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ABSTRACT
Different parallel frameworks for implementing data analysis ap-

plications have been proposed by the HPC and Big Data communi-

ties. In this paper, we investigate three task-parallel frameworks:

Spark, Dask and RADICAL-Pilot with respect to their ability to

support data analytics on HPC resources and compare them with

MPI. We investigate the data analysis requirements of Molecular

Dynamics (MD) simulations which are significant consumers of

supercomputing cycles, producing immense amounts of data. A

typical large-scale MD simulation of a physical system of O(100k)
atoms over µsecs can produce from O(10) GB to O(1000) GBs of
data. We propose and evaluate different approaches for paralleliza-

tion of a representative set of MD trajectory analysis algorithms,

in particular the computation of path similarity and leaflet identifi-

cation. We evaluate Spark, Dask and RADICAL-Pilot with respect

to their abstractions and runtime engine capabilities to support

these algorithms. We provide a conceptual basis for comparing and

understanding different frameworks that enable users to select the

optimal system for each application. We also provide a quantitative

performance analysis of the different algorithms across the three

frameworks.
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1 INTRODUCTION
Different frameworks for implementing parallel data analysis have

been developed by the HPC (MPI, OpenMP) and Big Data commu-

nities (Spark, Dask) [1]. MPI is the most widely used programming

abstraction on HPC resources. It assumes a SPMD execution model

where each process executes the same program and it is highly

optimized for high-performance computing and communication,

which along with synchronization need explicit implementation.

Big Data frameworks utilize higher-level MapReduce [2] program-

ming models avoiding explicit implementations of communica-

tion.In addition, the MapReduce [2] abstraction makes it easy to

exploit data-parallelism as required by many analytics applications.

Several recent publications applied HPC techniques to advance tra-

ditional Big Data applications and Big Data frameworks [1]. The

application of Big Data frameworks to HPC analytics applications

has received less attention.

Task-parallel applications are parallelized by partitioning a work-

load into a set of self-contained units of compute, which requiremin-

imal communication. Depending on the application, these tasks can

be independent, i. e., with no inter-task communication, or coupled

with varying degrees of data and compute dependencies. Big Data

applications exploit task parallelism for data-parallel parts (e. g.,

map operations), but also require some coupling, for computation

of aggregates (the reduce operation). The MapReduce [2] abstrac-

tion popularized this important execution pattern. Typically, the

reduce operation includes shuffling of intermediate data from a set

of nodes to node(s) where the reduce operation executes. There is a

recognized need to optimize in particular communication-intensive

parts of Big Data frameworks using established HPC techniques for

interprocess communication, e. g. shuffle operations [3] and other

forms of communication [4, 5].

Spark [6] and Dask [7] are two well-known Big Data frameworks.

Both provide MapReduce abstractions and are optimized for par-

allel processing of large data volumes, interactive analytics and

machine learning. Their runtime engines can automatically parti-

tion data, generate parallel tasks, and execute them on a cluster of

nodes. In addition, Spark offers in-memory capabilities allowing

caching data that are read multiple times, making it suited for in-

teractive analytics and iterative machine learning algorithms. Dask

also provides a MapReduce API (Dask Bags). Furthermore, Dask’s

https://doi.org/ 
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API is more versatile and allows custom workflows and parallel

vector/matrix computations.

In this paper, we investigate the data analysis requirements of

Molecular Dynamics (MD) applications. MD simulations are sig-

nificant consumers of supercomputing cycles, producing immense

amounts of data. A typical MD simulation of physical system of

O(100k) atoms over µsecs can produce from O(10) to O(1000) GBs
of data [8]. In addition to being the prototypical HPC application,

there is increasingly a need for the analysis to be integrated with

simulations and drive the next stages of execution (analysis-driven-

simulation) [9]. The attempt does not focus on which approach is

better (Big Data vs HPC), but how to provide the "best of both" to a

diverse set of applications [4, 10].

We investigate three task-parallel frameworks and their suitabil-

ity for implementing MD trajectory analysis algorithms. In addi-

tion to Spark and Dask, two Big Data frameworks, we investigate

RADICAL-Pilot [11], a Pilot-Job [12] framework designed for imple-

menting task-parallel applications on HPC. We utilize MPI4py [13]

to provide MPI equivalent implementations of the algorithms. The

task-parallel implementations performance and scalability com-

pared to MPI consists the basis of our analysis.. MD trajectories are

time series of atoms/particles positions and velocities, which are

analyzed using different statistical methods to infer certain proper-

ties, e. g. the relationship between distinct trajectories, snapshots

of a trajectory etc. As a result, they can be considered as a repre-

sentative set of scientific datasets that are organized as time series

and their analysis algorithms. Many of these algorithms can be ex-

pressed using simple task abstractions or MapReduce [14, 15]. Thus,

the selected frameworks are promising candidates for MD analysis

applications.

The paper makes the following contributions: i) it characterizes

and explains the behaviour of different MDAnalysis algorithms on

these frameworks, and ii) provides a conceptual basis for comparing

the abstraction, capabilities and performance of these frameworks.

This paper is organized as follows: Section 2 discusses the Molec-

ular Dynamics analysis algorithms under investigation, and pro-

vides a brief characterization based on the Big Data Ogres classifica-

tion ontology [16]. Section 3, provides a description of the different

frameworks that were used for evaluation. Section 4 provides a de-

scription of the implementation of the MD algorithms on top of

RADICAL-Pilot, Spark and Dask, as well as a performance evalua-

tion and a discussion of findings. Section 5 reviews different MD

analysis frameworks in particular with respect to their ability to

support scalable analytics of large volume MD trajectories. The pa-

per concludes with a summary and discussion of future work in

section 6.

