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Abstract—We propose a model for large-scale smart-
phone based sensor networks, with sensor information
processed by clouds and grids, with a mediation layer
for processing, filtering and other mashups done via a
brokering network. Final aggregate results are assumed
to be sent to users through traditional cloud interfaces
such as browsers. We conjecture that such a network
configuration will have significant sensing applications,
and perform some preliminary work in both defining
the system, and considering threats to the system as a
whole from different perspectives. We then discuss our
current, initial approaches to solving three portions of the
overall security architecture: i) Risk Analysis relating to the
possession and environment of the smartphone sensors, ii)
New malware threats and defenses installed on the sensor
network proper, and iii) An analysis of covert channels
being used to circumvent encryption in the user/cloud
interface.

I. INTRODUCTION

We consider systems in which there are large group-
ings of sensors reporting exorbitant quantities of po-
tentially sensitive data, and the need to perform large
amounts of processing or computation on this data with
multiple large grid and cloud computing installations.
The processing may need to be done in real or near-real
time. Further, we consider that there are adversaries that
have a vested interest in either learning information from
the system, modifying the results finally output from the
system (be it through modification of the sensor input,
filtering or processing of data), or denying access to the
system. Therefore maintaining data provenance, secrecy
and trust is of paramount importance throughout the data
life-cycle (i.e, from the point of data collection by the
sensors, to its final consumption by an individual or
process). All data-transformation and filtering, network-
ing and sensor aspects of these systems are assumed to
be susceptible to attack. Similarly the environment in
which some parts of the system operate is assumed to
be potentially under adversarial control. In our modeling
we assume the actual cloud-computing facility to be

secure. Our goal is to be able to provide reliable results
computed from sensor data in a manner that enables one
(be it the user or the system) to make educated decisions
on the reliability of that data based on trust metrics,
while simultaneously preventing the loss of data-secrecy
or integrity. Further, maintenance of system integrity
and security is considered a core requirement. Issues
such as anonymity are beyond the scope of our current
research. Herein we provide a formal description of the
networking architecture we anticipate and the security
threats. We delineate between threats and security holes
for which conventional security technology suffices to
solve the problem, those threats for which modifications
to conventional technology are required, and those which
are new and somewhat specific to the problem at hand.
We next outline a largescale feasible research program
to solve the many associated problems. We conclude by
highlighting several of the aspects of this program for
which we are actively engaged in producing solutions,
and the architectures for our solutions.

A. Roadmap

In Section II we provide a high-level specification of
the type of systems we are considering. This is followed,
in Section III, by a high-level threat model that depicts
ways adversaries can manipulate such systems and their
malleable environments. In Section IV, we provide more
in depth discussions on three specific subsets of security
problems from Section III for which we are currently
developing solutions. In Section V we provide related
work for these problems. Section VI finishes off with
discussion and conclusions.

II. COMPUTATION, NETWORKING & SENSING
MODEL

We consider a model in which there are potentially
millions of deployed sensors. The sensors may be (but
are not necessarily) organized by some principle into



different hierarchical layers or partitions. These sensors
may be continuously publishing their observations, or
supply their observations on request. In either event the
observations are relayed through a brokering and filtering
network, where sensor data is eventually consumed by
a cloud or grid-computing infrastructure; alternatively
the data can be filtered or processed, and stored. Im-
portantly, we do not consider traditional low-power
sensors such as motes, RFIDs and smartdust, where a
great preponderance of wireless sensor-network research
has been done. Rather, we consider potentially high
throughput sensors attached to a — in comparison —
large amount of computational and networking power,
e.g., in the cloud. Specifically, we consider smartphone-
class devices with reliable cellular network connectivity
(with hundreds of Kbps throughput as opposed to tens of
Kbps available on motes) and frequent recharging (e.g.,
nightly) that supports more computationally intensive
applications than motes. Yet, this model still leaves open
a large number of security issues that must be solved.
We detail the model below.

