
Scalable Hybrid Search on Distributed

Databases

Jungkee Kim1,2 and Geoffrey Fox2

1 Department of Computer Science, Florida State University, Tallahassee FL 32306,
U.S.A.,

jungkkim@cs.fsu.edu,
2 Community Grids Laboratory, Indiana University, Bloomington IN 47404, U.S.A.

gcf@indiana.edu

Abstract. We have previously described a hybrid keyword search that
combines metadata search with a traditional keyword search over un-
structured context data. This hybrid search paradigm provides the in-
quirer additional options to narrow the search with some semantic aspect
from the XML metadata query. But in earlier work, we experienced the
scalability limitations of a single-machine implementation. In this paper,
we describe a scalable hybrid search on distributed databases. This scal-
able hybrid search provides a total query result from the collection of
individual inquiries against independent data fragments distributed in a
computer cluster. We demonstrate our architecture extends the scalabil-
ity of a native XML query limited in a single machine and improves the
performance for some queries.

1 Introduction

With the popularity of computer communication networks, there have been many
efforts to share and exchange information between resources on the Net. There
are two main approaches to search on networks—searching over structured data
or searching over unstructured data. An archetypal example representing struc-
tured data is a relational database, while information retrieval represents search
over the unstructured data. Extending these approaches to the Internet environ-
ment uncovers new research areas. The theories of SQL queries over structured
data give way to XML queries—searching over semistructured data—while newly
developed Web search engines are based on information retrieval technologies.

Our hybrid keyword search paradigm lies between those two approaches.
The hybrid search is fundamentally based on keyword search for the unstruc-
tured data, and adds supplemental search on metadata attached to each un-
structured document. We adopt XML—the de facto standard format for infor-
mation exchange between machines—as a metalanguage for the metadata. We
demonstrated the practicality of the hybrid keyword search in [8, 9], but we also
experienced the scalability limitations of a single-machine implementation. Par-
ticularly, the native XML database we used had very limited scalability. In this
paper, we will adopt a distributed strategy to improve the scalability of hybrid

keyword search. We will experimentally illustrate performance improvement and
larger scalability of the new architecture.

The rest of this paper is organized as follows. In the next section we describe
our architecture and compare to a grid system. Section 3 describes our search
architecture on distributed databases. We illustrate a query processing architec-
ture on a distributed database in Section 4. In Section 5, we evaluate our hybrid
search over a distributed database. We summarize and conclude in Section 6.

2 Hybrid Keyword Search on Distributed Databases

A distributed database is a collection of several or many databases stored in
different computers and logically interrelated through a network. A distributed
database management system (DDBMS) can be defined as a software application
that manages a distributed database system so that to users it seems like a single
machine—it provides transparency. Let us describe our distributed architecture
according to the transparency criteria of [11].

– Data Independence: the hybrid searches on each machine are logically and
physically independent each other. The data of each database have the same
schema and the schema do not change. Each database has its own manage-
ment system and only returns query results against the user inquiry. So our
architecture has physical data independence due to data encapsulation in
each machine.

– Network Transparency: the network connection of our system depends on
message-oriented middleware or peer-to-peer middleware, and the middle-
ware administrator or agent is only concerned with the connection. The
end-user does not perceive the detailed network operation of the distributed
hybrid search inquiry.

– Replication Transparency: we assume our distributed architecture is re-
stricted to a computer cluster, and no replication exists in the cluster. Sim-
ply: our system is replication transparent. Data replication is usually neces-
sary to increase the locality of data reference in a distributed environment.
Actually, the locality is guaranteed in a clustering architecture.

– Fragmentation Transparency: our experiments with hybrid search on a dis-
tributed database will show that the data can be partitioned into each
database within the limitation of the local database. Full partition is the
easiest case for the distributed database management system. The data are
partitioned into a chunk of XML instances with their associated unstruc-
tured data, and this type of fragmentation is horizontal.

We can summarize that in our architecture each database is totally independent.
The query result for the distributed databases is the collection of query results
from individual database queries.

