
Task-parallel Analysis of Molecular Dynamics Trajectories
Ioannis Paraskevakos

Rutgers University

Piscataway, New Jersey, USA

Andre Luckow

Ludwig-Maximilians-University

Munich, Germany

Mahzad Khoshlessan

Arizona State University

Tempe, Arizona, USA

George Chantzialexiou

Rutgers University

New Jersey, USA

Thomas E. Cheatham

University of Utah

Salt Lake City, Utah, USA

Oliver Beckstein

Arizona State University

Tempe, Arizona, USA

Geoffrey C. Fox

Indiana University

Bloomington, Indiana, USA

Shantenu Jha

Rutgers University

Brookhaven National Laboratory

ABSTRACT
Different parallel frameworks for implementing data analysis ap-

plications have been proposed by the HPC and Big Data communi-

ties. In this paper, we investigate three task-parallel frameworks:

Spark, Dask and RADICAL-Pilot with respect to their ability to

support data analytics on HPC resources and compare them to

MPI. We investigate the data analysis requirements of Molecular

Dynamics (MD) simulations which are significant consumers of

supercomputing cycles, producing immense amounts of data. A

typical large-scale MD simulation of a physical system of O(100k)
atoms over µsecs can produce from O(10) GB to O(1000) GBs of
data. We propose and evaluate different approaches for paralleliza-

tion of a representative set of MD trajectory analysis algorithms, in

particular the computation of path similarity and leaflet identifica-

tion. We evaluate Spark, Dask and RADICAL-Pilot with respect to

their abstractions and runtime engine capabilities to support these

algorithms. We provide a conceptual basis for comparing and un-

derstanding different frameworks that enable users to select the

optimal system for each application. We also provide a quantitative

performance analysis of the different algorithms across the three

frameworks.

KEYWORDS
Data analytics, MD Simulations Analysis, MD analysis, task-parallel

ACM Reference Format:
Ioannis Paraskevakos, Andre Luckow,Mahzad Khoshlessan, George Chantzi-

alexiou, Thomas E. Cheatham, Oliver Beckstein, Geoffrey C. Fox, and Shantenu

Jha. 2018. Task-parallel Analysis of Molecular Dynamics Trajectories. In

ICPP 2018: 47th International Conference on Parallel Processing, August 13–
16, 2018, Eugene, OR, USA. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3225058.3225128

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00

https://doi.org/10.1145/3225058.3225128

1 INTRODUCTION
Frameworks for parallel data analysis have been created by the High

Performance Computing (HPC) and Big Data communities [17].

MPI is the most used programming model for HPC resources. It

assumes a SPMD execution model where each process executes

the same program. It is highly optimized for high-performance

computing and communication, which along with synchroniza-

tion need explicit implementation. Big Data frameworks utilize

higher-level MapReduce [7] programming models avoiding explicit

implementations of communication. In addition, the MapReduce [7]

abstraction makes it easy to exploit data-parallelism as required

by many analysis applications. Several recent publications applied

HPC techniques to advance traditional Big Data applications and

Big Data frameworks [17].

Task-parallel applications involve partitioning a workload into a

set of self-contained units of work. Based on the application, these

tasks can be independent, have no inter-task communication, or

coupled with varying degrees of data dependencies. Big Data ap-

plications exploit task parallelism for data-parallel parts (e. g., map
operations), but also require coupling, for computing aggregates

(the reduce operation). The MapReduce [7] abstraction popular-

ized this execution pattern. Typically, a reduce operation includes

shuffling intermediate data from a set of nodes to node(s) where the

reduce executes. There is a recognized need to optimize commu-

nication intensive parts of Big Data frameworks using established

HPC techniques for interprocess, e. g. shuffle operations [18] and

other forms of communication [9, 16].

Spark [43] and Dask [30] are two Big Data frameworks. Both

provide MapReduce abstractions and are optimized for parallel

processing of large data volumes, interactive analytics and machine

learning. Their runtime engines can automatically partition data,

generate parallel tasks, and execute them on a cluster. In addition,

Spark offers in-memory capabilities allowing caching data that

are read multiple times, making it suited for interactive analytics

and iterative machine learning algorithms. Dask also provides a

MapReduce API (Dask Bags). Furthermore, Dask’s API is more

versatile, allowing custom workflows and parallel vector/matrix

computations.

In this paper, we investigate the data analysis requirements of

Molecular Dynamics (MD) applications. MD simulations are signif-

icant consumers of computing cycles, producing immense amounts

https://doi.org/10.1145/3225058.3225128
https://doi.org/10.1145/3225058.3225128
https://doi.org/10.1145/3225058.3225128

ICPP 2018, August 13–16, 2018, Eugene, OR, USA I. Paraskevakos et al.

of data. A typical µsec MD simulation of physical system ofO(100k)
atoms can produce from O(10) to O(1000) GBs of data [4]. In addi-

tion to being the prototypical HPC application, there is increasingly

a need for the analysis to be integrated with simulations and drive

the next stages of execution [2]. The analysis phase must be per-

formed quickly and efficiently in order to steer the simulations.

We investigate three task-parallel frameworks and their suit-

ability for implementing MD trajectory analysis algorithms. In

addition to Spark and Dask, we investigate RADICAL-Pilot [25], a

Pilot-Job [20] framework designed for implementing task-parallel

applications on HPC. We utilize MPI4py [6] to provide MPI equiva-

lent implementations of the algorithms. The task-parallel implemen-

tations performance and scalability compared to MPI is the basis of

our analysis. MD trajectories are time series of atoms/particles po-

sitions and velocities, which are analyzed using different statistical

methods to infer certain properties, e. g. the relationship between

distinct trajectories, snapshots of a trajectory etc. As a result, they

can be considered as a representative set of scientific datasets that

are organized as time series and their analysis algorithms.

The paper makes the following contributions: i) it characterizes

and explains the behavior of different MDAnalysis algorithms on

these frameworks, and ii) provides a conceptual basis for comparing

the abstraction, capabilities and performance of these frameworks.

The paper is organized as follows: Section 2 discusses the MD

analysis algorithms investigated, and provides a brief character-

ization based on the Big Data Ogres classification ontology [10].

Section 3, describes the different frameworks that were used for

evaluation. Section 4 provides a description of the implementation

of the MD algorithms on top of RADICAL-Pilot, Spark and Dask,

as well as a performance evaluation and a discussion of findings.

Section 5 reviews different MD analysis frameworks with respect

to their ability to support scalable analytics of large volume MD

trajectories. The paper concludes with a summary and discussion

of future work in section 6.

2 MOLECULAR DYNAMICS ANALYSIS
APPLICATIONS

Some commonly used algorithms for analyzing MD trajectories are

Root Mean Square Deviation (RMSD), Pairwise Distances (PD), and

Sub-setting [27]. Twomore advanced algorithms are Path Similarity

Analysis (PSA) [33] and Leaflet Identification [26]. RMSD is used

to identify the deviation of atom positions between frames. PD

and PSA methods calculate distances based on different metrics

either between atoms or trajectories. Sub-setting methods are used

to isolate parts of interest of MD simulation. Leaflet Identification

provides information about groups of lipids by identifying the lipid

leaflets in a lipid bilayer. All these methods, in some way, read and

process the whole physical system generated via simulations. The

analysis reduces the data to either a number or a matrix.

We discuss two of these methods, a Path Similarity Analy-

sis (PSA) algorithm using the Hausdorff distance and a Leaflet

Identification method, and their implementations in MDAnaly-

sis [26, 29]. In addition, we implemented the PSA algorithm using

CPPTraj [31]. Furthermore, we explore the applications’ Ogres

Facets and Views [10], which provide a more systematic characteri-

zation.