1) The Sensor: Herein, we consider the sensors to
be modern smartphones. These devices are diversely
deployed in the field, contain a large number of sensors,
and have moderate computational ability. Further, they
are fully networked, and with modern 3G networks have
reasonable bandwidth (e.g., 100–1000kbps). Addition-
ally, most sensors have 802.11 WiFi radios, and may
have sporadic or continuous WiFi connections in ur-
ban environments, with bandwidth of 1-50Mbps. These
phones may be in the control of trusted (or semi-trusted)
individuals, or be located in some potentially untrusted
environment. Further, they have a reasonable processing
capability on modern low-power processors, such as an
ARM architecture processor running at 500–800MHZ.
It is assumed that the phones have standard sensors
including, eGPS, 802.11x, Bluetooth v2 (Class 1, 2 or 3),
temperature, orientation, acceleration, audio microphone,
and camera (stills or video). In particular, our project
focuses on the use of HTC G1 Android (v1.6) develop-
ment phones, due to the ease of programming and their
ability to multi-task (unlike the iPhone). Such platforms
can perform a full host of cryptographic operations,
but also have security issues relating to the fact that
they are multi-purpose computing platforms. Thus OS
security issues are larger, and it is difficult to construct
a small OS, such as TinyOS [19] designed for motes,
which can be more easily hardened to withstand attack.
While the smartphones are capable of more standard
cryptographic protocols, a large number of such sensors
in a region that are broadcast could overwhelm commu-
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Fig. 1: A depiction of the different components of the sensor
and cloud-computing network. Android smartphones
denote the sensors in the system, and are in the
possession of individuals. The smartphones have some
computational capacity, and transmit through WiFi or
cellular services to a brokering network, running over
traditional TCP/IP services. The brokering service can
itself have computers performing filtering, processing
and/or creating other mashups of sensor data.

nications channels, and battery life is still a concern —
if not as pressing. Therefore, low bandwidth and energy
usage requirements are still a concern. However, one can
easily port low-energy and bandwidth secure networking
stacks, such as those provided by TinySec [17] or
MiniSec [21].

2) The Brokering Network: With potentially millions
of smartphone sensors producing data at any given time,
the need for a high performance networking infrastruc-
ture that is capable of self-filtering unimportant data
feeds before they are transmitted for processing becomes
apparent. Further, the need to funnel potentially very
large amounts of bandwidth to a few collection points for
processing is also evident. The communication between
the sensors and the computing infrastructure is mediated
by a brokering network that uses a publish/subscribe
model. In such a model, each sensor can publish the
data it is collecting on a continuous basis, along with
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appropriate meta-data that depict the content, provenance
and trustworthiness of the data. Requests for specific
information at the cloud or grid computing interface will
drive the request for specific types and trustworthinesses
of data from the sensors. Such requests will further
invoke the subscription to different forms of data both
real-time and stored. Typical forms of data cleaning and
processing can, of course, be performed by dedicated
servers who independently subscribe to sensor feeds,
and then publish their own mashed data feeds for con-
sumption by others. In such cases provenance and trust-
worthiness must be maintained. Ultimately, there will be
many different parallel consumers of data, and thus the
network must be as responsible as is possible to prevent
duplication of effort, redundant routing, streaming and
processing of data.

For this project, the Narada Brokering network1 is
being used. The network can provide basic secrecy and
integrity requirements, but does not by default provide
any information regarding provenance or trustworthiness.
While other suitable brokering networks can be used
(e.g., Solar [?]) we chose Narada because of local
expertise and support available to our project.

3) Computing Model: We assume that the final con-
sumers of data will be cloud or grid computations,
as will many of the filtering and processing modules.
While each cloud or grid may see its output as the final
consumable, the desire to recycle computation means
that the data may itself become simply another input to
an alternate computation upstream. The study of securing
cloud and grid computation are separate research fields
in their own right, and so our model simply assumes
that these computations do not leak information, break
integrity of the data nor provide covert channels to the
data. Computational power and storage is considered to
be more or less limitless to within reasonable bounds.

III. SECURITY, PRIVACY AND TRUST ISSUES

The computing environments of a sensor grid are
fraught with different kinds of threats, which endanger
the security and privacy assurance the system can pro-
vide. Mitigation of these threats relies on establishing
trust on individual system layers through proper security
control. In this section, we survey the security and
privacy risks on each layer of senor-grid computing and
the technical challenges for controlling them.

A sensor grid interacts with its operating environment
through a set of sensors. Those sensors work either au-
tonomously or collaboratively to gather data and dispatch
them to the grid. Within the grid, a brokering system

1See www.Naradabrokering.org

filters and routes the data to their subscribers, the clients
of the sensor grid. We now describe the security and
privacy issues on each layer of such an operation. This
includes the environment the sensors are working in; the
sensors; the grid; the clients; and the communications
between the sensor and grid, and the grid and clients.

a) The Environment: . An adversary could compro-
mise the sensors’ working environments to contaminate
the data they collect. For example, one can add ice
around individual sensors to manipulate the temperatures
they measure; alternatively, one could imagine that GPS
signals were being spoofed in an area. Detection of such
a compromise can be hard, when the adversary has full
control of the environment. A possible approach is to
check the consistency of the data collected from multiple
sensors and identify anomalous environmental changes
as indicated by the data.

