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Abstract

Multimodal learning has been lacking principled ways of combining information1

from different modalities and learning a low-dimensional manifold of meaningful2

representations. We study multimodal learning and sensor fusion from a latent3

variable perspective. In the first part, we present a regularized recurrent attention4

filter for sensor fusion. This algorithm can dynamically combine information from5

different types of sensors in a sequential decision making task. Each sensor is6

bonded with a modular neural network to maximize utility of its own information.7

A gating modular neural network dynamically generates a set of mixing weights8

for outputs from sensor networks by balancing utility of all sensors’ information.9

We design a co-learning mechanism to encourage co-adaption and independent10

learning of each sensor at the same time, and propose a regularization based co-11

learning method. In the second part, we focus on recovering the manifold of latent12

representation. We propose a co-learning approach using probabilistic graphical13

model which imposes a structural prior on the generative model: multimodal14

variational RNN (MVRNN) model, and derive a variational lower bound for its15

objective functions. In the third part, we extend the siamese structure to sensor16

fusion for robust acoustic event detection. We perform experiments to investigate17

the latent representations that are extracted; works will be done in the following18

months. Our experiments show that the recurrent attention filter can dynamically19

combine different sensor inputs according to the information carried in the inputs.20

We consider MVRNN can identify latent representations that are useful for many21

downstream tasks such as speech synthesis, activity recognition, and control and22

planning. Both algorithms are general frameworks which can be applied to other23

tasks where different types of sensors are jointly used for decision making. To our24

knowledge, this algorithm is the first that addresses a online multimodal decision25

making problem.26

Preprint. Work in progress, copyright Lijiang Guo 2019.
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1 Executive Summary71

We present three multimodal learning and sensor fusion methods from a latent variable perspective.72

In section 2 we briefly introduce the multimodal learning problem, section 3 reviews background73

with concrete examples. In section 4, section 5, and section 6 we introduce three different methods:74

a model-free sensor fusion approach, a model-based sensor fusion approach, and sensor fusion for75

weakly supervised embedding. In each of these sections we first discuss related works, then present76

our approach. Experiment results are discussed in section 7. We discuss future works in section 8.77

2 Introduction78

Multimodal learning has been studied in various forms for decades. Broadly speaking, multimodal79

input can be considered as streams of loosely synchronized multi-domensional data, with each80

modality being one subset of dimensions. In simple cases when measurements are both taken in real81

domain, with certain metrics assumed, we often impose a model which leverages on the dependency82

across modalities to jointly solve a problem. Two commonly used dependency models are linear83

correlation and conditional probability.84

Consider a example from Shumway and Stoffer [2011] where a patient’s biometric markers such85

as log(white blood count) [WBC], log(platelet) [PLT], and hematocrit [HCT] are used to predict86

probability of a patient’s long term survival using Bernoulli linear regression:87

E[Y |X] = f(β0 +XWBCβ1 +XPLTβ2 +XHCTβ3), (1)

where f is a proper transformation function. We can consider XWBC, XPLT, XHCT as different input88

modalities as they are essentially measuring different physical concepts. Classical statistical solutions89

focus on statistical inference in the sense of quantifying the error in estimating E[Y |X] using90

probability distributions. To this end, (1) f is often chosen to be functions which are friendly to91

manipulate, and (2) the relation between different modalities are chosen to be simple linear additive92

for the same reason. In this simple linear model for regression, we use linear combinations of the93

input variables. We can extend this model by considering linear combinations of fixed nonlinear94

functions of the input variables:95

E[Y |x] = f (β0 + φ1(X1)β1 + ...+ φk(XK)βK) . (2)

In this model, the relation between different input variables are still linear additive, but we allow for96

flexible representation, i.e. φ, of each variable, i.e. features, to be learned from training by optimizing97

some criterion.98

Different from classical statistics, in machine learning we often face very high dimensional input data,99

and each input modality has essentially different representation forms; for example, video, audio, and100

text. The challenging questions in creating intelligent systems for processing audio or video inputs101

are102

1. How to describe the complex relation between a single input with the target output, and103

2. How to combine different input modalities when there are no straight forward physical104

model to describe them.105

Let’s consider speech recognition as a example. Consider we have two input modalities, audio and106

video, and text as output. The first question corresponds to how are we going to describe the relation107

between audio and text, or video and text, respectively. The second question corresponds to how108

the audio input is related to video input in terms of text generation. In this research, we address the109

second question in a principled manner, and, equally important, create a multimodal algorithm that110

can outperform uni-modal algorithms.111

We want to focus on multimodal time-series data as they are universal in speech, video, computer112

network, robot control, etc. Our objective is sequential inference under sequential multimodal input.113

Consider we have two input streams {Xt} and {Yt}, and a output steam {Lt} where t ∈ {1, .., N}114

are time indices. Our objective is to predict Lk from {(Xt, Yt)}kt=1. The challenge is to model Xt115

given (Xt−1, ..., X1, Yt, Yt−1, ..., Y1), and to model Yt given (Yt−1, ..., Y1, Xt, Xt−1, ..., X1). This116

is particularly important when one input modality is corrupted, and the multimodal algorithm has117

to recognize or infer the missing information from other input modalities. In particular, we want a118
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Figure 1: Structural generative model.

algorithm which can estimate the reliability of each sensor input. We will discuss this in detail in119

section 4.120

From a generative model perspective, we assume that there are some latent random variable Z which121

generates the observed random variables X (see Figure 1). In multimodal data, X can be partitioned122

into disjoint sets of input signal where each X(m) corresponds to one modality. The observed speech123

activity state L is a function of X . The latent variables Z can also be partitioned into modality124

invariant and modality dependent subsets {Z(0), Z(1), ..., Z(k)} where Z(0) is shared by all modality125

{X(m)}km=1, and each Z(m) is specific to X(m) for m ∈ {1, ..., k}. Having a shared latent variable126

Z(0) enables the model to explain for the synchronization between different modalities. In section 5127

we discuss this in detail.128

We will begin by reviewing a few related topics. Then we present a deep learning based regularized129

recurrent attention filter, which dynamically combines information from multiple sensor inputs in a130

sequential decision making task. We present a co-learning mechanism and discuss its advantages131

in learning robust latent features. Next we marry the strength of deep learning with probablistic132

graphical models in a coherent way for multimodal learning. We present a multimodal nonlinear133

state-space model with a structural prior for separating modality dependent and modality invariant134

features. To demonstrate the proposed algorithms, we tackle the problem of speech activity detection135

and speech separation in corrupted audio-video streams.136

This paper is a first step towards a faraway goal, thus we cannot solve the problem completely. Our137

model has the following contributions (no. 3, 4 and 5 are unique to our knowledge):138

1. The model combines information collected from multiple sensors. Each sensor collects139

different types of data; for example, image, motion, audio, etc.140

2. The model has independent processing module for each sensor. Each module is developed141

to maximize the utility of its sensor input in a decision making task.142

3. The model addresses a sequential decision making task. It (1) takes new inputs at each time143

step, and (2) generates new attention over modalities by combining the new inputs and its144

memory, then (3) apply attention to modules to make a final decision for the current time145

step. The model does not need future information to make decision for current time step.146

4. Each module is divided into two sub-components. One sub-component co-learns with other147

modules; this sub-component allows for simultaneous co-learning features that are shared148

by all sensors, which allows for robust detection of these features, even a subset of sensors’149

inputs are corrupted. The other sub-component learns independently from other modules;150

this allows each module to focus on its sensor’s unique input features that are not shared by151

other sensors. This co-learning design prevents overfitting during training, and improves152

robustness of the modules.153

5. The probablistic approach to co-learning can be used to separate modality-dependent features154

from modality invariant features. It has wide applications such as speech recognition, speaker155

identity recognition, etc.156

5



Contents

3 Multimodal Learning and Sensor Fusion157

3.1 An Example: Audio-Visual Learning158

Human senses the world with multiple modalities such as vision, sound, texture, etc. An AI agent,159

e.g. a robot, also relies on multiple sensors to collect data to perform tasks such as localization, path160

planning, control a robotic arm, etc. Baltrušaitis et al. [2018] refers a sensory modality as our primary161

channels of communication and sensation, such as vision or touch. A problem is characterized as162

multimodal when it includes multiple sensory modalities. In this work, as a concrete example, we163

focus on three modalities that are important to human speech: visual, audio, and motion. However,164

the method we discuss are general enough to tackle other sensor modalities on AI agents.165

Many researches leverage natural synchrony between simultaneously recorded visual and audio166

signals to solve speech related problems. In recent works, lip-reading, the practice of using visual167

signals to understand speech, has been proven to be able to effectively extract useful information168

for speech recognition [Ephrat et al., 2017, Assael et al., 2016]. Hence it is natural to consider169

audio-visual approaches for many speech related tasks, including speech recognition [Ngiam et al.,170

2011, Mroueh et al., 2015, Feng et al., 2017], speech separation [Hou et al., 2017], and voice activity171

detection [Ariav et al., 2018].172

Among these problems, speech separation is one of the fundamental problems in audio processing.173

Wang and Chen [2018] gave a overview of recent advances in deep-learning based audio-only speech174

separation system. Traditionally audio-only methods are used to separate a speech signal from175

other background signals. When multiple human speeches overlap each other, the speech separation176

problem is referred to as the cocktail party problem. Such a problem is especially challenging to177

solve because human speeches tend to have similar features than with non-speech sounds. It is also178

difficult to assign a speech to the corresponding speaker with audio signals only, often referred as179

label permutation problem. A few solutions have been proposed to address multi-speaker speech180

separation using single channel audio recording. For example, Hershey et al. [2016] proposed a181

method called deep clustering (DPCL) which uses discriminatively trained speech embeddings to182

cluster and separate speeches. They also proposed a permutation invariant loss function to solve the183

label permutation problem. Yu et al. [2017] and Isik et al. [2016] successfully use a permutation184

invariant loss function to train a DNN for multi-speaker speech separation.185

In recent years, deep learning based audio-visual methods have been used for speech separation. Hou186

et al. [2017] proposed a CNN-based model which outputs a denoised speech spectrogram as well as a187

reconstruction of the input mouth region. Gabbay et al. [2017] trained a speech enhancement model188

on videos where other speech samples of the same speaker are used as background noise. Gabbay et al.189

[2018] use a video-to-sound synthesis method to filter noisy audio. While most audio-visual speech190

separation methods are speaker dependent, Ephrat et al. [2018] proposed a speaker-independent191

audio-visual model for separating single speech from a mixture of sounds such as multiple speakers192

and background noise. They use a pretrained face detection model to identify all speakers in a video,193

then outputs a complex spectrogram mask for each speaker. Alternatively, Owens and Efros [2018]194

train a deep neural network to predict whether audio and visual streams are temporally aligned.195

Learned features extracted from this self-supervised model are then used to condition an on/off screen196

speakers source separation model. Gao et al. [2018] and Zhao et al. [2018] addressed the closely197

related problem of separating the sound of multiple on-screen objects (e.g. musical instruments).198

3.2 An Example: Load Balancing in Distributed System for Streaming Data199

Suppose we have K streams of input data x(1), ..., x(K), each are different but correlated. They200

are jointly used to solve a problem whose answer is a stream y. Consider we have many workers201

{w(1), ..., w(N)} who are processing these inputs {xk}K1 . In a distributed system we need to partition202

the input streams to assign to different workers, and then gather them to solve for the answer. Let’s203

assume for stream k, the information complexity fluctuates in time according to an unknown function204

h(k)(x), such that the processing time of a worker w is proportional to t(k, x) = f(h(k)(x)). For205

example, a encoded video could take various amount of computations to decode.206

6



3.3 Sensor Fusion Contents

Figure 2: Multimodal deep Boltzmann machine (reproduced from Ngiam et al. [2011]).

