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Scalable Data Clustering using GPU Clusters

Andrew Pangborn, Gregor von Laszewski, James Cavenaugh, Muhammad Shaaban, Roy Melton

Abstract—The computational demands of multivariate clus-
tering grow rapidly, and therefore processing large data sets,
like those found in flow cytometry data, is very time consuming
on a single CPU. Fortunately these techniques lend themselves
naturally to large scale parallel processing. To address the
computational demands, graphics processing units, specifically
NVIDIA’s CUDA framework and Tesla architecture, were inves-
tigated as a low-cost, high performance solution to a number of
clustering algorithms.

C-means and Expectation Maximization with Gaussian mix-
ture models were implemented using the CUDA framework. The
algorithm implementations use a hybrid of CUDA, OpenMP,
and MPI to scale to many GPUs on multiple nodes in a
high performance computing environment. This framework is
envisioned as part of a larger cloud-based workflow service where
biologists can apply multiple algorithms and parameter sweeps
to their data sets and quickly receive a thorough set of results
that can be further analyzed by experts.

Improvements over previous GPU-accelerated implementa-
tions range from 1.42x to 21x for C-means and 3.72x to 5.65x
for the Gaussian mixture model on non-trivial data sets. Using
a single NVIDIA GTX 260 speedups are on average 90x for C-
means and 74x for Gaussians with flow cytometry files compared
to optimized C code running on a single core of a modern Intel
CPU. Using the TeraGrid “Lincoln” high performance cluster
at NCSA C-means achieves 42% parallel efficiency and a CPU
speedup of 4794x with 128 Tesla C1060 GPUs. The Gaussian
mixture model achieves 72% parallel efficiency and a CPU
speedup of 6286x.

I. INTRODUCTION

Science and business applications often produce massive
data sets. This immense amount of data must be classified
into meaningful subsets for data analysts and scientists to
draw meaningful conclusions. Data clustering is the broad
field of statistical analysis that groups similar objects into
relatively homogenous sets called clusters. Data clustering has
a history in a wide variety of fields, such as data mining,
machine learning, geology, astronomy, and bioinformatics, to
name a few [1] [2]. The nature of the data similarity varies
significantly from one application and data set to another.
Therefore no single data clustering algorithm is superior to
all others in every instance. As such, there has been extensive
research and a myriad of clustering techniques developed in
the past 50 to 60 years [2].

Flow cytometry is a mainstay technology used in immunol-
ogy and other clinical and biological research areas such as
DNA analysis, genotyping, phenotyping, and cell function
analysis. It is used to gather information about the physical
and chemical characteristics of a population of cells. Flow
cytometers produce a d-length multidimensional data vector
of floating point values for every event (usually a cell) in
a sample, where d indicates the number of photo-sensitive
sensors installed. Typical samples have on the order of 10°
events with upwards of 24 dimensions (and this number is

expected to continue increasing as flow cytometer technology
improves). This massive amount of data must then be clustered
in order for biologists to draw meaningful conclusions about
the characteristics of the sample.

Sequential bivariate gating is the approach traditionally
followed by biologists for clustering and analyzing flow cy-
tometry data. Two dimensions of the data are analyzed at a
time with a scatter plot. Clusters are then manually drawn
around populations of cells by a technique called gating. The
data sets are typically diffuse and clusters are not always
well-defined and distinct; therefore gating requires experience
and expert knowledge about the data and the dimensions
involved. Unfortunately this process is time consuming, cum-
bersome, and in-exact. Unpublished research by the University
of Rochester Center for Vaccine Biology and Immunology
suggests that results can vary by as much as an order of
magnitude between experienced immunologists on a difficult
data set. Therefore both the number and quality of the analyses
produced by sequential bivariate gating is limited. It is also
impractical to analyze many samples individually in a large
scale patient trial with manual gating.

Multivariate data clustering techniques have been around
for decades; however their application to the field of flow
cytometry has been limited. There has been a recent surge in
research activity over the past few years applying multivariate
data clustering to flow cytometry data. Multivariate techniques
have the potential to use the full multidimensional nature of
the data, to find cell populations of interest (that are difficult to
isolate with sequential bivariate gating), and to allow analysts
to make more sound statistical inferences from the results.
Flow cytometry data sets are complex, containing millions of
events, dozens of dimensions, and potentially hundreds of nat-
ural clusters. Unsupervised multivariate clustering techniques
are computationally intensive, and the computational demands
grow rapidly as the number of clusters, events, and dimensions
increase. This makes it very time consuming to analyze a
flow cytometry data set thoroughly using a single general
purpose processor. Fortunately, many clustering techniques
lend themselves nicely to large scale parallel processing.

In this paper NVIDIA’'s CUDA framework for general
purpose computing on graphics processing units (GPGPU)
was investigated as a low cost, high performance solution
to address the computational demands of unsupervised mul-
tivariate data clustering for flow cytometry [3]. However,
the algorithms themselves are applicable to a wide range of
applications, not just flow cytometry. The existing work on
data clustering algorithms using GPGPU has been limited
in the algorithms implemented and the scalability of such
algorithms (using multiple GPUs and clusters of GPUs). Two
unsupervised multivariate clustering algorithms, C-means and
Expectation Maximization with Gaussian mixture models,



were implemented using CUDA and the Tesla architecture.
Multiple GPUs on a single machine are leveraged using
shared memory and threading with OpenMP. The parallelism
is expanded to support GPUs spread across multiple nodes
in a high-performance computing environment using MPIL.
Functionality is verified for all methods using synthetic data.
Real flow cytometry data sets are used to assess the accuracy
and quality of results. The performance of sequential, single
GPU, and multiple GPU implementations are compared in
detail.

The remainder of this paper is organized as follows. Section
Il provides an overview of data clustering, GPGPU, and
previous work. After motivating the use of GPUs for data
clustering, Section III provides implementation details for
the parallel clustering algorithms and discusses improvements
over previous work. Section IV analyzes results for the parallel
clustering algorithms using a variety of different performance
metrics. Finally, Section V concludes the paper and provides
suggestions for future work.

II. BACKGROUND

This section provides an overview of data clustering, mod-
ern GPU architectures, NVIDIA’s Compute Unified Device
Architecture (CUDA) for General Purpose Computation on
Graphics Processing Engines (GPGPU), and discusses the
previous work with data clustering using GPUs.

A. Data Clustering

Data clustering is a statistical method for grouping of similar
objects into related or homogeneous sets, called clusters. There
are a myriad of scientific fields and commercial applications
that generate immense amounts of data, ranging from high
energy particle physics at CERN to the buying habits of
consumers at grocery stores. In any case, the objective is
to group related data together so that analysts can draw
meaningful conclusions from the data. The goal of data mining
as well as the size and nature of the data varies tremendously
from one field to another, and even from one data set to another
in a given field. As such, there has been a wide variety of data
clustering techniques developed over the past 60+ years.

Many popular data clustering techniques have a combinato-
rial increase in computational time complexity as the number
of dimensions, the number of vectors, and the number of
clusters increase. The nature of the data in flow cytometry,
with millions of events, over 20 dimensions, and potentially
hundreds of natural clusters, make unsupervised data cluster-
ing both difficult and very computationally demanding.

