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Jerome E. Mitchell

A Progressive Study for the Automatic Analysis of Internal Layers from Polar Radar Imagery

Projections of global sea level critically depend on reliable mass balance estimates of the

polar ice sheets. Recent satellite observations show rapid thinning of ice sheet margins, speed-

up of several outlet glaciers in Greenland, the disintegration of ice shelves in West Antarctica,

and the speed up of glaciers buttressed by the disintegrated ice shelves. In order to better un-

derstand the processes causing the speedup and disintegration of ice shelves, the polar science

community has developed radars to observe a number of internal reflections – “layers”, but

efforts to map them have been limited; this is because identifying layers is time consuming

and difficult to perform with current, manual techniques. Analysis of a few internal layers

has produced heightened awareness into ice sheet behavior motivating the need for additional

interpretations; therefore, this dissertation provides a progressive approach to automatically

detecting multiple, internal layers from polar radar imagery.

The first contribution presents a semi-automated approach, an active contours model, for iden-

tifying high intensity edges while imposing constraints, such as smoothness of layer depth and

parallelism among layers; however, model tuning and a fixed, global parameter specifying the

number of layers limit the performance for automatic analysis. As an effort to advance layer

detection techniques, the problem is represented as a probabilistic graphical model with the

second contribution utilizing a Markov Chain Monte Carlo (MCMC) approach to improve ac-

curacy and confidence for detected layer boundaries; this work eliminated the need to adapt
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parameters for each layer but focused on ice thickness estimates enabling multiple layers from

other datasets to be undetected. The dissertation concludes with an automated approach by

extending MCMC to span models and estimate parameters simultaneously for the best num-

ber of layers at varying resolutions given a radar image. With this technique, it is possible to

identify internal layers over distances of hundred kilometers with no manual intervention, and

as a result, allow for higher resolution climate models to forecast climate change.

Geoffrey C. Fox, Ph.D

David J. Crandall, Ph.D

Minje Kim, Ph.D

Judy Qiu, Ph.D

John D. Paden, Ph.D
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CHAPTER 1

INTRODUCTION

This Chapter introduces the dissertation. In particular, it motivates climate change

research and a need for analysis tools to better understand the rapidly changing polar

ice sheets. Also, radar remote sensing is discussed from the context of data acquisition

and detailed subsurface information. Afterwards, it describes challenges related to

analyzing remotely sensed data, which provides a foundation for the study and its

novel contributions. It concludes with an outline detailing how each chapter provides

a progressive approach to the automatic analysis of internal layers from polar radar

imagery.

1.1 Background and Motivation

A number of investigations show Greenland and Antarctica rapidly losing mass, but the

knowledge to completely understand the processes influencing the polar ice sheets is in-

complete. To address the problem, information on ice thickness, internal stratigraphy,

subglacial topography, and basal conditions is critically needed as parameters to climate

models for better forecasting climate change.

To better understand the polar ice sheets, traditional methods, such as ice core drilling

provide detailed information on subsurface features, but it is time consuming and limited

in geographical coverage. Other alternatives have employed remote sensing techniques,

such as radar, for improved spatial and temporal coverage in order to infer properties of

the subsurface. Figure 1.1 shows an illustration detailing past to present data acquisition

strategies. With the advent of new collection strategies, the growth in data has caused

significant analysis challenges. The task of identifying subsurface features from polar radar

imagery is performed by domain experts, requiring significant resources to complete a
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single data file consisting of thousands of measurements. Also, the process is subjective,

leading to inconsistencies. Given the volume of data acquired in the past and its growth

each year, an automated approach to identify subsurface features is necessary to provide

results for the scientific community in a timely manner.

Figure 1.1: Illustration depicting the history of polar science data acquisition strategies.
Information about the ice subsurface was traditionally collected using ice core drilling
practices and evolved to radar remote sensing techniques producing a visualization of the
internal structure.

1.2 Interpreting Echograms from Polar Radar Imagery

Analyzing subsurface features from data is an effective way to study the polar ice sheets.

Radar images, or echograms (shown in Figure 1.3), provide an understanding of the

ice subsurface, such as ice thickness estimations, a determination of a rough or smooth

bedrock, if internal layers are flat or affected by a climate process, which are important
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Figure 1.2: An echogram (left) is a visualization of an ice sheet’s scattering properties. The
A-scope (right) shows a radar signal, where the magnitude measured in decibels represents
layer characteristics as row coordinates while columns depict its depth.

characteristics for developing accurate models. Also, understanding an echogram is impor-

tant for determining false positives, such as artifacts from either acquisition or processing,

and identifying layers for analysis.

1.2.1 The Echogram

When a radar transmits and receives energy from an antenna, changes in dielectric proper-

ties of the polar ice sheets cause the signal to reflect and refract. Larger changes in dielectric

properties cause strong reflection intensities allowing targets, such as internal layering with

a strong surface and bedrock to be visualized in a radar image.

Each measurement, a radar trace (shown in Figure 1.2), consists of a signal representing

received energy over time. In an echogram, a trace is a column of pixels, with each pixel

representing a depth. A survey segment is a collection of traces representing all columns

3



Figure 1.3: An echogram highlighting reflection intensities ranging from strong (dark) to
weak (light). The surface and bedrock interfaces are the strongest reflectors while internal
layers between the surface and bedrock layers and can visualized and spatially identified.

of a radar image, from the beginning of the segment (left side of the echogram) to the end

(right side of the echogram) during data collection. A pixels width represents a uniform

geographic distance between traces, depending on the sensing platform’s speed.

Bedrock

The importance of detecting bedrock layers from polar radar imagery stems from determin-

ing if it is lubricated by the presence of water at the pressure melting point, either formed

by channels, as either a liquid film or water filled sediments. Water between the ice sheet

and bedrock interfaces decreases the friction, which controls the ice flow velocity.

The differences in reflectivity between a frozen and thawed bedrock is significant and can

be used as an indicator for bedrock conditions. Understanding the bedrock reflectivity

directly is not possible since the returned echo is attenuated. Therefore, using the bedrock

reflectivity to map the presence of water requires knowledge of its local attenuation rate.

Also, the presence of water near the bedrock can be determined by observing the roughness,

which can be extracted from its shape. The fall-off of the bedrock reflection is significantly
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faster for smooth surfaces compared to rougher bedrocks.

Internal

Internal layers is attributed to constraints in density, conductivity, and fabric. Layers of

different ice density, such as melt or ash layers, can cause a partial reflection due to the dis-

continuity in the permittivity of the ice. Density variations are considered to be a dominant

source of internal layers in the upper region of the ice sheet. With depth, high pressure air

bubbles transitions into crystals, removing the density contrasts.