3.3 Sensor Fusion207

Sensor fusion is one of the core problems in multimodal learning. Technically speaking, in multimodal208

sensor fusion, we need to integrate information from multiple modalities with the goal of fulfilling209

some tasks. Comparing with unimodal methods, Baltrušaitis et al. [2018] suggested multimodal210

sensor fusion has the benefit of (1) providing more robust predictions, (2) allowing the model to211

utilize complementary information from different modalities, and (3) imputing missing information212

for corrupted signals.213

Sensor fusion algorithms can be divided into two big categories [Baltrušaitis et al., 2018]: model-214

agnostic and model-based. Model-agnostic sensor fusion does not depend on a specific machine215

learning method. It usually combines different sensors in a blind way and the relationship between216

sensors are not exploited. Model-based methods explicitly address fusion in their construction, e.g.217

using graphical models to impose a structural prior on modalities. In this work, we will propose both218

a model-agnostic approach and a model-based approach for sensor fusion.219

The most common fusion approach is to concatenate the inputs from different sensors at certain220

modeling stage to solve a unimodal learning problem. Ngiam et al. [2011] proposed a multimodal221

autoencoder which first use deep Boltzmann machine (DBM) to learn each audio and video features222

independently, then concatenate the learned features to an multimodal autoencoder to learn a shared223

representation (Figure 2). To reproduce original inputs, the shared representation is mapped back to224

each modality. Srivastava and Salakhutdinov [2012] also use DBM to learn a generative model of225

multimodal input data. Simonyan and Zisserman [2014a] proposed a two-steam convolutional neural226

networks for action recognition in video. The two-stream model try to capture the complementary227

information from two modalities: still image and motion between frames. In their work, the last layers228

concatenates the two streams into a final classification layer. Torfi et al. [2017] proposed a coupled229

3D-CNN to map multiple modalities into a representation space to evaluate the correspondence230

of audio-visual streams. In Ephrat et al. [2018] the audio and visual streams are combined by231

concatenating the feature maps of each stream, which are subsequently fed into a BLSTM followed232

by three FC layers.233

Whether to combine information at early or late stage affects sensor fusion results. Ngiam et al.234

[2011] argued that naive concatenation of different sensors’ inputs discourages co-learning since235

the within sensor correlation is much stronger than between sensor correlation, hence the model are236

biased towards learning dominant patterns in each sensor separately instead of learning patterns that237

occur simultaneously in multiple sensors. In this regard, they propose to learn joint representations238

that are shared across multiple modalities at the higher layer of the deep network after learning layers239

of modality-specific networks. As Sohn et al. [2014] commented, the rationale is that, they believe,240

the learned features may have less within-modality correlation than raw features, and this makes241

it easier to capture patterns across data modalities. However, in Ngiam et al. [2011], the middle242

layer is a simple fully connected layer, and we can only hope that it can always capture meaningful243

representations shared by all modalities.244

One challenge of multimodal learning is how to deal with missing data in different modalities, and245

infer the missing data from other modalities — it is a unique advantage of multimodal learning246
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over unimodal learning as we can use the information extracted from one modality to improve the247

recognition ability of the other modality by complementing the missing information, i.e. given two248

input streams {X} and {Y }, how to model Xt given (Xt−1, ..., X1, Yt, Yt−1, ..., Y1), and Yt given249

(Yt−1, ..., Y1, Xt, Xt−1, ..., X1). A naive approach is to use a autoencoder to map all modalities into250

a common latent space, and then map back to each modality, hoping that the latent representation251

can recover all modalities. For example, Ngiam et al. [2011] and Ariav et al. [2018] use a sparse252

autoencoder to map different modalities into the same space. Ngiam et al. [2011] requires each253

pre-trained modality-specific network is also jointly trained with other modality-specific networks for254

cross-modality learning. To infer missing data in one modality, they suppress other modalities with255

zero input during training.256

Model-based sensor fusion explicitly incorporate the relation between sensors into the fusion stage.257

For example, we can combine multiple sensor signals into modality-dependent and modality-invariant258

latent random variables through a probabilistic graphical model. Model-based sensor fusion has the259

advantage of probabilistically detect and recover corrupted signal. We will discuss model-based260

sensor fusion in detail in section 5.261

In a interesting work, Sohn et al. [2014] proposed a multimodal representation learning framework262

which minimizes the information distance between data modalities through the shared latent represen-263

tations. To this end, they use variation of information to measure the conditional probability of each264

modality given the other modalities, thereby determine the quality of shared representation across265

modalities. As a generative model it can predict missing data modalities given partial observation.266

Despite the promise, there still remains missing a principled way of how to learn a good association267

between multiple data modalities that can effectively deal with missing data modalities in the testing268

time. Both Ngiam et al. [2011] and Sohn et al. [2014]’s approaches promote learning a shared269

representation by different modalities, and rely on the collaboration of different modalities. However,270

co-adaption of different modalities may reduce the individual strength of each modality as we discuss271

in next sections. We propose two strategies to coordinate the collaboration between modalities. In272

the first approach we let each local expert focus on it’s own modality, and let a dedicated gate expert273

to coordinate experts. We will discuss this in section 4. In the second approach, we propose a274

probabilistic graphical model which decompose latent representation into modality dependent and275

modality invariant features. We will discuss this in section 5.276

4 Model Combination for Sensor Fusion277

4.1 Motivation278

In this section we will develop a model-agnostic sensor fusion algorithm. We are motivated by279

model combination and aggregation as a way to use parallel models to jointly solve a common280

problem. Model combination algorithms such as boosting has been proven to be a effective approach281

in reducing prediction error and variance [Bishop et al., 2006]. A natural way to approach multimodal282

learning is to divide a task into multiple parallel sub-tasks such that each modality uses a dedicated283

processing module to solve a sub-task. We consider a conditional mixture model [Bishop et al.,284

2006] to coordinate all processing modules towards a common learning goal. From the success285

of attention mechanism in sequence-to-sequence model, we observe that mixing weights can be286

generated in analogous to a spatial attention through a deep neural network. Therefor we combine287

model combination methods with recent development in deep learning to propose a recurrent attention288

filter for multimodal sensor fusion.289

4.2 Related Works290

4.2.1 Temporal Attention291

In sequential prediction problems, sequence-to-sequence (seq2seq) model is a ground-breaking292

work [Sutskever et al., 2014, Cho et al., 2014a]. One problem with seq2seq networks is that their293

performance will deteriorate rapidly as the length of input sequence increases [Cho et al., 2014b].294

RNN such as LSTM still suffers from difficulty in memorizing long-range relations, especially295

when a lot of information is cluttered in a sequence. The recently proposed attention mechanism296

solved this problem by providing a skip-connection and let the decoder focus on a sub-region of the297

8
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input [Bahdanau et al., 2014, Chorowski et al., 2015, Mnih et al., 2014, Ba et al., 2014]. Instead298

of memorizing the entire information of the past sequence, attention filter let the RNN memorize299

the location of the past information. This greatly reduces the information load of the RNN memory300

cell. Recently, convolutional and fully-attentional feed-forward architectures like the Transformer301

model [Vaswani et al., 2017] have emerged as a viable alternative to RNNs for a range of sequence302

modeling tasks.303

In [Bahdanau et al., 2014], attention mechanism was introduced to help the decoder RNN to focus on304

relevant parts of the input sequence without relying on the RNN to encode all the information through305

repeated updating the hidden unit. Recall in a seq2seq model, the encoder takes a length M input306

sequence {xt}mt=1 and generates a encoder hidden state sequence {het}Mt=1. The last hidden state of307

encoder heM is used as the initial hidden state for the decoder hd0 to generate another state sequence308

{hdt }Nt=1. During training, to making the decoder learn faster, the decoder also takes a auxiliary309

input which is the true label sequence, {yt}Nt=1; during testing, use decoder output prediction yt−1310

as input to step t. In this simple encoder-decoder structure, suppose the last hidden node of the311

decoder, hdN is related to the first hidden node of the encoder, he1, then the relevant information has312

to pass through M + N RNN transitions. In general, the average distance between encoder and313

decoder hidden units is O(M +N) — the number of operations required to relate signals from two314

arbitrary input or output positions grows linearly in the distance between positions. This long path315

has made if more difficult to learn dependencies between distant positions. RNN such as LSTM316

suffers from difficulty in memorizing long-range relations, especially when a lot of information is317

cluttered in a sequence. To solve this problem, Bahdanau et al. [2014] proposed attention mechanism318

which provides a skip-connection and let the decoder focus on a sub-region of the input. Instead of319

memorizing the entire information of the past sequence, attention filter let the RNN remember the320

location of the past information. This greatly reduce the information load of the RNN. With attention,321

the average distance between encoder and decoder hidden units is O(1) — a constant number of322

operations.323

The attention mechanism is similar to searching in a database and involves a interaction between324

query, key, and values. Consider the input to time step t of the decoder as a query (i.e. input is the325

previous hidden state hdt−1),326

qt = hdt−1. (3)

The encoder hidden states {het}Mt=1 are keys whose information are the values. For example, het is327

the key to t-th encoder state. To get the t-th decoder output yt, we search for the relevant encoders328

values by comparing its key with the query,329

p(yt|{xt}Mt=1, {yt}t−11 ) = g(yt−1, h
d
t−1, ct) (4)

where ct (often named the context) is a result of the query procedure. Context vector can be seen as a330

continuous bag of weighted features of encoder hidden states he [Chan et al., 2016].331

Finding the appropriate query procedure is a area of current research. In a simple form, the query is332

performed in the following steps. First, we compute a similarity measure between qt and each of333

hek for k ∈ {1, ...,M}, e.g. the kernel inner product et,k = 〈qt, hek〉Wa = q′tW
ahek where ′ indicates334

transpose and W a is a (square) matrix. We normalize the similarity over k by335

wt,k =
exp(et,k)∑
j exp(et,j)

. (5)

The context is computed as the weighted linear combination of the encoder hidden states336

ct =

M∑
k=1

wt,kh
e
k. (6)