The implementation in this paper focuses on two popular
data clustering algorithms: C-means and Expectation Maxi-
mization with a Gaussian mixture model. C-means is a center-
based algorithm that attempts to minimize the squared-error
between all data points and their closest center. It is a soft
(fuzzy) version of the popular K-means clustering algorithm.
“Soft” clustering means that every data point has a fractional
membership in each cluster (where the sum of the probability
is 1 and all values are in the range [0,1]), whereas ‘“hard”
clustering means that every data point belongs to a single

cluster (or one can define it as a special case of soft clustering
where all probabilities belong to the set 0,1). Expectation
Maximization with a Gaussian mixture model works based
on the principle that the data set can be approximated by a
collection (mixture) of multi-dimensional Gaussian (normal)
distributions. Both algorithms follow a two-step iterative ap-
proach where data point membership values are determined
by the current clusters (a center location for C-means or a
Gaussian distribution for the mixture model), and then the
clusters are updated based on the new membership values.

B. GPGPU

Graphics processing units (GPUs) have evolved from sim-
ple fixed function co-processors in the graphics pipeline
to programmable computation engines suitable for certain
general purpose computing applications. The introduction of
programmable shaders into GPUs made the field of general
purpose computing on graphics processing units (GPGPU)
possible. Older efforts at GPGPU required researchers to cast
the general purpose computations into streaming graphical
applications, with the instructions written as shaders, such as
the OpenGL Shader Language (GLSL) and the data stored as
textures.

With the Geforce 8800 graphics card series, NVIDIA intro-
duced a new architecture with a unified shader model [4]. This
architecture was a major shift from a fixed-function pipeline
(with separate processing elements dedicated to particular
tasks, such as vertex shading and pixel shading) to a more
general purpose architecture. In graphics applications, these
processing elements still execute either vertex or pixel shad-
ing procedures. However, they are actually multiprocessors
capable of executing threads in general purpose kernels. A
kernel in this context simply means a subroutine (function)
that executes on the GPU’s processors. Generally the same
kernel is executed simultaneously on all processors, but each
thread performs operations on different ranges of data (single-
instruction multiple-data, or SIMD). This is a massively par-
allel architecture with many benefits over a general purpose
desktop processor for data-intensive computations such as data
clustering.

The NVIDIA GT200 GPU architecture contains upwards
of 240 concurrent processing elements [4]. NVIDIA’s latest
architecture code-named Fermi (GF100) has upwards of 512
cores, supports multiple simultaneous kernels, and has a
caching hierarchy for the device memory - making it even
closer to a general purpose processor (but with many more
cores) [5]. Compared to general purpose processors, a much
larger portion of on-chip resources in a GPU is dedicated to
data and floating-point calculations rather than control and se-
quencing — ideal for many data clustering algorithms, which
are composed almost entirely of floating-point operations and
have very few branches.

C. CUDA

The compute unified device architecture (CUDA) is a frame-
work for scientific general purpose computing on NVIDIA
GPUs. CUDA provides a set of APIs, a compiler (nvcc),



supporting libraries, and hardware drivers to enable running
applications on the GPU. Programs utilize the CPU on the
workstation, the host in the CUDA documentation, as well
as the GPU which is the device. CUDA uses a superset of
ANSI C with some extensions. It has additional identifiers to
specify whether functions are defined for the host only, for the
device only, or globally (kernels callable by the host). There
are also identifiers to specify the memory location of variables
in kernels (either shared or global memory). Finally there is
additional syntax added for invoking kernels.

At heart of the Tesla Architecture [4] are streaming mul-
tiprocessors (SMs). Each SM is comparable to a simple
CPU - it has an interface for fetching instructions, decoding
instructions, functional units (an ALU), and registers. Within
each SM are many functional units, called “cores” which all
execute different threads with the same instruction but on
different data elements (Single Instruction Multiple Data —
SIMD). SMs also have a small amount (16 KB) of high-speed
memory for sharing data between threads on a single SM, and
an interface to the rest of the onboard DRAM. The NVIDIA
GTX 260 for example has 24 multiprocessors with 8 cores
each, for a total of 192 simultaneous execution cores.

Since understanding the thread model is essential to effec-
tive programming with CUDA and understanding CUDA pro-
gram implementations, this section provides a brief overview.
For a more detailed explanation, please consult NVIDIA’s
CUDA Programming Guide [6]. At the top level, threads are
organized into a grid which composes the entirety of the
application running on the GPU at any given time (i.e. a kernel
launched by the host). The grid contains a 2-dimensional
set of blocks. A block runs on a single multiprocessor and
cannot be globally synchronized with other blocks and is not
even guaranteed to run physically at the same time as other
blocks in the grid. The number of blocks can, and typically
should, exceed the number of multiprocessors on the GPU.
New blocks in the grid will be allocated to multiprocessors
once the previous set of blocks finishes executing.

Inside a block are threads with 3-dimensional indices and
they are allocated to the different cores within a multipro-
cessor. The multi-dimensional indices allow the programmer
more easily to map kernels to 2D or 3D problems (such as
texture locations or X,Y,Z vertex coordinates in a graphics
application). Regardless of the number of index dimensions
in use, the maximum number of threads within a block is
512. Threads are organized into warps, which are sets of 32
threads executing the same instruction in an SIMD fashion.
All threads within a block have their own registers and can
access the shared memory on the SM. A low-overhead thread
synchronization function is available for all threads within a
block, and functions the same as a barrier in OpenMP and
MPI applications.

Just like understanding the thread model is important for
parallelizing algorithms and implementing them with CUDA,
understanding the memory model is essential to high per-
formance CUDA applications. Again this section provides
a brief overview — for more details consult the CUDA
programming guide [6]. Memory on CUDA-capable GPUs is
divided into three main categories: registers, shared memory,

and global memory. Registers are divided evenly amongst
the active threads on the SM (which can be from one or
more thread blocks depending on resource consumption). A
thread cannot access the register of another thread. Shared
memory is a small high speed memory inside each SM that
is equivalent in access time to the registers if no memory
bank conflicts occur. All threads within a block can access
the same shared memory. Finally the global memory is the
large off-chip DRAM. It has a very large latency (hundreds of
cycles), but it can be accessed by all threads in the kernel and
it persists throughout the lifetime of the applications (can be
reused by multiple kernels). Unlike modern CPUs which have
a sophisticated multi-level caching hierarchy to hide the large
latency of system (global) memory, CUDA programmers have
to manually place frequently accessed code into the limited
(but high speed) shared memory. Programs must also ensure
that memory accessed are contiguous and aligned to multiples
of 16 times the size of the data element in order to maximize
memory throughput when accessing global memory [7].

D. Previous Work

The abundant parallelism and large number of floating
point operations make data clustering algorithms a natural
choice for implementation using GPGPU. In 2004, Hall et al.
implemented K-means using Cg and achieved a speedup of
3x versus a modern cpu at the time the article was written. In
2006, Takizawa et al. implemented K-means using fragment
shaders and NVIDIA 6800 GPUs [8]. The implementation in
[8] only showed a speedup of 4x relative to a cluster of CPUs
without GPUs; however their implementation divided the task
among a cluster of PCs each equipped with GPUs using MPI.
These efforts showed it was possible to implement a data
clustering algorithm using a graphics pipeline and achieve
speedup and to distribute that work at a coarse-grained level
to multiple GPU co-processors.

The introduction of more advanced GPU architectures and
coding frameworks for general purpose computing on GPUs
allowed for much more significant speedup of data clustering
algorithms on GPUs. Che et al. implemented K-means with
an impressive speedup of 72x using CUDA and a Nvidia 8800
GTX GPU in 2008 [9], and also compared it to a multi-
threaded version running on a Quad core processor, and still
maintaining a speedup of 30x.