1.3 Objectives and Novel Contributions

With the availability of large remotely sensed datasets and the expected growth of data,

there is a need for novel automatic techniques for the analysis of echograms acquired from

the polar ice sheets. There are several advantages for using automatic techniques as op-

posed to traditional, manual approaches.

• Automatic techniques rely on computational resources for information extraction. By

using advances in technology, such as machine learning and computer vision tech-

niques, automatically processing remotely sensed data allows exploitation of large,

available data to aid knowledge discovery.

• Automatic techniques are objective, which ensures consistent repeatable experiments;

this is important for a coherent and quantitative analysis of the ice subsurface.

Automated analysis techniques for polar radar imagery has been marginally ad-

dressed by the scientific community. Most techniques have focused on analyzing

subsurface features from echograms acquired by terrestrial datasets. Although the

subsurface features from planetary and terrestrial datasets have common character-

istics these echograms operate on different platforms, having different instrument
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parameters and investigate different types of subsurfaces. For these reasons, the cov-

erage and resolution, both in the vertical and horizontal directions, and the patterns

highlighted are different. Therefore, automatic techniques for the analysis of ter-

restrial datasets cannot be applied to ice sheet subsurfaces. Automated techniques

for analyzing ice sheet data encourage the development of techniques tuned to the

uniqueness of remotely sensed ice sheet data. Automatic techniques can support a

better use of remote sensing data for a better understanding of ice sheet subsurface.

In this dissertation, three novel contributions allow for the progressive development

of an analysis tool supporting polar radar imagery. The techniques address challenges

related to automatically detecting layer boundaries, which are important to the study

of polar ice sheets.

In order to provide a study on the automatic detection of subsurface features, the

following works are contributed:

1. A Semi Automated Approach for Estimating Near Surface Internal Layers from

Snow Radar Imagery

2. Estimating Bedrock and Surface Layer Boundaries and Confidence Intervals in

Ice Sheet Radar Imagery using MCMC

3. A Sampling-based Approach for the Automatic Analysis of Layers from Polar

Radar Imagery

The techniques are summarized:

1. The first contribution focuses on a specialized, semi-automatically approach for

estimating near surface internal layers from snow radar echograms acquired in

Antarctica; the solution requires a user to estimate a global parameter for deter-

mining a number of visible layers while an active contour (snakes) model se-
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quentially finds those high-intensity edges likely to correspond to layer bound-

aries while simultaneously imposing constraints on smoothness of layer depth

and parallelism among layers

2. The second contribution improves the accuracy and utility of an automated ap-

proach designed for a fixed number of layer boundaries; this approach uses

Gibbs sampling, which allows the model to solve for layer boundaries simul-

taneously, yielding automatic layer detection results significantly better than

performed by the state of art technique. Moreover, the Gibbs sampler produces

confidence intervals by estimating bands of uncertainty for layer boundaries.

Since noise and ambiguity in echograms are inevitable, this ability would pro-

vide confidence in climate models.

3. The third contribution proposes an automatic approach for inferring a number

of layers by using an advanced reversible jumps MCMC sampling approach,

which samples candidate hypotheses to evaluate them against image obser-

vations to determine the optimal configuration explaining the echogram. The

approach is used for two different echogram sources, snow and accumulation

radar imageries.

Figure 1.4: Different CReSIS Radar Systems
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1.4 Structure of Dissertation

This document is composed of 7 chapters. Chapter 1 motivates the problems of climate

change and a need for tools to better the understand polar radar imagery. Chapter 2 presents

an overview of literature related to the automatic analysis of remotely sensed data. In Chap-

ter 3, a semi-automated approach is discussed, which uses an active contour model along

with “off-the-shelf” computer vision techniques to identify near surface internal layers from

polar radar imagery. While Chapter 4 introduces probabilistic graphical models, Chapter 5

shows an improved automatic analysis for the identification of bedrock and surface layers

from polar radar imagery. Chapter 6 describes an automatic technique for the estimation

of internal layers by extending MCMC for the detection of layers at various scales. Each

Chapter from 3 to 6, excluding 4 is made up of more sections, each presenting a detailed in-

troduction, methods, results obtained by applying to data acquired from the polar ice sheets,

and related conclusions. Finally, the conclusion of the dissertation is discussed along with

proposals for future research and development.

1.5 Data Disclaimer

For this study, data, specifically, products acquired from the multichannel coherent radar

depth sounder (MCORDS), accumulation and snow radars were collected by the Center for

Remote Sensing of Ice Sheets (CReSIS). These radars MCORDS measure ice thickness and

image the ice-bed interface while snow and accumulation radars provide internal layers at

different resolutions. Examples of data from the selected radars are shown in Figure 1.4).

The data is publicly available and provide ground-truth for the MCORDS and little to no

ground-truth for snow and accumulation radars.

8



CHAPTER 2

STATE OF ART IN THE DEVELOPMENT OF AUTOMATED TECHNIQUES

FOR THE ANALYSIS OF POLAR RADAR IMAGERY

This Chapter provides an overview to the automatic analysis of remotely sensed data.

2.1 Literature Review

Because reflection amplitudes from the surface and subsurface can be noisy, analyzing

echograms is a difficult task; these interferences may either partially or completely weaken

the signal, leading to a wrongful interpretation of information. However, despite the chal-

lenges developing an automated approach for remotely sensed data, many efforts have ex-

plored semi-automated techniques. For example, [1] detected Holocene’s depth in Green-

land. The technique uses image processing concepts based on histogram analysis and sur-

face fitting to identify the transition region between the Holocene and glacial ice. In [2], the

authors use phase information from internal reflections to map internal layer slopes, which

allow layer dips, the phase of the reflected signal to change smoothly along the track. The

first method is based on the along track gradient while the second method, a Fourier trans-

form, uses complex radar data for the along track. The central peak of this spectrum is

the along track gradient of the phase, which is converted to a layer slope, as with the first

method. These works focuses on understanding the ice stratigraphy, which is needed for ei-

ther ice flow modeling [3] or isochronous characterization of the ice [4]and have motivated,

[5], [6], [7], [8], [9], to develop analysis techniques for remotely sensed data.

Also, most related work has focused on identifying layers from terrestrial datasets.

The subsurface of the North Poles on Mars is characterized by layers of dry and wet ice.

Therefore, patterns shown in echograms are due to echoes from various ice layers and un-

derlying basement. Such features have been detected by automatic analyses. In [10] and

9



[11] , a technique detects shallow linear features; the authors uses collaborative filtering

to reduce noise and highlight returns from the target while linear feature extraction is ex-

ploited using Steger’s filter. Another work [12], which focuses on the Martian subsurface,

and in particular, the detection of basal returns; the authors use several theoretical mod-

els to characterize the statistical properties of remote sensing signals. In order to isolate

returns of the basement from other echoes, the algorithm exploits a region growing tech-

nique, which combines results from the geometrical properties of subsurface features with

its statistical analysis.Automatic techniques for terrestrial data analysis acquired on Mars

cannot be applied to ice sheet subsurfaces from the polar ice sheets. Nevertheless, such

works along with advances in the processing of ice sheet remote sensing data, represent a

reliable starting point for the development of novel advanced methods for the investigation

of echograms of the ice sheets.