In the original paper that proposed attention, Bahdanau et al. [2014] commented that the approach of337

taking a weighted sum of all the annotations (e.g. {hek}Mk=1) is as if computing an expected annotation,338

i.e. E[he], over all the possible alignments. Here, alignment is defined by the weights {wt,k}Mk=1,339

which essentially aligns the t decoder with the entire encoder annotation sequence {hek}Mk=1. In this340

sense, wt,k is a estimated probability that the target word yt is aligned to or translated from a source341
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work xk. Thus the t-th context vector ct is the expected annotation over all the annotations with342

probability wt,k.343

Two kinds of attention models have been proposed. The hard attention model uses the weights to344

randomly select one location [Mnih et al., 2014, Ba et al., 2014]; the soft attention model uses the345

weights to form a convex combination of many locations [Bahdanau et al., 2014, Ba et al., 2014].346

In this work, we choose not to use stochastic “hard" attention for two reasons. First, stochastic347

attention requires sampling one input stream to make a decision. If both the visual and audio input348

are noisy, the stochastic attention model has to choose one that is more informative in making a349

decision. However, if the audio noise and visual noise are independent, the information from each350

stream may compensate the other. Therefore, we choose to use a deterministic “soft" attention model351

which dynamically combines multiple streams of data. Second, stochastic attention model involves352

a intractable objective function with a multinomial latent variable. Monte Carlo and REINFORCE353

[Williams, 1992] are two common methods for solving this problem. However, it is well known that354

the both estimation procedures are slow and unstable. On the contrary, soft attention model is fully355

differentiable and can be optimized using stochastic gradient descent.356

4.2.2 Spatial-Temporal Attention357

The temporal attention mechanism enables RNN to selectively focus on a subset of the input sequence.358

In multimodal learning, in addition to temporal attention, we aim to selectively focus on one (or a few)359

modalities of current time step and the past, which requires a spatial-temporal attention mechanism.360

A relevant problem is image caption generation whose task is to transcribe an image into a word361

sentence that best describes the image. In Xu et al. [2015], a context vector is used to dynamically362

select relevant parts of a image to generate a word at time t. The context vector is a function of363

the RNN hidden states of time t− 1 and the image features. Xu et al. [2015] define a mechanism364

that generates a positive weight for each image feature location, which can be interpreted as the365

probability that location is the right place to focus for producing the next word in a sequence.366

The problem we address here is different in a few places. First of all, in Xu et al. [2015] the image367

input to the decoder RNN is the same for all time steps. The attention model gives time dependent368

weight to each location of the image based on the decoder hidden state input and decoder model369

output of t− 1. We try to address a problem where at each time step the inputs (e.g. audio, motion,370

image) is different. This makes our model applicable to, e.g. online video description. Secondly, in371

Xu et al. [2015] the attention is imposed on the static extracted image features. In our case, because372

at each time step the inputs are different, we defer attention to each local expert’s decision. Third,373

although the image features are at different locations, they are same type of data and carry similar374

information. In our model, we have input features of totally different data types, e.g. image, motion375

and audio. Last, the image features are spatially dependent and the dependency does not change. In376

video, the spatial dependency of different input streams are dynamic and asynchronous. In summary,377

we use a dynamic-input cross-modality attention.378

Another relevant work is dual-stage attention RNN (DA-RNN) [Qin et al., 2017]. Dual-stage attention379

solves two unique problems different from classical attentions. First, an input attention is used to380

attentively extract relevant information from multiple parallel exogenous input sequences instead of381

one input sequence. Then a temporal attention mechanism is used to select relevant encoder hidden382

states generated by input attention across all time steps. The decoder outputs a time-series prediction383

instead of a classification. Experiments show that DA-RNN is effective in time-series prediction and384

robust to noisy inputs.385

RNN performance will deteriorate rapidly as the length of input sequence increases, Qin et al. [2017]386

used a temporal attention in the decoder to adaptively select relevant encoder hidden states across all387

time steps. They use the concatenate score function in [Luong et al., 2015].388

lit = vTd tanh(Wd[dt−1; s′t−1] + Udh + i), 1 ≤ i ≤ T (7)

and389

βit =
exp(lit)∑T
j=1 exp(ljt )

, (8)
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In the encoder, xt ∈ Rn is the observation of n exogenous driving input sequences at time t. In a390

normal RNN, the input sequences {xt}Tt=1 is fed to a hidden unit such as LSTM which is updated by391

ht = f(ht−1,xt).

Qin et al. [2017] proposed to use ht−1 and xt to generate a set of n weights for xt:392

ekt = vTe tanh(We[ht−1; st−1] + Uex
k) (9)

and393

αkt =
exp(ekt )∑n
i=1 exp(eit)

(10)

where ve ∈ RT ,We ∈ RT×2m and Ue ∈ RT×T are parameters to learn. Using the weights αt, a394

new input is395

x̃t = xt � αt. (11)

Then the hidden state at time t is updated as396

ht = f(ht−1, x̃t). (12)

With the proposed input attention mechanism, the encoder can selectively focus on certain driving397

series rather than treating all the input driving series equally.398

Note in [Qin et al., 2017] the prediction is on yt ∈ R. But in denoising, the prediction is on yt ∈ RD399

where D is the number of frequency bins.400

4.2.3 Attention mechanism in audio-visual problems401

Temporal attention mechanism has been used to improve RNN performance for speech related402

problems. Chan et al. [2016] proposed Listen, Attend and Spell (LAS), which is an audio-only speech403

recognition model based on sequence-to-sequence learning framework with attention. The model404

learns to transcribe an audio sequence signal to a word sequence, one character at a time. It consists405

of an encoder RNN, and a decoder RNN. The encoder RNN is a pyramidal RNN which converts406

low level speech signals into higher level features. The decoder is an RNN that converts high level407

features into output utterances by specifying a probability distribution over sequences of characters408

using the attention mechanism. The encoder and decoder are trained jointly. The key contribution of409

Chan et al. [2016] is the pyramidal RNN model for the encoder, which reduces the number of time410

steps that the attention model has to extract relevant information from.411

RNN has been well known for its power in modeling sequential relation. It is also hard to train and412

can easily overfit. The attention mechanism has been used as a way to reduce overfitting. Chan413

et al. [2016] commented that without the attention mechanism, the model overfits the training data414

significantly and memorizes the training transcripts without paying attention to the acoustics.415

Chorowski et al. [2015] proposed an attention based audio-video speech recognition model. Their416

model has a two-stream network with temporal attention in each stream. Each stream’s encoder417

consists of a feature extractor, and a RNN encoder. The RNN encoder takes per-frame input from418

feature extractor in reverse time order. In the end, the two streams’ RNN sequence outputs and final419

state are fed into a RNN decoder to generate texts. They found the attention mechanism is critical420

for the speech recognition system to work. Without attention, the model appears to forget the input421

signal, and produce output sequence that correlates very little to the input. Chorowski et al. [2015]422

use separate temporal attention to each modality in the decoder. However, the decoder gives equal423

weights to each modality when generating outputs. That is, each modality receives a sum of attention424

equals 1. Suppose one modality is corrupted, the weight on that modality is not adjusted. In this425

regard, Chorowski et al. [2015] does not consider the variation of information in modalities.426

Here we present a spatial attention based sensor fusion model as a principled way of combining427

different modality of signals (i.e. audio and video) for e.g. speech enhancement. The model is trained428

end-to-end, and simultaneously learns spatiotemporal audio-visual features and a sequence model.429
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Sub-task 1

Task

Sub-task k

Expert	1 Expert	k

Fusion

Task

Expert	1 Expert	k

Fusion

Figure 3: Mixture of sub-task experts (left) and mixture of experts (right). In mixture of experts, each
expert receives the identical task. In mixture of sub-task expert, each expert receives a distinct subset
of the task.

4.3 Mixture of Sub-task Experts430

Dynamically combining multiple functions in supervised learning can be traced back to mixture of431

experts model [Jacobs et al., 1991]. A mixture of experts model is driven by the assumption that a set432

of training cases may be naturally divided into subsets that correspond to distinct tasks. However, the433

interference between different subsets of tasks would lead to slow learning and poor generalization.434

Such interference can be reduced by using a system composed of several different expert functions435

where each one is trained for a subset of tasks. A gating function is trained to decide which of the436

experts should be used for each training case. Instead of a hard decision such as decision tree, the437

gating function makes probablistics decision by assigning mixing weights to the experts. Neural438

networks can be used for both the expert functions and gating function, which is known as mixture439

density network (MDN) [Bishop, 1994]. One advantage of MDN is it can approximates a flexible440

family of distributions, including distribution of multiple modes.441

Jacobs et al. [1991] want a system to learn how to allocate cases to experts. They designed a loss442

function such that the gating network allocates a new case to one or a few experts, and if the output is443

incorrect, the weight changes are localized to these experts and the gating network. The experts are444

therefore local in the sense that the weights in one expert are decoupled from the weights in other445

experts. In addition they will often be local in the sense that each expert will be allocated to only a446

small local region of the space of possible input vectors.447

Different from dividing all training cases into subsets of tasks, we observe that a training case can be448

divided into parallel sub-tasks (Figure 3). For example, in using two hands to open a jar, the parallel449

sub-tasks are left-hand movement and right-hand movement. In speech, the lip movement and audio450

are data of two sub-tasks, where speech is the super-task.451

Many recent researches have implicitly utilized such a parallel sub-task design. In activity recognition,452

the two-stream network [Simonyan and Zisserman, 2014a] has a sub-task design for extracting motion453

and image features. The shared decoder works as a fusion function which takes concatenated inputs454

from sub-networks. In audio-visual speech recognition, Chorowski et al. [2015] use two encoder455

neural networks for processing audio and video signals. The two also share one decoder which takes456

concatenated inputs from the two encoders. In these works, the gating function is implicit in the457

decoder. Such a blackbox methods does not explicitly assign sub-tasks to experts, and the error458

backpropogation may cause global changes to expert functions.459

We make three extensions to MDN for multimodal sensor fusion. First, we separate expert networks460

into different functional components by dividing a training case into parallel sub-tasks, one for each461

sensor. Sub-tasks could have same objective or partially overlapping objectives. Each expert network462

receives input from only one unique sensor, hence is forced to solve only one sub-task. The gating463

network receives all sensor inputs to decide a soft mixing weight. This contrasts a boosting algorithm,464

e.g. mixture of expert, where each expert receives the complete and identical task.465