b) Sensors: . Sensors can be tampered with by
the adversary who can steal or modify the data they
collect. Mitigation of this threat needs the techniques that
detect improper operations on the sensors and protect its
sensitive data. Since we assume sensors are smartphones,
they also are susceptible to a large number of security
concerns of traditional PCs, which includes viruses and
malware.

c) Cloud or Grid: . Information flows within the
grid can be intercepted and eavesdropped on by ma-
licious code that is injected into the system through
its vulnerabilities. Authentication and information-flow
control need to be built into the brokering system to
defend against such a threat.

d) Client: . The adversary can also manage to
evade the security and privacy protection of the sys-
tem through exploiting the weaknesses of the clients’
browsers. The current design of browsers is well known
to be insufficient for fending off attacks such as cross-site
scripting (XSS) and cross-site request forgery (XSRF).
Such weaknesses can be used by the adversary to acquire
an end user’s privileges to wreak havoc on the grid. De-
fense against the threat relies on design and enforcement
of a new security policy model that improves on the
limitations of the same origin policy adopted in all of
the mainstream browsers.

e) Communication Channels: . The communica-
tions between the sensors and the brokering network,
the brokering network and the cloud or grid, and the
cloud or grid and the client, are subject to both pas-
sive (e.g., eavesdropping) and active (e.g., man-in-the-
middle) attacks. Countering this threat depends on proper
cryptographic protocols that achieve both data secrecy
and integrity. In each case, different engineering re-
quirements based on differing scarce resources require
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different solutions. In the case of the wireless connection
between the sensor network and the brokering network,
bandwidth and power-usage are key requirements. Once
on the brokering network, data provenance becomes a
key challenge. Traditional cryptographic protocols would
seemingly suffice from the cloud to the user. However,
a tricky issue here is the information leaks through side
channels. For example, packet sizes and sequences. Our
preliminary research shows that such information reveals
the state of web applications, which can be further
utilized to infer sensitive data within the application.
Understanding and mitigating the problem needs further
investigation.

IV. PROBLEMS TO BE ADDRESSED

While there are a large number of potential security is-
sues to be addressed, as partially scoped and enumerated
in the previous section, the investigators are working on
the following specific problems.

A. Detection of anomalous use of sensors

A key issue involved in trusting data from the sensors
in the described network is to ensure that the sensors
themselves can be trusted. That is, either they are in the
possession of individuals who are trustworthy, or they
have not been tampered with in their environment if not
possessed by an individual.

In our model if the sensor is in the possession of a
trusted individual, it is more likely that its sensors are
reporting an honest or legitimate environment, and not
one that has been manipulated with the goal of producing
faulty results that get incorporated in to final com-
putation. Smartphones, however, can be easily stolen,
misplaced or temporarily intercepted and reprogrammed
by adversaries. If stolen or misplaced, the environment
that the sensors report may be altered, and thus the data
collected may be untrustworthy. The use of traditional
authentication technologies to ensure a legitimate user
is in control of the smartphone sensor is not practical,
as said users cannot be queried to authenticate every time
the sensor-net needs to report readings.

We propose a system in which a phone attempts
to determine if it is or is not in the possession of a
legitimate user. In cases where the phone determines it
is in questionable hands it deauthenticates itself. Deau-
thentication either removes it from the sensor network, or
forces its sensor readings to be tagged as untrustworthy,
with risk measurements being included in provenance
data to ensure that the risk of improper readings is com-
municated down stream and taken into account on further
processing. In order for the phone to determine whether

it is under legitimate possession, we are developing a risk
assessment system based on the inputs from the sensors
of the phone itself. Thus the sensors are used directly
to determine if the sensors’ readings should be trusted.
We are implementing a prototype of this system on the
HTC/Google G1 Android (v1.6) Phone.

We are taking different approaches with different
sensors on the phones. Note we are using these sensors
to determine risk of improper possession independent
of which sensors are of interest to the sensor network.
Further, we make two broad classifications of the use of
sensor input for risk determination. First, environmental
sensors attempt to measure properties of the environ-
ment around the phone, or of the user. Second, social-
networking sensors measure “friendly” or “unfriendly”
people that surround the phone.