While the performance results of recent K-means imple-
mentations on GPUs and other parallel architectures are im-
pressive, K-means is an embarrassingly parallel algorithm
and its spherical bias is not very good at analyzing flow
cytometry data, where clusters often have very diverse non-
spherical shapes. Outliers can also have a significant impact
on the resulting cluster centers. Despite these short-comings,
K-means is still a de facto standard clustering algorithm used
in a variety of applications, which has been implemented on
many platforms and parallel architectures, and thus is a good
basis for comparison.

Using a fuzzy version of K-means, where data points have a
membership value in all of the clusters, rather than belonging
to only one cluster, can lessen the effect of outliers. It is also



produces better results when the number of specified clusters
does not match the number of natural clusters in the data.
A hard clustering may attempt to create multiple adjacent,
but not overlapping, clusters inside one natural cluster. A
soft clustering is more likely to have multiple overlapping
clusters with approximately the same center — which more
accurately reflects the underlying data. Therefore the paper
will implement and examine a C-means (the literature uses C
for soft clustering, and K for hard clustering) algorithm.

Anderson et al. implemented C-means using Cg (C for
graphics) with two non-Euclidean distance measures in 2007
with a maximum speedup of 97x [10]. The non-Euclidean
distance measures involved a covariance matrix, but they
limited it to diagonal covariance. Anderson et al. published
another paper in August 2008 on c-means using the standard
Euclidean distance with speedups of 107x on the 8800 GTX
[11]. Shalom et al. implemented C-means on an NVIDIA 8800
GTX using the OpenGL Shader Language with speedup of
94x [12]. The Shalom et al. implementation focuses on the
ability to scale to an arbitrarily large number of dimensions
and clusters. This results in a significant amount of CPU to
GPU data transfer, limiting the performance of the algorithm.
In 2009 Espenshade and Pangborn et al. implemented C-means
with an MDL information criterion using CUDA on a single
GPU. The implementation achieved speedup of over 70x on
flow cytometry data compared to a naive C implementation
[13]. This paper significantly improved that implementation,
increasing performance and scalability significantly on a single
GPU and extending it to multiple GPUs.

It is often difficult to compare results directly to previous
GPU acceleration work because the details of the experiment
are not clear. Authors post speedup ratings but they depend
largely on the quality of the CPU reference version. Absolute
execution times are a more realistic metric for comparing
multiple implementations, but not all of these papers provide
that information. Additionally, some of the ones that do
provide execution times such as [12] do not state the number
of iterations; the execution time depends not only on the
convergence criterion and data dimensions, but also the actual
values of the data in the experiment.

In addition, this paper implemented an Expectation Max-
imization (EM) algorithm with Gaussian Mixture Models
(GMMs). A publication from Kumar et al. [14] implemented
EM with GMMs using CUDA. Using hardware similar to
the aforementioned CUDA implementations of C-means, it
achieved a speedup of 120x for particular data sizes. One
limitation of this implementation is that it uses only diagonal
covariance matrices, rather than the full covariance matrices
for the Gaussian Mixture Models. This reduces the complexity
significantly; however it does not allow for dimensions to be
statistically dependent upon each other — which often occurs
in real data sets. It also does not make use of multiple GPUs
nor include any information criterion for unsupervised assess-
ment of clustering results. Another significant disadvantage of
the Kumar et. al implementation is that it requires a very large
amount of memory for the M-step computation. It requires an
M x ND matrix to perform the covariance kernel. Thus if
there are D = 24 dimensions, N = 500,000 events, and M =

100 clusters (reasonable numbers for a single flow cytometry
datafile), it would require almost 5 GB of memory — an
amount that even the current high-end Tesla cards do not have.
A few other CUDA applications have been developed using
GMMs, such as anomaly detection in hyperspectral image
processing [15] and have achieved overall speedup factors of
20x, and over 100x for specific portions of the algorithm.

In 2010, M. A. Suchard et al. [16] used multiple GPUs
and CUDA for Markov Chain Monte Carlo (MCMC) and
Bayesian mixture models with flow cytometry data. Our work,
developed independently and in parallel to Suchard et al.
uses multiple GPUs combined CUDA, OpenMP and MPI for
large scale data clustering using C-means and Expectation
Maximization with Gaussian mixture models.

III. CLUSTERING IMPLEMENTATIONS

This section discusses the parallel implementations of the
clustering algorithms. Both algorithm implementations utilize
NVIDIA’s CUDA driver and software development environ-
ment for GPGPU. The overall program flow and some ker-
nel details are discussed for each algorithm. Pseudocode is
presented for some of the CUDA kernels. The pseudocode
listings for kernels are generally detailed and based directly on
the actual implementation — only a few details are occasion-
ally omitted such as variable declarations, memory copying,
memory management, constant definitions, and boundary con-
ditions for the sake of brevity and readability. The full source
code is available online, please refer to the Appendix for more
details.

Throughout the remainder of the article: N represents
the number of events (data vectors), DD is the number of
dimensions for each event, M is the number of clusters, and
G is the number of GPUs.

A. Parallelism Strategy

Each algorithm is designed to be scalable to one or more
GPUs. Due to how the NVIDIA runtime API operates, each
CUDA device requires its own host thread. The typical ap-
proach to multithreading in C/C++ is an OS specific mul-
tithreading approach such as pthreads or Windows threads.
These approaches are not very portable, and their APIs typi-
cally obfuscate the underlying algorithm.

The OpenMP library for shared-memory parallel comput-
ing was chosen as the platform for managing threads and
communicating between multiple GPUs on a single node. The
programming model is simplistic and consistent with coding
in CUDA kernels, which also uses shared memory and thread
barriers for synchronization. OpenMP is supported by GCC
4.2+ and Microsoft’s Visual C++ compiler without the need
to install any additional software.

Communicating between multiple physical nodes in a dis-
tributed memory environment cannot be readily achieved using
a shared memory library such as OpenMP. Therefore the
cluster implementations of the algorithms use a hybrid of MPI
for communication between nodes, and OpenMP for multiple
threads within each node.



The specifics of the two clustering algorithms differ, but the
overall structure of how work is distributed to different nodes,
processors, and GPUs is the same. A hybrid of MPI, OpenMP,
and CUDA is used. MPI is a message passing interface
that allows communication between different processes in a
distributed memory environment, and thus it maps well to the
different physical machines (nodes) in a computing cluster.
OpenMP allows multiple threads to communicate via shared
memory and maps well to multiple CPUs in a single node
and multi-core CPU environments. Finally, GPU co-processors
with the CUDA toolkit and driver accelerate the calculations
done by each thread.

Data Store

MPI ’ Proceso ll . ll process» l
—— —— ——
OpenMP w::t‘ig l Thread 1 (T’t‘n':;:g Thread 1
| | | | |
CUDA l GPUO l l GPU1 l l l l l l GPUO l l GPU1 l
Fig. 1. Process Hierarchy

Figure 1 shows the structure of the hybrid parallel environ-
ment. At the top of the hierarchy, MPI launches P processes
— one for each machine (node) in the cluster. Each MPI
process connects to a data store to load the input data. In the
experiments executed in this paper each machine loads data
from a file, but there is nothing preventing it from extracting
data from a database, data grid, or other storage mechanism.
The workload is mapped evenly to the different processes.
Each process then enters a parallel OpenMP code section
with multiple threads. The number of threads is equal to the
number of CUDA capable GPUs found on the machine. Each
OpenMP thread selects a GPU based on its thread ID and
creates a CUDA context. Just as the data set gets split among
the MPI processes, the data set for the node is split between
the thread/GPU pairs.