2 MOLECULAR DYNAMICS ANALYSIS
APPLICATIONS

Some of the commonly used algorithms in the analysis of MD trajec-

tories are Root Mean Square Deviation (RMSD), Pairwise Distances

(PD), and Sub-setting [17]. Two more advanced algorithms are

Path Similarity Analysis (PSA) [18] and “Leaflet Identification” [19].

RMSD is used to identify the deviation of atom positions between

frames produced by a MD simulation. PD and PSA methods calcu-

late distances based on different metrics either between atoms or

trajectories. Sub-setting methods are used to isolate parts of inter-

est of MD simulation. Leaflet identification provides information

about groups of lipids in space by identifying the lipid leaflets in

lipid bilayer. All these methods, in some way, read and process

the whole physical system generated via simulations. The analysis

done reduces the data to either a number or matrix.

We discuss in more detail two of these methods and their im-

plementations in MDAnalysis [19, 20]. Specifically, we discuss a

Path Similarity Analysis algorithm using the Hausdorff distance

and a Leaflet Identification method. In addition, we explore the ap-

plications’ Ogres Facets and Views [16], which will provide a more

systematic characterization.

Big Data Ogres [16] are organized into four classification di-

mensions, called views. The possible features of a view are called

facets. A combination of facets from all views defines an Ogre. The

four views are: (1) execution, (2) data source & style, (3) processing

and (4) problem architecture. The execution view describes aspects,

such as I/O, memory, compute ratios, whether computations are

iterative, and the 5 V’s of Big Data (Volume, Velocity, Value, Variety

and Veracity). The data source & style view discusses the way input

data are collected, stored and accessed. The processing view de-

scribes algorithms and kernels used for computation. The problem

architecture view, describes the application architecture needed to

support the application.

2.1 MDAnalysis
MDAnalysis is a Python library [19, 20] that provides a compre-

hensive environment for filtering, transforming and analyzing MD

trajectories in all commonly used file formats. It provides a com-

mon object-oriented API to trajectory data and leverages existing

libraries in the scientific Python software stack, such as NumPy [21]

and Scipy [22].

2.1.1 Path Similarity Analysis (PSA): Hausdorff Distance. Path
Similarity Analysis (PSA) [18] is used to quantify the similarity

between trajectories taking into account their full atomic detail.

The underlying idea is to compute pair-wise distances (for instance,

using the Hausdorff metric [23]) between members of an ensemble

of trajectories (Algorithm 1) and cluster the trajectories based on

their distance matrix. The PSA approach was used to compare

different path sampling methods [18] and is a general approach to

cluster paths that exist in high-dimensional spaces.

Each trajectory is represented as a two dimensional array. The

first dimension correspond to the time frames of the trajectory, the

second to theN atom positions, in 3-dimensional space, represented

as a 3N configuration space vector.

Algorithm 1 describes the PSA algorithm with the Hausdorff

metric over multiple trajectories. We apply a 2-dimensional data

partitioning over the output matrix to parallelize, which is shown

in algorithm 2. Our Hausdorff metric calculation is based on a naive

algorithm. Recently, an algorithm was introduced that uses early

break to speedup execution [24] although we are not aware of a

parallel implementation of this algorithm.

The algorithm is embarrassingly parallel and uses linear algebra

kernels for calculations. It has complexity O(n2) (problem architec-

ture & processing views). Input data volume is medium to large

while the output is small. Specific execution environments, such

as HPC nodes, and Python arithmetic libraries, e.g., NumPy, are
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Algorithm 1 Path Similarity Algorithm: Hausdorff Distance

1: procedure HausdorffDistance(T1 ,T2) ▷ T1 and T2 are a set of 3D points

2: List D1,D2

3: for ∀f rame1 in T1 do
4: for ∀f rame2 in T2 do
5: Append in D1 dRMS (f rame1, f rame2)
6: end for
7: Dt

1
append min(D1)

8: end for
9: for ∀f rame2 in T2 do
10: for ∀f rame1 in T1 do
11: Append in D2 dRMS (f rame2, f rame1)
12: end for
13: Dt

2
append min(D2)

14: end for
15: returnmax

(
max (Dt

1
),max (Dt

2
)

)
16: end procedure
17:

18: procedure PSA(T raj ) ▷ T raj is a set of trajectories
19: for ∀T1 in T raj do
20: for ∀T2 in T raj do

21: D(T
1
,T

2
)=HausdorffDistance

(
T1, T2

)
22: end for
23: end for
24: return D
25: end procedure

Algorithm 2 Two Dimensional Partitioning

1: Initially, there are N 2
distances, where N is the number of trajectories. Each distance defines

a computation task.

2: Map the initial set to a smaller set with k = N /n1 elements, where n1 is a divisor of N , by

grouping n1 by n1 elements together.

3: Execute over the new set with k2 tasks. Each task is the comparisons between n1 and n1
elements of the initial set. They are executed serially.

Algorithm 3 Leaflet Finder Algorithm

1: procedure LeafletFinder(Atoms, Cutof f ) ▷ Atoms is a set of 3D points that represent

the position of atoms in space.Cutof f is an Integer Number

2: Graph G =(V = Atoms, E = ∅)

3: for ∀atom in Atoms do
4: N = [a ∈ V : d (a, atom) ≤ Cutof f ]
5: Add edges [(atoms, a) : a ∈ N ] in G
6: end for
7: C = ConnectedComponents(G)
8: return C

9: end procedure

used (execution view). Input data are produced by HPC simulations,

and are typically stored on HPC storage systems, such as parallel

filesystem like Lustre (data source & style view).