1) Environmental Sensors:
a) Positioning Information: Android smartphones

can determine their position using a combination of
several different information sources, which includes
cellular transmissions (in particular, tower location), GPS
positioning and WiFi positioning. The combination of all
of these pieces of information is often called eGPS, and
frequently provides position far more accurately than any
of the technologies alone. Our high-level goal is for the
phone to learn certain geographic locations and routines
that correspond to either a safe or dangerous state.

We extend the work of Farrahi and Gatica-Perez
[14]. We are using a third-order Hidden Markov Model
(HMM) to determine the risk of misuse of a phone based
on current positional information. Farrahi and Gatica-
Perez considered the problem of determining location
for contextual application purposes, but without specific
interest in authentication and security mechanisms. A
day is divided into blocks of 30 minutes. In any given
period the phone is considered to be in one of four
specified places (e.g., Home, Work, Aux 1, No Location
Reading) or in a generic unlabeled place (Other). Thus
the location of an individual through a time period is
being converted into a string, as is depicted in Fig. 2.
Currently, we are considering a supervised learning case
where a user specifically defines these five locations,
with the goal of using clustering algorithms to eventually
learn popular locations. Traces of individuals’ positions
are then collected, and the HMM iterative Viterbi train-
ing and Forward algorithm are used for training on this
past annotated data sequences and predicting risk. Based
on a trained HMM, and a recent history of the phones’
positions, the forward algorithm is used to determine the
likelihood of the recent history, and this estimate is used
to determine the risk associated with the phone’s current
position. Of clear importance is the efficiency with
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Fig. 2: A depiction of how positional data through the day is
converted in to a string over a small finite alphabet to
be learned by an HMM

.

which both training and evaluation can be performed.
Due to the need to only occasionally perform training
(say daily or weekly to update the movement model
with the most recent trends), its efficiency is of lesser
importance than that of real-time risk evaluation which
needs to be performed on demand in real-time in order
to prevent users form becoming frustrated with risk-
calculation delays.

As previously mentioned, risk evaluation is based on
the use of the forward algorithm. The forward algorithm
runs in O(n2 · t) where n is the number of states and t
is the number of time-blocks being analyzed; given an
HMM M the forward algorithm returns the probability
that a given sequence of positions x1, .., xt is output
by an HMM, given that it terminates in state σt. More
formally, Pr[M → x1, . . . , xt|σt], for a given x1, ..., xt,
and σt. However, for risk analysis we have no preference
for any specific terminal state, and so we are interested in
Pr[M → x1, . . . , xt]. A simple modification that sums
the probabilities over all final states runs in O(n3 · t),
and returns the value of interest. Given the running
time is cubic in the number of states and we need
near real-time evaluations of the algorithm, we need to
minimize the state space. To minimize the state space we
actually construct 8 individual HMMs to learn patterns
of behavior during different 3-hour periods of the day,

0-2 3-5 6-8 9-11

12-14 15-17 18-20 21-23

A hierarchical HMM model is used to learn users schedules. At the 
outer layer we in essence have a node for each 3 hour block of 
time in the day.

Each node contains 
within it a 3rd order 
multi-state HMM to 
learn the schedule over 
the corresponding
 hours.

Fig. 3: A depiction of the constructed HMM for predicting
position.

and link them together through a simple state-machine.2

The model is depicted in Fig. 3.
We justify this construction as a reasonable model

because the risk of one’s current geographic position
is a function of both one’s current position and recent
historical position relative to the current time, as opposed
to one’s longterm schedule. We are currently in the
process of experimentally determining the correct recent
history window that will deliver the best ability to detect
abnormal behavior.

b) Temperature: Temperature of the phone can be
used to determine information relating to whether the
phone is currently in someone’s physical possession. If
the phone reads approximately body temperature (37o C)
then it is reasonable to assume that is in a person’s
possession.3 Similarly, if the phone is at approximately
room temperature or the outdoor ambient temperature,
then the phone is likely either not directly on the person
and is likely to have either been put down or remain in
a bag.

While we believe there is strong potential to help use
the phone’s current temperature to monitor risks, our
initial test of the Android phone is that the delay in
converging to new temperatures by the phone’s sensor
makes this data unusable for our intended applications.
We found that when moving the phone in a pocket at
body temperature and moving it onto a desk, it took on

2This construction could be viewed as a Hierarchical HMM in which
the transition distribution in the high-level HMM are all Kronecker δ-
functions.

