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Abstract—This paper proposes dynamic model rotation as
a novel approach to parallelize big data machine learning
applications. We rotate different model parts in a ring topology
among inter-node workers and dynamically schedule intra-
node parallel model updates and fine-grained load balance
with time control. The advantages of dynamic model rotation
come from maximizing the effectiveness of model updates
for algorithm convergence while minimizing the overhead of
communication for scaling. We formulate a solution using
computation model, programming interface and implementa-
tion as design principles and apply it to two representative
applications: Latent Dirichlet Allocation using Collapsed Gibbs
Sampling algorithm and Matrix Factorization using Stochastic
Gradient Descent algorithm. The performance results on an
Intel Haswell cluster with a total of 1800 threads show that
our solution achieves faster model convergence speed and more
reliable scalability than previous work by ourselves and others.
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I. INTRODUCTION

Machine learning applications such as Latent Dirichlet
Allocation (LDA) and Matrix Factorization (MF) have been
successfully applied on big data within various domains. For
example, Tencent uses LDA for search engines and online
advertising [1] while Facebook1 uses MF to recommend
items to more than one billion people. With tens of billions
of data entries and billions of model parameters, these appli-
cations can help data scientists to gain a better understanding
of big data.

However, the growth of data size and model size makes
it hard to deploy these machine learning applications in a
way that scales to our needs. A huge amount of effort has
been invested in parallelization of these applications, and
yet much of the literature deals with a framework-based
approach using tools such as MPI2, (Iterative) MapReduce
[2][3], Graph/BSP [4], and Parameter Server [5]. At this
stage it remains unclear what is the best approach to paral-
lelization.

To bridge the gap, we propose a systematic approach,
“dynamic model rotation”, which improves the efficiency

1 https://code.facebook.com/posts/861999383875667/recommending-ite
ms-to-more-than-a-billion-people/

2 http://www.mpi-forum.org/

of model convergence speed and provides reliable scala-
bility. This solution involves fine-grained synchronization
mechanisms in handling model updates. In the context of
this paper, “model rotation” is a parallel computation model
that guarantees the latest model updates via rotation of
different model parts in a static ring topology. We expand
“model rotation” to “dynamic model rotation” which dy-
namically schedules parallel model updates with fine-grained
load balance control. We design a programming interface
using Harp’s MapCollective [6] communication API. Further
optimizations include reducing the communication overhead
through pipelining and time control to coordinate when the
model rotates.

We investigate two core algorithms: Collapsed Gibbs
Sampling (CGS) for LDA and Stochastic Gradient Descent
(SGD) for Matrix Factorization (MF). Doing so enables
us to reveal three important features of model updates:
the ability to use stale parameters; an exchangeable update
order; and randomly selected update order. The experiments
run with different big datasets on a total of 1800 threads in
an Intel Haswell cluster. We compare our CGS and SGD
implementations under dynamic model rotation with state-
of-the-art model rotation implementations (Petuum for CGS
and NOMAD for SGD) running side-by-side on the same
cluster, and our solution matches or exceeds their model
convergence speed.

The rest of this paper is organized as follows. Section
2 discusses the design guideline of our dynamic model
rotation solution. Section 3 explores the features of model
update in machine learning algorithms and the advantages of
our solution. Section 4 describes the programming interface
and the implementation. The experiment results are shown
in Section 5, while Section 6 describes the related work.
Section 7 gives the conclusion.

II. DESIGN GUIDELINES OF DYNAMIC MODEL
ROTATION

Our dynamic model rotation solution is designed with
regards to the following four questions:

a. What kind of algorithm should be used for the big
data machine learning application?

In this paper, we focus on two applications: LDA in topic
modeling and MF for recommendation systems. LDA can



be solved by CGS algorithm [7] or Collapsed Variational
Bayesian (CVB) [8] while MF can be solved by SGD
algorithm [9] or Cyclic Coordinate Descent (CCD) [10].
Related literature shows that CGS scales better than CVB
[1] and SGD outperforms CCD [11] for parallelization. For
this reason, we use CGS for LDA and SGD for MF (see
Section III).

b. Which computation model is suitable for the algo-
rithm?