Big Data Ogres [10] are organized into four classes, called views.
The possible features of a view are called facets. A combination

of facets from all views defines an Ogre. The Views are: 1) exe-

cution - describes aspects, such as I/O, memory, compute ratios,

whether computations are iterative, and the 5 V’s of Big Data (Vol-

ume, Velocity, Value, Variety and Veracity), 2) data source & style

- discusses input data collection, storage and access, 3) process-

ing - describes algorithms and kernels used for computation, and

4) problem architecture - describes the application architecture.

2.1 MDAnalysis
MDAnalysis is a Python library [26, 29] that provides a compre-

hensive environment for filtering, transforming and analyzing MD

trajectories in all commonly used file formats. It provides a com-

mon object-oriented API to trajectory data and leverages existing

libraries in the scientific Python software stack, such as NumPy [40]

and Scipy [15].

2.1.1 Path Similarity Analysis (PSA): Hausdorff Distance. Path
Similarity Analysis (PSA) [33] is used to quantify the similarity be-

tween trajectories considering their full atomic detail. The basic

idea is to compute pair-wise distances (for instance, using the Haus-

dorff metric [12]) between members of an ensemble of trajectories

and cluster the trajectories based on their distance matrix.

Each trajectory is represented as a two dimensional array. The

first dimension corresponds to time frames of the trajectory, the

second to the N atom positions, in 3-dimensional space.

Algorithm 1 Path Similarity Algorithm: Hausdorff Distance

1: procedure HausdorffDistance(T1 ,T2) ▷ T1 and T2 are a set of 3D points

2: List D1,D2

3: for ∀f rame1 in T1 do
4: for ∀f rame2 in T2 do
5: Append in D1 dRMS (f rame1, f rame2)
6: end for
7: Dt

1
append min(D1)

8: end for
9: for ∀f rame2 in T2 do
10: for ∀f rame1 in T1 do
11: Append in D2 dRMS (f rame2, f rame1)
12: end for
13: Dt

2
append min(D2)

14: end for
15: returnmax

(
max (Dt

1
),max (Dt

2
)

)
16: end procedure
17:

18: procedure PSA(T raj) ▷ T raj is a set of trajectories
19: for ∀T1 in T raj do
20: for ∀T2 in T raj do

21: D(T
1
,T

2
)=HausdorffDistance

(
T1, T2

)
22: end for
23: end for
24: return D
25: end procedure

Algorithm 1 describes the PSA algorithm with the Hausdorff

metric over multiple trajectories. We apply a 2-dimensional data

partitioning over the output matrix to parallelize, shown in al-

gorithm 2. Our Hausdorff metric calculation is based on a naive

algorithm. Recently, an algorithm was introduced that uses early

break to speedup execution [34], although we are not aware of a

parallel implementation of this algorithm.

The algorithm is embarrassingly parallel and uses linear algebra

kernels for calculations. It has complexity O(n2) (problem architec-

ture & processing views). Input data volume is medium to large

while the output is small. Specific execution environments, such as

HPC nodes, and Python arithmetic libraries, e.g., NumPy, are used

Task-parallel Analysis of Molecular Dynamics Trajectories ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Algorithm 2 Two Dimensional Partitioning

1: Initially, there are N 2
distances, where N is the number of trajectories. Each distance defines

a computation task.

2: Map the initial set to a smaller set with k = N /n1 elements, where n1 is a divisor of N , by

grouping n1 by n1 elements together.

3: Execute over the new set with k2 tasks. Each task is the comparisons between n1 and n1
elements of the initial set. They are executed serially.

(execution view). Input data are produced by HPC simulations, and

are stored on HPC storage systems, such as parallel filesystem like

Lustre (data source & style view).

2.1.2 Leaflet Finder. Algorithm 3 describes the Leaflet Finder

(LF) algorithm as presented in Ref. [26]. LF assigns particles to one

of two curved but locally approximately parallel sheets, provided

that the inter-particle distance is smaller than the distance between

sheets. In biomolecular simulations of lipid membranes, consisting

of a double layer of lipid molecules, LF is used to identify the lipids

in the outer and inner leaflets (sheets). The algorithm consists of

two stages: a) construction of a graph connecting particles based

on threshold distance (cutoff), and b) computing the connected

components of the graph, determining the lipids located on the

outer and inner leaflets.

Algorithm 3 Leaflet Finder Algorithm

1: procedure LeafletFinder(Atoms, Cutof f) ▷ Atoms is a set of 3D points that represent

the position of atoms in space.Cutof f is an Integer Number

2: Graph G =(V = Atoms, E = ∅)

3: for ∀atom in Atoms do
4: N = [a ∈ V : d (a, atom) ≤ Cutof f]
5: Add edges [(atoms, a) : a ∈ N] in G
6: end for
7: C = ConnectedComponents(G)
8: return C

9: end procedure

The application stages have different complexities. The first

stage identifies neighboring atoms. There are different implemen-

tation alternatives: i) computing the distance between all atoms

(O(n2)); ii) utilizing a tree-based nearest neighbor (Construction:

O(n logn), Query:O(logn)). In both alternatives the input data vol-

ume is medium size and the output is smaller than the input. The

complexity of connected components is: O(|V | + |E |) (V : Vertices,
E: Edges), i. e. it greatly depends on the characteristics of the graph.

The application typically uses HPC nodes as the execution envi-

ronment, and NumPy arrays (execution view). It uses matrices to

represent the physical system and the distance matrix. The output

data representation is a graph. Leaflet Finder can be efficiently im-

plemented using the MapReduce abstraction (problem architecture

view). It uses graph algorithms and linear algebra kernels (process-

ing view facets). The data source & style view facets are the same

as the PSA algorithm.

2.2 CPPTraj
CPPTraj [31, 32] is a C++ MD trajectory analysis tool. It is paral-

lelized via MPI and OpenMP. CPPtraj reads in parallel frames from

a single trajectory file or ensemble members of the same trajec-

tory from different files. The frames are equally distributed to the

MPI processes. Computational intensive algorithms are further par-

allelized using OpenMP. It requires at least one MPI process per

ensemble member, where each member is a single trajectory file.

3 BACKGROUND OF EVALUATED
FRAMEWORKS

The landscape of frameworks for data-intensive applications is man-

ifold [14, 17] and has been extensively studied in the context of

scientific [13] applications. In this section, we investigate the suit-

ability of frameworks such as Spark [43], Dask [30] and RADICAL-

Pilot [25], for MD data analytics.

MapReduce [7] and its open source Hadoop implementation

combined a simple functional API with a powerful distributed com-

puting engine that exploits data locality to allow optimized I/O

performance. However, MapReduce is inefficient for interactive

workloads and iterative machine learning algorithms [8, 43]. Spark

and Dask provide richer APIs, caching and other capabilities critical

for analytics applications. Spark is considered the standard solu-

tion for iterative data-parallel applications. Dask is quickly gaining

support in the scientific community, since it offers a fully python

environment. RADICAL-Pilot is a Pilot-Job framework [20] that

supports task-level parallelism on HPC resources. It successfully

adds a parallelization level on top of HPC MPI-based applications.

As described in [14], these frameworks typically comprise of dis-

tinct layers, e. g.,cluster scheduler access, framework-level schedul-

ing, and higher-level abstractions. On top of low-level resourceman-

agement capabilities various higher-level abstractions can be pro-

vided, e. g., MapReduce-inspired APIs. These then provide the foun-

dation for analytics abstractions, such as Dataframes, Datasets and

Arrays. Figure 1 visualizes the different components of RADICAL-

Pilot, Spark and Dask. The following describes each framework in

detail.

HPC/Big Data Scheduler

Pilot-Job

Cluster Scheduler

Distributed Execution Engine Spark Runtime

Task Abstraction Compute-Unit Internal

Dask Distributed

Delay API

Spark RDD Dask Bag, Array

Spark Dataframe, MLlib Dask Dataframe

Functional Abstraction

Higher-Level Abstraction

RADICAL-Pilot Spark Dask

EnTK

Pilot-MapReduce*

*Prototype (Not part of RADICAL-Pilot Distribution)

Figure 1: Architecture of RADICAL-Pilot, Spark and Dask:
The frameworks share common architectural components
for managing cluster resource, and tasks. Spark, Dask offer
several high-level abstractions inspired by MapReduce.