3There may need to be some invalidation of this metric at times
when the ambient temperature is the same as body temperature.
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the order of tens of minutes to converge to anywhere
near the ambient room temperature. Further, in the same
scenario it took several minutes to decisively report non-
body temperature readings.

c) Acceleration: Acceleration measurements can
be used in several manners to help determine risk.
Techniques have been developed to measure a person’s
gait using the accelerometer in phones, assuming they
are placed in an individual’s pocket, or otherwise carried
on the person [31], [15], [1]. While we do not intend to
implement such a scheme ourselves, we are looking at
the possibility of including the results of these works
to deploy such a technique in our larger sensor scheme.
Further, we plan to use techniques that include simpler
measurements but are based on other contexts. For
example, if a user does explicitly authenticate to the
device, then at this point in time we know that the device
is trusted. If the device stays in motion for the next
several minutes, then one can assume that the correct
user is still in possession of the device. In contrast if
the phone becomes stationary for a prolonged period of
time, the phone probably has been put down, and now
alternative risk measurements must be used.

2) Social Networking Sensor Risk Measurement: One
key aspect of our system is to use a form of social
networking for authentication and risk measurement.
Imagine a scenario where a phone finds itself in a previ-
ously unvisited location, and other sensors are providing
questionable risk data. However, imagine that the device
can find the presence of a number of other phones that
it frequently observes when in known low-risk states.
The presence of these phones should indicate that the
risk that an individual does not have proper possession
of the phone is low: the phones of colleagues, friends
and family members are near, so either the entire group
is at risk (unlikely or the phone is simply in a new
environment). Our system will employ a combination
of white and black listing of other phones, which will
alter the risk assessments made by the system. Addi-
tionally, we will learn “friendly” phones by determining
which other phones are frequently in the presence of
the user in non-risky situations. This assessment will be
done by considering both Bluetooth and 802.11 wireless
networks.

a) Bluetooth: General Bluetooth frames are much
more difficult to detect than corresponding 802.11x
frames with the standard radio hardware built in to
phones.4 There are two options to bypass this problem.
The first is that the phones broadcast themselves in so

4Relatively inexpensive hardware is available to capture general
Bluetooth packets, but it is not standard on known phones.

called “Bluetooth discovery mode”, this will make the
phone visible to all, but can result in higher battery
usage. The second is to pair specifically with those
phones that are whitelisted to be considered friendly;
pairing requires a one-time user intervention. In this case,
the phones could attempt to pair when they are in close
contact.

More problematically, our current implementation
platform (Android v1.6) does not provide an API to
interface with the Bluetooth infrastructure. Thus Blue-
tooth can only be accessed by the user, and not a
risk-analysis program. Android (v2.0) does provide the
implementation of such API, but there is currently no
firmware upgrade for our reference platform (HTC G1
development).

b) WiFi (802.11x): Much of the widely deployed
smartphones allow their WiFi radios to operate in
promiscuous mode, which permits the radio to listen
to and communicate the existence of frames that it can
receive, even if the radio was not the target for the frame
in question. This mode allows 802.11x radios to detect
the presence of nearby devices. The only requirement to
instantiate our social-networking risk measurement is to
ensure that all the participating phones are broadcasting
their position by sending beacons on regular intervals.
It is yet to be determined if the development platform
supports such modes of operation.

3) Combining Risk Measurements: A more sensitive
risk measurement can be constructed if one does not
require each sensor to independently generate a risk
metric in our risk model. However, in order to make our
scheme flexible for different uses, and in devices with
different subsets of sensors, we consider an architecture
that treats the sensor measurements independently, and
then produces a global risk measurement. Note that this
separation does not prevent the global risk measurement
from learning co-dependencies between risk profiles of
different sensors, and making use of such dependencies.
There is a fair amount of research on methods for
aggregating risk measurements in a number of different
scenarios (e.g., Financial, Credit, Insurance, Intrusion
Detection). Currently we are determining which, if any,
of the current models provides a similar or appropriate
model on which to base an aggregation of our sensor
work. In the mean time, we use an expected value of the
different risk metrics that is weighted with high-degrees
to the positional and social networking schemes.

B. “Sensory Malware” threats and defenses

To fully understand the threat space of malware on
smartphones, we are exploring various attack scenarios.
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While traditional malware defenses focus on protecting
resources on the computer (or as we would expect,
on the smartphone), we are specifically interested in
the new class of attacks where sensory malware uses
onboard sensors to steal information from the user’s
physical environment [5]. For example, the user car-
ries around a video and audio sensor (microphone) at
all times, and thus immense amounts of information
such as sensitive conversations, spoken passphrases or
biometrics, keyboard acoustic emanations when placed
next to a keyboard, and broader surveillance becomes
possible. Video “sensors” can gather visual information
about a user’s private environment such as pictures of
colleagues [39], which may be sensitive with military
and intelligence-gathering agencies. Accelerometers and
GPS sensor information can be used to infer location
and activity patterns of users such as soldiers, thus
compromising military secrecy.