Figure 2 shows the multi-level MapReduce structure used
for communication between the processes and threads shown
in Figure 1. The same logic applies for P processes, but
is shown with only two for simplicity. The master MPI
node (rank 0) acts as the root for all collective opera-
tions, such as MPI_Broadcast, MPI_Scatter, MPI_Gather,
MPI_Reduce, etc. The master node is also a worker node. It
uses MPI_IN_PLACE to declare that the send buffer and the
recv buffer are identical — this is indicated by the dashed
“implicit” communication arrows in Figure 2. Within each
node, TO is the master OpenMP thread. Only the master
threads make MPI calls and perform reduction.

In summary, a three-tiered MapReduce parallel structure is
used. The first two levels use MPI and OpenMP to handle
coarse grained parallelism by mapping the data set to individ-
ual nodes and threads. Each thread uses CUDA and a GPU
co-processor for all of the computationally intensive tasks. The
CUDA architecture itself is multi-tiered with coarse-grained
data independent blocks and fine-grained groups of SIMD

threads. Finally results are reduced by the master OpenMP
threads and MPI root node and are broadcast to all workers
for the next iteration.

Root
MPI_Broadcast
Cluster Parameters

Process 1

Copy from shared mem

CudaMemcpy

Launch Kernel

CudaMemcpy

Copy to shared mem

TO reduces results in

Process 1
shared memory

MPI_Reduce

Process 0
Root

—  Explicit Communication
----» Implicit Communication
Synchronization Barrier

Fig. 2. Communication and Reduction Hierarchy

B. C-means

The standard C-means implementation iteratively optimizes
the cluster centers by updating the cluster memberships with
equation (1) and then computing new cluster centers using
equation (2). The two-step iteration continues until the cluster
centers converge (the change in position is less than the user-
specified tolerance) to a local minima.
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Naively parallelizing the computation by unrolling the loops
into SIMD operations and distributing the computations to
different thread blocks and threads is not very efficient since
the equations have a lot of redundant calculations. For exam-
ple, the denominator of the summation in Equation 1 is the
same for all clusters. This can be improved by transforming
Equation 1 to Equation 3. Other optimizations include caching
the distances between data vectors and each cluster center
before computing the new membership values.
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The C-means implementation in this article uses a total of
four CUDA kernels — DistanceMatrix, MembershipMatrix,
UpdateCenters, and ClusterSizes. The following list outlines
the steps of the full algorithm.

1) Root node reads input data from file and then scatters
data to other nodes
2) Seed cluster centers with random data points
3) Copy input data to GPU
4) Copy cluster centers to GPU
5) DistanceMatrix kernel
6) MembershipMatrix kernel
7) UpdateCenters kernel, copy partial centers to host from
each GPU
8) ClusterSizes kernel, copy cluster sizes to host from each
GPU
9) Aggregate partial cluster centers and reduce
10) Compute difference between current cluster centers and
previous iteration. If greater than epsilon, return to step
4.
Compute cluster distances and memberships using final
centers
Gather membership values from all nodes
Output final clustering results

1)

12)
13)

DistanceMatrix computes a M x N matrix that contains
the Euclidean distance from each data point to every cluster
center using a M x [ N/512] kernel grid — one thread per dis-
tance calculation. The MembershipMatrix converts distances
into membership values for each cluster. The kernel uses a
[N/512] grid of thread blocks, where each thread computes
M membership values for a data vector using Equation 3. The
first half of Equation 3, s;, is computed once and then used
for M membership calculations.

UpdateCenters computes the numerator of Equation 2 using
a Dx[M/4] kernel grid. Although a Dx M grid exposes more
parallelism, it generates many more memory requests than a
single-threaded sequential implementation needs. The event
data are the same for every cluster. Computing the M clusters
independently means that the event data gets iterated over M
times from global memory. Similarly, the membership values
get iterated over D times for each cluster center. Unfortunately
the limited size of shared memory on the GPU and the very
large quantities of data involved do not permit the working set
to be in fast memory. The final kernel implementation attempts
to strike a balance between having sufficient parallelism to
use all of the GPU resources and reducing the number of
memory accesses. A grid of D x M /B blocks is used, where
B indicates the number of cluster centers computed per block.
This grid reduces the number of times the input data are
loaded from global memory by a factor of B. Partial results are
required for each cluster in a block; therefore shared memory
usage increases proportional to B. A value of B = 4 allows

the kernel to maintain 50%+ occupancy on all devices and
performs approximately 30% faster than the M x D grid on
a typical flow cytometry file.

Finally the Sizes kernel computes the denominator of Equa-
tion 2 using a grid of M blocks (one per cluster) with 512
threads per block. The host then collects the numerators and
denominators from every GPU and computes the final cluster
center values using Equation 4.
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C. Expectation Maximization with Gaussian mixture models

Data in flow cytometry and many other fields is composed
of many possibly overlapping clusters. The mixture model ap-
proach suggests that the data set is an aggregate of (or at least
can be approximated by) a mixture of multiple distinct behav-
iors. Gaussians mixtures form probabilistic models composed
of multiple distinct Gaussians distributions as clusters. Given
a D dimensional data set, each cluster m is characterized by
the following parameters [17].

N

Tm

: the number of samples in the cluster

: the probability that a sample in the data set belongs to
the cluster

: a D dimensional mean

:a D x D spectral covariance matrix

Hm
Ry,

Assuming there are N data points 1, Y2, - -, yn, then the
probability that an event y; belongs to a Gaussian distribution
is given by the following Equation [17].

1

p(yn|m,0) = ——
(yn|m, 0) 2m) D2 | R

1 _
exp {—5(yn — pn) R (yn — um)} 5)

Neither the statistical parameters of the Gaussian Mixture
Model, 6 = (m, p, R), nor the membership of events to clusters
are known a priori. An algorithm must be employed to deal
with this lack of information. Expectation maximization is a
statistical method for performing likelihood estimation with
incomplete data [2]. The objective of the algorithm is to
estimate 6, the parameters for each cluster.

First each event vy, is classified based on the likelihood
criteria in Equation (5). This step is the E-step of the EM
algorithm. Instead of a hard classification based on the maxi-
mum likelihood, it is desirable to compute a soft classification
(membership value) for each event and each cluster. The
membership value is the ratio of the weighted likelihood to
the total weighted likelihood of all clusters — see Equation

(6).

_ Py.|zn (Yn|m, O)m,

Zp(ynllve)m
=1

(6)

The actual computation uses the log-likelihood to prevent
overflow and underflow. The first step computes log-likelihood
via Equation 7, and then a log sum of exponentials (Equation
8) is used for the denominator of the membership values



(Equation 6). In order to avoid potential overflow of the
exponential function, the equality in Equation (8) is used. The
maximum value computed by the exponential function will be
zero (resulting in 1.0) and small values will approach zero.