3.1 Spark
Spark [43] extendsMapReduce [7] providing a rich set of operations

on top of the Resilient Distributed Dataset (RDD) abstraction [42].

RDDs are cached in-memory making Spark well suitable for iter-

ative applications that need to cache a set of data across multiple

stages. PySpark provides a Python API to Spark.

A Spark job is compiled of multiple stages; a stage is a set of paral-

lel tasks executed without communicating (e. g., map) and an action

(e. g., reduce). Each action defines new stage. The DAGScheduler
is responsible for translating the workflow specified via RDD trans-

formations and actions to an execution plan. Spark’s distributed

execution engine handles the low-level details of task execution.

The execution of a Spark job is triggered by actions. Spark can read

ICPP 2018, August 13–16, 2018, Eugene, OR, USA I. Paraskevakos et al.

data from different sources, such as HDFS, blob storage, parallel

and local filesystems. While Spark caches loaded data in memory, it

offloads to disk when an executor does not have enough free mem-

ory to hold all the data of its partition. Persisted RDDs remain in

memory, unless specified to use the disk either complementary or

as a single target. In addition, Spark writes to disk data that are

used in a shuffle. As a result, it allows quick access to those data

when transmitted to an executor. Finally, Spark provides a set of

actions that write text files, Hadoop sequence files or object files to

local filesystems, HDFS or any filesystem that supports Hadoop. In

addition, Spark supports higher-level data abstractions for process-

ing structured data, such as dataframes, Spark-SQL, datasets, and

data streams.

3.2 Dask
Dask [30] provides a Python-based parallel computing library,

which is designed to parallelize native Python code written for

NumPy and Pandas. In contrast to Spark, Dask also provides a lower-

level task API (delayedAPI) that allows users to construct arbitrary
workflow graphs. Being written in Python, it does not require to

translate data types from one language to another like PySpark,

which moves data between Python’s interpreter and Java/Scala.

In addition to the low-level task API, Dask offers three higher-

level abstractions: Bags, Arrays and Dataframes. Dask Arrays are

a collection of NumPy arrays organized as a grid. Dask Bags are

similar to Spark RDDs and are used to analyze semi-structured data,

like JSON files. Dask Dataframe is a distributed collection of Pandas

dataframes that can be analyzed in parallel.

Furthermore, Dask offers three schedulers: multithreading, multi-

processing and distributed. The multithreaded and multiprocessing

schedulers can be used only on a single node and the parallel execu-

tion is done via threads and processes respectively. The distributed

scheduler creates a cluster with a scheduling process and multi-

ple worker processes. A client process creates and communicates a

DAG to the scheduler. The scheduler assigns tasks to workers.

Dask’s learning curve cannot be considered steep. Its API is well

defined and documented. In addition, familiarity with Spark or

MapReduce helps to minimize the learning curve even further. As

a result, implementing MD analysis algorithms on Dask did not

require significant engineering time. In addition, setting up a Dask

cluster on a set of resources was relatively straightforward, since it

provides all the binaries, e.g. (dask-ssh).

3.3 RADICAL-Pilot
RADICAL-Pilot [25] is a Pilot system that implements the pilot para-

digm as outlined in Ref. [39]. RADICAL-Pilot (RP) is implemented in

Python and provides a well defined API and usage modes. Although

RP is vehicle for research in scalable computing, it also supports

production grade science. Currently, it is being used by applications

drawn from diverse domains, ranging from earth and biomolecular

sciences to high-energy physics. RP can be used as a runtime sys-

tem by workflow or workload management systems [3, 5, 35, 37, 38].

In 2017, RP was used to support more than 100M core-hours on

US DOE, NSF resources (BlueWaters and XSEDE), and European

supercomputers (Archer and SuperMUC).

RADICAL-Pilot allows concurrent task execution on HPC re-

sources. The user defines a set of Compute-Units (CU) - the abstrac-

tion that defines a task along with its dependencies - which are

RADICAL-Pilot Spark Dask
Languages Python Java, Scala, Python, R Python

Task Task Map-Task Delayed

Abstraction

Functional

Abstraction

- RDD API Bag

Higher-Level

Abstractions

EnTK [3] Dataframe, ML

Pipeline, MLlib [23]

Dataframe, Arrays

for block computa-

tions

Resource Man-

agement

Pilot-Job Spark Execution En-

gines

Dask Distributed

Scheduler

Scheduler Individual Tasks Stage-oriented DAG DAG

Shuffle - hash/sort-based

shuffle

hash/sort-based

shuffle

Limitations no shuffle,

filesystem-based

communication

high overheads for

Python tasks (serial-

ization)

Dask Array can not

deal with dynamic

output shapes

Table 1: Frameworks Comparison: Dask and Spark are de-
signed for data-related task, while RADICAL-Pilot focuses
on compute-intensive tasks.

submitted to RADICAL-Pilot. RADICAL-Pilot schedules these CUs

to be executed under the acquired resources. It uses the existing

environment of the resource to execute tasks. Any data communica-

tion between tasks is done via an underlying shared filesystem, e.g.,

Lustre. Task execution coordination and communication is done

through a database (MongoDB).

RADICAL-Pilot’s learning curve can be quite steep at the be-

ginning, at least until the user becomes familiar with the concept

and usability of Pilots and CUs. Once the user is comfortable with

RADICAL-Pilot’s API, she can easily develop new algorithms.

3.4 Comparison of Frameworks
Table 1 summarizes the properties of these frameworks with respect

to abstractions and runtime provided to create and execute parallel

data applications.

API and Abstractions. RADICAL-Pilot provides a low-level API
for executing tasks onto resources. While this API can be used to

implement high-level capabilities, e. g. MapReduce [21], they are

not provided out-of-the box. Both Spark and Dask provide such

capabilities. Dask’s API is generally lower level than Spark’s , e. g.,

it allows specifying arbitrary task graphs. Although, data partition

size is automatically decided, in many cases it is necessary to tune

parallelism by specifying the number of partitions.

Another important aspect is the availability of high-level ab-

stractions. High-level tools for RADICAL-Pilot, such as Ensemble

Toolkit [3], are designed for workflows involving compute-intensive

tasks. Spark and Dask already offer a set of high-level data-oriented

abstractions, such as Dataframes.

Scheduling. Both Spark and Dask create a Direct Acyclic Graph

(DAG) based on operations over data, which is then executed using

their execution engine. Spark jobs are separated into stages. When

a stage is completed, the scheduler executes the next stage.

Dask’s DAGs are represented by a tree where each node is a task.

Leaf tasks do not depend on other task for execution. Dask tasks

are executed when their dependencies are satisfied, starting from

leaf tasks. When a task is reached with unsatisfied dependencies,

the scheduler executes the dependent task first. Dask’s scheduler

does not rely on synchronization points that Spark’s stage-oriented

scheduler introduces. RADICAL-Pilot does provide a DAG and

requires the execution order and synchronization to be specified

by the user.

Task-parallel Analysis of Molecular Dynamics Trajectories ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Suitability for MDAnalysis Algorithms. Trajectory analysis meth-

ods are often embarrassingly parallel. So, they are ideally suited

for task management and MapReduce APIs. PSA-like methods typi-

cally require a single pass over the data and return a set of values

that correspond to a relationship between frames or trajectories.

They can be expressed as a bag of tasks using a task management

API or a map-only application in a MapReduce-style API.

Leaflet Finder is more complex and requires two stages: a) the

edge discovery stage, and b) the connected components stage.

It is possible to implement Leaflet Finder with a simple task-

management API, although the MapReduce programming model

allows more efficient implementation with a map for computing

and filtering distances and a reduce for finding the components.

The shuffling required between map and reduce is medium as the

number of edges is a fraction of the input data.

