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Abstract— The service-oriented architecture has come a 
long way in solving the problem of reusability of existing 
software resources. Grid applications today are composed of 
a large number of loosely coupled services. While this has 
opened up new avenues for building large, complex 
applications, it has made the management of the application 
components a non-trivial task. Use of services existing on 
different platforms, implemented in different languages and 
presence of variety of network constraints further 
complicates management. 

This paper investigates problems that emerge when 
there is a need to uniformly manage a set of distributed 
services. We present a scalable, fault-tolerant management 
framework. Our empirical evaluation shows that the 
architecture adds an acceptable number of additional 
resources for providing scalable, fault-tolerant management 
framework. 

Keywords: Scalable, Fault-tolerance, Service Oriented 
Architecture, Web Services, Management 

I. INTRODUCTION 
The Service Oriented Architecture (SOA) [1]  delivers 

unprecedented flexibility and cost savings by promoting reuse 
of software components. This has opened new avenues for 
building large complex distributed applications by loosely 
coupling interacting software services. A distributed 
application benefits from properly managed (configured, 
deployed and monitored) services. However the various 
technologies used to deploy, configure, secure, monitor and 
control distributed services have evolved independently. For 
instance, many network devices use Simple Network 
Management Protocol [2], Java applications use Java 
Management eXtensions (JMX) [3] while servers implement 
management using Web-based Enterprise Management [4] or 
Common Information Model [5].  

The Web Services community has addressed this 
challenge by adopting a SOA using Web Services technology 
to provide flexible and interoperable management protocols. 
The flexibility comes from the ability to quickly adapt to 
rapidly changing environments. The interoperability comes 
from the use of XML based interactions that facilitate 
implementations in different languages, running on different 
platforms and over multiple transports. 

A. Aspects of Resource / Service Management 
Before we proceed further, we clarify the use of term 

Resource in this paper. Distributed applications are composed 
of components which are entities on the network. We consider 
a specific case of distributed applications where such entities 
can be controlled by zero or modest external state. We define 

modest state as being one which can be exchanged using very 
few messages (typically 1 message exchange). These entities 
in turn can bootstrap and control components with much 
higher state such as software services. We consider the 
combination of such an entity and the component associated 
with it as a Manageable Resource. An example of such an 
entity is a Broker Service Adapter which bootstraps a broker 
service in a distributed messaging system (the component) 
using about 16KB of external state [6].  

Note that we do not imply any relation to other 
definitions of the term "resource" elsewhere in literature (e.g. 
WS-Resource as defined by WSRF). Further, if the entity is a 
service we add appropriate management interfaces else we 
create a Web Service wrapper that augments a Web Service 
based management interface to the manageable resource. 

Next, we discuss the scope of management with respect 
to the discussion presented in this paper. The primary goal of 
Resource Management is the efficient and effective use of an 
organization’s resources. Resource management can be 
defined as “Maintaining the system’s ability to provide its 
specified services with a prescribed quality of service”. 
Resource management can be divided into two broad 
domains: one that primarily deals with resource utilization and 
other that deals with resource administration. 

In the first category, resource management provides 
resource allocation and scheduling with a specific goal such as 
sharing resources fairly while maintaining optimal resource 
utilization. For example, operating systems [7] provide 
resource management by providing fair resource sharing via 
process and memory management. Condor [8] provides 
specialized job management for compute intensive tasks. 
Similarly, Grid Resource Allocation Manager [9] provides an 
interface for requesting and using remote system resources for 
job execution.  

The second category deals with appropriately configuring 
and deploying resources / services while maintaining a valid 
run-time configuration according to some user-defined 
criteria. In this case management has static (configuring, 
bootstrapping) and dynamic (monitoring and event handling) 
aspects.  

This paper deals with the second category of resource / 
service management. 

B.  Motivation 
The phenomenal progress of technology has driven the 

deployment of an increasing number of devices ranging from 
RFID devices to supercomputers. These devices are widely 
deployed, spanning corporate administrative domains 



typically protected by firewalls. Low cost of hardware has 
made replication a cost-effective approach to fault-tolerance 
especially when using software replication. These factors have 
contributed to the increasing complexity of today’s 
applications which are composed of ever increasing number 
of resources: hardware (hard-drives, CPUs, networks) and 
software (services). Management is required for maintaining a 
properly running application; however existing approaches 
have shown limitations to successfully manage such large 
scale systems. 