1
(27)M/2det(R

1 _
7E g~ ) Bl (yi = ) (D)

log <Z exp(a:i)> = max(z) + log (Z exp(z; — max(m)))
Z Z ®)
The cluster parameters, 6, are re-estimated based upon
the new membership values completed in the E-step using
Equations 9, 10, 11, and 12 [17]. The event classification (E-
step) and re-estimation of cluster parameters (M-step) repeats
until the change in likelihoods for the events is less than some
€.
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The computation uses six CUDA kernels — two for the E-
step and four for the M-step. The following outlines the steps
of the EM with a Gaussian mixture model algorithm.

1) Read input data from file.
2) Copy input data to GPU.
3) Initialize Gaussian model parameters.
4) Copy model parameters to GPU.
5) Launch E-step kernels, aggregate likelihood value from
each GPU.
6) Launch M-step kernels, aggregate parameters from each
GPU.
7) If change in likelihood greater than epsilon, return to
step 5
8) Copy membership values to host.
9) Compute MDL score for current cluster configuration.
10) Combine two most similar Gaussian models.
11) If number of Gaussians is greater than target number of
clusters, return to step 4.

12) Output cluster configuration with minimum MDL score.

1) E-step Kernels: The Likelihood kernel computes an
MaxN matrix of likelihood values. It is comparable to the
Distance kernel of the C-means implementation, but calcu-
lates Equation 6 instead of Euclidean distances. The equation
involves the multiplication of a shared D x D matrix with
a D length vector. Since the matrix can be shared between
all likelihood calculations for a particular cluster, the kernel
uses a coarser grid than the Distance kernel. The calculation is
divided into a 16 x M grid. Each thread block computes N/16

likelihoods and threads within the block compute individual
likelihoods. The value of 16 strikes a balance between provid-
ing enough blocks to keep the GPU resources occupied with
a small number of clusters and still minimizing the number of
times the shared resources must be read from global memory.

Following the Likelihood kernel is the Membership kernel,
which transforms likelihood values into membership probabil-
ities and sums up the total likelihood. The kernel is launched
with a grid containing two thread blocks per multiprocessor.
This grid size maintains full occupancy of GPU resources
while minimizing the number of partial likelihood summation
results returned to the CPU; each block computes the sum of
its likelihoods and the host performs the final reduction.

2) M-step Kernels: The M-step computes the new Gaussian
distribution parameters using Equations 9, 10, 11, and 12.
Each of these equations has different degrees of parallelism
and requires different data to be loaded into shared memory.
Therefore each equation is separated into a separate kernel.
The first kernel computes N, the size of each cluster, which
is just a simple summation of all the membership probabilities
for each cluster. The sizes are computed using a grid of M
thread blocks — one per cluster. The 256 threads within
the block each add up N/G/256 membership values and
then the threads perform a butterfly reduction (logs) to get
the final summation. When multiple GPUs are being used
simultaneously (G > 1), then the host does an additional
reduction and distributes the final cluster sizes, as described in
Section III-A. The second kernel computes the D-dimensional
mean for every cluster. The implementation is similar to first
kernel, except it is launched with a grid of M x D. Each
thread block computes a summation of the data weighted by
the membership probabilities as seen in Equation 11.

The third kernel computes the covariance matrices for each
cluster according to Equation 12. There are D x D independent
matrix values that must be computed for M clusters. The
kernel is launched with a [M/6] x D(D + 1)/2 grid. Each
thread block is loop unrolled and computes the matrix location
for up to six clusters. The unrolling allows the data points to
be loaded from memory fewer times (since it can be shared
between the clusters) and attempts to strike a balance between
memory consumption, device resources (shared memory and
register usage), and still providing enough thread blocks to
keep the card fully utilized across a wide range of input pa-
rameters. The second grid dimension, D(D+1)/2 corresponds
to the number of components in the triangular version of a
D x D matrix — covariance is symmetric.

IV. RESULTS

Performance was analyzed using a variety of different tests
and metrics. First the algorithms were analyzed for GPU
resource utilization — register usage, shared memory usage,
kernel occupancy, and block count. Secondly the algorithms
were tested to see how execution time varies by increasing
the number of clusters, the dimensionality, and the number of
input vectors. Finally the algorithms were compared to CPU
reference versions for speedup. The multi-GPU implementa-
tions were tested for horizontal scalability by increasing the



number of GPUs and comparing the speedup to a single GPU
implementation. Both strong scaling (with a fixed problem
size) and weak scaling (where the workload per node remains
constant — also known as time-constrained scaling [18])
results are analyzed.

A. Testing Environment

Three testing environments were used for the work in
this paper. The primary environment used for development
and testing was a local server at the Rochester Institute of
Technology. It contains two Intel Xeon 2.5 GHz Quad Core
E5420 processors with 16GB of DDR2 and two CUDA cards
— a Tesla C870 and a GTX 260. The C870 is an older 1.0
compute capability card with 16 multiprocessors (128 total
cores) operating at 1.35 GHz and 1536 MB of 800 MHz
GDDR3 memory with a 384-bit memory bus. The GTX 260 is
a newer 1.3 compute capability card with 24 multiprocessors
(192 total cores) operating at 1.30 GHz and 896 MB of
memory operating at 1 GHz with a 448-bit memory bus.
The use of these heterogeneous cards makes it possible to
see how the algorithm performs across two different GPU
architectures with different numbers of cores. The C870 has
much stricter global memory coalescing rules and half the
number of registers (8192 versus 16384 on the GTX 260). The
development environment was installed on a 64-bit Ubuntu
LTS server using GCC 4.2.4 and version 2.3 of the CUDA
driver and SDK.

The second testing environment was used for scalability
testing as the number of the GPUs increases. Lincoln [19] is
a high performance computing cluster at the National Center
for Supercomputing Applications (NCSA) at the University
of Illinois Urbana-Champaign, which is part of the TeraGrid.
The cluster has 192 nodes, each with two Intel 64 Harpertown
2.33 GHz quad core processors and 16GB of memory. There
are 96 Tesla S1070 accelerator units, each of which contains
four Tesla C1060 GPUs. This results in a total of 384 GPUs
(two per server node), each with 30 multiprocessors (240 total
cores) operating at 1.3 GHz and 4 GB of memory with a 512-
bit 800 MHz memory bus. The development environment uses
RHELA4, GCC 4.2.4, CUDA 2.3, and MVAPICH 2.1 for MPI.
Cluster nodes are linked together with Infiniband SDR and use
the Torque batch queueing system [19].

B. Resource Utilization
C. Single-Node

Figure 3 shows the execution time for 100 iterations of
the C-means CUDA implementation on a data set with 24
dimensions and 100 clusters. The dimensions and number of
clusters are held constant while the number of data points is
increased. The algorithm complexity is linear with respect to
N, the number of data points, and the actual performance is
also approximately linear for N > 10, 000.

Figure 4 shows speedup of the GPU-accelerated version
compared to a single-core CPU-only reference version. There
are four different GPU configurations - three of which are
using a single GPU (Tesla C870, Tesla C0160, or Geforce
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GTX 260) and the fourth using two Tesla C1060s. For
N > 10,000 the GPU resources become fully utilized and
speedup begins to level off.