Machine learning allows algorithms to either learn or model behavior for either data

or an environment. Learning is determined by automatically extracting information from

data and adjusting either the output, adapting behavior or structure over time. By enabling

algorithms to learn and automatically update control parameters and behaviors, the need

for human intervention can be eliminated.

Machine learning, however, has been limited in applications involving ice sheet and

subsurface data. Internal layers have been used to predict the depth and thickness of cer-

tain layers. For example, efforts to predict the depth and thickness of the Eemian layer

in Greenland utilized a Monte Carlo Inversion of the flow model to estimate unknown

parameters constrained by internal layers [13] [14]. Similar work classified the presence

of bottom crevasses and estimated their height using radar data of the Ross Ice Shelf in

Antarctica [15]. A physical model was developed by studying the radar data and long echo

tails, which were characteristic of bottom crevasses. That work studied the data to deter-

mine power reflection coefficients, but it did not incorporate either regression or machine

learning methods. Efforts to classify subsurface layers using ground penetrating radar are
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more abundant. Coupled with seismic surveying, ground penetrating radar allows subsur-

face properties to guide decisions of where to drill for either oil or natural gas, as well as

help explain observed surface changes. Radar reflection patterns can distinguish echo re-

turns in different regions, which provides machine learning methods to associate patterns

with distinct classes. In [16], a neural network was utilized to learn and predict patterns of

radar reflections in ground penetrating radar data collected from a river in Canada. In this

work, higher classification accuracies were obtained from attributes, which incorporated

spatial arrangement of reflections, such as spatial covariance, as opposed to amplitude.

Ground penetrating radar signal interpretation is one of the more studied applications in

subsurface classification, as interpretation of subsurface materials requires either coring or

drilling to determine ground truth. Domain experts manually investigated the subsurface

materials to segment into distinct rock or object classes. These data were used by machine

learning methods to develop a model between GPR return signals and the excavated ground

truth. Since ground penetrating radar has been used for many applications, machine learn-

ing techniques can aid in automating these tasks by learning a model, interpolating between

measurement sites, and characterize the subsurface at other unknown locations. Machine

learning algorithms, such as support vector machines have been used in many signal in-

terpretation applications, including roadbed degradation recognition [17]. [18] From the

literature review, the use of machine learning to create models for polar radar data analysis

is not only feasible but also provides a high level of accuracy while offering a significant

increase in efficiency.
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CHAPTER 3

A SEMI AUTOMATED APPROACH FOR ESTIMATING NEAR SURFACE

INTERNAL LAYERS FROM SNOW RADAR IMAGERY

Near surface layer signatures in polar firn are preserved from the glaciological behav-

iors of past climate and are important to understanding the rapidly changing polar

ice sheets. Identifying near surface internal layers in snow radar imagery can be used

to produce high-resolution accumulation maps. This Chapter presents an approach

for semi-automatically estimating near surface internal layers and have applied it to

snow radar echograms acquired from Antarctica; the solution requires a user to es-

timate a global parameter for determining a number of visible layers while an active

contour (snakes) model finds those high-intensity edges likely to correspond to layer

boundaries while simultaneously imposing constraints on smoothness of layer depth

and parallelism among layers.

3.1 Introduction

Global sea level rise has been attributed to the melting of glaciers along with other causes.

To assess the contribution of the polar ice sheets to sea level rise, there is a need to deter-

mine the mass balance. A key variable in assessing the mass balance of an ice sheet using

this method is the accumulation rate. Other required measurements are surface elevation,

ice thickness, aerial extent, intensity of summer melt, wind-generated surface roughness,

ice temperature, and absolute velocities.

Traditionally, accumulation rates are determined by ice cores and pits. These data are

sparsely distributed ice cores and pits. A more efficient way to estimate the accumulation

rate, which would benefit the polar science community in their modeling of the ice sheets
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and mass balance estimation, is to map a continuous profile of layers from the polar ice

sheets. These changes can be measured remotely using radar allowing snow and ice prop-

erties, such as density, acidity, and crystal orientation fabrics, to influence the visibility of

the internal reflection.

With an increase interest to identify internal layers from polar radar imagery, a solution

proposes to identify those layers using image processing techniques by applying high-level

constraints, such as how the ice-air boundary should be most prominent and how snow

layers should be modestly parallel.

3.2 Methodology

Observations about how domain experts detect layer boundaries were used to develop a

semi-automated algorithm to mimic these behaviors. As shown in Figure 3.1 and as is

typical for our experimental images, the surface reflection is very strong and near surface

layer intensity generally decreases as depth increases. Also, near surface layers are approx-

imately parallel, but may have modest changes in slope both to one another and to the ice

surface. A technique is proposed, which attempts to find the prominent surface reflection

and searches for similar (but invariably weaker) layer structures below the surface. Each

layer is used as an estimate of the appearance for the layer below it and an active contours

(snakes) model snaps the correct layer structure given this estimate. The process of detect-

ing the surface, estimating layer location using curve point classification and refining the

use of snakes are discussed in subsections 3.2.1, 3.2.2, and 3.2.3, respectively, and use

Figure 3.1 as a demonstration of the proposed approach.
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Figure 3.1: Original Snow Echogram

3.2.1 Edge Detection

To find the location of the surface boundary, which is typically the most prominent edge in

the echogram, a Canny edge detector [19] was used because of its performance in detecting

strong intensity contrasts for the near surface layer dataset (see Figure 3.2. Based on this

criteria, the Canny edge detector smoothes the echogram to eliminate noise. It then finds the

image gradient to highlight regions with high spatial derivatives. The algorithm then tracks

along these regions and suppress any pixel, which is not at the maximum (non-maximum

suppression). The gradient array is now further reduced by hysteresis. Hysteresis is used

for determining the remaining pixels, which were not suppressed. Canny edge follows two

threshold values. If the magnitude is below the first threshold, it is set to zero otherwise it

is an edge. And, if the magnitude is between the two threshold, then it is set to zero unless

there is a path from this pixel to a pixel with a gradient about the lwoer threshold value. In

detecting this initial ice surface, the following fixed Canny parameters were used: a sigma

of 2 for the standard deviation of the Gaussian filter and a low and high thresholds of 0.7

and 1.8, respectively. Since the ice surface is symmetrical to subsequent layers, it provides

a good starting template.
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Figure 3.2: A Canny Edge Detection to Determine Ice Surface