4 EXPERIMENTS AND DISCUSSION
In this section, we characterize the performance of RADICAL-Pilot,

Spark and Dask compared to MPI4py. In section 4.1 we evaluate the

task throughput using a synthetic workload. In sections 4.2 and 4.3

we evaluate the performance of two algorithms from MDAnalysis:

PSA and Leaflet Finder using different real-world datasets. We in-

vestigate: 1) which capabilities and abstractions of the frameworks

are needed to efficiently express these algorithms, 2) what archi-

tectural approaches can be used to implement these algorithms

with these frameworks, and 3) the performance trade-offs of these

frameworks.

The experiments were executed on the XSEDE Supercomputers:

Comet and Wrangler. SDSC Comet is a 2.7 PFlop/s cluster with 24

Haswell cores/node and 128GB memory/node (6,400 nodes). TACC

Wrangler has 24 Haswell hyper-threading enabled cores/node and

128GB memory/node (120 nodes). Experiments were carried using

RADICAL-Pilot and Pilot-Spark [19] extension, which allows to

efficiently manage Spark on HPC resources through a common

resource management API. We utilize a set of custom scripts to

start the Dask cluster. We used RADICAL-Pilot 0.46.3, Spark 2.2.0,

Dask 0.14.1 and Distributed 1.16.3. The data presented are means

over multiple runs; error bars represent the standard deviation of

the sample. We employed up to 10 nodes in Comet and Wrangler.

4.1 Frameworks Evaluation
As data-parallelism often involves a large number of short-running

tasks, task throughput is a critical metric to assess the different

frameworks. To evaluate the throughput we use zero workload

tasks (/bin/hostname). We submit an increasing number of such

tasks to RADICAL-Pilot, Spark and Dask andmeasure the execution

time.

For RADICAL-Pilot, all tasks were submitted simultaneously.

RADICAL-Pilot’s backend database was running on the same node

to avoid large communication latencies. For Spark, we created

an RDD with as many partitions as the number of tasks – each

partition is mapped to a task by Spark. For Dask, we created tasks

using delayed functions that were executed by the Distributed

scheduler. We used Wrangler and Comet for this experiment.

Figure 2 shows the results. Dask needed the least time to schedule

and execute the assigned tasks, followed by Spark and RADICAL-

Pilot. Dask and Spark quickly reach their maximum throughput,

0.01

0.1

1

10

100

1000

T
im

e
(s

ec
s)

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 65k 131k
Number of Tasks

1

10

100

1000

10000

T
hr

ou
gh

pu
t

(T
as

ks
p

er
se

c)

Spark Dask RADICAL-Pilot

Figure 2: Task Throughput by Framework (Single Node):
Time/Throughput executing a given number of zero-
workload tasks on Wrangler. Dask performs best; Dask and
Spark have very small delays for few tasks. RADICAL-Pilot
offers the smallest throughput.

10

100

1000

10000

T
hr

ou
gh

pu
t

(T
as

ks
p

er
se

c) C
om

et

Dask Spark RADICAL-Pilot

1 2 3 4
Nodes

10

100

1000

10000

T
hr

ou
gh

pu
t

(T
as

ks
p

er
se

c) W
rangler

Figure 3: Task Throughput by Framework (Multiple Nodes):
Task throughput for 100k zero-workload tasks on different
numbers of nodes for each framework. Dask has the largest
throughput, followed by Spark and RADICAL-Pilot.
which is sustained as the number of tasks increased. RADICAL-Pilot

showed the worst throughput and scalability mainly due to some

architectural limitations. It relies on a MongoDB to communicate

between Client and Agent, as well as several components that allow

RADICAL-Pilot to move data and introduce delays in the execution

of the tasks. Thus, we were not able to scale RADICAL-Pilot to 32k

or more tasks.

Figure 3 illustrates the throughput when scaling to multiple

nodes measured by submitting 100k tasks. Dask’s throughput on

all three resources increases almost linearly to the number of

nodes. Spark’s throughput is an order of magnitude lower than

Dask’s. RADICAL-Pilot’s throughput plateaus at below 100task/sec .
Wrangler and Comet show a comparable performance with Comet

slightly outperforming Wrangler.

4.2 Path Similarity Analysis: Hausdorff
Distance

The PSA algorithm is embarrassingly parallel and can be imple-

mented using simple task-level parallelism or a map only MapRe-

duce application. The input data, i. e. a set of trajectory files, is

equally distributed over the cores, generating one task per core.

Each task reads its respective input files in parallel, executes and

writes the result to a file.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA I. Paraskevakos et al.

For RADICAL-Pilot we define a Compute-Unit for each task and

execute them using a Pilot-Job. For Spark, we create an RDD with

one partition per task. The tasks are executed in a map function. In

Dask, the tasks are defined as delayed functions. In MPI, each task

is executed by a process.

The experiments were executed on Comet and Wrangler. The

dataset used consists of three different atom count trajectories: small

(3341 atoms/frame), medium (6682 atoms/frame) and large (13364

atoms/frame), and 102 frames. We used 128 and 256 trajectories of

each size.

Figure 4 shows the runtime for 128 and 256 trajectories on Wran-

gler. Figure 5 compares the execution times on Comet andWrangler

for 128 large trajectories. We see that the frameworks have similar

performance on both systems. Furthermore, we see that Wrangler

gives smaller speedup than Comet. Although, we used the same

number of cores, we see that utilizing half the nodes due to hyper-

threading results to smaller speedup.

1

10

100

1000

10000

R
un

ti
m

e
in

se
co

nd
s

Small Size Trajectories Medium Size Trajectories

128
trajectories

Large Size Trajectories

MPI4py Spark Dask RADICAL-Pilot

16/1 64/2 256/8
1

10

100

1000

10000

16/1 64/2 256/8

Number of Cores/Nodes

16/1 64/2 256/8

256
trajectories

Figure 4: Hausdorff Distance on Wrangler using RADICAL-
Pilot, Spark and Dask: Runtimes over different number of
cores, trajectory sizes, and number of trajectories. All frame-
works scaled by a factor of 6 from 16 to 256 cores.

MPI4py, RADICAL-Pilot, Spark and Dask have similar perfor-

mance when used to execute embarrassingly parallel algorithms.

All frameworks achieved similar speedups as the number of cores

increased, which are lower thanMPI4py. Although, the frameworks’

overheads are comparably low in relation to the overall runtime,

they were significant to impact their speedup. RADICAL-Pilot’s

large deviation is due to sensitivity to communication delays with

the database. In summary, all three frameworks provide appro-

priate abstractions and runtime performance, compared to MPI,

for embarrassingly parallel algorithms. In this case aspects such

as programmability and integrate-ability are more important con-

siderations,e. g., both RADICAL-Pilot and Dask are native Python

frameworks making the integration with MDAnalysis easier and

more efficient than with other frameworks, which are based on

other languages.

CPPTraj [32] provides an optimized C++ implementation of the

2D-RMSD, which is Algorithm 1 with no min−max operations.

The 2D-RMSD between trajectories was executed in parallel. The

results were gathered and the Hausdorff distance was calculated.

CPPTraj [32] was compiled with GNU C++ compiler and no opti-

mizations, and with Intel’s compiler O3 optimization enabled. An

experiment was run with 20-core Haswell nodes and 128 small

trajectories; number of cores ranging from 1 up to 240. Figure 6

1

10

100

1000

R
un

ti
m

e
in

se
co

nd
s

SDSC Comet

MPI4py Spark Dask RADICAL-Pilot

TACC Wrangler

16/1 64/2 256/8
Number of Cores/Nodes

2
4
6
8

10
12

S
p

ee
du

p

16/1 64/2 256/8
Number of Cores/Nodes

Figure 5: Hausdorff Distance on Comet and Wrangler: Run-
time and Speedup for 128 large trajectories.