First, the number of components susceptible to failure 
increases as the size of an application increases in terms of 
factors such as hardware components, software components 
and geographical scale. An analysis [10] of causes of failure 
in Internet services shows that most of the service’s downtime 
can be attributed to improper management (such as wrong 
configuration) while software failures come second. 

Second, with the growing size and complexity of 
applications, the cost of administration is increasing while the 
difficulty of administration tasks approaches the limits of an 
administrator’s skills.  

Third, different types of resources in a system require 
different resource specific management frameworks. As 
previously discussed, the resource management systems have 
evolved independently. This complicates application 
implementation by requiring the use of different proprietary 
technologies for managing different types of resources or 
using ad-hoc solutions to interoperate between different 
management protocols. 

Finally, a central management system poses problems 
related to scalability and vulnerability to a single point of 
failure.  

These factors motivate the need for a distributed 
management infrastructure. We envisage a generic 
management framework that is capable of managing any type 
of resource. We implement Web service based protocols to 
provide interoperable management. This enables us to 
effectively integrate existing management systems. We 
employ a hierarchical bootstrapping mechanism to scale the 
management framework over a wide-area. The framework is 
tolerant to failures within the framework itself while resource 
failure is handled by executing user-defined failure handling 
policies. Finally, we evaluate our system to show that to 
manage N resources we require about 1% additional resources 
which correspond to the components of the management 
framework.  

C. Desired Features 
In this section, we provide a summary of the desired 

characteristics of the management framework: 
Fault-tolerance: As applications span wide area networks, 
they become difficult to maintain. Resource failure is the 
norm. Failure could be a result of the actual resource failure or 
because of failure of some related component such as network 
making resource inaccessible or even because of the failure of 
the management framework itself. While the framework must 
provide self-healing capabilities, resource failure must be 

handled by providing appropriate policies to detect and handle 
failures while avoiding inconsistencies. 
Scalability: With the increase in number of manageable 
resource, the framework must scale to accommodate the 
management of additional resources. Also, the management 
framework itself adds additional components which are 
required to provide features such as fault-tolerance. The 
framework must also scale in terms of additional management 
framework components. 
Performance: Runtime events are generated by resources and 
the management system takes a finite amount of time to 
respond to faults. The challenge is to achieve acceptable 
performance in terms of recovery from failure and 
responsiveness to faults as the number of manageable 
resources and the additional components required increases.  
Interoperability: As previously discussed, resources exist on 
different platforms and may be written in different languages. 
While proprietary management systems such as JMX and 
Windows Management Instrumentation [11] have been quite 
successful, they are not interoperable limiting their use in 
heterogeneous systems and platforms. The management 
framework must address the interoperability issue.  
Generality: Resource management must be generic, i.e. the 
framework must apply equally well to hardware as well as 
software resources. 
Usability: The management framework must be usable in 
terms of autonomous operation provided by the framework 
whenever possible. The framework must automatically detect 
and correct failures within the management framework itself 
by automatically instantiating new instances of failed 
management framework components with minimum user 
interaction. 
The rest of the paper is organized as follows: We describe the 
framework in Section II. We evaluate our system in Section 
III and discuss the feasibility of the system. We present 
related work in Section IV. Section V is conclusion and future 
work. 

II. ARCHITECTURE 
Our approach uses intrinsically robust and scalable 

management services and relies only on the existence of a 
reliable, scalable service to store system state. The system 
leverages well known strategies for providing fault-tolerance 
(periodic check-pointing of system state, passive replication 
and request retry), scalability (hierarchical organization, 
asynchronous communication) and failure detection (service 
heartbeats). 

A. Hierarchical Distribution 
The overall management framework consists of units 

arranged hierarchically (Ref: Figure 1). Each unit is controlled 
via a statically configured service called the bootstrap node. 
The hierarchical organization of units makes the system 
scalable in a wide-area deployment. The bootstrap node 
mainly exists to serve as a starting point for all components of 
the system. 