The GTX 260 has the best performance of the three single-
GPU configurations due to its superior global memory band-
width. The algorithm performs relatively simple calculations
(Euclidean distance calculations and weighted summations
with exponentiation to update the cluster centroids) on a
very large data set. The relatively low ratio of computation
to memory access makes the algorithm inherently memory
bound given the gap in processing performance and memory
performance in modern computing systems, including GPUs.
The Tesla C1060x2 configuration has an speedup of 1.99 for
the kernel and 1.90 for the total execution time (including all
overheads such as file I/O, host to device memory copying,
and device initialization) compared to a single C1060.
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Figure 5 shows the execution time for the Expectation Max-
imization with Gaussians implementation. As seen previously
with C-means, a data set with 24 dimensions and 100 clusters
was used along with four different GPU configurations. The
execution time is linear for non-trivial data sets. As seen
in Figure 6, speedup begins to level-off for data sizes of
N > 64,000. The load balancing, global memory access
patterns, and the use of shared memory is more complex in
the EM algorithm, which leads to more variability (compared
to C-means) in the speedup as the size of the data set changes.



TABLE I
C-MEANS KERNEL RESOURCE USAGE

Kernel Blocks Threads | Registers | SMEM | Occupancy
Distance M x [N/512] 512 6 D x4 1.00
Membership [N/512] 512 7 0 1.00
Centers D x [M]/4] 256 12 4096 0.75
Sizes M 512 6 2048 1.00
TABLE II
EM KERNEL RESOURCE USAGE
Kernel Blocks Threads | Register SMEM Occupancy
seed 1 256 15 D x8 1.0
estepl 16 x M 512 16 D? + D x4 1.0
estep2 2 x #SMs 512 14 2048 1.0
mstep_n M 256 8 1024 1.0
mstep_mean M x D 256 10 1024 1.0
mstep_covar | [M/6] x D(D +1)/2 256 29 6192 0.5
constants M 32 14 D? x4 0.18
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D. Comparison to Prior Work

The Background section of this paper surveyed the previous
work on GPU-based acceleration of the C-means and EM
with Gaussian algorithms. This section compares the perfor-
mance of the current implementations in this paper to the
previous work. Sometimes exact comparisons cannot be made
due to differences in available hardware, but differences are

described when relevant. Furthermore, the details provided in
some of the prior papers do not give exact details about the
experiments used for profiling their code. For example, some
papers provide speedup figures compared to a proprietary CPU
reference version. These numbers are not very meaningful
without absolute time since an inefficient GPU algorithm can
still have very good speedup if it is compared to a poor CPU
version.

1) C-means: In 2009 Espenshade et al. published a paper
on a single-GPU implementation of fuzzy C-means [13].
Speedups of 84x were observed, but the CPU version naively
replicated many of the flaws in the GPU version. Table III
shows a comparison of the current C-means implementation
to the old implementation in [13] with identical problem sizes
and the same testing hardware. The data size is 100K events
with 16 dimensions. The new GPU version in this paper has
an improvement over the previous GPU version (12/¢3) of
9x to 21x and would continue even higher with larger values
of M. The biggest reason for the increase in performance
was the reduction of the computational complexity of the
implementation from O(NDM?) to O(NDM). The new
algorithm is not an approximation, it simply does not perform
redundant distance and membership calculations like the older
version did. The same improvement was made to the CPU
reference version, which explains why the speedup values
(t1/t2) differ significantly from the values in Table II of
the old paper [13]. The new implementation also coalesces
more global memory access and has higher kernel occupancy.
Optimizations were also made to the center updates that offer
considerably better scalability across a wide range of input
parameters (the old implementation could not support more
than about 32 dimensions, and gradually got slower with
D > 16 due to resource constraints).

The next C-means paper is by Shalom et al. [12]. This
paper is difficult to compare directly against since there are
no iteration times nor are any specific details about the data
given. It provides execution times, but without the number of
iterations or the details of the synthetic data it is difficult to
make an exact comparison. Shalom et al. used a NVIDIA 8800



TABLE III
COMPARISON OF C-MEANS EXECUTION TIME (MS) TO [13]

CPU Espenshade et al. | GPU | Speedup | Speedup
M | CPU (t1) (t2) (t3) (t1/t2) (t1/t3)
4 92.4 11.88 1.27 7.8 73.1
8 183.15 15.35 1.74 11.9 107.2
12 267.62 21.61 2.05 12.4 130.6
16 339.89 26.36 2.56 9.3 133.2
24 540.03 51.40 4.07 10.5 132.8
32 728.08 60.69 5.67 12.0 125.3
48 1071.73 116.09 7.69 9.2 139.7
60 1353.69 204.36 9.72 6.6 138.7

GTX, which is similar in performance to the Tesla C870. Both
are based on the same architecture and have 128 processing
cores, but the 8800 GTX has 12% higher memory bandwidth.
In an attempt to compare to Shalom et al. a data set was
generated with N=1048576, D=4, and four Gaussian clusters.
The clusters have significant overlap in the first dimension
(making the data set non-trivial) and become increasingly
distinct in the remaining dimensions. A convergence criterion
of € = .00001 was selected — the same as the Shalom et al.
paper. Each GPU kernel iteration took 11.6 ms to complete.
The worst case of 25 clusterings (with different randomly
initialized centers) with the same data set took 21 iterations
to converge. Total computational time (kernel and memory
copying) was 0.27 seconds. Shalom et al. stated 0.91 seconds
for the same data size and clustering parameters, but the
number of iterations can vary depending on the data set.
Anderson et al. published two nearly identical papers on C-
means — the first showing results for non-Euclidean distance
metrics and the second focuses just on speedup with a standard
Euclidean distance metric [10] [11]. The paper indicates that
the testing was performed with 100 iterations on synthetic
data with random cluster centers. Table IV compares the C-
means performance to the numbers in the Anderson et al. paper
with a Euclidean distance metric. Anderson et al. performance
numbers were taken with a 8800 GTX whereas our numbers
were using a Tesla C870 - a very similar albeit slightly slower
GPU. The results show improvements ranging from of 1.04x
to 4.64x. The improvement is particularly large for the two
clustering profiles with 64 clusters and smallest for the two
profiles with the largest number of dimensions. However, there
is not enough timing data available to accurately determine
exactly how the three parameters affect the improvement.

TABLE IV
COMPARISON OF C-MEANS EXECUTION TIME (MS) TO [11]

Anderson et al. | C-means | Speedup
M N D (t1) (t2) (t1/t2)
4 4096 4 39 12 3.25
4 4096 128 53 51 1.04
64 4096 4 172 53 3.24
64 8192 4 362 78 4.64
16 | 40960 32 471 331 1.42
4 | 409600 8 780 529 1.47

2) EM with Gaussians: Kumar et al. published a paper on
Expectation Maximization with Gaussians in June 2009 [14].
Their implementation supports only diagonal covariance, so
the version in this paper has been compiled for diagonal-only

mode for the sake of this comparison. Kumar et al. provide
per iteration performance results with a Quadro FX 5800. The
FX 5800 is identical to the Tesla C1060 except that it is sold
for workstations rather than servers and has display ports.
Table V shows the time per iteration from the Kumar et al.
paper compared to the diagonal-only version of EM in this
paper. The improvement is significant across all data sizes
provided in the prior work and ranges from 3.72x to 10.1x. The
covariance calculation is likely the biggest bottleneck for the
Kumar et al. implementation (and it was listed in the paper’s
future work section). It solves for covariance by multiplying a
very large variance matrix with the membership value matrix
using the CUBLAS SGEMM. This technique computes the
entire variance matrix and then extracts only the diagonal
portion, which wastes a significant number of FLOPS.