100

1000

T
im

e
in

se
co

nd
s

0 50 100 150 200 250
Cores

0

50

100

S
p

ee
du

p

GNU Intel -Wall -O3 (no MKL)

Figure 6: Hausdorff Distance using CPPTraj: Runtimes and
Speedup over different number of cores,
shows the runtimes and speedup. MPI C++ provides lower execu-

tion times. However, we are interested in scalable solutions, that

may offer worse performance in absolute numbers, but allows easier

integration, i.e., less lines of code, and/or less engineering time.

4.3 Leaflet Finder
In this section, we investigate four different approaches for imple-

menting the Leaflet Finder algorithm using RADICAL-Pilot, Spark,

Dask, and MPI4py (see Table 2):

1) Broadcast and 1-D Partitioning: The physical system is

broadcast and partitioned through a data abstraction. Use of

RDD API (broadcast), Dask Bag API (scatter), and MPI Bcast to

distribute data to all nodes. A map function calculates the edge

list using cdist from SciPy [15] – realized as a loop for MPI.

The list is collected to the master process (gathered to rank 0)

and the connected components are calculated.

2) Task API and 2-D Partitioning: Data management is done

without using the data-parallel API. The framework is used for

task scheduling. Data are pre-partitioned in 2-D partitions and

passed to a map function that calculates the edge list using cdist–
realized as a loop for MPI. The list is collected (gathered to rank

0) and the connected components are calculated.

3) Parallel Connected Components: Data are managed as in

approach 2. Each map task performs edge list and connected

components computations. The reduce phase joins the calculated

components into one, when there is at least one common node.

4) Tree-basedNearestNeighbor andParallel-ConnectedCom-
ponents (Tree-Search):This approach is different to approach 3
only on the way edge discovery in the map phase is implemented.

Task-parallel Analysis of Molecular Dynamics Trajectories ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Broadcast and 1-D (Approach 1) Task API and 2-D (Approach 2) Parallel Connected Components (Approach 3) Tree-Search (Approach 4)

Data Partitioning 1D 2D 2D 2D

Map Edge Discovery via Pairwise Dis-

tance

Edge Discovery via Pairwise Dis-

tance

Edge Discovery via Pairwise Distance and Partial

Connected Components

Edge Discovery via Tree-based Algorithm

and Partial Connected Components

Shuffle Edge List (O (E)) Edge List (O (E)) Partial Connected components (O (n)) Partial Connected components (O (n))
Reduce Connect Components Connected Components Joined Connected Components Joined Connected Components

Table 2: MapReduce Operations used by Leaflet Finder

A tree containing all atoms is created which is then used to query

for adjacent atoms.

We use four physical systems with 131k , 262k , 524k , and 4M
atoms with 896k , 1.75M , 3.52M , and 44.6M edges in their graphs.

Experimentation was conducted on Wrangler where we utilized up

to 256 cores. Data partitioning results into 1024 partitions for each

approach, thus 1024 map tasks. Due to memory limitations from

using cdist – uses double precision floating point – Approach 3

data partitioning of the 4M atom dataset resulted to 42k tasks for

both Spark and MPI4py.

Figure 7 shows the runtimes for all datasets for Spark, Dask and

MPI4py. RADICAL-Pilot’s performance is illustrated in Figure 9.

We continue by analyzing the performance of each architectural

approach and used framework in detail.

4.3.1 Broadcast and 1-D Partitioning. Approach 1 utilizes a

broadcast to distribute the data to all nodes, which is supported

by Spark, Dask and MPI. All nodes maintain a complete copy of

the dataset. Each map task computes the pairwise distance on its

partition. We use 1-D partitioning. Figure 8 shows the detailed re-

sults: as expected the usage of a broadcast has severe limitations

for Spark and Dask. MPI broadcast is a fraction of the overall exe-

cution time and significantly smaller than Spark and Dask. MPI’s

broadcast times increase linearly as the number of processes in-

creases, while Spark’s and Dask’s remain relatively constant for

each dataset, due to more elaborate broadcast algorithms compared

to MPI. Broadcast times are about 3% – 15% of the edge discovery

time for Spark, 40% – 65% for Dask, and < 1% – 10% for MPI4py.

Spark offers a more efficient communication subsystem compared

to Dask. In addition, Dask broadcast partitions the dataset to a list

where each element represents a value from the initial dataset. This

did not allow broadcasting the 524k atom dataset. Nevertheless,

the limited scalability of this approach due to transmitting the en-

tire dataset renders it only usable for small datasets. It shows the

worst performance and scaling of all approaches for Spark, Dask

and MPI4py.

Furthermore, this approach only scales up to 262k atoms for Dask,

and 524k atoms for Spark and MPI4py on Wrangler. Spark’s perfor-

mance is comparable to MPI4py for the 262k , and 524k datasets. It

also shows better performance for the smallest core count in the

524k case. Dask is at least two times slower than our MPI imple-

mentation.

4.3.2 Task-API and 2-D Partitioning. Approach 2 tries to over-

come the limitations of approach 1, especially broadcasting and

1-D partitioning. A 2-D block partitioning is essential, as it evenly

distributes the compute and more efficiently utilizes the available

memory. 2-D partitioning is not well supported by Spark and Dask.

Spark’s RDDs are optimized for data-parallel applications with 1-D

partitioning. While Dask’s array supports 2-D block partitioning, it

was not used for this implementation. We return the adjacency list

of the graph instead of an array to fully use the capabilities of the

abstraction. Thus, each task works on a 2-D pre-partitioned part of

the input data.

Figure 7 shows the runtimes of approach 2 for Spark, Dask,

MPI4py and Figure 9 for RADICAL-Pilot. As expected this approach

overcomes the limitations of approach 1 and can easily scale to

larger datasets (e. g., 524k atoms) while improving the overall run-

time. Dask’s execution time was smaller by at least a factor of two.

However, we were not able to scale this implementation to the 4M

dataset, due to memory requirements of cdist. For RADICAL-Pilot
we observed significant task management overheads (see also sec-

tion 4.1). This is a limitation of RADICAL-Pilot with respect to

managing large numbers of tasks. This is particularly visible when

the scenario was run on a single node with 32 cores. As more re-

sources become available, i.e. more than 64 cores, the performance

improves dramatically.

Furthermore, Spark and Dask did not scale as well as MPI, which

achieved linear speedups of ∼ 8 when using 256 cores. Spark and

Dask achieved maximum speedups of 4.5 and ∼ 5 respectively.

Despite this fact, both frameworks had similar performance on 32

cores for the 262k and 524k datasets.

4.3.3 Parallel Connected Components. Communication between

the edge discovery and connected components stages is another

important aspect. The edge discovery phase output for the 524k
atoms dataset is ≈100MB. To reduce the amount of data that need

to be shuffled, we refined the algorithm to compute the graph com-

ponents on the partial dataset in the map phase. The partial compo-

nents are then merged in a reduce phase. This reduces the amount

of shuffle data by more than 50% (e. g., to 12MB for Spark and 48MB

for Dask). Figure 7 shows the improvements in runtime, by ∼ 20%

for Spark and Dask, but not MPI4py. Further, we were able to run

very large datasets, such as the 4M dataset, using this architectural

approach using Spark and MPI4py. Dask was restarting its worker

processes because their memory utilization was reaching 95%.

Spark, and Dask have comparable performance with MPI on

32 cores, which utilizes a single node on Wrangler. However, the

MPI4py implementation scales almost linearly for all datasets, Spark

and Dask cannot, reaching a maximum of ∼ 5 for the three smaller

datasets. In addition, Spark is able to scale almost linearly for the

4M atoms dataset providing comparable performance to MPI4py.

4.3.4 Tree-Search. A bottleneck of approaches 1, 2 and 3 is the

edge discovery via the naive calculation of the distances between

all pairs of atoms. In approach 4, we replace the pairwise distance

function with a tree-based, nearest neighbor search algorithm, in

particular BallTree [28]. The algorithm: (1) constructs of a tree, and

(2) queries for neighboring atoms. Using tree-search, the computa-

tional complexity can be reduced from n2 to loд. We use a BallTree

as offered by Scikit-Learn [1] for our implementation.