The bootstrap node also functions as a key fault-
prevention component that ensures the management 
architecture is always up and running. This is done by 
periodically spawning a health-check service that checks the 
system health and if some component has failed, the health-
check service reinstates that component. The leaf nodes of the 
hierarchy are active bootstrap nodes. These nodes are 
responsible for maintaining a working management 
framework for the specified set of machines (domains). The 
non-leaf nodes are passive bootstrap nodes and their only 
function is to ensure that all registered bootstrap nodes which 
are their immediate children are always up and running. 

 
Figure 1 Achieving scalability through hierarchical arrangement 

Note that the individual units are functionally identical. 
Thus while they work on separate sets of resources and have 
separate manager processes, they are expected to perform 
similarly in situations such as responding to runtime events. 

B. Components of a unit of management framework 

 

Figure 2 Overview showing components of a unit of Management Framework 

We now describe the main components of each domain of 
the framework. The unit of management framework consists 
of one or more manageable resources, their associated 

resource managers, one or more messaging nodes (to provide 
a scalable messaging substrate) and a scalable, fault-tolerant 
database which serves as a registry. 

The arrangement of these components is shown in Figure 
2. We now describe each of these components in detail. We 
will then provide an overview of the consistency scheme and 
means to address security issues in the system. 

1) Resource: As defined in Section I.A we refer to resource 
as the component that requires management. We employ a 
service-oriented management architecture and hence we 
assume that these resources have a Web Service based 
management interface. In the case where the resource is not a 
Web Service we augment the resource with a Web service 
adapter that serves as a management service proxy. The 
service adapter is then responsible for exposing the managed 
resource. 

2) Service Adapter: Service adapter serves as a mediator 
between the resource manager and the resource. Service 
adapter is responsible for  
1. Sending periodic heartbeats to the associated Manager 
2. Providing a transport neutral connection to the manager 

(possibly via a messaging node). If there are multiple 
brokers, the service adapter may try different messaging 
nodes to connect to, should the default messaging node be 
unreachable after several tries. An alternate way of 
connecting to the best available messaging node is to use 
the Broker Discovery Protocol [12] 

3. Hosting a service oriented messaging based management 
processor protocol such as WS Management (Refer [13] 
for details on our implementation). The WS – 
Management processor provides basic management 
framework and a resource wrapper is expected to provide 
the correct functionality (mapping WS Management 
messages to resource-specific actions). 

Additionally the service adapter may provide an interface to a 
persistent storage to periodically store the state to recover 
from failures. Alternatively, recovery may be done by 
implementing user-defined policies to address failure. Such 
policies are executed by a resource-specific manager. 

3) Manage: A manager is a multi threaded process and can 
manage multiple resources at once. Typically, one resource-
specific manager module thread is responsible for managing 
exactly one resource and is also responsible for maintaining 
the resource configuration. Since every resource-specific 
manager only deals with the state specific to the resource it is 
managing, it can independently checkpoint the runtime state 
of the resource to the registry. Manager processes usually 
maintain very little or no state as the state can be retrieved 
easily by either querying the resource or looking up in the 
registry. This makes the managers robust as they can be easily 
replaced on failure. 

The manager process also runs a heartbeat thread that 
periodically renews the manager in the registry (discussed in 
Section 4). This allows other manager processes to check the 
state of the currently managed resources and if a manager 



process has not renewed its existence within a specified time, 
all resources assigned to the failed manager are then 
distributed among other manager processes. On failure, a 
finite amount of time is spent in detecting failure and re-
assigning management to new manager processes (passive 
replication). When no communication is received from a 
managed resource, the manager always verifies if it is still 
responsible for managing the resource before re-establishing 
management ownership with the resource. This helps in 
preventing two managers from managing the same resource. 

4) Registry: The registry stores system state. System state 
comprises of runtime information such as availability of 
managers, list of resources and their health status (via periodic 
heartbeat events) and system policies, if any. General purpose 
information such as default system configuration may also be 
maintained in the registry. The registry is assumed to be 
scalable and fault-tolerant. The registry also provides the 
necessary logic for invalidating managers that have not 
renewed within a predefined time frame, generating a unique 
Instance ID for every new instance of resource and manager 
and assigning resources to managers. 