Data independence and horizontal fragmentation features make our archi-
tecture different from other general architectures for federated database systems

surveyed in [13]. If data are not independent and user inquiries require join-
ing query data from different machines with various schemas, we can consider
a distributed querying framework based on recently emerging Grid infrastruc-
ture [5, 4]. OGSA-DQP (Open Grid Services Architecture; Distributed Query
Processing) [1] is an example of such framework.

3 Distributed Database Architecture

The architecture of the hybrid search service on each local machine depends on
the local service provider who joins the distributed database, and we demon-
strated such architectures in [8, 9]. One is utilizing an XML-enabled relational
DBMS with nested subqueries to implement the combination of query results
against unstructured documents and semistructured metadata. The other is
based on a native XML database and a text search library. To associate meta-
data with unstructured documents, we assign the file name for the document
as the key of the metadata. A hash table is used for a temporary storage of
metadata query results and the keyword search maps to the table subsequently
for joining.

The remaining issue for organizing the distributed database is the com-
puter network technology that connects the databases, and provides the network
transparency to the user. Tanenbaum and Steen [14] suggested that message-
oriented middleware is one of best application tools for integrating a collection
of databases into a multidatabase system. We utilize a message-oriented mid-
dleware implementation—NaradaBrokering [12, 6]. It includes JMS compliant
topic-based communication, which meets the minimum requirements for the net-
work transparency in a distributed database. NaradaBrokering also provides a
cooperating broker network for increased network scalability.

Figure 1 summarizes our general architecture. The search client is a publisher
for a query topic, and a group of search services subscribe on the same topic.
When the client publishes the query, the query message is broadcast to the search
service subscribers. The query results from the search services are returned back
to the client by publishing the message on a dynamic virtual channel—a tem-

porary topic whose session object was attached to the query message originally
delivered to the search service.

The architecture can be grown to a cooperating broker network. One or more
heterogeneous search services could be attached to each broker and each broker
can relay messages to other brokers. The cooperative network usually follows a
hierarchical structure, for better performance.

4 Query Processing

The query processing of each database (fragment) on our distributed architecture
depends on the local database or the search library. Due to the full partition in
our database distribution, the query processing in the DDBMS is simple, and
query propagation and result collections are the only interesting processes.

Client

Message

 Broker

Search

Service

Search

Service

Search

Service

Client Client

Query

message

Query

message

Result

message

Result

message

Subscriber

for a query

topic

Publisher

for

a temporary

topic

Publisher

for a query

topic

Subscriber

for

a temporary topic

Fig. 1. Scalable Hybrid Search Architecture on Distributed Databases

A query processing architecture on a distributed database is shown in figure
2. The search client is a query publisher and the search service is a query sub-
scriber. The user types query parameters through a user interface, and they are
amalgamated into a message along with a job property and a temporary topic.
The job property in this case is an integer property assigned to the “QUERY”
final variable. The JMS MapMessage message type is used for the query message
in our Java program.

The content of this message is a set of name-value pairs. The name is always
a string and the value can have one of several allowed types. We used a string
and an integer type. Those values could be empty for the string, and zero for the
integer, if there is no user input. The JMSReplyTo property is a message header
that contains a temporary topic.

The message broker delivers query messages to search services that have
already subscribed to the same topic. The listener in the search service captures
the query message, which includes a property header filled with a temporary
topic. The extracted query parameters are passed to the local query processing
service, which produces query results.

Those query results are returned back only to the client that published the
query message. This works because the temporary topic is unique to this client.
The inquirer client listens for the returned messages, and displays query results
to the user.

5 Experimental Performance

In this section, we evaluate our hybrid search over a distributed database. A
cluster of 8 computers forms a distributed environment, and all computers are
located within a local network whose network bandwidth is very high.