3.2.2 Curve Point Classification

While the ice surface can be readily detected by edge detection, using it for near surface

internal layers is not possible because of the very weak layer boundaries and noise inherent

in echograms. As a consequence, Stegers approach [20] was used to identify points in an

echogram, which were likely to be part of curvilinear structures. In short, this approach

computes statistics on gradient structure within local image patches, in particular deter-

mining areas with prominent gradients in a coherent direction. identified peaks for scores

computed by Steger (shown as blue asterisks in Figure 3.3 and used these to suggest initial

curve positions for estimating near surface internal layers. For the first layer, the ice surface

was used to estimated previously and shifted it down,(in the y direction) so it intersected

the first maximum point. This process was repeated until the number of near surface inter-

nal layers specified by the user has been found and gave initial estimates of layer positions

and shapes, which we refined in the next step.
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Figure 3.3: Curve Point Classification

3.2.3 Active Contours

Snakes [21], also known as deformable models, gravitate to an object’s boundary by min-

imizing an energy function. A snake conforms to the boundary of an object by adjusting

its shape and moving through the spatial domain of the image until it reaches a location,

where the energy functional Esnake is at a minimum. The energy function is composed

of two terms: internal and external. The internal energy is calculated from the shape and

location of the snake and serves to preserve its continuity and smoothness. The external

energy term, is composed of two terms: the external image energy and an external Eext

energy term. The external image energy, EImage, is calculated using image information,

typically the negative magnitude of the image gradient and is used to moving the snake

towards image features, such as lines, edges. The external constraint ECon, is an optional

term, which is responsible for forcing the snake to or from a particular image feature. The

following discusses a snake’s energy terms, which influence its behavior.

Internal Energy

The internal energy, Eint, of the contour is composed of two terms. The first term allows

the snake to resist stretching and enabling it to be continuous while the second term causes
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the snake to resist bending as a smoothness constraint. The coefficients α and β, known as

tension and rigidity parameters, are scaling factors to control influence of the smoothness

and continuous terms. α determines the extent to which the snake can stretch at a point

s on the snake while β determines how the snake can bend at a point s. As α increases,

the “tension” reduces the length of the snake while increasing the value of β increases the

bending “rigidity” of the snake, which allows the snake to be smoother and less flexible.

External Energy

As was previously mentioned,Eext the external energy, is calculated from the image, which

contains the target boundary; this is accomplished by using the gradient image.

Since there is a good approximation of individual layers using the maximum eigenvalue

to denote the strength of the curve, an active contours (snakes) model was used to refine it.

Active contours is a cost minimization approach, which encourages the curve to align with

high-gradient edge pixels, but to discourage it from having either discontinuities or sharp

bends. These two goals are often in stiffness and tension, and the energy minimization

function is used to find the curve with the best trade off between them.

In this methodology, the contour adapts until it either reaches equilibrium or it has gone

through a number of iterations. A window, which computes the local stiffness and smooth-

ness characteristics during the contour’s adjustment, is maintained at either upward or

downward until it fits the near surface layer. The local stiffness costs are computed us-

ing the distance between the current pixel location and mean of the current pixel location

of the contour in neighboring pixels. The pixel location corresponding to the closest dis-

tance to the mean of neighboring pixels receives the lowest cost while the furthest distance

receives the highest cost for a particular pixel. Therefore, the contour is encouraged to

smoothly fit to the echogram and bridge gaps in the near surface internal layer.
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A stiffness weight was experimentally found to be robust to image noise and other arti-

facts. Figure 3.4 illustrates how the contour actively adapts to the echogram as processing

progresses. The contour typically fits the data at various places, and the stiffness cost pulls

the remainder of the contour either up or down to a reasonable location.

The pixel location corresponding to the minimum total cost for the contour at each pixel

is selected as the contours starting configuration for the next iteration. If the configuration

does not change between either iterations or until a specified number of iterations, the

contour is determined to have reached equilibrium for a near surface layer. Figure 3.6

shows the automatically selected surface and bottom layers for all traces of the example

echogram.

Figure 3.4: Initialization of Template shown by Yellow Curve
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Figure 3.5: Detected Layers (green) and Maximum Curve Points (blue asterisks)

3.3 Results

Figure 3.6 shows the result of our approach for Figure 3.1. We observe it has successfully

found over a dozen layers correctly, although it misses some of the very faint layers towards

the bottom of the echogram. Figure 5.4 shows results for three additional echograms.

While the algorithm works quite well for layers near the surface, it does miss or incorrectly

identify some of the deeper layers (such as the discontinuities in Figure 3.3 in which the

estimates skip from one layer boundary to another).

Figure 3.6: Detected Layers from Original Snow Echogram
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3.4 Conclusion

A semi-automated approach for estimating near surface internal layers in snow radar im-

agery was developed. It utilizes an active contour model in addition to edge detection and

Stegers curve classification. The technique is a step towards the ultimate goal of unburden-

ing domain experts from the task of dense hand selection. The proposed approach requires

variable control parameters per image for a particular dataset and assumes the ice surface

is parallel to subsequent internal layers, which is incorrect for most images since the lower

portion of the ice sheet typically follows the bed topography. Therefore, innovative meth-

ods are needed to refine the solution of detecting internal layers.
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Figure 3.7: Sample results of our approach on three snow radar echograms.
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CHAPTER 4

PROBABILISTIC GRAPHICAL MODELS

Echograms have a large degree of uncertainty caused by unpredictable signal scatter

and reflection patterns, which cause difficulty to interpret subsurface features. In this

chapter, probabilistic graphical models are discussed, specifically Markov Random

Fields, as the main model with a focus on inference techniques

4.0.1 Probabilistic Graphical Models

4.1 Introduction

Probabilistic graphical models[22], [23], [24], [25] represent the intersection between graph

and probability theories. They provide a tool for dealing with two problems occurring in

real world systems: uncertainty and complexity. As a modeling and inference tool, prob-

abilistic graphical models use a graphical structure to represent probability distributions

of multiple variables. The nodes in the graph correspond to random variables while the

links represent the statistical relationships between nodes. The graph structure encode

conditional dependence and independence among random variables. Given a probabilis-

tic graphical model, the joint (or conditional) probability distribution can be factored as a

product of a set of functions defined from a subset of random variables; this factorization

simplifies the modeling multivariate joint probability distributions. Based on probability

theory, algorithms have exploited the structure of graphs in order to efficiently determine

either the marginal or conditional probabilities.