2.1.2 Leaflet Finder. Algorithm 3 describes the Leaflet Finder

algorithm as presented in Ref. [19]. It solves the problem to assign

particles to one of two curved but locally approximately parallel

sheets, provided that the nearest neighbor inter-particle distance

between particles in a sheet is smaller than the distance between

sheets. In biomolecular simulations of lipid membranes, which con-

sist of a double layer of lipid molecules, it is used to identify the

lipids in the outer and inner leaflets (sheets) from trajectory infor-

mation. The algorithm consists of two stages: a) a graph connecting

particles based on threshold distance (cutoff) is constructed, and

b) the connected components of the graph are computed determin-

ing the lipids located on the outer leaflet and those on the inner

leaflet.

The application comprises of multiple stages with different com-

plexities: The first stage identifies neighboring atoms. There are

different implementation alternatives: (1) computing the distance

between all atoms (O(n2)); (2) utilizing a tree-based nearest neigh-

bor (Construction:O(n logn), Query:O(logn)). In both alternatives

HPC/Big Data Scheduler

Pilot-Job

Cluster Scheduler

Distributed Execution Engine Spark Runtime

Task Abstraction Compute-Unit Internal

Dask Distributed

Delay API

Spark RDD Dask Bag, Array

Spark Dataframe, MLlib Dask Dataframe

Functional Abstraction

Higher-Level Abstraction

RADICAL-Pilot Spark Dask

EnTK

Pilot-MapReduce*

*Prototype (Not part of RADICAL-Pilot Distribution)

Figure 1: Architecture of RADICAL-Pilot, Spark and Dask:
The frameworks share common architectural components
for managing cluster resource, managing task. Spark and
Dask offer several high-level abstractions inspired by
MapReduce.

the input data volume is medium size and the output of this stage

is smaller than the input. The complexity of connected components

is:O(|V | + |E |) (V : Vertices, E: Edges), i. e. it greatly depends on the

characteristics of the graph (in particular its sparsity).

The application typically uses HPC nodes as the execution en-

vironment, NumPy arrays (execution view). It uses matrices to

represent the physical system and the distance matrix. The output

data representation is a graph. The Leaflet Finder can be efficiently

implemented using the MapReduce abstraction (problem architec-

ture view). Furthermore, it uses graph algorithms and linear algebra

kernels(processing view facets). The data source & style view facets

are the same as the PSA algorithm.

3 BACKGROUND OF EVALUATED
FRAMEWORKS

The landscape of frameworks for data-intensive applications is

manifold [1, 10] and has been extensively studied in the context

of scientific [25] applications. In this section, we investigate the

suitability of frameworks such as Spark [6], Dask [7] and RADICAL-

Pilot [11], for molecular dynamics data analytics.

MapReduce [2] and its open source Hadoop implementation

combined a simple functional API with a powerful distributed com-

puting engine that exploits data locality to allow optimized I/O

performance. Although, MapReduce is inefficient for interactive

workloads and iterative machine learning algorithms [6, 26]. Spark

and Dask provide richer APIs, caching and other capabilities criti-

cal for analytics applications. RADICAL-Pilot is a Pilot-Job frame-

work [12] that supports task-level parallelism on HPC resources. It

successfully adds a parallelization level on top of HPC MPI-based

applications.

As described in [10], these frameworks typically comprise of

distinct layers, e. g.,to access the cluster scheduler, framework-level

scheduling, and higher-level abstractions. On top of these low-level

resource management capabilities various higher-level abstractions

can be provided, e. g., MapReduce-inspired functional APIs. These

then provide the foundation for analytics abstractions, such as

Dataframes, Datasets and Arrays. Figure 1 visualizes the different

components of RADICAL-Pilot, Spark and Dask. In the following,

we describe each framework in detail.



ICPP, 2018 I. Paraskevakos et al.

3.1 Spark
Spark [6] extends MapReduce [2] providing a rich set of transfor-

mations on top of the Resilient Distributed Dataset (RDD) abstrac-

tion [27]. RDDs are cached in memory making Spark well suitable

for iterative applications that need to cache a set of data across

multiple stages. PySpark provides a Python API to Spark.

A Spark job is compiled of multiple stages; a stage is a set of

parallel tasks executed without any communication (e. g., map)
and an action (e. g., reduce). Each action defines new stage. The

DAGScheduler is responsible for translating the workflow speci-

fied via RDD transformations and actions to an execution plan.

Spark’s distributed execution engine handles the low-level details

of task execution based on this plan. The execution of a Spark job

is triggered by actions.

Spark can read data from different sources, such as HDFS, blob

storage, parallel and local filesystems. While Spark caches loaded

data in memory, it offloads to disk when an executor does not have

enough free memory to hold all the data of its partition. Persisted

RDDs remain in memory, unless specified to use the disk either

complementary or as a single target. In addition, Spark writes to

disk data that are used in a shuffle. As a result, it allows quick

access to those data when transmitted to another executor. Finally,

Spark provides a set of actions that allow to write text files, Hadoop

sequence files or object files to the local filesystem, HDFS or any

filesystem that supports Hadoop. Apart from RDDs, Spark supports

higher-level data abstractions for processing structured data, such

as dataframes, Spark-SQL, datasets, and data streams.

3.2 Dask
Dask [7] provides a Python-based parallel computing library, which

is designed to inter-operate and parallelize native Python code

written for NumPy and Pandas. In contrast to Spark, Dask also

provides a lower-level task API (the delayed API) that allows the
user to construct arbitrary graphs. Being written in Python does

not require to translate data types from one language to another in

contrast to PySpark for example, which needs to move data from

Python’s intepreter to Java/Scala and vice versa.

In addition to the low-level task API, Dask offers three higher-

level abstractions: Bags, Arrays and Dataframes. Dask Arrays are

collection of independent NumPy arrays organized as a grid. Dask

Bags are similar to Spark RDDs and are used to analyze semi-

structured data, like JSON files. Dask Dataframe is a distributed

collection of Pandas dataframes that can be analyzed in parallel.