Figure 7 illustrates the performance of the implementation. For

small datasets, i. e., 131k and 262k atoms, approach 3 is faster than

the tree-based approach, since the number of points is too small.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA I. Paraskevakos et al.

1

10

100

1000

10000

Broadcast & 1-D Partitioning Task API & 2-D Partitioning Parallel Connected Components

S
park

Tree-Search

1

10

100

1000

10000

R
un

ti
m

e
in

se
co

nd
s

D
ask

131k 262k 524k 4M

32/1 64/2 128/4 256/8
1

10

100

1000

10000

32/1 64/2 128/4 256/8 32/1 64/2 128/4 256/8

Number of Cores/Nodes
32/1 64/2 128/4 256/8

M
P

I4py

1

2

4

8
Broadcast & 1-D Partitioning Task API & 2-D Partitioning Parallel Connected Components

S
park

Tree-Search

1

2

4

8

S
p

ee
du

p

D
ask

131k 262k 524k 4M

32/1 64/2 128/4 256/8

1

2

4

8

32/1 64/2 128/4 256/832/1 64/2 128/4 256/8

Number of Cores/Nodes

32/1 64/2 128/4 256/8

M
P

I4py

Figure 7: Leaflet Finder: Performance of Different Architectural Approaches for Spark & Dask: Runtimes and Speedups for
different system sizes over different number of cores for all approaches and frameworks.

32/1 64/2 128/4 256/8

Number of Cores/Nodes

0.1

1

10

100

R
un

T
im

e
in

se
co

nd
s

131k atoms.

32/1 64/2 128/4 256/8

Number of Cores/Nodes

262k atoms.

Spark Runtime

Spark Broadcast

Dask Runtime

Dask Broadcast

MPI4py Runtime

MPI4py Broadcast

Figure 8: Broadcast and 1-D Partitioned Leaflet Finder (Ap-
proach 1): Runtime for multiple system sizes on different
number of cores for Spark, Dask and MPI4py.

32/1 64/2 128/4 256/8

Number of Cores/Nodes

0

200

400

600

R
un

ti
m

e
in

se
ci

nc
ds

131k 262k 524k

Figure 9: RADICAL-Pilot Task API and 2-D Partitioned
Leaflet Finder (Approach 2): Runtime for multiple system
sizes over different number of cores. Overheads dominate
since execution times are similar despite the system size.
For the large datasets, the tree approach is faster. In addition, the

tree has a smaller memory footprint than cdist. This allowed to

scale to larger problems, e. g., a 4M atoms and 44.6M edges dataset

without changing the total number of tasks.

Dask shows better scaling than Spark for 131k , 262k , and 524k
atoms. This is not true for 4M atoms, indicating that Dask’s com-

munication layer is not able to scale as well as Spark’s. Spark shows

similar performance with MPI4py for the largest dataset due to

minimal shuffle traffic. Thus, MPI’s efficient communication does

not become relevant.

4.4 Conceptual Framework and Discussion
In this section we provide a conceptual framework that allows appli-

cation developers to carefully select a framework according to their

requirements (e. g., compute and I/O). It is important to understand

both the properties of the application and Big Data frameworks. Ta-

ble 3 illustrates the criteria of this conceptual framework and ranks

the three frameworks.

RADICAL-Pilot Spark Dask
Task Management
Low Latency - o +

Throughput - + ++

MPI/HPC Tasks + o o

Task API + o ++

Large Number of Tasks – ++ ++

Application Characteristics
Python/native Code ++ o +

Java o ++ o

Higher-Level Abstraction - ++ +

Shuffle - ++ +

Broadcast - ++ +

Caching - ++ o

Table 3: Decision Framework: Criteria and Ranking for
Framework Selection. - : Unsupported or low performance
+: Supported, ++: Major Support, and o:Minor support.

4.4.1 Application Perspective. We showed that we can imple-

ment MD trajectory data analysis applications using all three frame-

works, as well as MPI4py. Implementation aspects, such as com-

putational complexity, and shuffled data size influence the per-

formance greatly. For embarrassingly parallel applications with

coarse grained tasks, such as PSA, the choice of the framework

does not significantly influence performance (Figures 4 and 5). In

addition, the performance difference against MPI4py was not sig-

nificant (Figures 4 and 5). Thus, aspects, such as programmability

and integrate-ability, become more important.

For fine-grained data parallelism, a Big Data framework, such as

Spark and Dask, clearly outperforms RADICAL-Pilot (Figures 7, 9).

If coupling is introduced, i. e. task communication is required (e. g.,

reduce), using Spark becomes advantageous (Approaches 3 & 4).

MPI4py outperformed Dask, and Spark, despite both frameworks

scaling for the larger datasets. Especially Spark was able to provide

linear speedup for approach 3 of Leaflet Finder (Figure 7). Integrat-

ing with frameworks that provide higher level abstractions provides

scalable solutions for more complex algorithms. However, integrat-

ing Spark with other tools needs to be carefully considered. The

integration of Python tools, e. g. MDAnalysis, often causes over-

heads due to the frequent need for serialization and copying data

between the Python and Java space.

Dask had the smallest learning curve of all three frameworks.

As a result, it allows for faster prototyping compared to RADICAL-

Pilot and Spark. RADICAL-Pilot’s learning curve is more steep,

but is more versatile than Dask and Spark, by offering the lowest

level abstraction. Spark had the slowest learning curve. It required

tuning to get the number of tasks correctly, as well as argument

passing to map and reduce functions.

Task-parallel Analysis of Molecular Dynamics Trajectories ICPP 2018, August 13–16, 2018, Eugene, OR, USA

4.4.2 Framework Perspective. RADICAL-Pilot is well suited for

HPC applications, e. g., ensembles (up to 50k tasks) of parallel MPI

applications, as shown in Ref. [24, 25]. It has limited scalability

when supporting large numbers of short-running tasks, as often

found in data-intensive workloads. The file staging implementation

of RADICAL-Pilot is not suitable for supporting the data exchange

patterns, i.e. shuffling, required for these applications. However,

executing MPI and Spark applications alongside on the same re-

source makes RADICAL-Pilot particularly suitable when different

programming models need to be combined.

Dask provides a highly flexible, low-latency task management

and excellent support for parallelizing Python libraries. We estab-

lished that Dask has higher throughput (Figures 2 and 3). However,

Spark provides better speedups for the largest datasets compared

to Dask (Figure 7). Dask’s broadcast (Leaflet Finder approach 1) and

shuffle (Leaflet Finder approaches 2- 4) performance is worse for

larger problems compared to Spark. Thus, Dask’s communication

layer shows some weaknesses that are particularly visible during

broadcast and shuffle. Spark needs to be particularly considered for

shuffle-intensive applications. Its in-memory caching mechanism

is particularly suited for iterative algorithms that maintain a static

set of data in-memory and conduct multiple passes on that set.

5 RELATEDWORK
MD analysis algorithms were until recently executed serially and

parallelization was not straightforward. During the last years sev-

eral frameworks emerged providing parallel algorithms for analyz-

ing MD trajectories. Some of those frameworks are HiMach [36],

Pteros 2.0 [41], MDTraj [22], and nMoldyn-3 [11].We compare these

frameworks with our approach over the parallelization techniques

used.

HiMach [36] was developed by D. E. Shaw Research group to

provide a parallel analysis framework for MD simulations, and

extends Google’s MapReduce. HiMach API defines trajectories, does

per frame data acquisition (Map) and cross-frame analysis (Reduce).

HiMach’s runtime is responsible to parallelize and distribute Map

and Reduce phases to resources. Data transfers are done through a

communication protocol created specifically for HiMach.