We define “computation model” as the pattern of parallel
algorithm execution steps and synchronization strategies.
By comparing the efficiency of computation models on a
moderate cluster, both computation and communication time
prove to be important factors for the overall execution time
of big data machine learning applications. This paper shows
that the proposed dynamic model rotation has advantages
compared with other solutions (see Section III).

c. How is the programming interface designed for the
computation model?

Programming interfaces are utilized by parallelization
tools to express the parallel algorithm under a computation
model. We implement dynamic model rotation using the
MapCollective programming interface because it is easy to
maintain and provides high performance (see Section IV).

d. How is the programming interface implemented?
A programming interface can be applied in different

mechanisms, two of which are pipeline and time control
for dynamic model rotation (see Section IV).

III. ALGORITHMS AND COMPUTATION MODELS

In this section, we observe three important features of
model updates in machine learning algorithms, including
CGS for LDA and SGD for MF, whose model update
formula is not of the summation form introduced in [12]. For
the algorithm parallelization, by discussing the efficiency of
different computation models, we highlight the benefits of
using dynamic model rotation.

A. Algorithms

Many machine learning algorithms are built on iterative
computation. In general, iterative algorithms can be formu-
lated as

At = F (D,At−1) (1)

Here D is the observed dataset, A is model parameters to
learn, and F is the model update function. The algorithm
keeps updating model A until convergence (by reaching a
stop criterion or fixed number of iterations).

We use CGS for LDA and SGD for MF as examples to
show the nature of model update dependency.

1) CGS for LDA: LDA is a generative modeling tech-
nique using latent topics. CGS algorithm learns the model
parameters by going through the tokens in a collection of
documents D and computing the topic assignment Zij on

Input: training data X , the number of topics K, hyperpa-
rameters α, β

Output: topic assignment matrix Z, topic-document matrix
M , word-topic matrix N
Initialize M,N to zeros
for document j ∈ [1, D] do

for token position i in document j do
Zij = k ∼Mult( 1

K )
Mkj += 1;Nwk += 1

end for
end for
repeat

for document j ∈ [1, D] do
for token position i in document j do
Mkj −= 1;Nwk −= 1
Zij = k′ ∼ p(Zij = k|rest) {sample a new topic
according to Eq. 2 using SparseLDA [13]}
Mk′j += 1;Nwk′ += 1

end for
end for

until convergence

Figure 1. CGS Algorithm for LDA

each token Xij = w by sampling from a multinomial
distribution of a conditional probability of Zij (see Fig. 1):

p
(
Zij = k | Z¬ij , Xij , α, β

)
∝

N¬ijwk + β∑
wN

¬ij
wk + V β

(
M¬ijkj + α

) (2)

Here superscript ¬ij means that the corresponding token
is excluded. V is the vocabulary size. Nwk is the current
token count of the word w assigned to topic k in K topics,
and Mkj is the current token count of the topic k assigned
in the document j. α and β are hyperparameters. The
model includes Z, N , M and

∑
wNwk. When Xij = w

is computed, some elements in the related row Nw∗ and
column M∗j are updated. Therefore dependencies exist
among different tokens when accessing or updating N and
M model matrices.

2) SGD for MF: MF decomposes a m × n matrix V
(dataset) to a m×K matrix W (model) and a K×n matrix
H (model). SGD algorithm learns the model parameters by
optimizing the object loss function composed by a square
error and a regularizer (see Fig. 2). When an element
Vij is computed, the related row vector Wi∗ and column
vector H∗j are updated. The gradient calculation of the next
random element Vi′j′ depends on the previous updates in
Wi′∗ and H∗j′ .