Furthermore, Dask offers three schedulers: multithreading, multi-

processing and distributed. The multithreaded and multiprocessing

schedulers can be used only on a single node and the parallel ex-

ecution is done through threads or processes respectively. The

distributed scheduler creates a cluster with a scheduling process

and multiple worker processes. A client process creates and com-

municates a DAG to the scheduler. The scheduler assigns tasks to

workers.

3.3 RADICAL-Pilot
RADICAL-Pilot [11] is a Pilot system that implements the pilot par-

adigm as outlined in Ref. [28]. RADICAL-Pilot is implemented in

Python and provides a well defined API and usage modes. Although

RP is vehicle for research in scalable computing, it also supports

RADICAL-Pilot Spark Dask
Languages Python Java, Scala, Python, R Python

Task Task Map-Task Delayed

Abstraction

Functional

Abstraction

- RDD API Bag

Higher-Level

Abstractions

EnTK [30] Dataframe, ML

Pipeline, MLlib [32]

Dataframe, Arrays

for block computa-

tions

Resource Man-

agement

Pilot-Job Spark Execution En-

gines

Dask Distributed

Scheduler

Scheduler Individual Tasks Stage-oriented DAG DAG

Shuffle - hash/sort-based

shuffle

hash/sort-based

shuffle

Limitations no shuffle,

filesystem-based

communication

high overheads for

Python tasks (serial-

ization)

Dask Array can not

deal with dynamic

output shapes

Table 1: Frameworks Comparison: Dask and Spark are de-
signed for data-related task, while RADICAL-Pilot focuses
on compute-intensive tasks.

production grade science. Currently, it is being used by applica-

tions drawn from diverse domains, ranging from earth sciences and

biomolecular sciences to high-energy physics. RP can be used as a

runtime system by third party workflow or workload management

systems [29–31]. In 2017, RADICAL-Pilot was used to support more

than 100M core-hours on US DOE, NSF resources (Blue Waters and

XSEDE), and European supercomputers (Archer and SuperMUC).

RADICAL-Pilot allows concurrent task execution on HPC re-

sources. The user can define a set of Compute-Units (CU) - the ab-

straction used to define a task along with its dependencies - which

are submitted to RADICAL-Pilot. RADICAL-Pilot schedules these

CUs to be executed under the acquired resources. RADICAL-Pilot

uses the existing environment of the resource to execute tasks. Any

data communication between tasks is done via the use of an under-

lying shared filesystem, e.g., Lustre. Task execution coordination

and communication is done through a database (MongoDB).

3.4 Comparison of Frameworks
Table 1 summarizes the properties of these frameworks with re-

spect to abstractions and runtime properties provided to create and

execute parallel data applications.

API and Abstractions. RADICAL-Pilot provides a low-level API
for executing tasks onto resources. While this API can be used to

implement high-level capabilities, e. g. MapReduce [33], they are

not provided out-of-the box. Both Spark and Dask provide such

capabilities. Dask’s API is generally lower level than Spark’s , e. g.,

it allows specifying arbitrary task graphs. Although, data partition

size is automatically decided, in many cases it is necessary to fine-

tune parallelism by specifying the number of partitions.

Another important aspect is the availability of high-level ab-

stractions. High-level tools for RADICAL-Pilot, such as Ensemble

Toolkit (EnTK) [30], are designed for workflows involving compute-

intensive tasks. Spark and Dask already offer a set of high-level

data-oriented abstractions, such as Dataframes and ML APIs.

Scheduling. Both Spark and Dask create a Direct Acyclic Graph

(DAG) based on operations over data, which is then executed using

their execution engine. Spark jobs are separated into stages. Once

all tasks in a stage are completed, the scheduler executes the next

stage.

Dask’s DAGs are represented by a tree where each node is a task.

Leaf tasks do not depend on other task for the execution. Dask tasks

are executed when their dependencies are satisfied, starting from
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leaf tasks. When a task is reached with unsatisfied dependencies,

the scheduler executes the dependent task first. Dask’s scheduler

does not rely on synchronization points that Spark’s stage-oriented

scheduler introduces. RADICAL-Pilot does provide a DAG and

requires the execution order and synchronization to be explicitly

specified by the user.

Suitability for MDAnalysis Algorithms. Trajectory analysis meth-

ods are often embarrassingly. So, they are ideally suited for task

management and functional MapReduce APIs. PSA-like methods

typically require a single pass over the data and return a set of val-

ues that correspond to a relationship between frames or trajectories.

They can be expressed as a bag of tasks using a task management

API or a map-only application in a MapReduce-style API.

Leaflet Finder is more complex and requires two stages: a) the

edge discovery stage, and b) the connected components stage.

It is possible to implement Leaflet Finder with a simple task-

management API, although the MapReduce programming model

allows more efficient implementation with a map for computing

and filtering distances and a reduce phase for finding the compo-

nents. The shuffling required between the map and reduce phase is

medium as the number of edges is a fraction of the input data.

4 EXPERIMENTS AND DISCUSSION
In this section, we characterize the performance of RADICAL-Pilot,

Spark and Dask compared to MPI4py. In section 4.1 we evaluate

the task throughput using a synthetic workload. In sections 4.2

and 4.3 we evaluate the performance of two algorithms from the

MDAnalysis library: PSA and Leaflet Finder using different real-

world datasets. We investigate: (1) what capabilities and abstrac-

tions of the frameworks are needed to efficiently express these algo-

rithms, (2) what architectural approaches can be used to implement

these algorithms with these frameworks, and (3) the performance

trade-offs of these frameworks.