While generic architectures [10], [23] have been pro-
posed to control access to the network, for example,
after software has accessed certain sensor information,
various vectors exist for leaking garnered information.
Overt channels between components on the smartphone
(Android provides very little security against commu-
nicating applications, for example), or covert channels
between related malware applications (through a storage
channel, for example) are currently viable vectors for
leaking sensitive data to adversaries. It is even possible
to leverage other “blessed” applications on the phone
to act as a carrier for such information (by invoking
a web-browser with an encoded URL, for example).
Thus we are interested in building a unified architecture
for controlling access to sensor data, and limiting what
information can be gleaned from the user’s environment
unless he or she is making use of legitimate applications.
We are currently building a software prototype of one
instance of sensory malware to demonstrate the reality of
the threat, and to better understand defensive techniques
to limit such malware.

We aim to study types of sensory malware that are
stealthy and thus use few resources on the mobile device.
For example, speech-based malware may use several
heuristics to target analysis at only specific portions of
the audio sample. Such targeted analysis can drastically
reduce the amount of resources needed to analyze au-
dio samples, thus decreasing the observability of such
malware. To conserve power, such malware can also
target its offline processing to when the mobile device is
connected to a power source for charging. Under such
circumstances the malware uses few precious resources
and does not detract from the user’s experience. Speech

malware of this type may even operate using more gen-
eral “profiles” that tune the malware to recognize several
different situations, or contexts, such as a recognized
phone number that is dialed. Based on the context, the
speech malware can, for example, detect a credit card
customer service line and target analysis to credit card
number extraction. Calls to financial institutions such as
banks often require portions of the user’s social security
number, which could be extracted similarly. Such profiles
can make use of other clues such as audio or video
triggers to better target surveillance and transmit specific
information.

To counter such threats, therefore, we need a frame-
work that is better equipped to deal with sensory mal-
ware threats. Research is needed to understand the threat
space of sensory malware, so that effective defenses can
be deployed. As mentioned earlier, existing solutions
are unable to deal with situations in which malware
communicates through covert channels, and thus such
work must also take into account anomalous resource
usage to detect such covert channels. Being low-powered
devices makes the job of defensive software much more
challenging, and thus lightweight detection techniques
are necessary. It is even possible that the mobile platform
can leverage computation in the cloud for “outsourced
intrusion detection,” which might strike a tradeoff be-
tween the time to detection and power consumption.

C. Side-channel detection and mitigation

It is well known that the contents of encrypted
traffic can be disclosed by its attributes observable to
a eavesdropper, for example, packet sizes, sequences,
inter-packet timings. Such attributes, often referred to
as side-channel information, often pose a grave threat
to the confidentiality of the communication under the
protection of cryptographic protocols. Side-channel leaks
have been extensively studied for decades, in the con-
text of secure shell (SSH) [28], video-streaming [27],
voice-over-IP (VoIP) [38], web browsing and others. As
an example, a line of research conducted by various
research groups studied anonymity issues in encrypted
web traffic. It has been shown that because each web
page has a distinct size, and usually loads some resource
objects (e.g., images) of different sizes, the attacker can
fingerprint the page so that even when a user visits it
through HTTPS, the page can still be re-identified [9],
[30]. This vulnerability is known to be a serious concern
for anonymity channels such as Tor [32], which are
expected to hide users’ page-visits from eavesdroppers.

A sensor grid system can also be highly susceptible
to the threat of side-channel leaks. As described before,
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such a system collects data through distributed sensors,
processes it within a cloud, and delivers the data and
related services to end clients. This highly distributed
computing paradigm is fraught with the hazards of
information leaks, when confidential data are transmitted
between the sensors and the cloud, and between the
cloud and the clients, despite the protection of the state-
of-the-art cryptographic techniques. Such privacy risks
are described as follows:

• The wireless channel connecting the sensors to the
cloud is extremely vulnerable to the eavesdropping
attack. The sensitive data delivered through this
channel can be easily intercepted and analyzed by
the adversary. Though encryption can prevent a
direct disclosure of the data, it does not cover the
side-channel information, which, under some cir-
cumstances, can be used to infer the content of the
sensitive data. As an example, collaborating with
Microsoft Research (MSR), we recently discovered
that even for the organization deploying up-to-date
WPA/WPA2 Wi-Fi encryptions, it cannot prevent
an unauthorized party from collecting the query
words its employees enter into Google/Yahoo/Bing
Search. This is because the suggestion-list features
of these search engines makes the sizes of the pack-
ets generated in response to different query letters
distinct. As a result, the adversary who observes
these packets, despite not gaining access to their
contents, can map their sizes to the different letters
one types into the search engines.