5) Messaging Node: Messaging nodes consist of statically 
configured NaradaBrokering [14] broker nodes. The 
messaging node provides a transport-independent scalable 
message routing substrate to route messages between the 
managers and service adapters. Scalability comes from the use 
of a publish/subscribe based communication system that 
multiplexes requests to multiple endpoints using a single 
connection channel. NaradaBrokering can use multiple types 
of transports such as TCP, UDP, HTTP and SSL. This allows 
a resource, present behind a firewall or a NAT router, to be 
managed (for e.g. connecting to the messaging node and 
utilizing tunneling over HTTP/SSL through a firewall).  

One may employ multiple messaging nodes to achieve 
fault-tolerance as the failure of the default node automatically 
causes the system to fall back to the backup messaging node. 
Further, these nodes rarely require a change of configuration 
and can be restarted automatically using the default static 
configuration for that node. 

6) User: The user component of the system is the service 
requestor. A user (system administrator for the resources 
being managed) specifies the system configuration per 
resource. This information is consistently maintained by the 
registry. The managers are then responsible for bootstrapping 
and managing the resources appropriately in accordance with 
the user-defined configuration. 

C. Consistency  
While the framework handles the basic fault-tolerance 

and scalability issues, it still faces many consistency issues 
such as duplicate requests and out of order messages. This 
leads to a number of consistency issues such as: 
1. Two or more managers managing the same resource 
2. Old messages reaching after new requests 
3. Multiple copies of same resource existing at the same 

time. This especially happens in the case where a user-

defined policy dictates automatic instantiation of a 
service after the service is unreachable for more than the 
specified time duration. 

To handle these issues, we assume the request processor in 
registry to generate a monotonically increasing unique 
Instance ID (IID) for each instance of resource (managed 
resource or resource specific manager). Every outgoing 
message is tagged with a message id that comprises of the 
sender’s instance id and a monotonically increasing sequence 
number. This allows us to resolve consistency issues as 
follows: 
1. Requests from manager A is considered obsolete when 

IID(A) < IID(B). 
2. An entity stores the last successfully processed message’s 

message id (which is composed of the sender’s IID and a 
monotonically increasing sequence number) allowing it to 
distinguish between duplicates and obsoletes.  

3. A service adapter periodically renews its existence within 
the registry. In response to the renewal, the registry sends 
back the currently known instance id of the resource. 
When multiple copies of same resource exist, the older 
resource sees that its instance id is < current instance id 
and hence the service adapter causes the older service to 
shut down. 

D. Security 
A distributed system gives rise to several security issues 

such as but not limited to denial of service, unauthorized 
access to resources and modification of messages when 
traveling over insecure intermediaries. Although we have 
currently not implemented any security framework, our use of 
NaradaBrokering allows us to leverage the security features of 
the substrate to cope with such attacks. The Topic Creation 
and Discovery mechanism [15] ensures that physical location 
(host and port) of any entity is never revealed. The security 
framework [16] provides end-to-end secure delivery of 
messages. Encrypted communication prevents unauthorized 
access to messages while use of digital signatures help detect 
possible message modifications. 

III. PERFORMANCE EVALUATION 
In this section we analyze the system from scalability 

point of view. Failure recovery of framework components is 
currently based on timeouts while correctness is handled as 
described in Section II.C. We describe our benchmarking 
approach and include observed measurements. All our 
experiments were conducted on the Community Grids Lab’s 
GridFarm cluster (GF1 – GF8). The Gridfarm machines 
consist of Dual Intel Xeon hyper-threaded CPUs (2.4 GHz), 2 
GB RAM running on Linux (Linux 2.4.22-1.2199.nptlsmp). 
They are interconnected using a 1 Gbps network. The Java 
version used was Java Hotspot™ Client VM (build 1.4.2_03-
b02, mixed mode). 

The most important deciding factor which determines the 
maximum number of requests a manager process can handle is 
how the response time varies as the number of resources being 
managed by a single process increases. As previously 



described, the individual units (leaf domains) in the 
framework would perform similarly given similar set of 
conditions (machines, network and resource behavior and 
requirements). In this section, we evaluate our system by 
observing the worst case scenario (where all resources 
managed by a manager process generate events concurrently) 
for a single unit of framework. 