Parallelization of the iterative algorithms can be done by
utilizing either the parallelism inside different components of
model update function F or the parallelism among multiple
invocations of F . For the first category, the difficulty of par-



Input: training matrix V , the number of features K, regu-
larization parameter λ, learning rate ε

Output: model matrix W and H
Initialize W,H to UniformReal(0, 1/

√
K)

repeat
for random Vij ∈ V do
{use L2 regularization}
error =Wi∗H∗j − Vij
Wi∗ =Wi∗ − ε(error ·Hᵀ

∗j + λWi∗)
H∗j = H∗j − ε(error ·W ᵀ

i∗ + λH∗j)
end for

until convergence

Figure 2. SGD Algorithm for MF

allelization lies in the computation dependencies inside F ,
which are between the data entries and the model parameter
or among the model parameters. If F is in a “summation
form”, such algorithms can be easily parallelized through
the first category [12].

However in large-scale learning applications, the algo-
rithms picking random examples in model update perform
asymptotically better than the algorithms with the summa-
tion form [14]. In this paper, we focus on this type of
algorithm with the second category of parallelism where the
difficulty of parallelization lies in the dependencies across
iterations of model parameter updates. Thus when the dataset
is partitioned to N parts, model updates in this kind of
algorithm only use one part of data entries Dp as

At = F (Dp, A
t−1) (3)

Obtaining the exact At−1 is not feasible in parallelization.
It is challenging to parallelize different invocations of F .
However these algorithms have some features which can
maintain the algorithm correctness and improve the parallel
performance.

I. The algorithms can converge even when the consis-
tency of a model are not guaranteed to some extent.

Algorithms can work on model A with an older version
i, as

At = F (Dp, A
t−i) (4)

By using a different version of A, Feature I breaks the
dependency across iterations.

II. The update order of the model parameters is ex-
changeable.

Although different update orders can lead to different
convergence rate, they normally don’t make the algorithm
diverge. If F only accesses and updates one of the disjointed
parts of the whole model parameters (Ap′ ), there is a chance
to find an arrangement on the order of model updates that
allows independent model parts be processed in parallel
while keeping the dependencies.

At
p′ = F (Dp, A

t−1
p′ ) (5)

Fig. 1 provides one update order by document, but other
orders are also correct since CGS allows order exchange.
Two tokens of different words in different documents can
be trained in parallel since there is no update conflict in
model matrices N and M .

III. The model parameters for update can be randomly
selected.

CGS in its nature supports random scanning on model
parameters [15]. In SGD, a random selection on model
parameters for updating is done through randomly selecting
examples from the dataset.

B. Computation Models

A detailed description of computation models can be
found in previous work [16]. Our summary of related work
helps to define computation models based on two properties.
One is whether the computation model uses synchronous or
asynchronous algorithms for parallelization. Another looks
at whether the model parameters used in computation are
the latest or stale. Both the synchronization strategies and
the model consistency can impact the model convergence
speed.

Computation models using the stale model parameters
can be easily applied based on Feature I of model updates.
However it does come with certain performance issues such
as less effective model updates. When a synchronized algo-
rithm is applied, the computation model can be implemented
via “allgather” and “allreduce”. By doing so, the routing can
be optimized while each worker retains a full copy of the
model. For big models, this causes high memory usage and
can result in failure to scale for applications. Another method
is allowing each worker to only fetch the model parame-
ters related to the local training data. This saves memory
usage but offers less opportunity for routing optimization.
When an asynchronous algorithm is used, the computation
model reduces the synchronization overhead. However, since
each worker directly communicates large numbers of model
updates, routing among the workers cannot be optimized.
Without synchronization barriers, this computation model
does not aim for complete synchronization of model copies
on all the workers. As such the model convergence speed is
affected by the real network speed. To solve this problem,
Q. Ho et al. combine asynchronous algorithms and synchro-
nized algorithms into one computation model to guarantee
the model convergence and improve the speed [17].

The computation model with the latest model parameters
provides more effective model updates. It is commonly
performed through “model rotation”. The model rotation-
based computation model shows many advantages. Unlike
computation models using stale model parameters, there
is no additional local copy for model parameters fetched
during the synchronization, meaning the memory usage is
low. Plus in a distributed environment, the communication



only happens between two neighboring workers so that the
routing can be easily optimized.

Both CGS and SGD can be implemented by the above-
mentioned computation models because of Feature I and
II of model updates [18][19][20][21][22]. Although model
rotation performs better [19][22], it may result in high
synchronization overhead in these algorithms due to the
dataset skew and the unbalanced workload of each worker
[23][24]. Therefore the completion of an iteration has to wait
for the slowest worker. If the straggler acts up, the cost of
synchronization becomes even higher.