The experiments were executed on the XSEDE Supercomputers:

Comet and Wrangler. SDSC Comet is a 2.7 PFlop/s cluster with 24

Haswell cores/node and 128GB memory/node (6,400 nodes). TACC

Wrangler has 24 Haswell hyperthreading enabled cores/node and

128GB memory/node (120 nodes); it is optimized for data-intensive

computing. Experiments were carried using RADICAL-Pilot and

Pilot-Spark [34] extension, which allows to efficientlymanage Spark

on HPC resources through a common resource management API.

We utilize a set of custom scripts to start the Dask cluster. We used

RADICAL-Pilot 0.46.3, Spark 2.2.0, Dask 0.14.1 and Distributed

1.16.3. The data presented are means over multiple runs; error bars

represent the standard deviation of the sample. We employed up to

10 nodes in Comet and Wrangler.

4.1 Frameworks Evaluation
As data-parallelism often involves a large number of short-running

tasks, task throughput is a critical metric to assess the different

frameworks. To evaluate the throughput we use zero workload

tasks (/bin/hostname). We submit an increasing number of such

tasks to RADICAL-Pilot, Spark and Dask andmeasure the execution

time.

For RADICAL-Pilot, all tasks were submitted as bulk CUs. The

RADICAL-Pilot backend database was running on the same node to
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Figure 2: Task Throughput by Framework (Single Node):
Time/Throughput executing a given number of zero-
workload tasks on Wrangler. Dask performs best; Dask and
Spark have very small delays for few tasks. RADICAL-Pilot
offers the smallest throughput.

avoid large communication latencies. For Spark, we created an RDD

with as many partitions as the number of tasks – each partition

is mapped to a task by Spark. For Dask, we created tasks using

delayed functions that were executed by the Distributed scheduler.
We used Wrangler and Comet for this experiment.

The results are shown in Figure 2. Dask needed the least time

to schedule and execute the assigned tasks, followed by Spark and

RADICAL-Pilot. Dask and Spark quickly reach their maximum

throughput, which is sustained while the number of tasks is in-

creased. RADICAL-Pilot showed the worst throughput and scalabil-

ity mainly due to some architectural limitations, e. g., the reliance

on MongoDB to communicate between Client and Agent. Thus, we

were not able to scale RADICAL-Pilot to 32k or more tasks.
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Figure 3: Task Throughput by Framework (Multiple Nodes):
Task throughput for 100k zero-workload tasks on differ-
ent numbers of nodes for each framework. Dask has the
largest throughput, followed by Spark and RADICAL-Pilot.
Wrangler and Comet show a comparable performance with
Comet slightly outperforming Wrangler.

Figure 3 illustrate the throughput when scaling to multiple nodes

measured by submitting 100k tasks. Dask’s throughput on all three

resources increases almost linearly to the number of nodes. Spark’s

throughput is an order of magnitude lower than Dask’s. RADICAL-

Pilot’s throughput plateaus at below 100 task/sec.
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4.2 Path Similarity Analysis: Hausdorff
Distance

The PSA algorithm is embarrassingly parallel and can be imple-

mented using simple task-level parallelism or a map only MapRe-

duce application. The input data, i. e. a set of trajectory files, is

equally distributed over the cores, generating one task per core.

Each task reads its respective input files in parallel, executes and

writes the result to a file.

For RADICAL-Pilot we define a Compute-Unit for each task and

execute them using a Pilot-Job. For Spark, we create an RDD with

one partition per task. The tasks are executes in a map function. In

Dask, the tasks are defined as delayed functions. In MPI, each task

is executed by a process.

The experiments were executed on Comet and Wrangler. The

dataset used consists of three different atom count trajectories: small

(3341 atoms/frame), medium (6682 atoms/frame) and large (13364

atoms/frame), and 102 frames. We used 128 and 256 trajectories of

each size.

Figure 4 shows the runtime for 128 and 256 trajectories on Wran-

gler. Figure 5 compares the execution times on Comet andWrangler

for 128 large trajectories. We see that the frameworks have similar

performance on both systems. Furthermore, we see that Wrangler

gives smaller speedup than Comet. Although, we used the same

number of logical cores, we see that utilizing half the nodes due to

hyperthreading results to smaller speedup.
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Figure 4: Hausdorff Distance on Wrangler using RADICAL-
Pilot, Spark and Dask: Runtimes over different number of
cores, trajectory sizes and number of trajectories. All frame-
works scaled by a factor of 6 from 16 to 256 cores.

MPI4py, RADICAL-Pilot, Spark and Dask have similar perfor-

mance when used to execute algorithms that are embarrassingly

parallel. All frameworks achieved similar speedups as the num-

ber of cores increased, which are lower than MPI4py. Although,

the frameworks’ overheads are comparably low in relation to the

overall runtime, they were significant to impact their speedup. to

communication delays with the database. In summary, all three

frameworks provide appropriate abstractions and runtime perfor-

mance, compared to MPI, for embarrassingly parallel algorithms. In

this case aspects such as programmability and integrate-ability are

the most important considerations, e. g., both RADICAL-Pilot and

Dask are native Python frameworks making the integration with

MDAnalysis easier and more efficient than with other frameworks,

which are based on other languages.
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Figure 5: Hausdorff Distance on Comet and Wrangler: Run-
time and Speedup for 128 large trajectories.

4.3 Leaflet Finder
In this section, we investigate four different approaches for imple-

menting the Leaflet Finder algorithm using RADICAL-Pilot, Spark,

Dask, and MPI4py (see Table 2):

1) Broadcast and 1-D Partitioning: The physical system is

broadcast and partitioned through a data abstraction. Use of

RDD API (broadcast), Dask Bag API (scatter), and MPI Bcast to

distribute data to all nodes. A map function calculates the edge

list using cdist from SciPy [22] – realized as a loop iteration

for MPI. The list is collected to the master process (gathered to

rank 0) and the connected components are calculated.