There are two main graphical models: directed and undirected. These models represent

and encode different conditional independence relationships on random variables. The

undirected graphical model are used for specifying spatial constraints between variables
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while directed models express casual relationships. Each probabilistic graphical model is

represented by a graph G = (V,E), where V denotes the vertices (nodes) in the graph

and E, the edges (links) connecting these vertices. For undirected graphs, E only consists

of undirected links as opposed to directed links for directed models. The joint probability

distribution, which is represented by the model, can be factored as the product of local

potentials functions or local conditional probabilities, which simplifies the estimation for

performing probabilistic inference.

4.1.1 Markov Random Fields

Undirected graphical models use an undirected graph to model relationships between ran-

dom variables. Markov random fields (MRF), a type of undirected graph, has a wide range

of applications such as image processing (image denoising and restoration), object recog-

nition, image segmentation, and texture synthesis. A MRF models the joint probability

distribution of labels X and observations Y based on interactions among a set of random

variables within a selected neighborhood. In an undirected graph, a node Xj is a neigh-

bor of node Xi if and only if there is an undirected link between them; this is modeled

as a Markovian prior probability distribution on random variables. The Markov property

in MRFs suggest a random variable Xi is conditionally independent of another random

variable, given random variables in its neighborhood.

For example, in the application of image restoration
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Figure 4.1: In image restoration, an image is corrupted with noise (midddle) and is restored
(right) similarly to its original (left)

4.2 Inference

Inference aims to calculate the marginal probability, inferring the maximum a posterior

(MAP) solution. For example, in a MRF model, the MAP inference estimates the best

states of labels X given observations Y:

X∗ = argminxP (X|Y ) = argminx
P (X,Y )
P (Y )

= argminx
P (X|Y )P (X)

P (Y )

where P (Y |X) is the likelihood model and P (X) is the prior probability distribution

of labels.

Inference algorithms for probabilistic graphical models can be divided into exact in-

ference and approximate inference methods. For single connected tree structures, belief

propagation (BP) [24] can find the exact solution based on local message-passing. In this

algorithm, belief propagation iteratively updates messages between adjacent nodes until

convergence and infers the best states for either a single node or set of nodes. However,

this method cannot guarantee an exact solution for a probability graphical model with undi-

rected loops. For a probabilistic graphical model with undirected loops, the junction tree

algorithm [26] [27] provides an exact solution by converting it into a tree structure by

grouping a set of nodes. Exact inference can be performed on this converted probabilistic
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graphical model using the belief propagation method.

For approximate inference techniques, these methods include loopy belief propagation

(LBP), the mean field method, and variational algorithms [28]. The loopy belief propaga-

tion method (briefly described in 4.2.1 shows the approach for applied to layer boundaries

4.2 applies the belief propagation principle to a graphical model with undirected loops.

It can produce an approximate solution, which may not guarantee convergence for the

message-passing process.

Besides the methods discussed, there are other approaches to perform inference for

graphical models. The Markov Chain Monte Carlo is a simulation technique. Either gibbs

or Metropolis Hastings are used to extract samples in the MCMC algorithm.

4.2.1 Loopy Belief Propagation

Belief propagation is an iterative algorithm, which propagates local messages along the

nodes of a MRF. For each iteration, every node sends outgoing messages to its neighboring

nodes and accepts incoming messages from each one of its neighboring nodes. Sending

and receiving new messages for the next iteration is based on the existing set of messages

at the current iteration; this procedure is repeated until all messages have converged.

The main idea of belief propagation is the concept of messages. From each iteration,

every node must send one message per label to each one of its neighbors. Intuitively, the

message sent from node A to node B about label xA indicates how likely node A thinks

of node B should be assigned that specific label. After stabilization of the messages, each

node chooses a label, which has the maximum support based on all incoming massages at

the node.

4.2.2 Markov Chain Monte Carlo

Inference is the process of For parameter estimation, the posterior distribution cannot be

derived analytically and a numerical analysis is not feasible. The long standing problem
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Figure 4.2: Different CReSIS Radar Systems

was solved by Markov Chain Monte Carlo. MCMC outputs a sequence of parameter sets

(Markov Chain) whose empirical distribution approximates (converges to) the posterior

distribution)

Gibbs Sampling

Gibbs sampling as our inference algorithm of choice. Gibbs sampling is a Markov Chain

Monte Carlo (MCMC) method, which is capable of producing samples X1, ..., XJ from

a distribution f(x) without requiring the ability to directly sample or even know the form

of f(x); this is accomplished by iteratively sampling each variable conditioned on the re-

maining variables. The algorithm for gibbs sampling is shown in Figure 4.3. This sampler

provides a flexible framework for generating samples from a complex distribution, assum-

ing samples can be taken from simpler full conditionals. At run-time the mJ samples must

be drawn from the full conditionals where m is the number of variables and J is the num-

ber of iterations, which depend on the sampling from the full conditonals. As the gibbs

sampler requires a initialization of the model, many early samples may not reflect the true

distribution and are discarded as a ”burn-in” samples.

With these samples from the joint distribution, the functionals from the samples can be

computed. For example, the mean of the samples approximates the expectation of the joint.

In Chapter 5, confidence intervals for the improved model prediction, producing estimates

of error in addition to the inference process
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1: Initialize X0 = {x1, ..., xm};
2: j = 1;
3: while j < J do
4: X(j) = X(j−1);
5: for all xi in X(j) do
6: x

(j)
i ∼ P (xi|X(j) − {x(j)i });

7: end for
8: j = j + 1;
9: end while

Figure 4.3: Figure The general algorithm for Gibbs sampling iteratively draws new values
for random variables conditioned both on observed variables and other unknowns.

Reversible Jumps MCMC

The reversible jump MCMC sampler, an extension of Metropolis-Hastings, jumps between

models and parameter spaces of different dimensions in the sampling process. The RJM-

CMC moves represent either model changes or an update to current parameters. The move,

which requires an update to parameters requires no dimension changes or change in param-

eter spaces. Proposal for either a new model or to update parameters are evaluated based

on an acceptance probability.

The reversible jump sampler has two types of moves: updating a current model’s param-

eters and transitioning to different models. For the specific model, Mk, a move is chosen to

either updating its parameters or move to a different model, Mk+1, which is attainable from

Mk in one iteration. For an update move, a proposal for parameter values are obtained from

the proposal distribution. A new set of parameters is sampled from the parameter space for

Mk, and the probability of acceptance is calculated to be compared with a random value

from a uniform distribution, and if it is less than the transition to Mk+1, it is accepted.

Otherwise, the model remains as Mk. The process continues convergence. In Chapter 6, a

detailed approach to RJMCMC is discussed with application to layer detection.
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CHAPTER 5

ESTIMATING BEDROCK AND SURFACE LAYER BOUNDARIES AND

CONFIDENCE INTERVALS IN ICE SHEET RADAR IMAGERY USING MCMC

In this Chapter, identifying surface and bedrock layers is posed as an inference prob-

lem on a probabilistic graphical model similar to work introduced by Crandall et

al [29]. However, several important contributions are introduced to improve its ac-

curacy and utility; this approach uses Gibbs sampling to perform inference instead

of the dynamic programming-based solver, which allows the model to solve for both

layer simultaneously, yielding automatic layer detection results significantly better.