Further, this would also enable us to formulate the 
number of manager processes that are required and the 
number of resources that can be managed within a single 
domain (unit) of the management architecture.  

A. Test Setup and Observations 
The test setup is shown in Figure 3. As shown in the 

figure, we increase managers on a single machine (Setup A) 
and multiple machines (Setup B). The testing methodology 
was as follows. The resources run via a thread-pool that sends 
pre-generated events to the managers. A timer is started just 
before sending these events. In response to the events, the 
resource-specific manager thread responds back to the 
resource. When all resources get their corresponding response, 
we stop the timer and the difference corresponds to the overall 
response time. 

 
Figure 3 Test Setup 

The measured response time shows a case with 
catastrophic failures, one in which every single resource being 
managed generates an event. As expected, with an increase in 
the number of managed resources, the average response time 
increases. In our case, there was no registry access during 
processing of the event, however this behavior is resource 
specific and may require one or more registry accesses in 
certain cases. 

The average response time is shown in Figure 4. The 
figure shows the metrics when multiple concurrent failures are 
handled by a single manager process. As we increase the 
number of managers, we see a huge performance benefit by 
increasing the processes from 1 to 2 as the number of 
concurrent requests increases beyond 200. We note that, if 4 
manager processes are used on same machine instead of 2, we 
see that the average response time slightly. The reason is 
primarily due to the fact that our test machines had only 2 

physical processors and the system takes time to context 
switch between various processes. We conclude that adding 
more manager processes than the number of available 
processors on a particular node, does not necessarily improve 
system performance especially when handling multiple 
concurrent events. 

 
Figure 4 Average response time when handling multiple concurrent requests 
by increasing manager processes (on the same machine) 

 
Figure 5 Average response time when handling multiple concurrent requests 
by increasing manager processes (1 per machine) 

In case of increasing managers on multiple machines (1 
per machine, Refer Figure 5), there is a performance 
improvement when using 4 managers instead of 2. Figure 6 
shows the performance of 2 and 4 managers when we increase 
the number of concurrent requests beyond 300. We note that a 
similar pattern emerges whereby a single manager saturates 
when the number of concurrent requests increases beyond 
200. 
 



 
Figure 6 Response time comparison (Increasing manager processes on same 
vs. multiple machines) 

B. Performance Model 

 
Figure 7 Model representing components of average response time as seen by 
resources 

 Figure 7 shows the components of the average response 
time. We now discuss the various factors: 

To compute the broker transit time (TX), we measured the 
maximum throughput a single broker process can provide. We 
note that a single broker when not saturated, can give a 
throughput up to 5000 messages / sec for payload size of 512 
bytes and in excess of 4500 messages / sec for a payload size 
of 1024 bytes. Thus on average TX is < 1 ms and can be 
considered a constant if the broker is not saturated. The 
latencies between manager and broker (LMB) and between 
broker and resource (LBR) is dependent on the network 
conditions but can be considered an unvarying constant for an 
unsaturated network. Since we use pre-created requests, the 
resource processing time TR corresponds to un-marshalling of 
the received response only and can be considered a constant. 
Thus we get 
Time  = T  + [T  + 2*(L  + L  + T )] P R BR MB X

= T  + K P

where the 2 multiplier corresponds to a request and response. 
Further T  P (which is the processing time at the manager) 

is composed of the following 3 components: 
T  =CPU  a resource-specific activity that includes necessary 
processing of the event including un-marshalling of the event 
request and marshalling of the corresponding response 
T  =EXTERNAL  time taken when additional services such as 
registry requests are invoked in order to process the event. 

T  =SCHEDULING  time taken by a processor to schedule the 
manager processes. This factor becomes significant when 
there are a lot of CPU intensive processes (e.g. more manager 
processes than the number of available processors). Thus in 
our test setup we note that the average response time for 4 
managers is slightly higher than the average response time for 
2 manager when running on a single machine (Ref: Figure 4). 
Thus, 
T  = T  + T  + TP CPU EXTERNAL SCHEDULING

In our case, we did not have any dependency on external 
service for processing an event and hence T  = 0EXTERNAL . 
Further, for a single manger process, T  SCHEDULING is very 
small and can be ignored. 