User Input

User Interface

MapMessage

Temporary

Topic

Publishing

Message Broker

Job

Property

Listener

MapMessage

Temporary

Topic

Query

Parameters

Local Query ProcessingClient

Search Service

Fig. 2. A Query Processing Architecture on a Distributed Database

In these experiments we use 100,000 XML instances extracted from the
DataBase systems and Logic Programming (DBLP) XML records [10] and 100,000
abstract text files from the TREC collection, OHSUMED [7]. We select article
XML instances only, and non-ASCII characters are converted to ASCII charac-
ters. We cut off embedded metadata in the collection and extract the abstract
part only. The data set is horizontally partitioned into 8 fragments, and each
fragment on each machine has 12,500 XML instances and 12,500 text files. All
eight computers have the same specification—2.4 GHz Intel Xeon CPU with 2
GB of memory, running a Linux 2.4 kernel and Java Hotspot VM 1.4.2. Those
machines are connected with each other by 1 Gbps links, but the switch for
the outside connections has 100 Mbps bandwidth. Apache Xindice 1.1b4 [3] is
used as a native XML database, and Jakarta Lucene 1.3 [2] is utilized for text
management.

We use two different communication middlewares—JXTA version 2.3 and
NaradaBrokering version 0.96rc2—for the performance comparison, and three
experimental architectures for 8 nodes as follows:

– JXTA: 1 node acts a rendezvous node and all other 7 nodes are connected
to the rendezvous node. All of the nodes are located in the same subnet
and all the query propagations are broadcast only within the subnet. This is
because the current JXTA implementation does not meet the specification
for selective query propagation from the rendezvous peer.

– Single NaradaBrokering: 1 node has a server and a search service, and the
other nodes only have search services. All the search services are clients for
the communication.

– Multiple NaradaBrokering Cluster: 1 node has a root server and the other
nodes have second-level servers. Each node has a NaradaBrokering server

......

......

......

Inquiry

Peer

Search Service

Rendezvous

Peer

Search Service

 Edge Peers

Inquiry

Client

Inquiry

Client

Message

Broker

Message

Broker

Search Services

Search Services

JXTA Single NaradaBrokering Multiple NaradaBrokering

Fig. 3. Examples of communication middleware architectures

and a search service. This architecture gives us an idea of the performance
difference between a cooperative network and a single message broker.

Examples of these architectures are shown in figure 3.

Figure 4(a) shows the average response time for an author exact match query
over 8 search services using the three approaches. We choose 8 queries that
combine an author and a keyword, and the databases are indexed against the
author element in the XML instances and keywords for the unstructured data.
Each query matches to only one of eight search services. The number of matches
is between 1 and 3. We present the graphs separately for the average response
time of no match and match result cases. We can interpret the difference between
matched and non-matched query time to mean that the additional overhead for
processing matched results is more than half of the total query time. The local
processing time for non-matched query is very short as a result of the indexing
against the author name. But the matched query takes long for joining the
query results, and it is larger than the communication time. The query time
of NaradaBrokering connections is shorter than that of JXTA connections. The
time for eight connections of NaradaBrokering is a little shorter than 1 broker
connection. But considering standard deviations—more than 70 ms—the two
NaradaBrokering cases are statistically indistinguishable. NaradaBrokering uses
Java NIO—the new I/O for better performance provided in JDK 1.4. JXTA
version 2.3 does not use the Java NIO features.

We evaluate further hybrid search queries for the year match. In these queries,
there are two different keyword selections. One has a few keyword matches—only
4 documents in 100,000 unstructured data documents, and the other has many
keyword matches—41,889 documents out of 100,000. The year in the query is
“2002” and it is hit in 7,752 out of 100,000 XML instances. We only show
single NaradaBrokering case because multiple NaradaBrokering cluster had little
difference. Figure 4(b) shows the average response time for the year match hybrid

0

100

200

300

400

500

Non-match Match

T
im

e
 (

m
s

)

Jxta 1 NB 8 NB

(a) Author exact match

0

1000

2000

3000

4000

5000

6000

Many keyword

match 1st

query

Many keyword

match cache

Few keyword

match 1st

query

Few keyword

match cache

T
im

e
 (

m
s
)

Jxta NB

(b) Year match

Fig. 4. Average response time for queries over 8 search services

query over 8 search services in the cluster. Compared with the performance
experiment results on a single machine 3 running an XML-enabled commercial
database, the year match queries on the distributed database show dramatic
improvement in performance. The query time is improved from 82.9 seconds to
less than 0.3 second for a few keyword matches, and from half an hour to less
than 0.3 second for many keyword matches. This big performance improvement
derives from horizontal partitioning, which reduces data retrieving time from
disk with the relation partitioning. We divide those data into each machine
by continuous ranges, and it is called range partitioning. The second and later
repeats of the same inquiry take a shorter time than the first attempt. This is
because the internal cache on the databases improves the query response time
for recently answered inquiries. The query time in NaradaBrokering middleware
is faster than that in JXTA, similar to the author matches.