Second, in the mixture of density network, one function (i.e. neural network) is used to predict the466

parameters of all of the component densities as well as the mixing coefficients, so the hidden units467

between input and output layers are shared among the input-dependent functions. We further divide468
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the functions into different modular neural networks, such that each expert learns a unique function,469

e.g. neural network for the assigned sub-task.470

A major concern of mixture of experts model is co-adaption of experts. The third contribution of471

our work is to re-address this issue by promoting multiple experts to learn similar features, and also472

learning dissimilar features at the same time; we propose a mechanism to partition latent variables473

into co-adaption set and independent set; see subsection 4.5.474

4.4 Recurrent Attention Filter for Multimodal Sensor Fusion475

In this section we introduct recurrent attention filter for sensor fusion. We try to marry the strength476

of spatial-temporal attention and mixture of sub-task experts. For demonstration, we use speech477

activity detection where the inputs are audio, image, and motion, and outputs are binary labels. This478

model can be converted to a, e.g. speech and video enhancement system where outputs are, e.g.479

spectrograms and images.480

Let {x1, ...,xT } be a sequence of input signals. Partition xt into {x(1)
t ,x

(2)
t ,x

(3)
t } which are audio,481

image, and motion features, respectively. These features are functions, e.g. neural networks, of input482

signals. Let y = {y1, ..., yT } denote the sequence of speech activity labels, i.e. {0, 1}. Let x(m)
≤t and483

y≤t denote the subsequences {x(m)
1 , ...,x

(m)
t } and {y1, ..., yt}. We model yt as a Bernoulli random484

variable with conditional distribution:485

P(yt = 1|x≤t) = 〈g(x≤t), [f1(x
(1)
≤t ), f2(x

(2)
≤t ), f3(x

(3)
≤t )]〉, (13)

where 〈·, ·〉 is Eculidean inner product. Each expert function fm(·) is a neural network which predicts486

the conditional distribution of yt given input from modality m only:487

fm(x
(m)
≤t ) = P(yt = 1|x(m)

≤t ). (14)

The spatial attention function g : Rn 7→ Rm is also a neural network which specifies a mixing
weights for each fm. Input to g are features of all modalities, as g has to output weights on all
modalities. The output weights are non-negative and sum to 1. Therefore, yt|x≤t has a mixture of
Bernoulli distributions, where each component is a conditional distribution:

p(yt|x≤t) =
∑
m

p(m|x≤t)p(yt|x(m)
≤t ). (15)

In the recurrent attention mixture model (Equation 15), for each expert function we apply temporal488

attention on the input x(m)
<t , such that fm(x

(m)
≤t ) can look back in time and focus on relevant time489

segments. The recurrent attention mixture model can be solved using stochastic gradient descent.490

RNN with attention is often slow to train and has high memory consumption. Therefore the RNN491

with temporal attention can be replace with 1-D dilated convolutional neural network.492

A simplified version is akin to Markov mixture of expert [Meila and Jordan, 1996] where current
prediction is independent of the past given a latent random variable:

p(yt|x≤t) =
∑
m

p(m|xt,h′t−1)p(yt|x(m)
t ,h

(m)
t−1) (16)

where h′ and h(m) are RNN hidden units in attention and expert networks. The Markov attention493

mixture model (Equation 16) is shown in Figure 4. Regularization is discussed in subsection 4.5.494

We can further simplify the model by assuming yt ⊥ x<t|xt such that495

p(yt|x≤t) =
∑
m

p(m|xt)p(yt|x(m)
t ). (17)

This simplified model (Equation 17) is a conditional attention mixture model — each time step496

is a independently distributed mixture of conditional Bernoulli distributions. We can follow the497

standard EM receipt [Bishop et al., 2006] to solve the Markov attention mixture model and conditional498

attention mixture model (see Appendix A).499
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Figure 4: Regularized recurrent attention multimodal sensor fusion model.

4.4.1 Comments500

In multimodal sensor fusion, each expert function would process one of the parallel sensor input,501

rather than a subset of all the training cases as in mixture of experts (Figure 3). The gating function502

is replaced with a spatial attention function, which at each time step, generates soft attention over503

sensors.504

Baltrušaitis et al. [2018] suggested that late fusion ignores the low level interaction between the505

modalities. However, Ngiam et al. [2011] found that it is difficult to capture cross-modality relation506

with low level features, because within-modality correlation is much stronger than between-modality507

correlation. They suggested that fusion at higher level would encourage learning cross-modality508

features, because higher level features may have less within-modality correlation than raw features.509

In our model, the gating network could take input features from any level of the expert networks. It is510

possible to apply a hybrid of late and early fusion by taking both high and low level features. Hence511

our model can be considered as a model agnostic hybrid fusion. These features are used to create512

dynamic mixing weights, similar to a spatial attention mechanism.513

The spatial attention function g is similar to soft attention [Xu et al., 2015]. But there are two key514

differences. First, g(t) does not have input from x>t; this is critical because g does not rely on future515

information to make current decision, which allows for online decision making. Second, for t+ 1, g516

takes new input xt+1 in addition to previous inputs x≤t, hence a filter.517

The recurrent attention mixture model is similar to mixture density network [Bishop, 1994]. The518

major difference is that we use dedicated neural networks to predict each component density (i.e.519

expert) and mixing coefficients (i.e. gate), thus maximizing the utility of each sensor’s input. To520

recognize the covariance between different sensors, we design a co-learning mechanism as explained521

in next section.522

4.5 Co-learning Latent Features523

Each expert function fm is trained to maximize the utility of its sensor input. Although sensor inputs524

are different, they are likely to have some similar latent features. For example, when uttering some525

words, part of the lip movements (i.e. visemes) are coordinated with the sound (i.e. phoneme). In this526

sense, two input modalities and not independent. We can make an assumption that for the speech527
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activity detection task, for each experts, there are some common features that “represent" some states;528

for example, a fixed set of nodes in both experts’ hidden layer are activated when speech is found. If529

we can apply some prior information which encourage latent variable sharing, we may extract more530

robust features for the classification task.531

To this end, we consider two techniques from statistical learning. One is to apply a penalty term to532

part of hidden unit outputs to encourage the output of different experts be similar to each other. For533

example, we can add a term to the loss function which is proportional to the sum of squared distances534

between outputs and average of outputs. Alternatively, instead of tying hidden unit outputs we can535

put penalty on weights to encourage some weights are tied between different expert networks.536

A second approach is to define a structure prior of the generative model via probabilistic graphical537

model. We will discuss this approach extensively in section 5.538

4.5.1 Distance based regularization539

For each expert network, choose one hidden layer. Let z1, ..., zM denote the hidden unit outputs of
these layers of the M experts. Let z∗m denote the first n hidden nodes of zm. We assume that

E[z∗m] = ζ. (18)

That is, for all input sensors, z∗m has the same expectation. Thus

ζ̂ =
1

K

K∑
k=1

z∗k (19)

is an unbiased estimator of ζ, where z∗k is a sample of z∗k. Define the co-learning loss as

Lco =

M∑
m=1

λm‖z∗m − ζ̂‖22. (20)

Lco is a sum of squared L2 norms; λk is a sensor specific penalty parameter selected by cross-540

validation. Adding Lco to the loss function has the effect of shrinking z∗k towards ζ, as in Tikhonov541

regularization, to prevent overfitting and stabilize parameter estimation.542

We want to point out that if we assume z∗ are Gaussian random variables, then Lco is equivalent to543

impose a Gaussian prior distribution over ζ. In this sense, the Lco estimate of z∗ is a MAP estimate.544

The advantage of formulating Lco as Tikhonov regularization is that we can replace ζ̂ with a moving545

average of the current mini-batch of samples in stochastic gradient descent.546

4.6 Recurrent Attention Filter for Audio-Visual Speech Separation547

It is easy to modify our model from speech activity detection to speech separation. For speech548

separation, a common technique is to use a ideal ratio mask (or a ideal binary mask), which is a549

element-wise ratio (or binarized ratio) between clean and noisy spectrogram. This mask is then550

multiplied with the input spectrogram to get a denoised spectrogram. The audio input could be551

either complex spectrogram or magnitude spectrogram. In the case of complex spectrogram, two552

masks will be generated for real and imaginary component respectively. When using magnitude553

spectrogram, one mask will be generated, and the phase of noisy input will be used to as denoised554

phase. The speech activity detection model discussed above can be seamlessly transformed into a555

speech separation model.556

5 Model Based Sensor Fusion: Separating Modality Invariant and Modality557

Dependent Information558

In the previous section, we discussed a deep learning model for multimodal sensor fusion. Towards559

the end, we propose a co-learning idea which encourages co-adaption and independent learning560

of each sensor at the same time. In the following sections, we propose probablistic models which561

combines multiple sensors’ signals into separate modality-dependent and modality-invariant features.562

We begin by introduce a variational RNN (VRNN) model where the transition between hidden units563
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are stochastic. The VRNN model is a non-Markovian model in the sense the conditional independence564

assumption is broken in both transition and emission. We discuss this property by comparing VRNN565

with hidden Markov model and linear dynamic system. Using VRNN, we build a multimodal VRNN566

which imposes a structural prior on the generative model. As a result, the modality dependent and567

modality invariant factors are encouraged to separate into different latent variables. We emphasis568

that as oppose to PCA or VAE where latent factors are not known a priori without looking at the569

posterior distribution, our model explicitly matches latent variables with concepts. This is a result of570

the explicit graphical model structure.571

The non-Markovian model brings a price. One direct outcome is that the latent state no longer572

contains all the information for generation or transition. In this sense, it is not a state-space model in573

the classical sense. As the latent state does not contain all the information, it is questionable to use574

the latent state for many downstream tasks; for example, control and planning. Another outcome is575

that the time derivative information is not captured by the VRNN model as the latent variable only576

focuses on recovery of the current observation.577

5.1 Motivation578

Our motivation is driven by a few observations. First, we observe from human representation learning579

that feature representations are either modality-invariant or modality-dependent: when you listen to a580

person, your ears hear the speech, and your eyes watch the person’s face, then you jointly use the581

visual and audio signals to decode the content of the speech which is embedded in both audio and582

visual signals, and other information such as speaker’s visual identity and vocal accent which are583

uniquely embedded in visual or audio signal. With multiple input channels, we can infer the speech584

content with more precision than with a single input. For this reason, if we consider audio and visual585

signals are generated by some latent explanatory factors, it is natural to partition the latent factors586

into modality-dependent and shared subsets.587

A second observation is many signals have a temporal structure. If we naively separate each time step588

as a independent unit for analysis, the data does not carry the same information. A typical approach589

is to formulate a sequence of latent random variables with Markov property to generate the observed590

sequence. Two common models are hidden Markov model and linear Gaussian models. However,591

neither of which are well-suited to modeling long-term dependencies and complex probability592

distributions over high-dimensional sequences. Neural network models such as RNN have seen593

many successes in modeling complex sequences with long dependency. One limitation with RNN594

is structural variations are captured by deterministic transition. While a RNN can increase its595

memory capacity by increasing the size of its hidden unit, it is more likely to overfit to training data.596

There is recent evidence that when complex sequences such as speech and music are modeled, the597

performances of RNNs can be dramatically improved when uncertainty is included in their hidden598

state. In this work, we combine stochastic latent variable with RNN to take advantage of both methods599

in a coherent way.600

Considering learning a generative model for video of speech. Learning interpretable representations601

for such data, and comparing them as the speech content or the speaker identity are changed, gives602

useful high-level tools for speech recognition and speech synthesis. Even though each image is603

encoded by thousands of pixels and each audio segment is represented as hundreds of frequency604

bins, the data lie near a low-dimensional nonlinear manifold. A useful model must not only learn605

this manifold but also provide an intepretable representation of the speech dynamics. A natural606

representation from speech is that the human speech audio is divided into phonemes, and speech607

video is divided into visemes [Bear and Harvey, 2017]. Therefore an appropriate model might switch608

between discrete states with each state representing the dynamics of a particular action. These two609

learning tasks, identifying an speech manifold and a structured dynamics model, are complementary.610

We want to learn the speech manifold in terms of coordinates in which the structured dynamics fit611

well.612

In our preliminary experiments, we used variational autoencoder (VAE) to map images of digit613

according to content and style by learning from the MNIST dataset. In Figure 5a we project the614

latent space to a 2 dimension space, and we can see clear clustering of digits, i.e. contents. The row615

dimension and column dimension show the variation of style of each digit. We also plot the hidden616

layer activation map in Figure 5b, and we can observe meaningful patterns corresponding to digits.617
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(a) Latent space of VAE for MNIST digits. (b) Features for MNIST digits.