As a result, we propose dynamic model rotation utilizing
features II and III and control the order of model updates
without affecting the algorithm convergence:
• At the start of each iteration, the ring topology rank

is randomly generated, which formulates the order of
inter-node model rotation.

• Within an iteration, intra-node multi-threading is dy-
namically scheduled to avoid conflicts of concurrent
model updates.

• Fine grained load balance is achieved by controlling
computation workload and synchronization point.

IV. PROGRAMMING INTERFACE AND IMPLEMENTATION

Here we introduce dynamic model rotation using the Harp
MapCollective programming interface. Harp [6] works as a
plug-in on top of Hadoop MapReduce system and provides
collective communication operations to synchronize Map
tasks. In addition, we show how these mechanisms are
applied to CGS for LDA and SGD for MF.

A. Data and Model

The structure of the data can be generalized as a tensor.
For example, the dataset in CGS is a document-word matrix.
In SGD, the dataset is explicitly expressed as a matrix.
When it is applied to recommendation systems, each row
of the matrix represents a user and each column is an item,
thus every element represents the rating of a user to an
item. In these matrix structured training data, a row has a
row-related model parameter vector as does a column. For
quickly visiting data entries and related model parameters,
indices are built on the row IDs and column IDs. Based
on the model settings, the number of elements per vector
can be very large. As a result both row-related and column-
related model structures might be large matrices. In CGS
and SGD, the model update function allows for the data to
be split by rows or columns so that one model (with regards
to matching row or column of training data) is cached with
the data, leaving the other to be rotated. We abstract the
model for rotation as a distributed data structure organized
as partitions and indexed with partition IDs. Each partition
holds a row/column’s related model parameter vector. A
partition can be expressed as an array if the vector is dense,
or as a key-value pair if sparse.

Training Data

1 Load

4 Iteration Control
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Figure 3. Parallel Execution Steps of Dynamic Model Rotation

B. Operation API

We express model rotation as a collective communication.
The operation takes the model part owned by a process
and performs the rotation. By default, the operation sends
the model partitions to the next neighbor and receives the
model partitions from the last neighbor in a predefined ring
topology of workers. An advanced option is that we can
dynamically define the ring topology before performing the
model rotation. For local computation inside each Map task,
we simply express the model rotation in multi-threading
through a programming interface of “schedule-execute”. A
scheduler employs a user-defined function to maintain a
dynamic order of model parameter updates.

Under the MapCollective interfaces, programming model
rotation requires just one API. Since the local computation
only needs to process the model obtained during the rotation
without considering the parallel model updates from other
tasks, the code of a parallel machine learning algorithm can
be modularized as a process of obtaining model partitions,
performing computation and updating.

C. Pipelining

The model rotation operation is defined as a non-blocking
call so that the efficiency of model rotation can be optimized
through pipelining. Taking the matrix structured data as an
example, we divide the model for rotation into two sets
and evenly distribute them across all the workers. We call
these two model splits Model I and Model II (see Fig. 3).
The pipelined model rotation is conducted in the following
way (see Fig. 4): all the workers compute Model I with
its related data. Then they start to shift Model I and at the
same time they compute Model II. When the computation
on Model II is completed, it starts to shift. All workers
wait for the completion of corresponding model rotations,
and then begin computing model updates again. Therefore
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Figure 4. Pipelined Model Rotation Operation

the communication is overlapped with the computation. This
pipelining mechanism works at the distributed data structure
level where each time a chunk of model parameters are
computed and communicated. In experiments, communicat-
ing model parameters in large batches is more efficient than
flooding the network with small messages [23].