Moreover, the Gibbs sampler produces explicit confidence intervals by estimating

bands of uncertainty for layer boundaries. Since noise and ambiguity in echograms

are inevitable, this ability would provide confidence in climate models.

5.1 Introduction

Recent glaciological surveys have revealed a significant increase in ice discharge from the

polar ice caps. There is a need for ice flow models to better reproduce current changes and

forecast future behavior of the polar ice sheets. However, these models require important

parameters, such as surface topography and bedrock elevation, which control the dynamics

and ensuring the overall mass balance of the polar ice sheets.

Radar systems have evolved to improve data collection strategies and have increased

the number of datasets capable of determining bed and surface topographies. In addition

to advances in radar instrumentation and algorithm signal processing, analysis approaches

to estimating ice thickness have also provided a solution to the obsoleting traditional meth-

ods; for this method, a probabilistic graphical model is posed by incorporating local and

global features for layer detection, but although the approach is completely automated, it
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sometimes solve for layers incorrectly since it uses a simplistic model and solved for them

incrementally producing a single answer for an ice layer. In order to supplement the limi-

tations in accuracy, the model is improved by solving for layer boundaries simultaneously

and providing confidence intervals. The method is evaluated using Multichannel Coherent

Depth Sounder (MCORDS) data acquired from Antarctica.

5.2 Methodology

Observations about how domain experts detect layer boundaries were used to improve the

automated algorithm. As shown in Figure 5.1 and typical for the MCORDS dataset, the

surface reflection is strong while the bedrock layer is rigid with weaker edges. The process

of modeling and determining the location of layer boundaries are discussed in subsections

5.2.1 and 5.2.2, respectively. Figure 5.1 is used as a demonstration for the proposed

approach.

Figure 5.1: Original Echogram with Two Layer Boundaries
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5.2.1 Modeling layer boundaries

Figure 5.2: Illustration depicting a model for two layers, where each row represents a layer
through the echogram. The horizontal layer constrain enforce smoothness while the vertical
constraint encourage repulsiveness between layers boundaries. The image likelihood are
based on local echogram characteristics

In this work, an echogram has k layer boundaries (with k=2 in our case). Given an

echogram I of dimensionm×n, the goal is to estimate unknown variables L={L1, ..., Lk},

where Li ={li1, ..., lin} and lij denotes the row coordinate of layer i in column j.

The structure of this problem allows it to be posed as a grid-shaped probabilistic graph-

ical model. In this framework,the goal is to estimate P (L1, ..., Lk|I), the joint probability

over the layer boundaries given the echogram. Figure 5.2 shows as graphical representa-

tion of a two layer model for an echogram of width N. For each layer, each column n of

the image is associated with random variables l1,n and l1,n corresponding to the positions

of each layer in that column. These variables are connected via dependency relationships

to the image I and their immediate neighbors(both along a layer and between layers). In

Figure 5.2, the node representing l11 is highlighted and the conditional distributions with

respect to l11 are written.

Unfortunately, this distribution has an alarming dimension of order O(mkn), so com-
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putation and storage is intractable even for small images. To address this problem, three

assumptions are followed:

1 all echograms are equally likely

2 image characteristics are determined by local layer boundaries; and

3 variables in L exhibit a Markov property with respect to their local neighbors

Under the first assumption, the joint distribution can be factored into a product accord-

ing to Bayes’ Law,

P (L1, ..., Lk|I) ∝ P (I|L1, ..., Lk)P (L1, ..., Lk). (5.1)

This decomposition reduces the full joint into two intuitive distributions: P (I|L1, ..., Lk)

captures how well the image data can be explained by a set of layers L1, ..., Lk, and

P (L1, ..., Lk) captures prior knowledge about the boundaries, like that they are smooth

and do not intersect.

The second assumption implies parts of the image not near the layer boundaries are

generated by noise, so only model pixels near boundaries. Therefore, it can be factored

P (I|L1, ..., Lk) into a product over layers and columns,

P (I|L1, ...Lk) =
k∏

i=1

n∏
j=1

P (I|li,j). (5.2)

Since boundaries are dark edges, the right hand term is modeled as a product of gradient

magnitude and image intensity,

P (I|li,j) ∝ |∇I(li,j, j)| · (1− I(li,j, j)), (5.3)

where |∇I(x, y)| is the gradient magnitude at coordinate (x, y) of the image, and we as-

sume that pixel values have been scaled such that I(x, y) ∈ [0, 1]. The gradient magnitude
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was approximated using finite differences on a 5× 5 window.

The third assumption simplifies the problem by assuming the graphical model has the

property that each node li,j is independent of the remaining variables in L given its imme-

diate neighbors in the graph. Under this assumption:

P (L1, ..., Lk) ∝
k∏

i=1

n∏
j=1

P (li,j|N(li,j)) (5.4)

where N(li,j) is the set of directly connected nodes in the graph (i.e. N(li,j) = {la,b | 1 =

|a − i| and 1 = |b − j|}). P (li,j|N(li,j)) is defined as the product of independent vertical

and horizontal components. Along the same layer, li’s are encouraged to be smooth by a

zero-mean Gaussian which is truncated to zero outside a fixed interval,

P (li,j|li,j−1)∝


N (li,j − li,j−1; 0, σ) |li,j − li,j−1|<φH

0 otherwise,
(5.5)

while a step function encourages layers not to overlap,

P (li,j|li−1,j) ∝


0 li,j ≤ li−1,j

0.1 li,j − li−1,j < φV

1 otherwise.

(5.6)

This model is similar to [29] but with important improvements. In [29], the vertical

pairwise potentials are zero at and above intersection points and uniform elsewhere. But

it is common in this data to see radar reflections of the surface layer directly below the

actual surface, so a fixed-width low probability region is added directly below to reduce

false bedrock detections on these reflections. Perhaps more importantly, the model in [29]

breaks these vertical constraints in order to simplify inference by greedily solving each

layer conditioned on the previous one. The experiments show a holistic inference approach

offers substantial improvement in accuracy.
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5.2.2 Statistical inference

The model defined by equations (5.1), (5.2), and (5.4) is a first-order Markov Random

Field. Unfortunately, finding the values of L that maximizes equation (5.1) is NP-hard

in the general case [30]. Rather than trying to solve this as an optimization problem, an

attempt is to estimate functionals of the full joint distribution by using gibbs sampling (a

Markov Chain Monte Carlo technique discussed in sec.)