Figure 5: Separating content and style from MNIST digits.

5.2 Related Works618

5.2.1 Inference in Graphical Models with Conjugate Prior619

In Gaussian linear dynamic system model with linear Gaussian observation, because the observation620

model p(y|x) is conjugate to the latent variable model p(x), e.g. Gaussian, then the optimal approx-621

imate distribution is naturally Gaussian, and we can use efficient message passing algorithms to622

perform exact inference. However, when the observation model is not conjugate to the latent variable623

model, these algorithmic structure break down. A solution is to use general variational inference624

such as mean-field method. Mean-filed method makes strong independence assumption on the latent625

distribution for ease of computation, which lead to greater gap between the marginal likelihood and626

variational lower bound.627

5.2.2 Variational Autoencoder628

Two common approaches for solving latent variable models are variational inference and Markov629

Chain Monte Carlo methods. Recently, stochastic variational inference [Hoffman et al., 2013] has630

been successfully combined with deep neural networks into a class of deep Gaussian models named631

Variational Autoencoder [Kingma and Welling, 2013, Rezende et al., 2014]. Different from a vanilla632

autoencoder, a VAE introduces a set of latent random variables z to explain the variations in the633

observed variables x. Their joint distribution is defined as:634

p(x, z) = p(x|z)p(z). (21)

The VAE typically parameterizes p(x|z) with a highly flexible function approximator such as a neural635

network. The neural network allows for highly non-linear mapping from z to x which is a powerful636

and unique feature of VAE. However, introducing a highly non-linear mapping from z to x results in637

intractable inference of the posterior p(z|x). VAE uses a variational approach to approximate the638

posterior distribution p(z|x) while incrementally raises the evident lower bound:639

log p(x) ≥ Eq(z|x) log p(x|z)−KL(q(z|x)|p(z)), (22)

where q(z|x) is a distribution modeled using a inference neural network.640

The generative model p(x|z) and the inference model p(z|x) are jointed optimized by maximizing641

the evidence lower bound. The expectation with respect to q(z|x) is approximated stochastically in642

VAE.643

In VAE we estimate the distribution of latent variables z and use this information to reconstruct644

original signal x. Because z is random rather than deterministic, VAE allows for reconstructing645

different x from different modes of z rather than a single point estimate as in regular auto-encoder.646
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5.2.3 Recurrent Neural Network647

An RNN is a autoregressive model which takes a sequence input {xt}Tt=1 to predict a sequence output648

{yt}Tt=1. At each time step t, the RNN reads the input xt and updates its hidden state ht by649

ht = f(xt,ht−1; θ), (23)

where f is a deterministic non-linear function with parameters θ. Common choices of function f can650

are gated activation functions such as LSTM or GRU.651

While the function f is deterministic, we can add randomness to RNN by letting the output be a652

distribution. For example, assuming a sequence of lag 1 autoregressive relation, i.e. xt depends on653

{xk}t−1k=1. Conceptually, RNN models this sequence by parameterizing a factorization of the joint654

sequence probability distribution as a product of conditional probabilities such that655

p(x1, ...,xT ) =

T∏
t=1

p(xt|x<t) (24)

=

T∏
t=1

g(ht−1; τ) (25)

where g is a function which maps the hidden state ht−1 to the conditional probability distribution656

p(xt|{xk}t−1k=1).657

We can model the output function g as being composed of two parts. The first part ϕτ is a function658

that returns the parameter set φt given the hidden state ht−1659

φt = ϕτ (ht−1). (26)

The second part of g returns the conditional distribution of xt as p(xt|{xk}t−1k=1) = p(xt|φt).660

Gaussian mixture model (GMM) is a common choice for modeling a high-dimensional and real-661

valued distribution, especially for modeling structured output density model. For GMM, ϕτ returns a662

set of parameters including the mixture coefficients and the means and covariance matrices of each663

Gaussian components.664

However, given f is a deterministic function, a RNN model does not have the stochastic transition in665

a HMM. The lack of a mechanism to model the structural variation imposes a restriction on the RNN,666

as when it attempts to encode sufficient input variability to capture the signal variations, it inevitably667

overfits noise variations. In order to prevent overfitting, we must limit the capacity of the RNN and668

find another mechanism to model signal variations.669

5.2.4 Stochastic RNN670

Modeling sequential data is a domain of interest to representation learning. In a temporal-aligned671

RNN, given a deterministic transition function, the only source of variability is the output distribution672

p(yt|x≤t) = p(yt|xt, ht−1). On the other hand, a limitation of standard HMM is that it is poor at673

capturing long-range correlation between the observed variables [Bishop et al., 2006]. Recently there674

is a trend in combining probabilistic models models such as state space model with deep neural675

networks [Chung et al., 2015]. The key is to incorporate some stochastic hidden states to RNN.676

Chung et al. [2015] introduced a sequence of latent random variables whose prior distribution at time677

step t is dependent on all the preceding inputs via a RNN hidden state ht−1. A similar model is678

proposed by Fraccaro et al. [2016]. These are stochastic RNN models, not state-space models in the679

strict sense as they have broken the conditional independence assumption in the emission model:680

p(x1:T |zq:T ) 6=
T∏
t=1

p(xt|zt). (27)

SRNN can be solved using variational inference algorithm. VAE at heart is a simple probablistic681

graphic model of joint distribution of two time independent random variables x and z. When there is682

temporal relation, the assumption is broken. The recognition model would only try to encode the683

current observation into a latent variable and the generative model would decode the latent variable.684

Thus VAE would overlook the transition between latent states. In this sense, the VAE model overfits685

to the training data and discards the temporal information in the training data.686
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Figure 6: Graphical model of unimodal HMM.

5.2.5 State Space Model: HMM and LDS687

A Hidden Markov Model (HMM) (Figure 6) is a doubly embedded random sequence whose underly-688

ing Markov chain is not directly observable, hence a hidden sequence. HMM model has three sets of689

parameters. The first set is the initial state distribution of the Markov chain, p(z0). The second set is690

the transition distribution of the Markov chain, i.e. the conditional distribution p(zt|zt−1). The last691

set is the emission distribution p(xt|zt). When z has finite discrete state space, it is a Hidden Markov692

Model; when z has continuous state space, it is a dynamical system. For a HMM model, we can693

choose arbitrary distributions, the efficient forward-backward algorithm can estimate the posterior694

distribution of the parameters, then use EM algorithm to improve the solution. For a review of HMM695

see [Rabiner, 1989]. A HMM requires a discrete state space with a known size, a dynamical system696

extends from finite state space to a continuous state space. A linear dynamical system simplifies a697

dynamical system by requiring E[zt|zt−1] to be a linear function of zt−1. Two common forms of698

LDS are the Kalman filter and Kalman Smoother. To get a linear time algorithm, in a Kalman filter,699

we take advantage of the conjugacy of exponential family. That is,700

p(zt, {xk}tk=0) = p(xt|zt)
∫
zt−1

p(zt|zt−1)p(zt−1, {xk}t−1k=0) (28)

which is equivalent to701

p(zt|{xk}tk=0) = ctp(xt|zt)
∫
zt−1

p(zt|zt−1)p(zt−1|{xk}t−1k=0) (29)

where ct = p(xt|x1, ..., xt−1) is a scaling factor.702

The linear Gaussian restriction is that703

p(zt|zt−1) ∼ N (Azt−1,Γ) (30)
p(xt|zt) ∼ N (Czt,Σ). (31)

The model can be written in the conventional Kalman filter form as704

zt = Azt−1 + wt (32)
xt = Czt + vt (33)
wt ∼ N (0,Γ) (34)
vt ∼ N (0,Σ). (35)

Note here we have omitted the control input u which is assumed to be known in Kalman filter.705

By recognizing the probability density function, we get the posterior distribution p(zt|{xk}tk=0).706

For Kalman smoother, we have the backward form707

p(xt, ...,xT |zt−1) =

∫
zt

p(xt, ...,xT , zt|zt−1) (36)

=

∫
zt

p(zt|zt−1)p(xt|zt)p(xt+1, ...,xT |zt). (37)

With forward-backward filters, we can get all the statistics we need for inference and learning. For708

example, we can easily compute the posterior probability of zt given the observed sequence (which709

is used in inference and learning)710

p(zt|x1, ...,xT ) ∝ p(zt,x1, ...,xT )
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Figure 7: Graphical model of multimodal HMM. Each Xm is a modality for m ∈ {1, ...,M}. All
modalities have the same shared latent explanatory variable Zs.

= p(zt,x1, ...,xt)p(xt+1, ...,xT |zt).