TABLE V
COMPARISON OF EM KERNEL TIME (MS) TO [14]

Kumar et al. | paper | Speedup

N M| D (1) (t2) (t1/t2)
46.8K 8 8 16.2 1.6 10.1
76.8K 16 | 16 424 7.5 5.65
1228K | 24 | 24 102.1 24.6 4.15
153.6K | 32 | 32 215.0 51.1 4.21
2304K | 32 | 32 264.9 71.1 3.72

Andrew Harp wrote an implementation of EM with Gaus-
sians on CUDA with a MATLAB MEX wrapper as a project
at the University of Texas in Austin [20]. The project website
claims speedup up to 170x on a GTX 285 versus a Intel C2D
E8400 operating at 3 GHz, but specific timing results are not
given. Fortunately, the source code for the CPU reference
version and GPU version is available online. The program
requires MATLAB, which was not available on either of
the CUDA testing machines used in this paper. However, a
speedup comparison can be made by obtaining timing with the
Harp CPU reference version and then calculating speedup with
timing results from the paper implementations. Both CPUs are
from the same generation (same Intel micro-architecture and
manufacturing process), but differ in operating frequency by
10%.

The Harp experiment had 10 clusters, 8§ dimensions, and
varied the number of events from 1,000 to 1,000,000. Table
VI compares the CPU time for the Harp CPU reference version
to the version of EM in this paper with a GTX260 graphics
card. The times in the table are for 100 iterations of EM and
include GPU memory copying for the GTX260 column. The
GTX260 has less cores (192 versus 240) and lower memory
bandwidth (110 GB/s versus 159 GB/s) compared to a GTX
285 GPU. The implementation of EM in this paper provides
446x speedup compared to the Harp CPU reference. Harp
reports a speedup of only 170x with a faster GPU. Therefore
the improvement is at least 2.6x.

E. Overhead

CUDA applications use the GPU as a co-processor to
accelerate the computations. This model of execution has
inherent overheads that are not present in a traditional CPU-
only solution. One of the primary bottlenecks for GPGPU



TABLE VI
COMPARISON OF EM TIME (S) TO [20]

Harp CPU Reference | GTX260 | Speedup
N M| D (1) (t2) (t2/t1)
1K 10 | 8 2.5 0.28 8.8
10K 10 | 8 14.5 0.29 49.5
100K 10 | 8 267 0.83 321.2
1000K | 10 | 8 2772 6.20 446.7

applications is the transfer of data from the host memory
to device memory, and then back to the host again after
computing on the GPU. This section profiles the amount of
time spent on different portions of the C-means and Gaussian
mixture model implementations. The computation is broken
down into 5 categories:

1) I/O — reading the data file from disk and generat-
ing/saving the result files

2) CPU Init — processing performed by the main CPU
thread before splitting into one thread per GPU

3) CPU — processing performed by each host thread

4) GPU memcpy — host-to-device or device-to-host data
transfer (memory copying)

5) GPU kernel — computational kernels on the emphdevice

Figure 7 shows the breakdown of the execution time for
the C-means implementation and Figure 8 has a breakdown
for EM with Gaussians. The C-means algorithm has a lower
computational complexity than EM with Gaussians. Therefore
the overhead such as reading the file from disk, initializing data
structures on the host, and transferring data to and from the
GPU, which is essentially the same for both algorithms, is a
larger portion of the overall execution time for C-means. Note
that the vertical axis is log-scale so that the overhead is more
visible. For C-means the overheads together are approximately
10% of the execution time, compared to 1% for the Gaussian
mixture model.

C-means C1060x2 Execution Breakdown

100%

10%

1%

0%
0 100 200 300 400 500 600 700 800 900 1000

Number of Events (Thousands)

B CPU Init MCPU mGPUMemcpy HI/O mGPU Kernel

Fig. 7. Breakdown of Execution Time for C-means

12

EM C1060x2 Execution Breakdown

100.0%

10.0%

1.0%

0.1%

0.0%
0 100 200 300 400 500 600 700 800 900 1000
Number of Events (Thousands)

ECPUInit mCPU mI/O mGPUMemcpy M GPU Kernel

Fig. 8. Breakdown of Execution Time for Gaussian MIxture Model

The GPU kernel time is based on 100 iterations with two
Tesla C1060 GPUs. Increasing the number of iterations affects
the GPU kernel time and makes the overhead less significant.
Therefore in reality simple data sets with distinct clusters that
converge very quickly will not have as high of speedup as more
complex data sets that require a large number of iterations, but
100 iterations is still a conservative estimate for large high
dimensional data sets with a lot of clusters. Even with the
simple synthetic data, there was often still significant cluster
center movement after 100 iterations.

The data clustering algorithms in this paper are very suitable
for a GPGPU applications because the data set only needs to
be copied once to each GPU. Copying memory to and from
the GPU has a very minmal impact on the total execution
time in these implementations. I/O and CPU computation form
the majority of the overhead in the implementation, which
are present in the CPU-only implementation as well. Many
iterations of computation occur with a very trivial amount of
data transfer required for synchronizing the cluster parameters
between multiple GPUs. The implementation also scales well
to multiple GPUs because the data set gets dividedly evenly
among all GPUs in the system and therefore the memory that
must be copied to each device is inversely proportional to the
number of GPUs.

F. Multi-Node

A primary objective of these implementations was to be
scalable beyond a single workstation with a CUDA card to
many nodes in a high performance computing environment,
each with one or more CUDA capable accelerators. The results
examine horizontal scalability — adding more independent
computing nodes, as opposed to vertical scalability which
improves the node(s).

The first set of results uses fixed-problem size (also often
called strong scaling) analysis. This form of analysis keeps



the total amount of work constant (in this case the number of
data points) and looks at the speedup compared to a single-
node version of the same problem size. Analysis with a fixed-
problem size is constrained by Amdahl’s law [21] — any
portion of the algorithm that is not parallelized will limit
the maximum possible speedup of the algorithm even with
infinite parallel resources. Figure 9 and Table VII shows the
speedup of the C-means implementation from 1 to 64 nodes (2
to 128 Tesla C1060 GPUs). Although clustering large data sets
can require billions of calculations, the actual computational
complexity is linear with respect to any given input parameter.
The overhead associated with file I/O, distributing the dataset
to the different nodes, synchronizing results between each
iteration, and collecting the final results becomes a bottleneck
and reduces parallel efficiency with a fixed problem size. The
implementation has 78% parallel efficiency with 16 nodes (32
GPUs) and only 42% efficiency with 64 nodes (128 GPUs).
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TABLE VII
C-MEANS SPEEDUP SUMMARY
Nodes M=100, D=24, N=1,000,000

GPU Kernel GPU CPU

1 1.00 1.00 176.39
2 1.98 1.95 343.99
4 4.00 3.84 676.83
8 7.92 7.22 | 1273.63
16 15.43 | 12.58 | 2219.09
24 23.16 | 17.21 | 3035.92
32 30.34 | 20.75 | 3660.04
48 42.56 | 24.31 | 4287.52
64 54.25 | 27.18 | 4794.94

Figure 10 and Table VIII show the fixed-problem size
speedup results for the Expectation Maximization algorithm.
EM has a higher computational complexity than C-means,
O(N M D?), but the overhead for file I/O, dataset distribution,
and result collection are nearly identical. Therefore a larger
percentage of the total execution time can be parallelized and
the parallel efficiency is higher. EM has 92% efficiency with 16
nodes and 72% efficiency with 64 nodes. With 128 GPUs the
implementation has 6286x speedup compared to a single CPU
(nearly 4 orders of magnitude) and can cluster a dataset with 1
million data points, 24 dimensions, and 100 Gaussian clusters
in less than 10 seconds including all overheads except job

queueing and setting up the MPI environment on the reserved
computing nodes (which are an administrative overhead and
not directly relevant to the algorithm performance).
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TABLE VIII
EXPECTATION MAXIMIZATION SPEEDUP SUMMARY