D. Dynamic Scheduling and Time Control

Timers are used to control the point at which we perform
model rotation. To describe the mechanism of time control,
we again use matrix structured training data. Assuming
each worker caches rows of data and row-related model
parameters (see Fig. 5) and obtains column-related model
parameters through rotation, it then selects related training
data to perform local computation. Through the “schedule-
execute” programming interface, we split the data and the
model into small blocks which the scheduler randomly
selects for model update while avoiding the model update
conflicts on the same row or column. (see Fig. 5). Once a
block is processed by a thread, it reports the status back to
the scheduler. Then the scheduler searches another free block
and dispatches to an idle thread. We set a timer to oversee
the training progress. When the designated time arrives, the
scheduler stops dispatching new blocks and the execution
ends (see Fig. 3). Because the computation is load balanced
with the same length of time, the synchronization overhead
is reduced.

As such the semantics of “iteration” change when using
time control. All model partitions are still rotated for one
round per iteration, but only a partial training dataset is pro-
cessed in one iteration. Based on Feature III, this mechanism
does not affect the level of model convergence ultimately
achieved in CGS and SGD. Since these two algorithms spend
more time on computation than communication, we further
tune the time setting to keep an appropriate amount of data

Model Parameters 
From Caching

Model Parameters
From RotationColumns

Rows

Model Related Training Data
Multi-Thread 

Execution

Dynamic Scheduling with Time Control

Figure 5. Local Computation with Time Control

Initialize time limit
for i = 0 to number of iterations do

for j = 0 to number of workers do
for k = 0 to number of model splits do

model split = rotation.get()
compute(data, model split, time limit)
rotation.submit(model split)

end for
end for
Update time limit

end for

Figure 6. A General Structure of Pseudo Code Performing Dynamic
Model Rotation on Each Map Task in the Harp MapCollective Programming
Interface

entries being trained thereby making sure computation and
communication can fully overlap. Our experiments show that
the time control mechanism enhances the efficiency of model
rotation and improves the model convergence speed.

E. Algorithm Parallelization

For algorithm parallelization with dynamic model rota-
tion, Fig. 6 shows a common structure of code in a Map
task using MapCollective interfaces. We further provide the
implementation details of CGS and SGD with dynamic
model rotation.

1) CGS: The model in CGS has four data structures.
The first two are document-topic matrix and word-topic
matrix. Because training data is split by document, the
document-topic matrix is partitioned by documents while
the word-topic matrix is rotated among processes. Next is
the topic assignment on each token, which is stored with
the training data. Lastly we have total number of tokens on
each topic. Since this is a small array with length equal to
the number of topics, where all the elements are required
in the local computation, we simply synchronize it with



Table I
TRAINING DATASETS

CGS Dataset Number of
Documents Vocabulary Number of

Tokens
Number of

Topics Model for Rotation

clueweb 76.2M 1.0M 29.9B 10K Word-Topic Matrix
(Initial Size 17.1GB)

SGD Dataset Number of
Rows

Number of
Columns

Number of
Cells

Number of
Features Model for Rotation

clueweb 76.2M 1.0M 16.0B 2K Column Model Matrix
(16.0GB)

“allreduce” operation. Documents are partitioned into blocks
on each worker. Inside each block, inverted index is used to
group tokens by word. The word-topic matrix owned by the
worker is also split into blocks. By selecting a document
block ID and a word block ID, we can train a small set of
data and update the related model parameters. Because the
computation time per token changes as the model converges
[23], the amount of tokens which can be trained during a
time period grows larger. As a result, we keep an upper
bound and a lower bound for the tokens trained in the
time period. When the number of tokens trained crosses the
bounds, we increase or decrease the time setting.

2) SGD: Both W and H are model matrices. Assuming
n < m, then V is regrouped by rows, W is partitioned with
V , and H is the model for rotation. The ring topology for
rotation is randomized per iteration. Since the computation
time used to train each data entry does not change across
iterations, we only tune the time limit to a specific value. We
estimate the ratio of computation and communication cost
during the first iteration, then set the time limit to a value
which meets the minimum requirement for overlapping.

V. EXPERIMENTS

Here we test the efficiency of dynamic model rotation and
compare our solution with other designs.

A. Training Dataset and Model Parameter Settings
Two datasets are used in the test: one is for CGS and

another for SGD (see Table. I). Both are generated from
a subset of the “ClueWeb09” dataset3. In CGS the model
for rotation theoretically has 10 billion model parameters,
but the real number after initialization is approximately 2
billion [23]. Similarly, SGD rotates about 2 billion model
parameters.