• The encrypted data exchanged between the cloud
and its customers are equally subject to the side-
channel threat. Cloud computing is built upon
the infrastructure of software as a service (SaaS),
through which web applications are delivered as
services to web clients. Unlike its desktop coun-
terpart, a web application is split into browser-
side and server-side components. As a result, a
subset of its internal information flows (i.e., data
flows and control flows) are inevitably exposed on
the network, which reveal application states and
state transitions. Our collaborative research with
MSR reveals that the side-channel weakness of
SaaS is fundamental, which can be used to infer
a large amount of information from many high-
profile, extremely popular web applications. The
sensor grid system also faces the same threat: it
offers services and data to its customers through
web applications, whose side-channel information
could lead to the disclosure of the data, even
when the communication has been protected by the

cryptographic protocols like HTTPS.
The seriousness of the side-channel threat varies from

case to case, depending on the features of the data and
the way in which they are transmitted. An important
research, therefore, becomes how to design a systematic
way to detect the side-channel vulnerabilities within sen-
sor/cloud interactions and the web applications that serve
the sensor grid’s customers. A possible solution is to use
information-flow analysis [29], when the source code of
related software is available. The software developer can
first label taint sources within a program, e.g., variables
that contain sensitive user data, and then run a detection
tool to analyze its source code and track the propagation
of taint data through both data flows and control flows.
Whenever taint data are found to be transmitted across
the network between the application’s client and server
components, an information-leak evaluation is performed
to understand whether side-channel information, such
as packet sizes, sequences and timings, can be linked
back to the content of the data. When the source code
is unavailable, we can use the techniques like fuzz
testing to evaluate sensor-cloud interactions and cloud-
client interactions on different data sets, to identify the
correlation between the attributes of encrypted traffic and
the content of the data.

Control of side-channel leaks can also be highly
nontrivial, particularly when web applications are in-
volved. Our collaborative research with MSR reveals that
conventional defenses like packet padding and adding
noise can be less effective and more costly than expected,
without considering the specific properties of individual
applications. This problem comes from the difficulty
in hiding the side-channel information related to state
transitions specific to each application, and the limited
information an application has about the attributes of
the web traffic it generates, due to the extension or
compression made by the web server. This vulnerability
calls for a change in the current way of developing
web applications to include the collaborations among
multiple related parties: as an example, we could let
the software developer specify the policies for padding
packets at different program states, and the web-server
vendor enforce the policies within the web server that
actually generates the packets.

V. RELATED WORK

Kapadia et al. [16] list several security challenges for
similar smartphone based sensing environments. While
their work focuses mainly on an opportunistic sensing
model where sensors are tasked for readings sent back
as reports to other users or applications in urban sensing
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environments, we focus on environments where sensors
push massive amounts of data to a compute cloud. We
now list related work for the three specific problems
discussed in Section III.

A. Mobile phone security and privacy
There has been some work in using sensors to es-

tablish context for different purposes on smartphones.
The work of Peddemors et al. [25] uses past networking
and sensor events to predict future network events. They
give examples of predicting network availability. The
ability to predict events is distinct from deviating from
normal or prescribed behavior. Nonetheless they use the
prediction of being at home or work, and for durations.
Therefore, the system should be considered. Of partic-
ular problem is the complexity of computing predicted
events, which would be too slow in our scenario.

The work of Tanviruzzaman et al. [31] is most similar
to that discussed here. In their work, they suggest the use
of a hierarchy of sensor information to establish authen-
tication, and show some work on using accelerometer
data on an iPhone to produce a biometric that can be
used to authenticate to the phone.

Other work by Jong-Kwon and Hou [18] has predicted
user behavior and movements from the perspective of a
large WiFi network, for the purposes of assigning scarce
resources appropriately. However, we do not rely on one
overarching network for our positioning system. Yet, the
possibility exists that such work could be used to have
the network aid in performing risk analysis.

The field of smartphone security and the security of
cellphone infrastructure is now being widely researched.
Traynor [33] gives a short overview of infrastructure
possibilities and problems. Traynor et al. [35] consider
the potential effect of a malnet of smartphones on the
cellular network’s infrastructure. Enck et al. [13] discuss
exploits in the SMS-network infrastructure, and Traynor
et al. [34] discuss mitigation strategies for such exploits.