Nodes M=100, D=24, N=1,000,000

GPU Kernel GPU CPU

1 1.00 1.00 136.04
2 1.87 1.87 253.75
4 4.07 4.03 548.29
8 8.12 7.96 | 1082.96
16 15.32 | 14.73 | 2004.30
24 23.98 | 21.22 | 2887.40
32 32.11 | 26.80 | 3646.55
48 43.79 | 35.08 | 4772.56
64 59.46 | 46.21 | 6286.48

TABLE IX

SCALED SPEEDUP SUMMARY: M=100, D=24, N=50K PER NODE

Nodes C-means EM

Kernel | Overall | Kernel | Overall

2 1.97 1.93 2.06 2.03

4 3.90 3.67 3.86 3.75

8 7.89 7.07 7.68 7.19

16 16.04 13.11 15.55 14.40

32 30.73 22.03 30.88 27.50

64 61.92 37.03 60.29 51.60

V. CONCLUSION

Data clustering algorithms have computational complexities
that increase combinatorially as the dimensions of the input
data and the number of clusters grow. Two very popular
unsupervised data clustering algorithms are C-means (a fuzzy
extension of K-means) and Gaussian mixture models opti-
mized via expectation maximization. Both of these algorithms
exhibit significant data parallelism and are good applications
for high-performance parallel computing. The algorithms have
previously been parallelized using a variety of parallel process-
ing architectures including multi-core processors, commodity
clusters, and high-performance supercomputing grids.

Modern GPU architectures are many-core systems with both
high memory bandwidth and many more arithmetic resources



than modern CPUs. Although traditionally designed for graph-
ics applications, GPUs are becoming increasingly capable of
general purpose computing. Frameworks like NVIDIA’s C-
based CUDA have significantly improved the efficiency of
accelerating general purpose applications on GPU hardware.
Algorithms no longer have to be to cast into a graphics
application using technologies like OpenGL and Cg.

This paper investigated the use of GPUs for accelerating
these two popular unsupervised data clustering algorithms with
NVIDIA’s CUDA framework and Tesla GPU architecture. A
technology used by biologists and immunologists for studying
the characteristics of cells called flow cytometry creates large
data sets on the order of 10% multivariate vectors with tens of
dimensions which require clustering. The large data processing
requirements of flow cytometry were a motivating factor for
the research into the cost-effective computing power of GPUs
for data clustering. The research shows that GPUs are in
fact very suitable for handling data clustering tasks on flow
cytometry data sets. The flow cytometry results themselves
with these two algorithms may not be ideal, but the research
in this paper presents a suitable framework for acceleration
of different clustering algorithms on the GPU with both
single workstations and HPC environments. Speedup on flow
cytometry sized data sets with a NVIDIA GTX 260 (a mid-
range consumer graphics card) are 106x for C-means and 73x
for EM with Gaussians compared to optimized C versions
running on a single core of a modern Intel CPU.

Due to the popularity of these clustering algorithms, and
the surge of research efforts to take advantage of the massive
computational power of GPUs for general purpose applica-
tions, there have been previous efforts to accelerate the C-
means and EM algorithms. GPGPU research has a history
of comparing GPU-enhanced versions of algorithms to naive
inefficient CPU reference code and boasting huge speedup
figures. Comparisons must be made using absolute execution
time rather than speedup to accurately compare multiple GPU
implementations. This paper makes significant improvements
ranging from 1.5x to 10x compared to the previous work using
single-GPU implementations with similar hardware.

In addition to improvements in the single GPU implemen-
tations, both clustering algorithms have been expanded to
use a hybrid of OpenMP and MPI. This allows the program
to leverage multiple GPUs on a single machine as well as
multiple nodes in a cluster environment. The National Center
for Supercomputing Applications (NCSA) at the University of
Mlinois Urbana-Champaign has a Tesla-enhanced supercom-
puter called Lincoln. Using Lincoln as a testing environment,
the hybrid MPI+OpenMP+CUDA clustering algorithms were
tested for scalability and speedup.

C-means, with its lower computational complexity, does not
scale as well as EM with Gaussians since overhead begins to
dominate the execution time earlier. Even still, the C-means
implementation achieves a parallel speedup efficiency of 79%
with 32 GPUs with a speedup of 2219x compared to a single
CPU with a data size on the order of a single flow cytometry
file. Increasing the data size improves the efficiency. Using
data sizes four times larger (4 x 105) the algorithms scales to
32 GPUs with 85% efficiency and a speedup over the CPU of

2368x. With 128 GPUs the efficiency falls to 53% with a CPU
speedup of 5915x. Expectation Maximization with Gaussians
has an efficiency of 72% with 128 GPUs using the smaller
data set (1 million events with 24 dimensions) with a CPU
speedup of 6286x.

VI. FUTURE WORK

This paper focused on using GPUs as co-processors to
accelerate a couple of popular clustering algorithms. There
are many other clustering algorithms that could be accelerated
with GPUs and applied to the flow cytometry problem using
the same hybrid of CUDA, OpenMP, and MPI technologies.
Skewed T-mixtures have shown promise in previous research
[22] for providing good clustering of flow cytometry’s com-
plex cluster shapes, but it has a computational complexity
that is even higher than a Gaussian mixture model and is
impractical on a single CPU.

The two algorithms in this paper still have some weaknesses
that could be improved. Many areas of both algorithms exploit
the data parallelism of individual clusters, but this comes at
the cost of repeatedly accessing the input data. Similarly,
exploiting the data parallelism of multiple dimensions comes
at the cost of accessing membership values multiple times.
Some of the kernels can be replaced by SGEMM (matrix
multiplication) followed by a simple normalization, which is
a more efficient way of performing the same calculation. Un-
fortunately an SGEMM that operates more efficiently on non-
square matrices is required (CUBLAS SGEMM is designed for
square matrices). A new implementation of SGEMM or 3rd
party alternatives to NVIDIA’s CUBLAS such as MAGMA or
CULAtools could be investigated.

One current limitation of the MPI implementation in this
paper is the master-slave structure. The root node needs to
be able to hold the entire input data and the entire result
matrix. Therefore the scalability of the algorithm to very large
data sets is limited by the memory of the root node. A more
decentralized approach where each node retrieves the input
data independently and writes its membership results to an
output would remove this limitation. MPI-IO is one possible
solution. Other areas of exploration include, but are not limited
to:

o Use the CPU cores for the kernels in addition to just the
GPUs. Data points could be allocated to the CPU cores
based on the relative performance between each CPU core
and the GPU.

e Dynamic load balancing for more heterogeneous envi-
ronments, such as GPUs with different performance on
a single node or cluster nodes with mixed numbers/types
of GPUs

o Re-evaluate parallel algorithm design for new GPU ar-
chitectures such as NVIDIA Fermi which has a caching
hierarchy for global memory. May be able to take kernels
previously limited by shared memory and make them
more coarse-grained (and therefore iterating over the
input data fewer times), such as the C-means Update-
Centers, EM E-step, and EM constants kernels.
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data used to generate the Figures in the results section, are
available online at http://apangborn.com/cuda_clustering.
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