2) Task API and 2-D Partitioning: Data management is done

without using the data-parallel API. The framework is only used

for task scheduling. The data is pre-partitioned in 2-D partitions

and passed to a map function that calculates the edge list using

cdist. The list is collected and the connected components are

calculated. In MPI, data are partitioned in the same manner and

a loop calculates the edge list, which is then gathered to rank 0.

3) Parallel Connected Components: Data are managed as in

approach 2. Each map task performs edge list and connected

components computations. The reduce phase joins the calculated

components into one, when there is at least one common node.

4) Tree-basedNearestNeighbor andParallel-ConnectedCom-
ponents (Tree-Search): This approach is different to approach

3 only on the way edge discovery in the map phase is imple-

mented. A tree-structure containing all atoms is created which

is then used to query for adjacent atoms.

We use four physical systems with 131k , 262k , 524k , and 4M
atoms with 896k , 1.75M , 3.52M , and 44.6M edges in their graphs.

Experimentation was conducted on Wrangler where we utilized up

to 256 cores. Data partitioning results into 1024 partitions for each

approach, thus 1024 map tasks. Due to memory limitations from

using cdist – uses double precision floating point – Approach 3

data partitioning of the 4M atom dataset resulted to 42k tasks for

both Spark and MPI4py.

Figure 6 shows the runtimes for all datasets for Spark, Dask and

MPI4py. RADICAL-Pilot’s performance is illustrated in Figure 8.

We continue by analyzing the performance of each architectural

approach and used framework in detail.

4.3.1 Broadcast and 1-D Partitioning. Approach 1 utilizes a

broadcast to distribute the data to all nodes, which is supported

by Spark, Dask and MPI. All nodes maintain a complete copy of

the dataset. Each map task computes the pairwise distance on its
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Broadcast and 1-D (Approach 1) Task API and 2-D (Approach 2) Parallel Connected Components (Approach 3) Tree-Search (Approach 4)

Data Partitioning 1D 2D 2D 2D

Map Edge Discovery via Pairwise Dis-

tance

Edge Discovery via Pairwise Dis-

tance

Edge Discovery via Pairwise Distance and Partial

Connected Components

Edge Discovery via Tree-based Algorithm

and Partial Connected Components

Shuffle Edge List (O (E)) Edge List (O (E)) Partial Connected components (O (n)) Partial Connected components (O (n))
Reduce Connect Components Connected Components Joined Connected Components Joined Connected Components

Table 2: MapReduce Operations used by Leaflet Finder
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Figure 6: Leaflet Finder: Performance of Different Architectural Approaches for Spark & Dask: Runtimes and Speedups for
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Figure 7: Broadcast and 1-D Partitioned Leaflet Finder (Ap-
proach 1): Runtime for multiple system sizes on different
number of cores for Spark, Dask and MPI4py.

partition. We use 1-D partitioning. Figure 7 shows the detailed re-

sults: as expected the usage of a broadcast has severe limitations for

Spark and Dask. MPI’s broadcast is a fraction of the overall execu-

tion time and significantly smaller than Spark’s and Dask’s. MPI’s

broadcast times increase linearly as the number of processes in-

creases, while Spark’s Dask’s remain relatively constant for each

dataset, due to more elaborate broadcast algorithms compared to .

Broadcast times are about 3% – 15% of the edge discovery time for

Spark, 40% – 65% for Dask, and < 1% – 10% for MPI4py. Spark offer

a more efficient communication subsystem compared to Dask. In

addition, Dask broadcast partitions the dataset to a list where each

element represents a value from the initial dataset. This lead to not

being able to broadcast the 524k atom dataset. Nevertheless, the

limited scalability of this approach due to the need to transmit the

entire dataset renders it only usable for small datasets. It shows the

worst performance and scaling of all approaches for Spark, Dask

and MPI4py.

Furthermore, this approach only scales up to 262k atoms for Dask,

and 524k atoms for Spark and MPI4py on Wrangler. Spark’s perfor-

mance is comparable to MPI4py for the 262k , and 524k datasets. It

also shows better performance for the smallest core count in the

524k case. Dask is at least two times slower than our MPI imple-

mentation.

4.3.2 Task-API and 2-D Partitioning. Approach 2 attempts to

overcome the limitations of approach 1, especially broadcasting and
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Figure 8: RADICAL-Pilot Task API and 2-D Partitioned
Leaflet Finder (Approach 2): Runtime for multiple system
sizes over different number of cores using RADICAL-Pilot.
RADICAL-Pilot is in the overheads since execution times for
the pairwise distance are similar despite the system size.

1-D partitioning. A 2-D block partitioning is essential, as it evenly

distributes the compute and more efficiently utilizes the available

memory. 2-D partitioning is not well supported by Spark and Dask.

Spark’s RDDs are optimized for data-parallel applications with 1-D

partitioning. While Dask’s array supports 2-D block partitioning, it

was not used for this implementation. We return the adjacency list

of the graph instead of an array to fully use the capabilities of the

abstraction. Thus, each task works on a 2-D pre-partitioned part of

the input data.

The runtimes of approach 2 are shown in Figure 6 for Spark,

Dask, MPI4py and Figure 8 for RADICAL-Pilot. As expected this ap-

proach overcomes the limitations of approach 1 and can easily scale

to larger datasets (e. g., 524k atoms) while improving the overall

runtime. Dask’s execution time was smaller by at least a factor of

two. However, we were not able to scale this implementation to the

4M dataset, due to memory requirements of cdist. For RADICAL-
Pilot we observed significant task management overheads (see also

section 4.1). This is a limitation of RADICAL-Pilot with respect to

managing large numbers of tasks. This is particularly visible when
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the scenario was run on a single node with 32 cores. As more re-

sources for the RADICAL-Pilot agent become available, i.e. more

than 64 cores, the performance improves dramatically.