B. Comparison of Implementations
We compare four implementations in the experiments.

First is CGS implemented with Harp (with time control
vs. without time control) compared to CGS implemented
with Petuum LDA4. Then we compare SGD implemented
with Harp (with time control vs. without time control) to
SGD implemented with NOMAD5. The concept of model

3 http://lemurproject.org/clueweb09.php/
4 https://github.com/petuum/strads/tree/master/apps/lda release
5 http://bikestra.github.io/

rotation is applied in all these implementations. We analyze
the differences in the design, programming interfaces and
implementations and show how they influence the model
convergence speed. Note that Petuum LDA and NOMAD are
both implemented in C++11 while Harp CGS and Harp SGD
are implemented in Java 8. Petuum LDA uses Open MPI for
multi-processes and POSIX threads for multi-threading and
ZeroMQ for communication. Although Petuum uses model
rotation at an inter-node level, intra-node multi-threading
is deployed with asynchronous algorithms and stale model
parameters. NOMAD uses MPICH2 for inter-node processes
and Intel Thread Building Blocks for multi-threading. In
NOMAD, MPI Send/MPI Recv are communication oper-
ations but the destination of model shifting is randomly
selected without following a ring topology.

C. Parallel Execution Environment

Our experiments are conducted on a 128 node Intel
Haswell cluster (Juliet) at Indiana University. Among them,
32 nodes each have two 18-core Xeon E5-2699 v3 pro-
cessors (72-thread total) and 96 nodes each have two 12-
core Xeon E5-2670 v3 processors (48-thread total). All
the nodes have 128 GB memory and are connected by
QDR InfiniBand. For our tests, JVM memory is set to “-
Xmx120000m -Xms120000m -Xss4m -Xmn30000m” and
IPoIB is used for communication.

The implementations are tested on three configurations.
One is 30 Xeon E5-2699 nodes each with 60 threads
(30x60). Another is 60 Xeon E5-2670 nodes each with 30
threads (60x30). The third is a heterogeneous environment
which uses 30 Xeon E5-2699 nodes and 60 Xeon E5-2670
nodes to form a cluster of 90 nodes each with 20 threads
(90x20). All three configurations have the same parallelism
of 1800 threads in total. The same dataset and model
settings are preserved across configurations, so that different
implementations of model rotation can be compared.

D. Model Convergence Speed

To measure the model convergence speed, we provide
details of experiment settings here. In CGS, the hyper-
parameters α and β are both fixed to 0.01. The model
convergence speed is evaluated with respect to model like-
lihood which is a value calculated from the trained word-
topic model matrix. In SGD, λ is fixed to 0.01 and ε to
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Figure 7. Performance Results on CGS (a) Model Likelihood vs. Training Time on 30x60 (b) Model Likelihood vs. Training Time on 60x30 (c) Model
Likelihood vs. Training Time on 90x20 (d) Model Likelihood vs. Model Update Counts on 60x30 (e) The Iteration Execution Time and the Average
Computation Time per Iteration on 60x30 (f) The Coefficient of Variation (CV) of All the Workers’ Iteration Computation Time on 60x30

0.001. The model convergence speed is evaluated by the
value of Root Mean Square Error (RMSE) calculated on a
test dataset of 300 million data entries, which is from the
matrix V separated from the training dataset.

For time control of both algorithms implemented with
Harp, we set the computation time for the first iteration to
1000ms on 30x60, 500ms on 60x30 and 333ms on 90x20 so
that the total computation time for each worker is 60s. We
enable time tuning so that the timer settings can be adjusted
for later iterations.