In speech recognition, in order to infer which word generated the sound, we need p({xt}Tt=1|W )711

where W is the word decides the probability distribution. With the forward-backwad filter, we have712

p({xt}Tt=1|W ) =

∫
zt

p(zt,x1, ...,xt)p(xt+1, ...,xT |zt) (38)

= p(zT ,x1, ...,xT ) (39)

where zT is the final non-emitting state.713

5.3 Multimodal HMM and LDS714

First let’s consider a multimodal Hidden Markov Model (HMM). Let {xmt }Tt=1 denote the sequence of715

observed data of modalitym, {zmt }Tt=1 denote the sequence of latent explanatory factor of modalitym,716

{zst }Tt=1 denote the sequence of latent explanatory factor shared by all modalities. The shared latent717

factor is a key difference between multimodal HMM and regular HMM, as it enables the observed718

data to be correlated between modalities. When a event (e.g. speech) is described by multiple signal719

sequences, the sequence of shared latent variables contains modality invariant information such as720

the semantic content (e.g. speech content), whereas the modality-specific latent variables contain721

modality-dependent information such as styles pertains only to that modality (e.g. voice timbre, face722

contour). We define style latent variables to be modality-dependent, and content latent variables to be723

modality-invariant. We assume that at every time step t, a modality m has observed variable xmt that724

is generated by latent variables {zmt , zst }. A graphical model of the sequences is shown in Figure 7.725

The latent variables {zst } and {zmt } have Markov property such that p(zmk |{zmt }
k−1
t=1 ) = p(zmk |zmk−1)726

and p(zsk|{zst }
k−1
t=1 ) = p(zsk|zsk−1). Hence at time t, xmt is conditionally independent of the rest727

of the graph given {zmt , zst }. Notice that the sequence {xmt }Tt=1 is not temporally independent728

due to temporal dependency in {zst }Tt=1 and {zmt }Tt=1. {xmt }Tt=1 is also not spatially independent729

across m at fixed t due to the shared latent variable zst . We assume that modality dependent latent730

variables are independent, i.e. zmk is independent of zm
′

k if m 6= m′. The assumption of having731

orthogonal modality dependent latent factors is consistent with the objective to have disentangled732

latent dimensions [Bengio et al., 2013].733

Using the Markov property, we can factorize the joint likelihood in a favorable form. To simplify734

notation, let’s denote all latent variables at time step k by zk = {{zmk }Mm=1, z
s
k}, and denote all735

observed variables at time step k by xk = {xmk }Mm=1. For a sequence of T steps, the joint distribution736

of observed variables and latent variables is737

P(x1, ...,xT , z1, ..., zT ) =

T∏
t=1

p(xt|z≤t,x<t)p(zt|z<t,x<t) (40)
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Figure 8: Stochastic RNN. Red line is stochastic relation, black line is deterministic relation. h are
hidden states of a recurrent neural network, z are latent explanatory variable, x are observed variables,
(µ, σ) are parameters of Gaussian distributions.

=

T∏
t=1

[(
M∏
m=1

p(xmt |zmt , zst )

)(
p(zst |zst−1)

M∏
m=1

p(zmt |zmt−1)

)]
(41)

where the second equality follows from Markov property.738

Instead of solving this multimodal HMM model, next we will present a multimodal nonlinear739

dynamical system, and combine it with recurrent neural network, and solve it using stochastic740

variational inference.741

5.4 Multimodal Variational RNN742

Recurrent neural networks are able to represent long-term dependencies in sequential data by encoding743

inputs to update a deterministic hidden state. Recent works found that when complex sequences such744

as speech and music are modeled, the performance of RNN can be improved by including uncertainty745

in hidden states [Chung et al., 2015]. The reason is that when there is strong structural variation (i.e.746

high signal-to-noise ratio), it is mixed with random noise in inputs and outputs. While a deterministic747

RNN can increase its memory capacity by increasing the size of neural network, it also could bring748

over-fitting to training data, hence not a good solution.749

The first order Markov property in HMM model is an effort to have a compromise between com-750

putation complexity and model complexity. However, the marginalization step in finding posterior751

distribution of z is often intractable. Only a few exact inference algorithms are available (i.e. HMM752

and Kalman filter).753

Having p(zt|zt−1) = p(zt|zt<t, x<t)) would be ideal since it allows for maximum information754

passing. However, if we consider having a RNN layer on top of the latent variables as shown in755

Figure 8, the RNN hidden state variable ht is going to pass all the previous z≤t and x≤t to timestep756

t, which breaks down the Markov property. In that case we still can factorize the joint distribution as757

P(x1, ...,xT , z1, ..., zT ) =

T∏
t=1

p(xt|z≤t,x<t)p(zt|z<t,x<t). (42)

This long dependency is challenge to work with in dynamic Bayesian networks. Chung et al. [2015]758

instead used neural networks to replace the transition probability matrix and emission probability,759

and solve the estimation problem using stochastic variational Bayes [Kingma and Welling, 2013,760

Rezende et al., 2014].761

In this work, we propose a multimodal stochastic RNN model (Figure 9). In the generative model,762

there are M + 1 RNN sequences {{hm}Mm=1, h
s}, connecting to M + 1 latent explanatory variable763

{{Zm}Mm=1, Z
s}. M of the latent variables {Zm}Mm=1 are each associated with one modality, and764

Zs is shared by all modalities. As we explained earlier, each modality’s output Xm is a function765

of Zm and Zs. The RNN are deterministic and the latent explanatory variables are stochastic. By766

doing so, we let the latent variables model the structural variation in signals, and let the RNN pass767

information from the past to present. The observed variables stochastically depend on latent variables,768
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Figure 9: Generative model of multimodal stochastic RNN (Figure only shows one modality m).
Red line is stochastic relation, black line is deterministic relation. h are hidden states of a recurrent
neural network, Z are latent explanatory variable, X are observed variables, (µ, σ) are parameters of
Gaussian distributions.
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Figure 10: Inference Model of multimodal stochastic RNN (Figure only shows one modality m).
Red line is stochastic relation, black line is deterministic relation. h are hidden states of a recurrent
neural network, z are latent explanatory variable, x are observed variables, (µ, σ) are parameters of
Gaussian distributions.

which allows for noise variations. By have two separate stochastic component, we separate structural769

variation from random noise variation.770

For inference, we consider the following q function as shown in Figure 10 to approximate the posterior771

distribution p(z1, ..., zT |x1, ...,xT )772

q(z1, ..., zT ) =

T∏
t=1

q(zt|xt,ht−1)

=

T∏
t=1

q(zt|z<t,x≤t). (43)

The last equality holds because in the generative model (Figure 9), ht−1 depends on all the xk and773

zk up to time k = t− 1. Hence our inference model (Figure 10) implies (43).774

Thus we can derive the variational lower bound as775

log p({xt}Tt=1) ≥ Eq({zt}Tt=1)
log

[
p({xt, zt}Tt=1

q({zt}Tt=1)

]
(44)

=

T∑
t=1

M∑
m=1

Eq({zk}tk=1)
log p(xmt |zm≤t, zs≤t, xm<t) (45)

−
T∑
t=1

M∑
m=1

KL(q(zmt |z<t,x≤t)||p(zmt |zm<t, xm<t)) (46)

−
T∑
t=1

M∑
m=1

KL(q(zst |z<t,x≤t)||p(zst |zs<t, {xm<t}Mm=1)). (47)

Here, the first term is the reconstruction loss. The first set of KL terms is the modality specific latent776

variable posterior approximation error, and the second set of KL terms is the shared latent variable777
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posterior approximation error. A key difference between RNN-VAE and regular VAE is the the prior778

distribution for a latent variable Zt is not the same Gaussian(0, I). Instead, the prior depends on779

the previous states Z<t. Here, we define the prior distribution to be a Gaussian distribution whose780

parameters are given by a neural network with input ht−1 (Figure 9).781

6 Learning Latent Variable from Similarity782

6.1 Motivation783

Measuring the distance between objects has been useful in many clustering or classification tasks.784

People normally first find a mapping, called a embedding, of a object into a latent space, e.g. a785

Euclidean space. The mapping is normally hand-crafted. Here we discuss methods which learn a786

explicit embedding function from only knowing local similarity between sample points, not necessary787

distance measure, but only label of categories. Such a function can be updated as new data are788

collected, hence reducing the algorithm complexity. We propose a model which combines embedding789

and sensor fusion and discuss applications of such approach for tasks such as robust sound event790

detection and classification.791

6.2 Global Embedding from Local Pairwise Similarity792

Most methods for learning a latent embedding involve inverting a matrix of pairwise similarity793

between sample points, e.g. Locally Linear Embedding [Roweis and Saul, 2000] and ISOMAP794

[Tenenbaum et al., 2000]. In a high-dimensional input space, the cost of inverting such a matrix is795

O(n3), and often the matrix is sparse. While there are iterative methods for approximating a solution,796

there are other methods motivated on a objective function which can be naturally optimized using797

gradient descent, e.g. Stochastic Neighborhood Embedding (SNE) [Hinton and Roweis, 2002] and798

t-SNE [Van der Maaten and Hinton, 2008]. While LLE and ISOMAP lack a explicit embedding func-799

tion, SNE and t-SNE models the similarity between two sample points using conditional probability,800

e.g. Gaussian. Suppose xi would pick all its neighbors in proportion to their probability density under801

a Gaussian centered at xi, the similarity of sample point xi to xj is the conditional probability pj|i:802

pj|i =
exp(−||xi − xj ||2/2σ2

i )∑
k 6=i exp(−||xi − xk||2)

. (48)

Here σi is the variance of the Gaussian that is centered on xi. In the embedding space (i.e. latent803

space), a lower dimensional counterpart zi has a similar conditional probability, which is denoted by804

qj|i:805

qj|i =
exp(−||zi − zj ||2/2σ2

i )∑
k 6=i exp(−||zi − zk||2)

. (49)

If the latent points zi and zj correctly model the similarity between the high-dimensional sample806

points xi and xj , the conditional probability pj|i and qj|i will be equal. Motivated by this observation,807

SNE finds a latent representation which minimizes the difference between pj|i and qj|i for all i, j.808

SNE minimizes the sum of Kullback-Leibler divergences over all sample points using a gradient809

descent method:810

C =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

pj|i log
pji
qj|i

. (50)

One of the advantages of t-SNE is when new sample points are available, current embedding can be811

updated with low cost. For example, for a new point x∗, we can initialize its latent code z∗ by the812

mean of sample latent code, and perform gradient descent for a few iterations.813

While SNE is a unsupervised learning approach, its result can be used for classification. After a814

embedding function f is trained to convergence, it can be applied on new data for tasks involving815

similarity search. For example, Van der Maaten and Hinton [2008] trained a embedding function of816

MNIST dataset whose latent space shows good clustering results of digits. A new digit image can817

be send to the embedding function, and we can perform a k-nearest neighbor search to find its more818

probable label. Such a search is often cheaper since the embedding space is low-dimensional.819
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6.3 Weakly Supervised Metric Learning without a Metric820

A drawback of SNE and t-SNE is the similarity metric is imposed with a structural form, e.g. Gaussian821

kernel, on both the input and latent space. Hadsell et al. [2006] proposed a siamese structure to learn822

a globally coherent non-linear function that maps the data evenly in a latent space. The learning relies823

solely on neighborhood relationships and does not require any distance measure in the input space.824

Siamese structure is a weakly supervised model in the sense that the training data only use binary825

labels to learn a continuous embedding. Recognizing that a meaningful mapping maps similar input826

vectors to nearby points on the output space and dissimilar vectors to distant points, siamese structure827

constructs a contractive loss function whose minimization can produce such a embedding function.828

The loss function takes pairs of samples xi and xj , with a binary label y = 1 indicating they are829

similar and y = 0 indicating they are dissimilar. In classification, samples from same classes are830

considered as similar, and from different classes are considered as dissimilar. The output of the831

function would naturally allocate each sample according to its representativeness in each class without832

any distance measure. Define the distance function DW as euclidean distance between the embedding833

output GW (x1) and GW (x2) where GW is the embedding function to be learned:834

DW (x1, x2) = ||GW (x1)−GW (x2)||. (51)