Relating to mobile phone security, there has been
recent interest in maintaining their security. The potential
to attack these devices, and that they would suffer similar
security fates to personal computers, such as viruses
and malware, has been long understood [8]. Specific
approaches to considering defense against such software
on smartphones has been considered by Cheng et al. [7].
The specific strengths and weaknesses of the Android
security model are explored by Ongtang et al. [24]. The
ability to securely determine if software downloads are
trusted on such devices is explored by Enck et al.[11].
Enck et al. [12] give an introduction to understanding
the Android security model specific to the smartphones
we are using for implementation.

B. Sensory malware threats and defenses

As mentioned earlier, researchers are already inves-
tigating attacks and defenses related to sensory mal-
ware [5]. Xu et al. [39] provide a proof-of-concept im-
plementation of video-capture malware. Their malware
captures video and transmits this video after suitable
compression to lessen the burden on the network. These
malware do not appear to be stealthy enough because
of the large amounts of video data transferred on the
network. We thus seek to develop and evaluate solutions
where malware is even more stealthy, by limiting the
network communication. In fact, we would like to study
situations where network access is limited completely
using techniques such as Kirin, a lightweight security
certification mechanism for applications on Android.
Even in cases where a system such as Saints [23] is used
to control the interaction between applications, we would
like to study the use of covert channels to circumvent
such mechanisms.

Detection techniques such as behavioral detection of
malware by monitoring system calls [3], and power
consumption [20] already attempt to detect malware on
mobile platforms. We aim to study the limits of such
detection techniques since resources are limited, and
how malware can circumvent detection because of the
inherent limitations on the detection techniques.

C. Side-channel information leaks

Side-channel leaks have been known for decades: a
documented attack has been dated back to 1943 [22].
The threat has been extensively studied in different
contexts: information is found to be exposed through
electromagnetic signals (e.g., keystroke emanation [36]),
shared memory/registers/files between processes (e.g.,
the recent discovery of the side-channel weakness in
Linux process file systems [40]), CPU usage metrics, etc.
Recently, such information leaks are found to threaten
cloud computing platforms like Amazon EC2 [26].

Encrypted communications are often subject to the
side-channel attacks, which leverage such information
as packet timings and sizes to infer the contents of
encrypted data. Prominent examples include Brumley et
al.’s attack on the RSA secret keys used in OpenSSL [4],
Song et al.’s work on keystroke inference from SSH [28],
Wright et al. and others’ analysis of phrases and sen-
tences from the variable-bit-rate encoding in VoIP [38],
and Saponas et al.’s detection of movie titles in an
encrypted video-streaming system (Slingbox Pro) [27].
Encrypted web communication has also been found to
be vulnerable to the side-channel attack. Prior research
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shows that a network eavesdropper can often finger-
print web pages using their side-channel characteristics
to identify the pages the victim visits. This idea first
appeared in the personal communication among Wagner,
Schneier and Yee in 1996 [37], and was later demon-
strated in a course project report in 1998 by Cheng et
al. [6]. Sun et al. [30] and Danezis [9] both indicated
the impacts of the attack on anonymity channels like
Tor, MixMaster and WebMixes. It was also discussed by
Bissias et al. [2], who studied WPA and IPSec, instead
of SSL/TLS in other research.

VI. SUMMARY

We have outlined a high-level architecture that should
both be realizable, and provide for the ability to perform
on-demand analysis and processing of data from a large
number of heterogeneous and globally placed sensors.
The network is structured so that it is feasible to consider
real or near-real time processing and interpretation of
the data with appropriate resources. However, challenges
remain in determining how to assure privacy, integrity
and provenance of the data from its collection, through
its life-cycle of processing to final consumption. The
authors’ belief is that the largest research questions
based on our model lie at the tail ends of the data
life-cycle; namely, there are open research questions
at data-collection by smartphone sensors and in the
final delivery of a processed data-consumable. Specific
directions aimed at solving these problems have been
discussed, along with initial development of solutions.
We summarize this in Table I

TABLE I: Summary of the three threats, associated dangers
and mitigation strategies we are actively addressing
for the sensor network model.

Threat Danger Mitigation
Sensor
Abduction

Malicious Sensor Data Detection of non-
regular usage

Side-channel
information
leakage

Communication
encryption is
circumvented by analysis
of packet sizes& spacing

Flow-analysis
and padding

Sensor malware Sensor data theft Sensor access
control models
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