The performance results of CGS are presented in Fig.
7. Through examining the model likelihood achieved by
the training time, the results on three configurations show
that Harp implementation with time control consistently
outperforms Petuum and Harp with no time control in terms
of model convergence speed (see Fig. 7a, 7b, 7c). Petuum
is the second fastest while Harp with no time control is the
slowest. Though our previous work has shown that using
collective communication operation for model rotation can
result in faster communication speed than Petuum [23],
when the computation load per node becomes high, the
slow computation speed in Harp heavily affects the model
convergence speed. The performance of all three implemen-
tations does not drop when the number of nodes increases,
but improves with less threads per node. For example, the
results of 60x30 configuration (refer to Fig. 7b) show that

when the model likelihood achieves −1.38 × 1011 and the
difference of values between successive iterations drops to
5.00 × 108, Harp with time control has a 1.65× speedup
over Harp with no time control and is also 15% faster than
Petuum. When the model likelihood achieves −1.36× 1011

and the difference drops to 2.00 × 108, Harp with time
control has a 1.55× speedup over Harp with no time control
and is 14% faster than Petuum.

To understand why Harp with time control performs
better than Petuum, it is sufficient to analyze the results of
60x30 configuration as similar trends exist on 30x60 and
90x20. Fig. 7d shows the model likelihood achieved by
different implementations based on the number of model
update counts. By using the same computation model,
Harp achieves the same model likelihood as Petuum. When
time control is applied, Harp generates a different model
update order across iterations, which may affect the model
convergence rate by the number of model update counts.
Here we observe that the model convergence rate achieved
with time control is not as high as the other two. However,
when time control is used, the performance of pipelined
model rotation is improved. Fig. 7e shows that the average
computation time per iteration in Harp with time control is
nearly identical with the execution time per iteration, which
implies communication is completely hidden by computa-
tion. Therefore communication in dynamic model rotation
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Figure 8. Performance Results on SGD (a) RMSE vs. Training Time on 30x60 (b) RMSE vs. Training Time on 60x30 (c) RMSE vs. Training Time on
90x20 (d) RMSE vs. Model Update Count on 60x30 (e) Model Update Count vs. Traning Time on 60x30 (f) The Coefficient of Variation (CV) of All the
Workers’ Iteration Computation Time on 60x30

incurs no additional overhead. In contrast, both Petuum
and Harp with no time control have high synchronization
overhead per iteration. Although pipelining is applied in
both implementations, the unbalanced computation work-
load on each worker makes overlapping of communication
within computation difficult. Despite the fact that Petuum’s
computation is highly optimized, its parameter level mes-
saging pipelining causes higher communication overhead
compared to Harp with no time control. Fig. 7f illustrates
the variation of computation time in all the workers’ at
each iteration. Harp with time control shows much lower
variation, demonstrating more balanced workload than other
implementations.

In SGD, Figs. 8a, 8b, and 8c show the performance results
on 30x60, 60x30 and 90x20. We observe that the model
convergence speed increases with the number of nodes. Harp
with time control performs better than with no time control.
NOMAD is fast at the beginning but its speed becomes
similar to or slower than that of Harp with time control as
the model converges. Let’s take the results of 60x30 (refer
to Figs. 8b) as an example. When the RMSE value is 1.61
and the difference between iterations drops to 5.00× 10−4,
Harp with time control is 1% slower than NOMAD but has
a 1.69× speedup over Harp with no time control. However,
when the RMSE value is 1.60 and the difference drops to
1.00 × 10−4, Harp with time control is 57% faster than

NOMAD and still has a 1.47× speedup over Harp with no
time control.

The reason for NOMAD’s unstable model convergence
speed is its randomized model parameter shifting mech-
anism. The results of Fig. 8d show that Harp with time
control samples subsets of training data per iteration but
still achieves the same RMSE value as Harp without time
control. NOMAD is slightly slower because the destination
of model parameter shifting is randomly selected. As a
result, a model parameter may map to the same training
data partitions across two successive training steps, causing
less effective model update. This problem is illustrated
in Fig. 8e. Although NOMAD trains more elements than
Harp within the same training time, it does not converge
effectively. Randomized model parameter shifting may lead
to unoptimized communication in routing. Fig. 8f shows the
variation of model update counts from all the workers at
a particular time in training. In this figure, Harp with time
control shows very little variation in the model update count
on each worker.