It can be shown by Bayes Law and the independence assumptions in equations (5.2)

and (5.4) that the full conditionals for each lij can be computed easily,

P (lij|I,N(lij)) = P (I|lij)P (lij|N(lij)). (5.7)

As the domain of lij is discrete and finite, sampling from this conditional is well-defined.

As an additional optimization, the vertical and horizontal thresholds in equation (5.6) were

used to sparsify the computation of P (lij|N(lij)), since most entries are known to be zero.

The Gibbs sampler is applied to generate a sequence of samples L(B), ..., L(J) where B is a

burn-in time during which samples are discarded. This is a common practice with MCMC

methods to reduce sensitivity to initial values. To predict the layer locations, the sample

means M = J − B samples, which approximates the expectation of the joint distribution

for large M ,

E [P (L1, ..., Lk|I)] = lim
M→∞

1

M

∑
L(i).

To produce confidence intervals around this mean, the marginal distribution of a variable

is estimated by discarding other variables in the sample and yielding 2.5% and 97.5%

quantiles.
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5.3 Results

Layer identification was evaluated using a set of 826 publicly available radar echograms

from the 2009 NASA Operation Ice Bridge program, collected with the airborne Multi-

channel Coherent Radar Depth Sounder system of [31]. Each echogram has a resolution of

700 by 900 pixels (where 900 pixels represents about 30km of data on the horizontal axis,

and 700 pixels corresponds to 0-4km of ice thickness on the vertical axis). This dataset was

used by [29] and can directly compare the accuracy of the two techniques.

The images have ground-truth labels produced by human annotators, but these labels

are often quite noisy. For instance, sometimes the annotators could not find a reasonable

layer boundary and simply “gave up” by not marking anything at all. To decouple the

error in the ground-truth from the method evaluation, echograms with incomplete ground

truth are removed (including those with partially defined layers and those with less than

two layer boundaries). The proposed method ran on the remaining 560 images. For each

image, 10,000 samples were collected after a burn-in period of B=20,000 iterations.

Figure 5.3 shows detected surface and bedrock boundaries in addition to confidence

intervals. Figure 5.4 highlights more results of the proposed technique (including the con-

fidence interval) as well as the ground truth. Also, the confidence intervals were quantified

by computing the percentage of ground truth layer points that are contained within the esti-

mated intervals. Based on the proposed work, 94.7% of the surface boundaries and 78.1%

of the bedrock boundaries are within the intervals, for an overall percentage of 86.4%; this

number is close to but less than 95% and reflects how the framework is a good but not

perfect for layers in echograms.

A quantitative performance metrics is shown in Table 5.1. Accuracy was measured by

viewing ground truth and estimated layer boundaries as 1-D signals, and computing the

mean absolute deviation (in pixels) between the two. The following two summary statis-
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Figure 5.3: Detected Layers of Improved Approach with Confidence Intervals

tics: mean column-wise absolute error over all images and the median of the column-wise

mean absolute errors across images. The first measures how well predicted layers match

the ground truth, treating columns within an image as uncorrelated, while the later metric

recognizes that high error in one column in an image is highly correlated with the error in

the remaining columns and looks at error from a per-image viewpoint. Under both metrics,

the improved approach outperforms the method of [29] significantly, by decreasing the er-

ror rate by about 44.3% for surface boundaries and 48.3% for bedrock. Our technique is

slower than [29] (about 17 seconds per image), but since layer finding is trivially paralleliz-

able across images, the accuracy is much more important than compute time.
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Mean Error Median Mean Error
Approach Surface Bedrock Surface Bedrock

[29] 22.3 43.1 10.6 14.4
Ours 9.3 37.4 5.9 9.1

Table 5.1: Evaluation of our method on the test set. Error is measured in terms of ab-
solute column-wise difference compared to ground truth, summarized with average mean
deviation and median mean deviation across images, in pixels.

5.4 Conclusion

In this chapter, an automated approach to estimate bedrock and surface layers in multi-

channel coherent radar imagery and demonstrated its effectiveness on a real-world dataset

against the state-of-the-art. The proposed technique also produces confidence interval es-

timates and was evaluated for correctness. Layer detection methods provide confidences,

which could improve climate models by quantifying error for the input data. Although the

approach improved layer accuracy, it requires a global parameter for specifying the number

of layers; therefore limiting it to understanding ice thickness estimates.
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Figure 5.4: Sample results of approach on two MCORDS radar echograms.

37



CHAPTER 6

A SAMPLING-BASED APPROACH TO THE AUTOMATIC ANALYSIS OF

LAYERS FROM POLAR RADAR IMAGERY

A number of studies have investigated the detection of internal layers from polar

radar imagery. Most research have largely developed semi-automated techniques,

but the need for an automated approach to support varying layer resolutions would

greatly contribute to understanding global climate change. In this Chapter, an auto-

matic approach is proposed for inferring a number of layers by using an advanced

reversible jumps MCMC sampling approach, which samples candidate hypotheses to

evaluate them against image observations to determine the optimal configuration ex-

plaining the echogram. The approach is used for two different sensors, snow radar

and the accumulation radar.

6.1 Introduction

Ice penetrating radars have been collecting large volumes of data from the polar ice sheets,

which reveal internal ice structures for many years. Analysis of these reflections highlight

many aspects of ice sheet dynamics, including the strain history and their responses to

climate and subglacial forces. As a result, a lot of datasets exist, which few or no inter-

nal reflections have been interpreted; this situation has motivated the development of an

automated approach for the detection of internal layers from a variety of data sources.

Radar data acquired from snow and accumulation radars can have a number of internal

layers; therefore, an automated approach need to provide good approximations to a vari-

ety of model structures. Although most MCMC samplers address parameter estimation,

such as in Chapter 5, many cannot address the problem of choosing the best model for a

specific problem domain. An automated method, reversible jumps MCMC, an extension of
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Metropolis-Hastings, proposes to detect internal layer boundaries by estimating parameters

and determining the appropriate model, simultaneously.

6.2 Methodology

The Markov Chain Monte Carlo method generate samples from complicated distributions

by constructing a Markov Chain with the target distribution as its equilibrium distribu-

tion [32]. The Metropolis-Hastings algorithm simulates the desired Markov Chain by start-

ing with an initial state and proposing a new state θ∗ from a proposal distribution, which

depends on the current state of θ. The proposed state is accepted as the next state in the

Markov Chain with accepted probability

Reversible Jump Markov chain Monte Carlo algorithm (RJMCMC) [33] explores con-

figurations of different dimensionality, in this case, the number of internal layers. To gener-

ate configuration hypotheses, three proposals have been designed: birth, death, and update.

