, we define any service
that needs configuration, lifecycle and runtime management
as a resource and wrap it with a service interface to expose
management capabilities. Management is provided by a
complementary specification, WS-Management [20] which is
a SOAP-based protocol for managing systems (including Web
Services) and functionally overlaps with MUWS.

SNMP (Simple Network Management Protocol) [2] deals
primarily with network resources. SNMP is an application
layer protocol that facilitates exchange of management
information between network devices. Lack of security
features however reduces SNMP to a monitoring facility only.
As we have discussed in Section I.A, monitoring is an
important aspect of management but not all of it. There are a
variety of distributed monitoring frameworks such as Ganglia

[21], Network Weather Service [22] and MonALISA [23].
The primary purpose of these distributed monitoring
frameworks is to provide monitoring of global Grid systems
and aggregation of metrics. Some systems such as
MonALISA also provide the capability of configuring and
managing services via RMI calls.

In the Java community, the JMX [3] technology provides
tools for building distributed, Web-based management system
for managing and monitoring Java applications, devices and
service driven networks. However JMX can typically be
accessed only by clients using Java technology making it non-
interoperable. This issue is being partly addressed by
providing a Web Service connector for JMX Agents [24].
While JMX presents the capability to instrument applications
with appropriate messages, metrics and control mechanisms, a
Web Service based management protocol provides a more
cross-platform, standards-based interface.

V. CONCLUSION AND FUTURE WORK
A successful distributed application benefits from

properly managed services. In this paper we have presented
the need and our approach to uniformly manage a set of
distributed services. This work leveraged the
publish/subscribe paradigm to scale locally and a hierarchical
distribution to scale in wide area deployments. The system is
tolerant to faults within the management framework while
resource failure is handled by implementing user-defined
policies. When applied to resources with modest external
state, the approach is feasible since it adds about 1%
additional resources to provide fault-tolerant management to a
large set of distributed resources.

Management is enabled by leveraging WS Management
which uses simple operations such as GET and PUT to
manage resources. These operations can be modeled in a
REST-like [25] fashion, thereby, making the approach
applicable to managing resources in any service-based
architecture including Web 2.0.

In the future we would like to apply the framework to
broader areas that would help carry out more detailed
performance benchmarks tests. We believe that application of
management framework to such systems can bring up many
interesting research issues, specifically challenging scalability
of the system. Our current implementation uses WS –
Management. In the future we would like to investigate
implementing the merged [26] Web Service based
management specifications. Finally, more metrics (such as
CPU utilization, available memory and locality) need to be
taken into account when assigning managers to resources.

REFERENCES

[1] Channabasavaiah, K., K. Holley, and J. Edward Tuggle.

Migrating to a Service Oriented Architecture. Dec 2003;
Available from: http://www-
128.ibm.com/developerworks/library/ws-migratesoa/.

[2] Case, J., et al. A Simple Network Management Protocol
(SNMP). 1990; Available from: RFC: 1157,
http://www.ietf.org/rfc/rfc1157.txt.

[3] Kreger, H., Java Management Extensions for application
management. IBM Systems Journal, 2001. 40(1).

[4] Distributed Management Task Force, I. Web-Based Enterprise
Management (WBEM). Available from:
http://www.dmtf.org/standards/cim/.

[5] Distributed Management Task Force, I. Common Information
Model (CIM). Available from:
http://www.dmtf.org/standards/cim/.

[6] Gadgil, H., et al. Managing Grid Messaging Middleware. in
Challenges of Large Applications in Distributed Environments
(CLADE). 2006. Paris, France.

[7] Silberschatz, A. and P.B. Galvin, Operating Systems Concepts.
Fifth Edition ed. 1999: Addison Wesley Longman, Inc.

[8] Condor Project. Available from:
http://www.cs.wisc.edu/condor/.

[9] Grid Resource Allocation Manager. Available from:
http://www.globus.org/toolkit/docs/3.2/gram/ws/index.html.

[10] Oppenheimer, D., A. Ganapathi, and D.A. Patterson. Why do
Internet services fail, and what can be done about it ? in
USENIX Symposium on Internet Technologies and Systems
(USITS '03). March 2003.

[11] Microsoft. Windows Management Instrumentation (WMI).
Available from:
http://www.microsoft.com/whdc/system/pnppwr/wmi/default.
mspx.

[12] Pallickara, S., H. Gadgil, and G. Fox. On the Discovery of
Brokers in Distributed Messaging Infrastructures. in IEEE
Cluster. Sep 27 - 30, 2005. Boston, MA.

[13] Pallickara, S., et al., A Retrospective on the Development of
Web Service Specifications, in Securing Web Services:
Practical Usage of Standards and Specifications, P. Panos,
Editor. 2006, Idea Group Inc.: University of Newcastle Upon
Tyne.

[14] Pallickara, S. and G. Fox. NaradaBrokering: A Middleware
Framework and Architecture for Enabling Durable Peer-to-
Peer Grids. in ACM/IFIP/USENIX International Middleware
Conference. 2003.

[15] Pallickara, S., G. Fox, and H. Gadgil. On the Discovery of
Topics in Distributed Publish/Subscribe systems. in 6th
IEEE/ACM International Workshop on Grid Computing Grid
2005. 2005. Seattle, WA.