Furthermore, Spark and Dask did not scale as well as MPI, which

achieved linear speedups of ∼ 8 when using 256 cores. Spark and

Dask achieved maximum speedups of 4.5 and ∼ 5 respectively.

Despite this fact, both frameworks had similar performance on 32

cores for the 262k and 524k datasets.

4.3.3 Parallel Connected Components. Another important as-

pect is the communication between the edge discovery and the

connected components stage. For the 524k atoms dataset the out-

put of the edge discovery phase is ≈100MB. To reduce the amount

of data that needs to be shuffled, we refined the algorithm to com-

pute the graph components on the partial dataset in the map phase.

The partial components are then merged in a reduce phase. This
reduces the amount of shuffle data by more than 50% (e. g., to 12MB

for Spark and 48MB for Dask). Figure 6 shows the improvements

in the runtimes, by ∼ 20% for Spark and Dask, but not MPI4py.

Further, we were able to run very large datasets, such as the 4M

dataset, using this architectural approach using Spark and MPI4py.

Dask was restarting its worker processes because their memory

utilization was reaching 95%.

Spark, and Dask have comparable performance with MPI on

32 cores, which utilizes a single node on Wrangler. However, the

MPI4py implementation scales almost linearly for all datasets, Spark

and Dask cannot, reaching a maximum of ∼ 5 for the three smaller

datasets. In addition, Spark is able to scale almost linearly for the

4M atoms dataset providing comparable performance to MPI4py.

4.3.4 Tree-Search. A bottleneck of approaches 1, 2 and 3 is the

edge discovery via the naive calculation of the distances between

all pairs of atoms. In approach 4, we replace the pairwise distance

function with a tree-based, nearest neighbor search algorithm, in

particular BallTree [36]. The algorithm: (1) constructs of a tree,

and (2) queries for neighboring atoms. Using the tree-search the

computational complexity can be reduced from n2 to loд. For our
implementation, we use the BallTree as offered by Scikit-Learn [37].

Figure 6 illustrates the performance of the implementation. For

small datasets, i. e., 131k and 262k atoms, approach 3 is faster than

the tree-based approach, since the number of points is too small.

For the large datasets, the tree approach is faster. In addition, the

tree algorithm has a smaller memory footprint than cdist. This
allowed to scale to larger problems, e. g., a 4M atoms and 44.6M
edges dataset without changing the total number of tasks.

Dask shows better scaling than Spark for 131k , 262k , and 524k
atoms. This is not the case for the 4M atoms, indicating that Dask’s

communication layer is not able to scale as well as Spark’s. Spark

shows similar performance with MPI4py for the largest dataset due

to minimal shuffle traffic. Thus, MPI’s efficient communication does

not become relevant.

4.4 Conceptual Framework and Discussion
In this section we provide a conceptual framework that allows ap-

plication developers to carefully select a framework according to

their requirements (e. g., computational and I/O characteristics).

RADICAL-Pilot Spark Dask
Task Management
Low Latency - o +

Throughput - + ++

MPI/HPC Tasks + o o

Task API + o ++

Large Number of Tasks – ++ ++

Application Characteristics
Python/native Code ++ o +

Java o ++ o

Higher-Level Abstraction - ++ +

Shuffle - ++ +

Broadcast - ++ +

Caching - ++ o

Table 3: Decision Framework: Criteria and Ranking for
Framework Selection. - : Unsupported or low performance
+: Supported, ++: Major Support, and o:Minor support.

Thus, it is important to understand both the properties of the appli-

cation and Big Data frameworks: Table 3 illustrates the criteria of

the conceptual framework and ranks the three frameworks.

4.4.1 Application Perspective. We have shown that it is possi-

ble to implement MD trajectory data analysis applications using

all three frameworks, as well as using MPI4py. The performance

critically depends on implementation aspects, such as the com-

putational complexity, and the amount of data that needs to be

shuffled across the network. For embarrassingly parallel applica-

tions, such as the path similarity analysis, with coarse grained tasks,

the choice of the framework does not have a large influence on the

performance (Figures 4 and 5). In addition, the performance dif-

ference compared to MPI4py was not significant (Figures 4 and 5).

Thus, other aspects, such as programmability and integrate-ability

become more important.

For fine-grained data parallelism, a Big Data framework, such as

Spark and Dask, clearly outperforms RADICAL-Pilot (Figures 6, 8).

If some coupling is introduced, i. e. communication between the

tasks is required, e. g., a reduce, the usage of Spark becomes advan-

tageous (Approaches 3 & 4). MPI4py outperformed Dask, and Spark,

despite both frameworks scaling for the larger datasets. Especially

Spark was able to provide linear speedup for approach 3 of the

Leaflet Finder algorithm (Figure 6). Integrating with frameworks

that provide higher level abstractions provides scalable solutions for

more complex algorithms. However, integrating Spark with other

tools needs to be carefully considered: the integration of Python

tools, e. g. MDAnalysis, often causes overheads due to the frequent

need for serialization and copying data between the Python and

Java space.

4.4.2 Framework Perspective. RADICAL-Pilot is particularly

suited for HPC applications, e. g., ensembles (up to 50k tasks) of

parallel MPI applications, as shown in Ref. [11, 38]. It shows scala-

bility limitations with supporting large numbers of short-running

tasks as often found in data-intensive workloads. The file staging

implementation of RADICAL-Pilot is not suitable for supporting

the data exchange patterns, i.e. shuffling, required for these appli-

cations. However, executing MPI and Spark applications alongside

on the same resource makes RADICAL-Pilot particularly suitable

when different programming paradigms need to be combined.