E. Reliability

The experiments show that using time control generates
reliable performance results. In Fig. 9a, when one node
becomes a straggler (around 10 times slower in computation)
on CGS in 30x60 configuration, Harp with time control can
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Figure 9. (a) CGS Model Likelihood vs. Training Time on 30x60 when a straggler exists (b) The Coefficient of Variation (CV) of Iteration Computation
Time of All the Workers in CGS on 30x60 when a straggler exists (c) SGD RMSE vs. Training Time on 60x30 when a straggler exists (h) The Coefficient
of Variation (CV) of Model Update Counts of All the Workers in SGD on 60x30 when a straggler exists

maintain model convergence speed while Petuum becomes
much slower. Fig. 9b shows the variation of computation
times of all the workers in each iteration. Even when a
straggler exists, the performance of Harp with time control
does not change much while Petuum becomes very unstable.

NOMAD applies dynamic load balancing through pref-
erentially selecting a worker which has fewer items in its
queue to send out, but it can only identify the straggler that
is slow in communication, not computation. For example, on
60x30, if the straggler is selected for parameter destination,
it holds the parameters and is slow to send them out. In
this case, the model stops converging (refer to Fig. 9c)
and variation of the model update counts on each worker
becomes large (refer to Fig. 9d). When Harp with time
control has a straggler, the algorithm still continues to
converge.

VI. RELATED WORK

Much initial work on machine learning algorithms de-
ploys one computation model and a single programming
interface. Mahout6 [12], Spark Machine Learning Library7

6 http://mahout.apache.org/
7 https://spark.apache.org/docs/latest/mllib-guide.html

and Graph-based tools such as PowerGraph8 [4] are three
such examples. All these implementations are based on
synchronized algorithms. Meanwhile, Parameter Server so-
lutions [5][25][26] use asynchronous algorithms in which
a programming interface allows each worker to “push” or
“pull” model parameters for local computation. As men-
tioned in Sections II and III, these solutions are not efficient
for solving LDA and MF applications. Previous research
on CGS algorithm also demonstrates that implementations
using computation models with stale model parameters do
not converge as fast as solutions using model rotation [16].

Model rotation has been applied before in machine learn-
ing. In LDA, F. Yan et al. implement CGS on a GPU [27].
In MF, NOMAD [11] and DSGD++ [22] use model rotation
for SGD in a distributed environment while LIBMF [24]
applies it to SGD on a single node through dynamic schedul-
ing. Another work, Petuum STRADS [19][28], supplies
a general parallelism solution called “model parallelism”
through “schedule-update-aggregate” interfaces. This frame-
work implements CGS for LDA using model rotation but
not CCD for MF9, instead using “allgather” operation to

8 https://github.com/turi-code/PowerGraph/tree/master/toolkits
9 https://github.com/petuum/strads/tree/master/apps/



collect model matrices W and H without using model
rotation. The interfaces of Petuum STRADS operate at the
model parameter level but not in a collective way, resulting
in communication inefficiency. Despite these shortcomings,
Petuum LDA and NOMAD are still among the fastest imple-
mentations we know among open-source implementations of
the two algorithms. To our best knowledge, there exist no
current research efforts that use “dynamic model rotation”.

VII. CONCLUSION

To solve big model problems in machine learning appli-
cations such as LDA and MF, this paper focuses on the
CGS and SGD algorithms and gives a full solution using
dynamic model rotation, which includes computation model
innovation, programming interface design, and implemen-
tation improvements. For the algorithms without the “sum-
mation form”, we identify three important features in the
model update mechanism and conclude that dynamic model
rotation is more efficient compared to other computation
models. We design the model rotation API with MapCollec-
tive programming interface which is more convenient than
parameter-level APIs of other implementations. Finally we
use pipelining to improve the efficiency of model rotation
and timers to dynamically control model rotation. With
these steps, we achieve reliable scalability and faster model
convergence speed compared with related work.

In the future we can apply our solution to applications
other than LDA and MF. We do not claim that our dynamic
model rotation solution is the silver bullet for all the machine
learning applications and all the parallel execution environ-
ments. Future research will investigate providing templates
for performance to guide developers to parallelize different
machine learning applications based on data, algorithm and
hardware.
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