The contrastive loss function L is defined as835

L(W, (x1, x2, y)) = (1− y)Lp(DW ) + yLn(DW ), (52)

where836

L(W ) =

N∑
i=1

L(W, (x1, x2, y)(i)) (53)

where (x1, x2, y)(i) is the i-th sample pair, Lp is the loss function for positive pairs and Ln is837

the loss function for negative pairs. Here Lp and Ln are designed to reflect similarity in the838

embedding space; for example, Hadsell et al. [2006] suggested using Lp = DW (x1, x2)2 and839

Ln = max{0, (m−DW (x1, x2))2} where m > 0 is some hyper-parameter represents a margin for840

dissimilar pares.841

Bell and Bala [2015] proposed a siamese network which utilizes deep neural network for GW . The842

siamese network showed good result in embedding images of objects into a latent space according to843

their visual similarity represented by class labels.844

6.4 A Example: Audio Event Detection in Noisy Environment845

Analysis of environmental sound has the potential to be used in many applications, such as surveillance846

and smart homes. The Detection and Classification of Acoustic Scene and Events (DCASE) challenge847

is a venue for researchers to propose new methods for audio classification. Several tasks has been848

defined for audio classification including acoustic scene classification, sound event detection, and849

audio tagging. Recently, Google released an ontology and human-labeled large scale data set for850

audio events, i.e. Audio Set [Gemmeke et al., 2017], which consists of 527 classes and over 2 million851

human-labeled 10-second long sound clips drawn from YouTube videos. Audio Set is defined for852

tasks such as audio tagging. The objective of audio tagging is to perform multi-label classification on853

fixed-length audio chunks without predicting the precise boundaries of acoustic events. Recently,854

deep learning methods have been successfully applied to audio tagging.855

Siamese network has been used for sound event detection [Zhang and Duan, 2016, 2017]. Here we856

explore sound event detection in a noisy environment by combining denoising autoencoder, siamese857

network, and conditional attention mixture model (Figure 11). We use siamese network to train a858

embedding encoder for a map of clean sound categories in e.g. Audio Set based on category label.859

Because we are not performing speech separation, we do not have to stick to STFT features as input860

to the network. Instead, we use pretrained features such as Audio Set VGGish features which are861

proved to be more effective than STFT features [Hershey et al., 2017]. We also compare other audio862

features such as mel-frequency cepstral coefficient (MFCC) features and SoundNet features [Aytar863

et al., 2016]. We extract VGGish features from audios for downstream tasks as described below.864

In a noisy environment, the clean sound is mixed with noise, such that the trained siamese encoder865

would not embed noisy sound to the exact embedding location of the clean sound. To this end, we866
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(c) Step 3: Pre-train clean audio siamese network.
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(d) Step 4: Fine tune denoising expert and gate module while fix siamese network for good embedding.

Figure 11: Robust sound event detection model.

train a denoising autoencoder (DAE) [Vincent et al., 2010] such that the denoised sound when passed867

through the trained siamese encoder would map to the original clean sound embedding location as868

close as possible. That is, the output of the DAE is connected to the input of the siamese network to869

get a embedding. The loss is the difference between clean-sound embedding and denoised-sound870

embedding. During back-propogation, we can (1) only update the weights for the denoising network,871

while fixing the siamese network, or (2) only update the weights for the siamese network, while fixing872

the denoising network, or (3) update both. Using the siamese embedding of the denoised sound, we873

can classify the class of the sound event by nearest neighbor search using euclidean distance in the874

embedding space. This has the advantage of searching by audio similarity [Zhang and Duan, 2017].875

Because noise type can vary, we apply conditional attention mixture model for dynamic selection876

of DAE. The system is developed in four stages (Figure 11). We first pick a few kinds of noises,877

then pre-train one DAE for each of them (Figure 11a). On top of pre-trained DAE’s, we add the878

conditional attention mixture model (Equation 17) where each DAE is a expert network, and let the879

gate module dynamically decide which kind of noise is most likely. This is supervised training since880

we know which DAE is correct during training time (Figure 11b). Meanwhile in parallel, we train a881
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Figure 12: Log-mag-STFT of speech. Top figure shows speech, bottom figure shows speech plus
casino noise with SNR = -5DB. Dotted black line shows speech activity.

siamese network on clean audio (Figure 11c). After both the gate module and siamese network are882

trained, we connect the denoising network with the siamese network (Figure 11d). We further fine883

tune the DAE’s based on the distance of embedded pairs while holding siamese network as ground884

truth mapping. Recall the conditional attention mixture model applies a probability to each expert885

module, hence the choice of denoising network could be combined, and consequently the embedding886

into latent space could be a set of points of different weights. During test time, we can use a weighted887

mean of these points as the center for nearest neighbor search.888

7 Experiments889

We will first give a brief overview of speech activity detection and speech separation. After that890

we will introduce the experiment dataset and video and audio preprocessing protocol. We discuss891

some relevant existing deep learning techniques that can be used to improve model performance,892

e.g. pre-trained feature extractor. Then we explain the experiment set-up and results. Finally we893

discuss the experiment results and propose follow-up works to be completed in our follow up works.894

Due to time constraints, we are not able to complete all the works we hoped at this time. We plan to895

complete them as part of the dissertation thesis.896

7.1 Speech Activity Detection and Speech Separation897

Acoustic event detection (AED) has draw many attentions due to its wide application in intelligent898

systems such as robots and smart homes [Gemmeke et al., 2017, Hershey et al., 2017]. With new tools899

such as deep learning, we have seen significant improvement in the results in recent DCASE Acoustic900

Scene Classification (ADC) task. As one kind of AED tasks, Speech activity detection (SAD) is a901

classification problem of a given sequence of audio frames into speech active and non-active states.902

Most SAD models rely on audio signal, for example Li et al. [2017] used grid LSTM to detect903

speech endpoints. Although speech is audio signal, video signal has shown value to detection and904

understanding of speech. Sadly, most SAD systems developed so far either entirely rely on audio or905

video alone, only a limited number of systems utilize both audio and video signal, e.g. [Ariav et al.,906

2018]. In addition, it is not a straightforward task to effectively combine audio and video signals due907

to the natural differences between audio and video signals.908

A unimodal system that relies solely on the audio signals can fail to do this job due to the common909

artifacts found in the real-world speech signals such as additive noise and reverberation. To give a910

concrete example, one speech audio is displayed as log transformed magnitude Short Time Fourier911

Transform (log-mag-STFT) in Figure 12. Notice although the speech only appears between 8th912

frame and 57th frame, it is difficult to determine where are true speech activities due to the noise we913

manually injected. In this scenario, video provides a opportunity to improve the accuracy of speech914

activity detection.915
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Figure 13: Images of speech (3 seconds, 25fps). Speech activity is from frame 8 to frame 57.
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While video signal is invariant to acoustic environments, the relation between speech and face916

movement is dynamic and usually asynchronous. For example, when uttering some words, part of917

the lip movements (i.e. visemes) are loosely coordinated with the sound (i.e. phoneme). In this918

sense, two input modalities are not independent. Visually speaking, speech is closely related to919

mouth movements. Hence the visual speech activity detection problem can be easily contaminated by920

non-speech mouth movement such as breathing, eating, etc. For example, in Figure 13, speech starts921

at 8th frame, but there is noticeable mouth movement from frame 0 to 7. Phonetically speaking, vowel922

is a speech sound tends to require relatively open mouth, while a consonant is a sound made with923

mouth relatively closed. Hence speech does not necessarily activates expressive mouth movements,924

which puts challenge on video-only speech activity detection. More importantly, visual signals do925

not always provide a reliable cue due to variations such as head rotations, illuminations, different926

view points, etc.927

We want to comment that video based Automatic Speech Recognition (ASR) has been addressed in928

a few previous researches; for example Assael et al. [2016]. These models directly classify video929

segments into words or phonemes, and hence can be used for SAD. We approach the SAD problem930

from a different perspective. We consider ASR as a multi-stage system, and SAD is a key step in931

front end processing. Instead of using video to predict text, we use visual cue to assist audio cue to932

classify noise audio from noisy speech audio. When noisy speech audio can be located (e.g. black933

line in Figure 12), we can apply source separation methods to extract clean speech from noisy speech.934

The denoised speech is subsequently fed into a audio based ASR system. To this end, video based935

ASR can work with audio based ASR in our model jointly in a multimodal ASR task.936

A SAD system can be applied to convert a unsupervised speech separation systems into a supervised937

one. Consider a noisy acoustic environment, if the type of noise is unknown, we have a unsupervised938

speech separation problem. If we know the type of noise, we have a supervised speech separation939

problem, which is significantly less challenging than the unsupervised case. With a SAD system, we940

can detect the noisy period immediately before speech. If we assume that the same type of noise941

will continue during speech, then we can use dictionary based speech separation algorithms such942

as [Smaragdis et al., 2007] and [Guo and Kim, 2018] with a known dictionary, hence a supervised943

speech separation system. In a multi-person speech separation scenario, SAD system can assist a944

face recognition algorithm to determine which person is speaking, and use beam-forming to enhance945

that speaker’s speech.946

We emphasize again it is easy to modify our model for speech activity detection to speech separation.947

For speech separation, a common technique is to use a ideal ratio mask (or a ideal binary mask),948

which is a element-wise ratio (or binarized ratio) between clean and noisy spectrogram. This mask is949

then multiplied with the input spectrogram to get a denoised spectrogram. The audio input could be950

either complex spectrogram or magnitude spectrogram. In the case of complex spectrogram, two951

masks will be generated for real and imaginary component respectively. When using magnitude952

spectrogram, one mask will be generated, and the phase of noisy input will be used to as denoised953

phase. The speech activity detection model discussed above can be seamlessly transformed into a954

speech separation model.955

7.2 Data956

In this experiment we use the GRID corpus data [Cooke et al., 2006] which contains 34 speakers. Each957

speaker has 1000 short speeches, each about 3 seconds long, recorded in a controlled environment958

with limited ambient noise. The speech is fully annotated, with phonemes mapped to time. Figure 14959

shows a sample image of one video.960

Due to limitation in computing resources, in this pilot study we randomly choose a subset of subjects961

to develop our model. For the experiment results presented in the following sections, we use 4962

subjects, 2 males and 2 females, to train and test our model. For each subject, we randomly partition963

the video clips by 7 : 2 : 1 into training, validation, and in-sample testing sets. We have a 5th subject964

served as out-of-sample testing set. We are planning on extend to all subjects in following works.965

7.3 Video Pre-processing and Pre-training966

Each video clip is 3 seconds long with 25 fps. We pre-process the video data using opencv-python.967

However, due to ffmpeg issue, some unpacked videos have less than 75 frames. To align the video968
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(a) One frame of video image. (b) Face image (with optical flow).