Pteros-2.0 [41] is a open-source library that is used for mod-

eling and analyzing MD trajectories, providing a plugin for each

supported algorithm. The execution is done by a user defined dri-

ver application, which setups trajectory I/O and frame dispatch

for analysis. It offers a C++ and Python API. Pteros 2.0 parallelizes

computational intensive algorithms via OpenMP and Multithread-

ing. As a result, it is bounded to execute on a single node, making

any analysis execution highly dependent on memory size. Through

RADICAL-Pilot, Spark and Dask, we avoided recompiling every

time there is a change to the underlying resource, ensuring the

application’s execution.

MDTraj [22] is a Python package for analyzing MD trajectories.

It links MD data and Python statistical and visualization software.

MDTraj proposes parallelizing the execution by using the parallel

package of IPython as a wrapper along with an out-of-core trajec-

tory reading method. Our approach allows data parallelization on

any level of the execution, not only in data read.

nMoldyn-3 [11] parallelizes the execution through a Master

Worker architecture. The master defines analysis tasks, submits

them to a task manager, which then are executed by the worker

process. In addition, it provides adaptability, allowing on-the-fly

addition of resources, and execution fault tolerance when worker

processes disconnect.

In contrast, our approach utilizes more general purpose frame-

works for parallelization. These frameworks provide higher level

abstractions, e.g machine learning, so any integration with other

data analysis methods can be fast and easier. In addition, resource

acquisition and management is done transparently.

6 CONCLUSION AND FUTUREWORK
In this paper, we investigated the use of different programming ab-

stractions and frameworks for implementing a range of algorithms

for MD trajectory analysis. We conducted an in-depth analysis

of applications’ characteristics and assessed the architectures of

RADICAL-Pilot, Spark and Dask. We provide a conceptual frame-

work that enables application developers to qualitatively evaluate

task parallel frameworks with respect to application requirements.

Our benchmarks enable them to quantitatively assess framework

performance as well as the performance of different implemen-

tations. Our method can be used for any application which data

are represented as time series of simulated systems, e. g. weather

forecast, and earthquakes.

While the task abstractions provided by all frameworks are well-

suited for implementing all use cases, the high-level MapReduce

programming model provided by Spark and Dask has several ad-

vantages. It is easier to use and efficiently support common data

exchange patterns, e. g. shuffling between map and reduce stages.
In our benchmarks, Spark outperforms Dask in communication

-intensive tasks, such as broadcasts and shuffles. Further, the in-

memory RDD abstraction performs well for iterative algorithms.

Dask provides more versatile low and high level APIs and inte-

grates better with python frameworks. RADICAL-Pilot does not

provide a MapReduce API, but is well suited for coarse-grained

task-level parallelism [24, 25], and when HPC and analytics frame-

works need to be integrated. We also identified a limitation in Dask

and Spark: while both frameworks provide some support for linear

algebra - both provide a distributed array abstractions - it proved

inflexible for an efficient all-pairs pattern implementation. They

required workarounds and utilization of out-of-framework func-

tions to read and partition data (Table 2). Although, none of these

frameworks outperformedMPI, their scaling capabilities along with

their high-level APIs create a strong case on utilizing them for data

analytics of HPC applications.

In the future, we will further improve the performance of the pre-

sented algorithms , e. g., by reducing the memory and computation

footprint, data transfer sizes between stages, optimizing filesystem

usage. To better support PyData tools in RADICAL-Pilot, we plan

to extend the Pilot-Abstraction to support Dask and other Big Data

frameworks. Thus, providing a system that allows MPI simulations

along with Big Data frameworks on the same resources. Further,

we will refine the RADICAL-Pilot task execution engine to meet

the requirement of data analytics applications and create strate-

gies that mitigate issues occurring at large scale, e. g. stragglers.

Another area of research is dynamic resource management and to

dynamically scale the resource pool (e. g., by adding or removing

nodes) to meet the requirements of a specific application stage.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA I. Paraskevakos et al.

AcknowledgementsWe thank Andre Merzky for useful discussions. This work is

funded by NSF 1443054 and 1440677. Computational resources were provided by NSF

XRAC awards TG-MCB090174 and TG-MCB130177.

Software and Data Source Scripts: http://github.com/radical-cybertools/midas, Ex-

periments and Data:http://github.com/radical-experiment/midas-exps/

REFERENCES
[1] 2016. Scikit-Learn: Nearest Neighbors. http://scikit-learn.org/stable/modules/

neighbors.html.

[2] V. Balasubramanian, I. Bethune, A. Shkurti, E. Breitmoser, E. Hruska, C. Clementi,

C. Laughton, and S. Jha. 2016. ExTASY: Scalable and flexible coupling of MD

simulations and advanced sampling techniques. In 2016 IEEE 12th International
Conference on e-Science (e-Science). 361–370.

[3] Vivek Balasubramanian, Matteo Turilli, Weiming Hu, Matthieu Lefebvre, Wenjie

Lei, Guido Cervone, Jeroen Tromp, and Shantenu Jha. 2018. Harnessing the

Power of Many: Extensible Toolkit for Scalable Ensemble Applications. IPDPS
2018 (accepted) (2018). https://arxiv.org/abs/1710.08491.

[4] T. Cheatham and D. Roe. 2015. The impact of heterogeneous computing on work-

flows for biomolecular simulation and analysis. Computing in Science Engineering
17, 2 (2015), 30–39.

[5] Jumana Dakka and et al. 2017. High-throughput Binding Affinity Calculations at

Extreme Scales. accepted Computational Approaches for Cancer Workshop, SC’17
(2017). http://arxiv.org/abs/1712.09168.

[6] Lisandro Dalcín, Rodrigo Paz, and Mario Storti. 2005. MPI for Python. J. Parallel
and Distrib. Comput. 65, 9 (2005), 1108 – 1115.

[7] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing

on Large Clusters. In OSDI’04: Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation. USENIX Association, Berkeley, CA,

USA, 137–150.

[8] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae,

Judy Qiu, and Geoffrey Fox. 2010. Twister: A Runtime for Iterative MapReduce.

In Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing (HPDC ’10). ACM, New York, NY, USA, 810–818.

[9] Geoffrey Fox, Judy Qiu, Shantenu Jha, Supun Kamburugamuve, and Andre

Luckow. 2015. HPC-ABDS High Performance Computing Enhanced Apache

Big Data Stack. In Proceedings of Workshop on Scalable Computing For Real-Time
Big Data Applications (SCRAMBL’15). 15th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing, Shenzhen, China.

[10] Geoffrey C. Fox, Shantenu Jha, Judy Qiu, and Andre Luckow. 2014. Towards an

Understanding of Facets and Exemplars of Big Data Applications. In Proceedings
of Beowulf’14. ACM, Annapolis, MD, USA.

[11] Konrad Hinsen, Eric Pellegrini, Sławomir Stachura, and Gerald R. Kneller. 2012.

nMoldyn 3: Using task farming for a parallel spectroscopy-oriented analysis of

molecular dynamics simulations. Journal of Computational Chemistry 33, 25

(2012), 2043–2048.

[12] Daniel P. Huttenlocher, Gregory A. Klanderman, and William J Rucklidge. 1993.

Comparing images using the Hausdorff distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence 15, 9 (1993), 850–863.

[13] Shantenu Jha, Daniel S. Katz, Andre Luckow, Neil Chue Hong, Omer Rana,

and Yogesh Simmhan. 2017. Introducing distributed dynamic data-intensive

(D3) science: Understanding applications and infrastructure. Concurrency and
Computation: Practice and Experience (2017), e4032–n/a. e4032 cpe.4032.

[14] Shantenu Jha, Judy Qiu, André Luckow, Pradeep Kumar Mantha, and Geof-

frey Charles Fox. 2014. A Tale of Two Data-Intensive Paradigms: Applications,

Abstractions, and Architectures. Proceedings of 3rd IEEE Internation Congress of
Big Data abs/1403.1528 (2014).

[15] Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001–. SciPy: Open source

scientific tools for Python.