On hyper-threaded processors, multiple requests can be 
processed simultaneously. If C is the number of threads than 
can be simultaneously active, then up to C requests can be 
processed in time TP. Thus the average time for processing C 
requests is TP and the total time for processing N requests is 
T  = (N/C)*TPROC P. 

Also, the maximum request processing rate by a single 
multithreaded manager process is  
D = C/T  requests / secP . 

A manager process will not be overloaded as long as the 
total requests to be processed are <= maximum outgoing rate, 
i.e. <= D. We see degradation in performance when the 
manager is managing more than D concurrent requests. Hence, 
D determines the maximum number of concurrent requests 
that a single manager can handle with linear increase in 
response time.  

 
Figure 8 Saturation point for a single manager 

As an illustration, we collected the average event 
processing times for 150 resources using a single manager on 
1 machine and we get the average value of TP to be ≈ 8.37 
msec. Our test setup ran on hyper-threaded CPUs which can 
run 2 threads simultaneously. Thus, we get  
D = C/T  * 1000  P

  = (2/8.37) * 1000 ≈ 239 req. / sec. 
To determine the saturation point for the manager in our 

test setup, we steadily increase the number of concurrent 



requests. As shown in Figure 8, a single manager saturates 
around 210 concurrent requests. 

C. Discussion 
A single manager process can manage a large number of 

resources however can only process a finite number of 
concurrent requests (run-time events) from managed 
resources. To provide quality of service to managed resources, 
we choose to put a limit on the number of resources assigned 
to a single manager process. This limit is D (= 210) in our 
case, note that the number 210 is illustrative with respect to 
our test setup and could easily be higher especially in the case 
where event processing is involves interaction with external 
services. Finally as an illustration we note that, in order to 
prevent manager process saturation in the worst case scenario, 
one would consider assigning only about 210 resources to a 
single manager process. 

Further, most resources do not require constant 
management (e.g. on millisecond scale) hence running more 
managers per processor is still acceptable. The graphs indicate 
a very specific case of catastrophic failure where every single 
resource being managed generates an event. Additionally, 
note that the benchmark results presented here deal with only 
one unit of management infrastructure. We expect multiple 
independent units in a wide area deployment (Ref. Figure 1) 
to behave similarly. 

D. Amount of Management Infrastructure Required 
We now try to answer the research question, “How much 

Management Infrastructure is required to handle N 
Resources?” We define the term “Management 
Infrastructure” as the additional resources required for 
providing fault-tolerant management.  

Let N be the number of resources requiring management. If 
D is the maximum number of resources assigned to a single 
manager process, then we require at-least N/D manager 
processes. Let M be the maximum number of resources that a 
single messaging node can support. Thus to manage N 
resources we require CEILING (N/M) messaging nodes. 
With 1 messaging node per leaf domain we require N/M leaf 
domains. Further, we need at least M/D manager processes per 
leaf domain. Let R be the number of registry replicas used to 
provide fault-tolerant scalable registry. Thus total number of 
management infrastructure processes at the lowest leaf level is  
(R registry + 1 messaging node + 1 
bootstrap node + M/D managers) * (N/M 
such leaf domains)  
= (2 + R + M/D)*N/M

In our measurements a single broker could reliably 
support about (M = 800) simultaneous TCP connections. To 
scale to a larger number of resources, a different protocol such 
as UDP may be used that improves the value of M. However, 
additional logic must be used to account for dropped messages 
via message retry and timeouts. The second approach is to use 
a cluster of strongly connected messaging nodes however this 
requires additional management in setting up links between 
the various messaging nodes and maintaining them in a fault-

tolerant fashion. A third way is to redistribute resources such 
that they are managed in different management domains.  