Among the three, birth and death are a pair of reversible jump moves because adding or

deleting layers from the current configuration causes a dimension change. Denote Lt = lt1,

...,ltn as the current state at iteration t, which consists of n layers. A new configuration L∗

is proposed by first choosing a move from all three candidates according to a move proba-

bility distribution, which is a uniform distribution, but adapted to the current configuration

for better accuracy. For example, if the current layer count is zero (n = 0), only the birth

move is allowed. The RJMCMC can be described as:

• Initialize the RJMCMC sampler by choosing random state for the Markov chain.

• Begin with the starting state X∗ of the Markov Chain

• Choose a move type from a set of possible move types

• Apply the chosen move. This involves proposing a new configuration

• Compute the acceptance ratio
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• Add the nth sample to the Markov chain. If α = 1, add the proposed configuration

X∗ to Xn. If not, add the proposed configuration with probability α. If the proposed

configuration is rejected, add the previous configuration.

The following describes each proposal:

6.2.1 Birth and Death

To propose a new candidate layer, prior information about the appearance of the layers is

used. A layer candidate is considered by sampling a row index according to the prior. The

proposed configuration hypothesis is l∗ = {lt, lm + 1}. The reverse move of birth is death;

in this move, a layer is chosen from the current configuration and is removed based on the

largest layer energy in the current configuration.

Figure 6.1: Illustration Depicting the Birth of a Layer

6.2.2 Update

The update proposal keeps the dimension of the current configuration but generates a new

estimate from local adjustments to an existing layer detection. The update proposal is its

own reverse move. A layer is selected for update from the current configuration at random.
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Figure 6.2: Illustration Depicting the Death of a Layer

Figure 6.3: Illustration Depicting the Update of a Layer

6.3 Simulated Annealing

Simulated annealing [34], a Monte Carlo global optimization technique derived from the

Metropolis Hastings algorithm, is used to ensure the convergence process. In short, sim-

ulated annealing begins selecting an initial solution and then generating a new state, ran-

domly generating a new solution in the neighborhood of the current solution; this new state

is evaluated and compared with the previous solution. If the new solution from the new
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state is better than the previous, it is accepted; but if it is not, is is accepted or rejected with

some probability.

The location of the current internal layer is used as an input parameter to an energy func-

tion. The proposed layer is then perturbed to yield a new fit, and the difference in energy

between the two configurations is calculated. The following shows the core of the simu-

lated annealing algorithm:

dt =


dt−1 if ∆E <= 0

dt if ∆E > 0 r > exp ∆/T (t)

If the energy is lower for the new configuration dt than dt the new configuration is im-

mediately accepted as a better fit (accept a). Otherwise, if changes caused the energy to

be increased, there is a small chance the new configuration dn would be accepted despite

having a higher energy (accept b); this is controlled by the temperature formula

500

log(x+ 1)

at the current time step t, the energy difference and a uniformly distributed random variable

formula. Finally, if the new fit was not accepted, the fit would be rolled back to the previous

time step (reject). The b branch is included to make sure the algorithm does not get stuck

in a local minimum of the energy function. As the probability decreases with temperature

and time, it gradually less likely for a higher energy configuration to be accepted.

6.4 Results

For all experiments, a random number of layers were chosen as an initial configuration. If

the layer could be initialized to an appropriate fit, it would converge faster. The RJMCMC

sampler is coupled with simulated annealing in order to ensure convergence of the Markov
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Chain by a temperature parameter. The temperature gradually decreases as the number of

iterations increases; layers were detected between 50 and 100 iterations.

Figures 6.4 and 6.5 show an example of results obtained with RJMCMC. Some details

illustrate how the algorithm identified layers with . However, on this example, some layers

are not detected and others were. The missed and false detections can be alleviated with

tuning of model parameters

In order to show the effectiveness of the algorithm, it was tested with echograms acquired

from snow and accumulation radars. The results show the algorithm is able to detect most

layers with varying resolutions and moderately

Figure 6.4: Sample results of the automated approach on three 2014 snow radar echograms
acquired from Antarctica

Figure 6.5: Sample results of the automated approach for 2014 accumulation radar
echograms acquired from Antarctica
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(a) Birth (b) Update (c) Birth

(d) Update (e) Birth (f) Birth

(g) Birth (h) Update (i) Update

(j) Birth (k) Update (l) Update

(m) Birth (n) Update (o) Update
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(a) Birth (b) Birth (c) Birth

(d) Birth (e) Death (f) Death

(g) Update

Figure 6.7: Intermediate accepted results during RJMCMC iterations. In a birth or update
move, the red line indicates a layer being added or modified, which allows the current
configuration l∗ to be different from the previous iteration. In a death move, a red layer is
being removed from lt and the remaining layers constitute l∗
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6.5 Conclusion

The development of RJMCMC for the application of layer detection has allowed for an

automated approach supporting the detection of layers irrespective of radar and layer reso-

lution. The RJMCMC sampler uses data driven proposals, such as birth, update and death,

in addition to simulated annealing to ensure convergence for a number of unknown layers.

The automated approach was applied to 2014 Greenland accumulation and Antarctica snow

radar imagery and identified most layer boundaries.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This Chapter concludes the dissertation by providing a summary of novel contribu-

tions and ideas for future developments.

7.1 Summary and Future Directions

Studying the rapidly changing polar ice sheets is important to understanding the future

behavior and implications of global climate. This dissertation progressively develops an

automated analysis tool to better understand the polar subsurface.

There are large amounts of radar data collected from the polar ice sheets. Due to

the wide coverage and different types of information, analyzing echograms can lead to

an increased understanding of the polar ice sheets. However, in past decades, echograms

were interpreted manually with limited support of semi-automated techniques. Manual

approaches limit scientific discovery, which could be achieved by more sophisticated tech-

niques. The availability of radar data and projected data growth from future field campaigns

support the need for novel automatic techniques for interpreting echograms. However, de-

veloping automatic techniques for polar radar imagery has been marginally addressed by

the scientific community.

In this dissertation, a progressive approach to automatically identifying internal layers

improves the literature by focusing on analysis techniques for polar radar imagery. In

particular, the proposed methods are: a semi-automatic approach, which uses an active

contour’s method in addition to “off-the-shelf” image processing techniques, an improved

probabilistic graphical model for automatically detecting bedrock and surface layers, and
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an automated approach, which identifies layers irrespective of radar and layer resolution.

These techniques address three challenges in studying polar ice sheets. The first method is

a specialized approach, which tunes the algorithm based on observations from the internal

layer data, the second contribution improves an existing detection approach and provides

the foundation for a third method, which automatically detects internal layers from different

radars and different resolutions. Future developments regarding the methods described in

this dissertation should address the following:

• Further tuning and validation of the proposed techniques by applying them to datasets

with different characteristics, acquired both in Antarctica and Greenland

• Definition and extraction of more discriminative features for echogram detection and

development of an appropriate technique for removing the misclassified samples.
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