[16] Pallickara, S., et al. A Framwork for Secure End-to-End
Delivery of Messages in Publish / Subscribe Systems. in 7th
IEEE/ACM International Conference on Grid Computing (Grid
2006). 2006. Barcelona, Spain.

[17] Czajkowski, K., et al. The WS-Resource Framework. May
2004.

[18] OASIS-TC. Web Services Distributed Management:
Management of Web Services (WSDM-MOWS) 1.0 OASIS
Standard. Available from: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsdm.

[19] OASIS-TC. Web Services Distributed Management:
Management Using Web Service (MUWS 1.0) Part 1 & 2,
OASIS Standard. Available from: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsdm.

[20] Arora, A., et al. Web Services for Management. June 2005;
Available from:
https://wiseman.dev.java.net/specs/2005/06/management.pdf.

[21] Massie, M., B. Chun, and D. Culler, The Ganglia Distributed
Monitoring System: Design, Implementation and Experience.
Parallel Computing, July 2004. 30(7).

[22] Wolski, R. Forecasting Network Performance to Support
Dynamic Scheduling using the Network Weather Service. in
High Performance Distributed Computing (HPDC). 1997.

http://www-128.ibm.com/developerworks/library/ws-migratesoa/
http://www-128.ibm.com/developerworks/library/ws-migratesoa/
http://www.ietf.org/rfc/rfc1157.txt
http://www.dmtf.org/standards/cim/
http://www.dmtf.org/standards/cim/
http://www.cs.wisc.edu/condor/
http://www.globus.org/toolkit/docs/3.2/gram/ws/index.html
http://www.microsoft.com/whdc/system/pnppwr/wmi/default.mspx
http://www.microsoft.com/whdc/system/pnppwr/wmi/default.mspx
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm

[23] Newman, H.B., et al. MonALISA: A Distributed Monitoring
Services Architecture. in CHEP 2003. March 2003. La Jola,
CA.

[24] BEA, et al. JSR 262: Web Services Connector for Java
Management Extensions (JMX) Agents. 2006; Available from:
http://jcp.org/en/jsr/detail?id=262.

[25] Fielding, R.T. and R.N. Taylor. Principled Design of the
Modern Web Architecture. in 22nd International Conference
on Software Engineering (ICSE '00). 2000. Limerick, London:
ACM Press.

[26] HP, et al. Toward Converging Web Service Standards for
Resources, Events, and Management. Available from:
http://msdn.microsoft.com/library/en-
us/dnwebsrv/html/convergence.asp.

http://jcp.org/en/jsr/detail?id=262
http://msdn.microsoft.com/library/en-us/dnwebsrv/html/convergence.asp
http://msdn.microsoft.com/library/en-us/dnwebsrv/html/convergence.asp

	I. Introduction
	A. Aspects of Resource / Service Management
	B. Motivation
	C. Desired Features

	II. Architecture
	A. Hierarchical Distribution
	B. Components of a unit of management framework
	1) Resource: As defined in Section I.A we refer to resource as the component that requires management. We employ a service-oriented management architecture and hence we assume that these resources have a Web Service based management interface. In the case where the resource is not a Web Service we augment the resource with a Web service adapter that serves as a management service proxy. The service adapter is then responsible for exposing the managed resource.
	2) Service Adapter: Service adapter serves as a mediator between the resource manager and the resource. Service adapter is responsible for
	3) Manage: A manager is a multi threaded process and can manage multiple resources at once. Typically, one resource-specific manager module thread is responsible for managing exactly one resource and is also responsible for maintaining the resource configuration. Since every resource-specific manager only deals with the state specific to the resource it is managing, it can independently checkpoint the runtime state of the resource to the registry. Manager processes usually maintain very little or no state as the state can be retrieved easily by either querying the resource or looking up in the registry. This makes the managers robust as they can be easily replaced on failure.
	4) Registry: The registry stores system state. System state comprises of runtime information such as availability of managers, list of resources and their health status (via periodic heartbeat events) and system policies, if any. General purpose information such as default system configuration may also be maintained in the registry. The registry is assumed to be scalable and fault-tolerant. The registry also provides the necessary logic for invalidating managers that have not renewed within a predefined time frame, generating a unique Instance ID for every new instance of resource and manager and assigning resources to managers.
	5) Messaging Node: Messaging nodes consist of statically configured NaradaBrokering [14] broker nodes. The messaging node provides a transport-independent scalable message routing substrate to route messages between the managers and service adapters. Scalability comes from the use of a publish/subscribe based communication system that multiplexes requests to multiple endpoints using a single connection channel. NaradaBrokering can use multiple types of transports such as TCP, UDP, HTTP and SSL. This allows a resource, present behind a firewall or a NAT router, to be managed (for e.g. connecting to the messaging node and utilizing tunneling over HTTP/SSL through a firewall).
	6) User: The user component of the system is the service requestor. A user (system administrator for the resources being managed) specifies the system configuration per resource. This information is consistently maintained by the registry. The managers are then responsible for bootstrapping and managing the resources appropriately in accordance with the user-defined configuration.

	C. Consistency
	D. Security

	III. Performance Evaluation
	A. Test Setup and Observations
	B. Performance Model
	C. Discussion
	D. Amount of Management Infrastructure Required

	IV. Related Work
	V. Conclusion and Future Work