[16] Supun Kamburugamuve, Geoffrey Fox, Pulasthi Wickramasinghe, Govindarajan

Kannan, and Vibhatha Abeykoon. 2018. Twister:Net - Communication Library

for Big Data Processing in HPC and Cloud Environments.

[17] Supun Kamburugamuve, Pulasthi Wickramasinghe, Saliya Ekanayake†, and

Geoffrey C. Fox. 2017. Anatomy of machine learning algorithm implementations

in MPI, Spark, and Flink. In Technical Report. Indiana University, Bloomington.

[18] X. Lu, D. Shankar, S. Gugnani, and D. K. Panda. 2016. High-Performance Design

of Apache Spark with RDMA and Its Benefits on Various Workloads.

[19] Andre Luckow, Ioannis Paraskevakos, George Chantzialexiou, and Shantenu

Jha. 2016. Hadoop on HPC: Integrating Hadoop and Pilot-Based Dynamic Re-

source Management. 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW) (2016), 1607–1616.

[20] Andre Luckow, Mark Santcroos, Andre Merzky, Ole Weidner, Pradeep Mantha,

and Shantenu Jha. 2012. P*: A model of pilot-abstractions. IEEE 8th International
Conference on e-Science (2012), 1–10. http://dx.doi.org/10.1109/eScience.2012.

6404423.

[21] Pradeep Kumar Mantha, Andre Luckow, and Shantenu Jha. 2012. Pilot-

MapReduce: an extensible and flexibleMapReduce implementation for distributed

data. In Proceedings of third international workshop on MapReduce and its Applica-
tions (MapReduce ’12). ACM, New York, NY, USA, 17–24.

[22] Robert T. McGibbon, Kyle A. Beauchamp, Matthew P. Harrigan, Christoph Klein,

Jason M. Swails, Carlos X. Hernández, Christian R. Schwantes, Lee-Ping Wang,

Thomas J. Lane, and Vijay S. Pande. 2015. MDTraj: A Modern Open Library for

the Analysis of Molecular Dynamics Trajectories. Biophysical Journal 109, 8
(2015), 1528 – 1532.

[23] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-

man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris

Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet

Talwalkar. 2016. MLlib: Machine Learning in Apache Spark. Journal of Machine
Learning Research 17, 34 (2016), 1–7.

[24] Andre Merzky, Matteo Turilli, Manuel Maldonado, and Shantenu Jha. 2018. De-

sign and Performance Characterization of RADICAL-Pilot on Titan. in preparation
(2018). https://arxiv.org/abs/1801.01843.

[25] Andre Merzky, Matteo Turilli, Manuel Maldonado, Mark Santcroos, and Shantenu

Jha. 2018. Using Pilot Systems to Execute Many Task Workloads on Supercom-

puters. (2018). http://arxiv.org/abs/1512.08194.

[26] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver

Beckstein. 2011. MDAnalysis: A toolkit for the analysis of molecular dynamics

simulations. Journal of Computational Chemistry 32, 10 (2011), 2319–2327.

[27] Cameron Mura and Charles E. McAnany. 2014. An introduction to biomolecular

simulations and docking. Molecular Simulation 40, 10-11 (2014), 732–764.

[28] Stephen M. Omohundro. 1989. Five Balltree Construction Algorithms. Technical
Report.

[29] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel

N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian

M. Kenney, and Oliver Beckstein. 2016. MDAnalysis: A Python Package for the

Rapid Analysis of Molecular Dynamics Simulations. In Proceedings of the 15th
Python in Science Conference, Sebastian Benthall and Scott Rostrup (Eds.). 98 –

105.

[30] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms and

Task Scheduling. In Proceedings of the 14th Python in Science Conference, Kathryn
Huff and James Bergstra (Eds.). 130 – 136.

[31] Daniel R. Roe and III Thomas E. Cheatham. 2013. PTRAJ and CPPTRAJ: Software

for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of
Chemical Theory and Computation 9, 7 (2013), 3084–3095. PMID: 26583988.

[32] Daniel R. Roe and III Thomas E. Cheatham. 2018. Parallelization of CPPTRAJ

Enables Large Scale Analysis of Molecular Dynamics Trajectory Data. Journal of
Computational Chemistry (2018). in press.

[33] Sean L. Seyler, Avishek Kumar, M. F. Thorpe, and Oliver Beckstein. 2015. Path

Similarity Analysis: A Method for Quantifying Macromolecular Pathways. PLoS
Comput Biol 11, 10 (10 2015), 1–37.

[34] A. A. Taha and A. Hanbury. 2015. An Efficient Algorithm for Calculating the

Exact Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine
Intelligence 37, 11 (Nov 2015), 2153–2163.

[35] A. Treikalis, A. Merzky, H. Chen, T. S. Lee, D. M. York, and S. Jha. 2016. RepEx: A

Flexible Framework for Scalable Replica Exchange Molecular Dynamics Simula-

tions. In 2016 45th International Conference on Parallel Processing (ICPP). 628–637.
[36] Tiankai Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror, J. Gullingsrud, M. O.

Jensen, J. L. Klepeis, P. Maragakis, P. Miller, K. A. Stafford, and D. E. Shaw.

2008. A scalable parallel framework for analyzing terascale molecular dynamics

simulation trajectories. In 2008 SC - International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–12.

[37] M. Turilli, Y. N. Babuji, A. Merzky, M. T. Ha, M. Wilde, D. S. Katz, and S. Jha. 2017.

Evaluating Distributed Execution of Workloads. In 2017 IEEE 13th International
Conference on e-Science (e-Science). 276–285.

[38] Matteo Turilli, Andre Merzky, Vivek Balasubramanian, and Shantenu Jha. 2018.

A Building Blocks Approach towards Domain Specific Workflow Systems? Short
Paper (IEEE/ACM CCGrid 2018) (2018). http://arxiv.org/abs/1609.03484.

[39] Matteo Turilli, Mark Santcroos, and Shantenu Jha. 2017. A Comprehensive

Perspective on Pilot-Jobs. ACM Computing Surveys (accepted, in press), arXiv
preprint arXiv:1508.04180v3 (2017). https://arxiv.org/abs/1508.04180.

[40] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy

array: a structure for efficient numerical computation. Computing in Science &
Engineering 13, 2 (2011), 22–30.

[41] Semen O. Yesylevskyy. 2015. Pteros 2.0: Evolution of the fast parallel molecular

analysis library for C++ and python. Journal of Computational Chemistry 36, 19

(2015), 1480–1488.

[42] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-

silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster

Computing. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI’12). USENIX Association, Berkeley, CA, USA,

2–2.

[43] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and

Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proceedings
of the 2Nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud’10).
USENIX Association, Berkeley, CA, USA, 10–10.

http://github.com/radical-cybertools/midas
http://github.com/radical-experiment/midas-exps/
http://scikit-learn.org/stable/modules/neighbors.html
http://scikit-learn.org/stable/modules/neighbors.html
https://arxiv.org/abs/1710.08491
http://arxiv.org/abs/1712.09168
http://dx.doi.org/10.1109/eScience.2012.6404423
http://dx.doi.org/10.1109/eScience.2012.6404423
https://arxiv.org/abs/1801.01843
http://arxiv.org/abs/1512.08194
http://arxiv.org/abs/1609.03484
https://arxiv.org/abs/1508.04180

	Abstract
	1 Introduction
	2 Molecular Dynamics Analysis Applications
	2.1 MDAnalysis
	2.2 CPPTraj

	3 Background of Evaluated Frameworks
	3.1 Spark
	3.2 Dask
	3.3 RADICAL-Pilot
	3.4 Comparison of Frameworks

	4 Experiments and Discussion
	4.1 Frameworks Evaluation
	4.2 Path Similarity Analysis: Hausdorff Distance
	4.3 Leaflet Finder
	4.4 Conceptual Framework and Discussion

	5 Related Work
	6 Conclusion and Future Work
	References