Figure 14: Video image of GRID.

with audio, we pad the first and last frames to the front and end of video to increase the number of969

frames to 75.970

In visual activity detection, still image and motion between frames have been shown to complement971

each other [Simonyan and Zisserman, 2014a]. Therefore, we extract two kinds of information from972

video: image and motion. We first extract a face from each video frame. Because the video is973

relatively clean with speaker’s front face at the center the video, we found a Viola-Jones type face974

detector works well. We used opencv-python Harr cascade front face feature to detect faces. We975

are able to detect high quality face bounding box because the camera is directly pointing at face of976

the subject, and both camera and subject are stationary. However, there is still movements of subjects977

between frames, such that each bounding box shifts a little. Because the subject in each video is978

always stationary and the movement is not dramatic, we choose to use the bounding box in first frame979

for the 75 frames. Each face image is resized to 224× 224 pixels in order to feed into a InceptionV3980

feature extraction.981

To create image features, pre-trained feature extractors can be used such as AlexNet [Krizhevsky982

et al., 2012], VGG [Simonyan and Zisserman, 2014b], InceptionV3 [Szegedy et al., 2016] and983

ResNet-50 [He et al., 2016]. In this experiment, we use InceptionV3 pre-trained on ImageNet without984

fine-tuning. The extracted InceptionV3 feature has dimension of 2048 for each 224 × 224 × 3985

image input. Alternatively, with enough data and computing resource, we could also train the feature986

extractor from scratch on GRID images or a general human face dataset, and fine-tune with the rest987

of the model. We will pursue these works in future.988

Convolutional network trained on multi-frame dense optical flow has been shown to achieve good989

performance on capturing human motion [Simonyan and Zisserman, 2014a]. We compute dense990

optical flow using Farnback algorithm provided in opencv-python from the extracted face images.991

Optical flow is 224× 224× 2 for each frame.992

To create a corrupted video signal, we randomly apply a square masking patch, and randomly adjust993

the brightness of that patch area. The location of the patch is random for each video, and the size of994

the patch is randomly chosen between 50 and 150. For each video, we randomly pick a segment of995

20 to 30 frames, and apply the patch to all frames in that segment. This mimics the effect of having a996

shadow or spot-light casting on the subject’s face during a segment of a video clip. Figure 15 shows a997

example of corrupted image and corrupted optical flow of the same video.998

7.4 Audio Pre-processing and Pre-training999

For audio data, we first pre-process the input audio to synchronize with images extracted from video1000

by matching number of audio frames with the number of image frames. We choose the STFT window1001

size and re-sample audio such that the there are 25 frames per second for audio. We first down-1002

sampled the speech audio from 50kHz to 16kHz, then perform Short-Time-Fourier-Transform with a1003

window size of 1024 and a stride of 760 which transforms each audio into 75× 513 representation.1004
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Figure 15: Corrupted images and optical of speech (subject 11, speech srbt7s, 3 seconds, 25fps).
Speech activity between 9th and 52nd frames, video noise between 22nd and 49th frames.
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Figure 16: A example of corrupted speech. Top clean speech, bottom corrupted speech (subject 11,
speech srbt7s, -5db SNR with Casino noise). Black line marks speech activity, red line marks visual
noise (audio noise is presented in all frames).

Notice that 25 frames per second may not be sufficient to fully capture the dynamics of speech. Our1005

method can be easily extended to extract 50 or 75 audio frames per second.1006

Similar to image feature extractor, we consider audio features such as mel-frequency cepstral1007

coefficient (MFCC) features, SoundNet features [Aytar et al., 2016] and Audio Set VGGish [Hershey1008

et al., 2017]. Because MFCC and VGGish features are not invertible, in speech separation, we use1009

STFT features as input to the network. In acoustic event detection, MFCC, SoundNet and VGGish1010

are proved to be more effective than STFT features [Hershey et al., 2017]. We will pursue these1011

works in future.1012

To create a corrupted speech signal, we injected two kinds of noise to the audio. The first kind1013

is a casino noise proposed by [Duan et al., 2012]. The casino noise is challenging due to being a1014

non-stationary, wide-band noise which span from low to high frequency domain. Figure 16 shows a1015

example.1016

We construct a second kind of noise using a mixture of three person from TIMIT training data1017

(TIMIT-3P). TIMIT training set contains 136 female and 326 male speakers, while the testing set1018

contains 56 female and 112 male speakers, which are from eight dialect regions in the US. Each1019

TIMIT speaker has 10 short utterances. For each GRID speech, we randomly choose 3 speeches from1020

TIMIT, then choose a random segment of 3 seconds from each chosen speech. We mix the 3 speeches1021

with equal magnitude. Finally, we mix the 3-person mixture with GRID speech with SNR equal 01022

DB.1023

7.5 Training1024

During each training epoc, a minibatch of size 16 is used. Same minibatch size is used for evaluating1025

validation and testing set. For RNN we used a 5 frames for truncated backpropagation through time.1026

For DNN model, we feed 5 audio frames per sample to provide a context, which is a common practice1027

in audio based speech recognition system. All models are trained on a server with 4 Nvidia Titan X1028

GPUs with 12GB RAM per GPU. The multimodal RNN model takes about 1-4 hours 1 per training1029

epoc, and we trained it for three days of 30 epocs. The recurrent attention mixture model takes about1030

4 hours per epoc to train .1031

7.6 Experiment Results1032

Our first set of experiments is on the recurrent attention filter. We implemented four versions of the1033

model. The first one is the conditional attention mixture model (Equation 17). The second one is the1034

1It seems the training speed is fluctuating on the server for some unknown reason.
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Table 1: Experiment Results
Train(*) Test (+)

Uni-modal input
Image 0.12 80.8
Optical flow 0.03 90.5
Audio (with casino noise) 0.06 92.5
Audio (with 3 persons noise) 0.06 91.1

Multimodal input without co-learning
Conditional Attention Mixture (with casino noise) 0.03 96.38
Conditional Attention Mixture (with TIMIT-3P noise) 0.04 96.25
Recurrent Attention Mixture (with casino noise) 0.03 93.75
Recurrent Attention Mixture (with TIMIT-3P noise) 0.1 85.7

Multimodal input with distance based co-learning
Conditional Attention Mixture (with casino noise) 0.03 91.74
Conditional Attention Mixture (with TIMIT-3P noise) 0.1 84.56
Recurrent Attention Mixture (with casino noise) 0.03 89.37
Recurrent Attention Mixture (with TIMIT-3P noise) 0.1 76.23
*: MSE, +: % correct.

recurrent attention mixture model (Equation 15). For each of these two models, we construct two1035

versions, i.e. with and without co-learning (distance based regularizer). For comparison, we also1036

implemented three uni-modal DNN models (audio, optical flow, and image). The results are shown1037

in Table 1.1038

First we notice that multimodal input model does outperform unimodal input model. While the1039

no-audio models (i.e. image and optical flow) have lower accuracies than the audio-only model, most1040

multimodal input models outperform audio-only model, which suggests image and motion provides1041

addition information not seen in audio for speech activity detection. This validates our hypothesis1042

that multimodal input is useful to speech related tasks.1043

Second, we notice that the RNN model easily overfits the training data. While the recurrent attention1044

model has lower training error than the conditional attention model, during test time the result is1045

reversed. This suggests we may need (1) to regularize RNN such using e.g. dropout or (2) stop RNN1046

training earlier.1047

Third, we notice that a simple distance based regularizer for co-learning does not improve prediction1048

accuracy. On the contrary, the un-regularized models have higher prediction accuracy, very likely1049

due to the lack of restriction of the model. Recall our motivation for the model-based regularization1050

is that co-learning helps to separate modality invariant features from modality-dependent features,1051

however, such features may not be useful for speech activity detection. This suggests we may need to1052

carefully design the co-learning structure in order to extract features that are useful to a task.1053

7.7 Spatial Attention Outputs1054

We would like to discuss the spatial attention generated by the gate module. Recall the spatial1055

attention gives the mixing weights to the experts. When a sensor’s signal is corrupted, we expect1056

the mixing weight for that sensor would decrease, and the mixing weight for a robust sensor would1057

increase, such that the overall decision is more likely to be correct. In Figure 18 we show the attention1058

weights for a speech sample. Notice that speech begins at the 9th frame (black line), and the model1059

prediction lags only one frame. The interesting phenomenon is that at the 22nd frame, the video1060

stream changes to corrupted (red line), causing the mixing weight for audio expert to increase, while1061

the mixing weights for image and optical flow decrease. This suggests that the attention module has1062

learned to identify which sensor inputs are more reliable and assigns mixing weights accordingly. At1063

the 51st frame, the video stream changes to uncorrupted, and we see the mixing weight for image1064

increases to the largest. Recall we have overlap speech audio with noise audio of the entire speech1065

duration, hence video signal is more reliable when uncorrupted.1066

We notice throughout the entire speech, the attention module prefers to choose only one of the three1067

inputs as the dominant input. It is likely due to the nature of the relationship between the three1068

inputs we have in this particular experiment. Another possibility is the softmax function we used for1069

generating mixing weights may prefer sparse outputs. In order to investigate this property, we can1070

(1) use a different set of sensor inputs, and (2) modify or replace the softmax function to encourage1071

non-sparse outputs.1072
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(a) Expert network outputs.

(b) Attention network outputs.

Figure 17: Model outputs (subject 11, speech srbt7s, mixed with casino noise at -5db.

(a) Expert network outputs.

(b) Attention network outputs.

Figure 18: Model outputs (subject 11, speech srbt7s, mixed with 3 random person noise at 0db.)

8 Conclusion and Future Works1073

In our speech activity detection experiment, we found that the best multimodal model has 95%1074

accuracy on testing set, whereas for flow model and audio model, the accuracy is 90 − 92%, and1075

85% for image model. The multimodal model prediction is more accurate and stable than unimodal1076

models. This suggests that multimodal model has successfully combined different sensor data for a1077

common task. We also found the attention function dynamically estimates how reliable each expert is1078

and assigns weights accordingly. Hence the gate module successfully opened the black-box of sensor1079
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fusion, which provides insight to the relation between signal and sensor fusion process. The result1080

shows a small step towards a structured sensor fusion method. Speech activity detection involves1081

a sequential binary classification problem. As we discussed, another interesting problem is speech1082

separation (e.g. denoising). We are currently working on this problem.1083

We found that co-learning using distance-based regularizer decreases prediction accuracy. This is1084

possibly due to co-learning separates modality invariant features and is not designed for speech1085

activity detection. We also proposed to combine probablistic graphical model with deep neural1086

network to construct a model-based sensor fusion model. The model has a co-learning design which1087

tries to separate modality-invariant and modality-dependent features. We are pursuing this direction at1088

the moment. We would like to investigate if model-free and model-based co-learning can successfully1089

separate modality invariant features from modality dependent features.1090

The combination of denoising autoendoder, siamese network, and conditional attention mixture1091

model is another work we are currently working on as part of the author’s dissertation. Although1092

we choose audio event detection as a application, this framework is general enough to solve other1093

problems, e.g. speaker identification and video event detection in multimodal setting. We will explore1094

these possibilities in future.1095
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