Dask provides a highly flexible, low-latency task management

and excellent support for parallelization of Python libraries. Based

on Figures 2 and 3, we established that Dask has higher throughput.
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However, we see that Spark provides better speedups for the largest

datasets compared to Dask (Figure 6). Thus, Dask’s communica-

tion subsystem has some weaknesses that are particularly visible in

the broadcast and shuffle performance, since the broadcast (Leaflet

Finder approach 1) and shuffle (Leaflet Finder approaches 2- 4)

performance is significantly worse for larger problems compared

to Spark. Spark needs to be particularly considered for shuffle-

intensive applications. Its in-memory caching mechanism is partic-

ularly suited for iterative algorithms that maintain a static set of

points in-memory and conduct multiple passes on that set.

5 RELATEDWORK
MD analysis algorithms were until recently executed serially and

parallelization was not straightforward. During the last years sev-

eral frameworks emerged providing parallel algorithms for analyz-

ing MD trajectories. Some of those frameworks are CPPTraj [35],

HiMach [15], Pteros 2.0 [39], MDTraj [40], and nMoldyn-3 [41]. We

compare these frameworks with our approach over the paralleliza-

tion techniques used. Any

CPPTRAJ [35] provides several analysis algorithms parallelized

through MPI and OpenMP. MPI is being used to parallelize the

execution over the frame of a single trajectory or each trajectory

in an ensemble of trajectories. OpenMP is used to parallelize the

execution of compute intensive algorithms.

HiMach [15] was developed by D. E. Shaw Research group to

provide a parallel analysis framework for MD simulations, extends

Google’s MapReduce. HiMach API defines trajectories, does per

frame data acquisition (Map) and cross-frame analysis (Reduce).

HiMach’s runtime is responsible to parallelize and distribute Map

and Reduce phases to resources. Data transfers are done through a

communication protocol created specifically for HiMach.

Pteros-2.0 [39] is a open-source library that is used for mod-

eling and analyzing MD trajectories, providing a plugin for each

supported algorithm. The execution is done by a user defined dri-

ver application, which setups trajectory I/O and frame dispatch

for analysis. It offers a C++ and Python API. Pteros 2.0 parallelizes

computational intensive algorithms by using OpenMP and Multi-

threading. As a result, it is bounded to execute on a single node,

making any analysis execution highly dependent on memory size.

Through RADICAL-Pilot, Spark and Dask, we avoided the need to

recompile every time there is a change to the underlying resource,

ensuring the application’s execution.

MDTraj [40] is a Python package for analyzing MD trajectories.

It links MD data and Python statistical and visualization software.

MDTraj proposes parallelizing the execution by using the parallel

package of IPython as a wrapper along with an out-of-core tra-

jectory reading method. Our approach support of data analysis

frameworks allows data parallelization on any level of the execu-

tion, not only in data read.

nMoldyn-3 [41] parallelizes the execution through a Master/-

Worker architecture. The master or client defines analysis tasks,

submits them to a task manager, which then are executed by the

worker process. In addition, it provides adaptability allowing on-

the-fly addition of resources, and execution fault tolerance when

worker processes disconnect.

In contrast, our approach utilizes more general purpose frame-

works for parallelization. Because the used frameworks provide

higher level abstractions, e.g machine learning, any integration

with other data analysis methods can be fast and easier. In addition,

resource acquisition and management is done transparently.

6 CONCLUSION AND FUTUREWORK
In this paper, we investigated the use of different programming

abstractions and frameworks for the implementation of a range

of algorithms for molecular dynamics trajectory analysis. We con-

ducted an in-depth analysis of the application characteristics and

assessed the architectures of RADICAL-Pilot, Spark and Dask. We

provide a conceptual framework that enables application devel-

opers to qualitatively evaluate Big Data frameworks with respect

to their application requirements. Our benchmarks enable them

to quantitatively assess framework performance as well as the ex-

pected performance of different implementation alternatives. In

addition, we provided a comparison with the respective MPI im-

plementations.

While the task abstractions provided by all frameworks are well-

suited for implementing all use cases, the high-level MapReduce

programming model provided by Spark and Dask provides several

advantages: it is easier to use and efficiently support common data

exchange patterns, such as the shuffling of data between the map
and reduce stage. In our benchmarks Spark outperforms Dask in

communication-intensive tasks, such as broadcasts and shuffles, as

shown in Fig 6. Further, the in-memory RDD abstraction performs

well for iterative algorithms (such as many machine learning algo-

rithms [32]). Dask provides more versatile low-level and high-level

APIs and integrates better with pythonic frameworks. RADICAL-

Pilot does not provide a MapReduce API, but is well suited for

coarse-grained task-level parallelism [11, 38] and for cases where

HPC and analytics framework need to be integrated. We also iden-

tified severe limitation in Dask and Spark: while both frameworks

provide some support for linear algebra – both provide abstrac-

tions for distributed array – these proved not flexible enough for

implementing the all-pairs patterns efficiently and required signifi-

cant workarounds in the implementation and utilization of out-of-

framework functions to read and partition the input data (Table 2).

Although, none of these frameworks outperformed MPI, their scal-

ing capabilities along with their high-level APIs create a strong

case on utilizing them for data analytics of HPC applications.

In the future, we will further improve the performance of the

presented algorithms, e. g., by reducing the memory and compu-

tation footprint, data transfer sizes between stages, by optimizing

filesystem usage. To better support PyData tools in RADICAL-Pilot,

we plan to extend the Pilot-Abstraction to support Dask and other

Big Data frameworks. Further, we will refine the RADICAL-Pilot

task execution engine to meet the requirement of data analytics

application and devise task execution strategies that can mitigate

issues occurring at large scale, such as stragglers. Another area

of research, is dynamic resource management and the ability to

dynamically scale the resource pool (e. g., by adding or removing

nodes) to meet the requirements of a specific application stage.
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