Through experimental performance tests, we established that a distributed
database can overcome the limit in target size of XML query when Xindice
is run on a single machine. There was no problem up to 100,000 target XML
instances in the query over the distributed database. The local native XML
database could not produce accurate query results when the number of stored
XML instances was over 16,000. Another contribution from the distributed query
processing is the performance improvement for some queries over large target
results. Our experiment was focused on the exact match, because Xindice does
not provide context-based indexing on XML elements and attributes—there was
no performance improvement from XML element indexing for an approximate
match search.

3 This machine was used for performance tests in [9]. We should add that since this pa-
per was originally submitted we evaluated newer version of the commercial database
in one of the cluster computers with large resource allocations. With this modified
configuration, the query time was less than 1 second for the many keyword matches.

6 Conclusion

In this paper we described a scalable hybrid search on distributed databases.
Those distributed architectures are mainly based on several or many computer
network connections utilizing a message-oriented middleware or a peer-to-peer
network framework. The hybrid search provides a total query result generated
from a union of queries against data fragments in a computer cluster. The as-
pect of horizontal partitioning for our architecture contributed a performance
improvement for some queries comparing to those on a single machine. Fur-
thermore our new architecture extended the scalability of Xindice XML query,
limited to a small size on a single machine.

References

1. N. Alpdemir, A. Mukherjee, N. Paton, and P. Watson. Service-Based Distributed
Querying on the Grid. In Proceedings of International Conference on Service Ori-
ented Computing (ICSOC), December 2003.

2. Apache Software Foundation. Jakarta Lucene. World Wide Web.
http://jakarta.apache.org/lucene/.

3. Apache Software Foundation. Xindice. World Wide Web.
http://xml.apache.org/xindice/.

4. F. Berman, G. Fox, and A. Hey, editors. Grid Computing: Making The Global
Infrastructure a Reality. John Wiley & Sons, 2003.

5. I. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 2003.

6. G. Fox, S. Pallickara, and S. Parastatidis. Towards Flexible Messaging for SOAP
Based Services. In Proceedings of International Conference for High Performance
Computing and Communications(SC), November 2004.

7. W. Hersh, C. Buckley, T. Leone, and D. Hickam. OHSUMED: An interactive
retrieval evaluation and new large test collection for research. In Proceedings of
the 17th Annual ACM SIGIR Conference, 1994.

8. J. Kim, O. Balsoy, M. Pierce, and G. Fox. Design of a Hybrid Search in the Online
Knowledge Center. In Proceedings of the IASTED International Conference on
Information and Knowledge Sharing, November 2002.

9. J. Kim and G. Fox. A Hybrid Keyword Search across Peer-to-Peer Federated
Databases. In Proceedings of East-European Conference on Advances in Databases
and Information Systems (ADBIS), September 2004.

10. M. Ley. Computer Science Bibliography. World Wide Web.
http://www.informatik.uni-trier.de/˜ley/db/.

11. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice
Hall, 1999.

12. S. Pallickara and G. C. Fox. NaradaBrokering: A Distributed Middleware Frame-
work and Architecture for Enabling Durable Peer-to-Peer Grids. In Proceedings of
International Middleware Conference, June 2003.

13. A. Sheth and J. Larson. Federated Database Systems for Managing Dis-
tributed, Heterogeneous, and Autonomous Databases. ACM Computing Surveys,
22(3):183—236, September 1990.

14. A. Tanenbaum and M. Steen. Distributed Systems: Principles and Paradigms.
Prentice Hall, 2002.