To manage the N/M leaf domains, an additional number 
of passive bootstrap nodes are required. Typically the number 
of passive nodes would be << N/M and we ignore it for the 
purpose of this analysis. Thus for managing N resources we 
require an additional (2 + R + M/D)*N/M processes. 
Thus, the percentage of management infrastructure required 
with respect to number of resources N is 
MGMT   INFRASTRUCTURE

= [(2 + R + M/D)*N/M]/N * 100 %  
= [(2+R)/M + 1/D] * 100 % 
As an illustration, if D = 200, R = 4 and M = 800, 
then  
MGMT   INFRASTRUCTURE

= [(2+4)/800 + 1/200] * 100 %  
= 1.2 % 

Note that, when the number of resources N is small (e.g. 
N = 10), we still require the basic infrastructure (consisting 
of 1 manager, 1 bootstrap node, 1 messaging node and R 
registries) to manage them. Assuming R = 4, the minimum 
infrastructure components are 7. Thus the architecture scales 
when N * 1.2% = 7, i.e. N ≈ 600. Thus we conclude 
that when N is large (> 600), we can achieve fault-tolerant 
management by adding approximately 1% additional 
resources. Finally, as previously discussed, the value of D 
may be suitably adjusted which would determine the number 
of manager processes required which in turn affects 
percentage of extra resources (MGMTINFRASTRUCTURE). 

IV. RELATED WORK 
The Web Services Resource Framework (WSRF) [17] is 

a suite of specifications that align the OSGI conceptual model 
to be in agreement with existing Web standards. WSRF 
defines a WS-Resource as a “composition of Web Service and 
a stateful Resource”. The WSRF defines conventions for 
managing state in distributed system comprising of such WS-
Resources. The WSRF community has adopted Web Services 
Distributed Management (WSDM) that defines a complete 
management model that includes Management of Web 
Services (MOWS) [18] and Management using Web 
Services(MUWS) [19]. By contrast, we define any service 
that needs configuration, lifecycle and runtime management 
as a resource and wrap it with a service interface to expose 
management capabilities. Management is provided by a 
complementary specification, WS-Management [20] which is 
a SOAP-based protocol for managing systems (including Web 
Services) and functionally overlaps with MUWS.  

SNMP (Simple Network Management Protocol) [2] deals 
primarily with network resources. SNMP is an application 
layer protocol that facilitates exchange of management 
information between network devices. Lack of security 
features however reduces SNMP to a monitoring facility only. 
As we have discussed in Section I.A, monitoring is an 
important aspect of management but not all of it. There are a 
variety of distributed monitoring frameworks such as Ganglia 



[21], Network Weather Service [22] and MonALISA [23]. 
The primary purpose of these distributed monitoring 
frameworks is to provide monitoring of global Grid systems 
and aggregation of metrics.  Some systems such as 
MonALISA also provide the capability of configuring and 
managing services via RMI calls.  

In the Java community, the JMX [3] technology provides 
tools for building distributed, Web-based management system 
for managing and monitoring Java applications, devices and 
service driven networks. However JMX can typically be 
accessed only by clients using Java technology making it non-
interoperable. This issue is being partly addressed by 
providing a Web Service connector for JMX Agents [24]. 
While JMX presents the capability to instrument applications 
with appropriate messages, metrics and control mechanisms, a 
Web Service based management protocol provides a more 
cross-platform, standards-based interface.  

V. CONCLUSION AND FUTURE WORK 
A successful distributed application benefits from 

properly managed services. In this paper we have presented 
the need and our approach to uniformly manage a set of 
distributed services. This work leveraged the 
publish/subscribe paradigm to scale locally and a hierarchical 
distribution to scale in wide area deployments. The system is 
tolerant to faults within the management framework while 
resource failure is handled by implementing user-defined 
policies. When applied to resources with modest external 
state, the approach is feasible since it adds about 1% 
additional resources to provide fault-tolerant management to a 
large set of distributed resources.  

Management is enabled by leveraging WS Management 
which uses simple operations such as GET and PUT to 
manage resources. These operations can be modeled in a 
REST-like  [25] fashion, thereby, making the approach 
applicable to managing resources in any service-based 
architecture including Web 2.0. 

In the future we would like to apply the framework to 
broader areas that would help carry out more detailed 
performance benchmarks tests. We believe that application of 
management framework to such systems can bring up many 
interesting research issues, specifically challenging scalability 
of the system. Our current implementation uses WS – 
Management. In the future we would like to investigate 
implementing the merged [26] Web Service based 
management specifications. Finally, more metrics (such as 
CPU utilization, available memory and locality) need to be 
taken into account when assigning managers to resources. 
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