Supplemental Material for “Deep Learning Based Integrators for Solving Newton’s
Equations with Large Timesteps”

JCS Kadupitiya,': * Geoffrey C. Fox," T and Vikram Jadhao':*
Untelligent Systems Engineering, Indiana University, Bloomington IN 47408, USA

IMPLEMENTATION DETAILS

There are several architectures of LSTM units. A com-
mon architecture is composed of a cell (the memory part
of the LSTM unit) and three “regulators”, usually called
gates, that regulate the flow of information inside the
LSTM unit. An input gate (i;) controls how much new
information is added from the present input (z;) and past
hidden state (h;_1) to our present cell state (c;). A forget
gate (f3) decides what is removed or retained and carried
forward to the current cell state (c;) from the previous
cell state (c;—1). An output gate (o,) decides what to out-
put as the current hidden state (h;) from the current cell
state (c¢). The LSTM formulation can be expressed as:

fi= O'g(Wfl‘t +Ughi—1 + bf)
i = O'g(Wixt + Ushi—1 + bl)
0r =0

g

Ct =

Q(Woxt +Uohi—1 + bo)
h(cht + Ucht—l + bc)
ct = fro

he = 04 0 op(ct). (1

Ct—1+1%:0Ct

Here, ; € R? is the input vector to the LSTM unit,
f: € R™ is the forget gate’s activation vector, i; € R"
is the input gate’s activation vector, o, € R" is the out-
put gate’s activation vector, h; € R" is the hidden state
vector also known as the output vector of the LSTM unit,
¢; € R is the cell state vector, and o is the Hadamard
product operator. W € R"*4 and U € R"*" are the
weight matrices and b € R" are the bias vector parame-
ters which need to be learned during training. o, and o,
represent sigmoid function and hyperbolic tangent func-
tions respectively. d and h refer to the number of input
features and the number of hidden units respectively.
We introduced an integrator % derived using LSTMs
(Figure 1) that employs a sequence of current and past
configurations (e.g., positions and velocities) up to time
t to predict the future configuration at time t+Agr. %
integrator with LSTM layer 1, LSTM layer 2, and final
dense layer (Figure 1) is implemented in TensorFlow for
regression of the particle trajectories using ni, ns, and
np number of hidden units respectively. % takes a B X
Sgr xd dimensional vector as input where B is a training
parameter denoting batch size and d is the feature size.
When used as an integrator (testing phase), B = 1. All
the parameters { P} (weights, biases) describing the lay-

(Output: Configuration at t + D (S.+1); Dimensionality: Bxd =32x48)

= Q(?---O '

(Sizeof P,= 4xn,x(d+n,+1))
N) ®

(h,
T E—— 2
itz 1
Unit 1

Sizeof Py=n, x(n,+1)
Dense Layer

®,)

_ X, x), LSTM Layer 02)
TB xSyxn,
(Sizeof P, = 4xn x(d+n +1)
®) ®
Qo) T — b
'S
R e i R
d,=48 >

(h,)
&

L ® ® ®

LSTM Layer 01

C Input: Trajectory from tto t + A S ; Dimensionality: Bx S, xd =32 x 5x 48)

FIG. 1. Z integrator designed to perform a single timestep
(AR) evolution of an NN particle system characterized by fea-
tures of size d. Input system and LSTM parameters are shown
for 16 particles in 3D. Symbols are defined in the main text.

ers are trained with an error backpropagation algorithm,
implemented via a stochastic gradient descent. Adam
optimizer is used to optimize the error backpropagation.
Outputs of the LSTM layers are wrapped with the tanh
activation function and no activation functions are used
in the final dense layer. The L2 error (mean square loss)
between target and predicted trajectories is used for error
calculation. LSTM implementation, training, and test-
ing are programmed using scikit-learn, Keras, and Ten-
sorFlow machine learning libraries [1-3]. Scikit-learn is
used for grid search and scaling, Keras is used to save
and load models, and TensorFlow is used to create and
train the integrator %. Prototype implementation written
using Python/C++ is available on GitHub.

Values for n1, ns, and np are chosen depending on the
problem complexity and data dimensions. We discuss
these choices and other details of the feature extraction
and regression process for the most complex case of 16
particles interacting with LJ potential in 3D with PBC.
For this system the feature size d = 96. By perform-
ing a grid search, hyper-parameters such as the number
of units for each of the two LSTM layers (1, ny), num-
ber of units in the final dense layer (np), batch size (3),

and the number of epochs are optimized to 32, 32, 96,
256, and 2500 respectively. Here we have not done a
thorough hyper-parameter optimization but have identi-
fied reasonable values for key choices — the architecture
and the size of the network, and the length of time series.
The learning rate of Adam optimizer is set to 0.0005 and
the dropout rate is set to 0.15 to prevent overfitting. Both
learning and dropout rates are selected using a trial-and-
error process. The weights in the hidden layers and in the
output layer are initialized for better convergence using
a Xavier normal distribution at the beginning [4].

DATASET PREPARATION DETAILS

Prior domain experience and backward elimination us-
ing the adjusted R squared method is employed to de-
termine the important input parameters that significantly
change the desired output. In some cases, such as par-
ticles interacting with the Lennard-Jones (LJ) potential,
only a subset of the important input parameters are var-
ied to create the dataset to train the % integrator for
the initial set of experiments presented in this work. It
should be noted that unlike traditional deep neural net-
works where the physical inputs are mapped to outputs
generally distinct from inputs, the inputs and outputs for
the RNN approach are both trajectory data.

The datasets associated with systems characterized by
different potential energies and particle attributes used in
the experiments for training and testing & are described
below. The potential energy functions are shown in Fig-
ure 2. For the 1D systems, the timestep and the total time
associated with generating the ground truth using the
Verlet integrator are A = 0.001 and ¢y = 100. For the
3D many particle systems, A = 0.001 and ¢y = 2000. In
each case, the entire dataset is randomly shuffled (along
the axis of the number of samples) and separated into
training and testing sets using a ratio of 0.8:0.2.

Simple harmonic oscillator (SHO) For this system,
the potential energy is given by

1
U= 51@1'2. 2)

The dataset is generated by varying three input param-
eters: mass of the particle m € [1,10], spring con-
stant k& € [1,10], and initial position of the particle
xg € [—10,—1]. The parameter sweep generated a
dataset of 500 simulations, each having 50,000 position
and velocity values.

Particle in a double well (DW)
potential energy is given by

For this system, the

3

The dataset is generated by varying two input parame-
ters: mass of the particle m € [1,10] and the initial po-
sition of the particle g € [—3.1,3.1]. The parameter
sweep generated a dataset of 500 simulations, each hav-
ing 50,000 position and velocity values.

Potential Energy. U(x)

FIG. 2. Potential energies associated with the 1D experiments.
Dash-dotted, dotted, dashed, and solid lines represent SHO,
DW, LJ, and rugged potential respectively.

1D Lennard-Jones (LJ) system For this system, the
potential energy is given by

12 6

U(z) = 4e <<1) - (1>) . 4)

x x
The dataset is generated by varying two input parame-
ters: mass of the particle m € [1,10] and the initial
position of the particle 2o € [1.0,3.0]. The parameter
sweep generated a dataset of 500 simulations, each hav-

ing 50,000 position and velocity values.

Farticle in a rugged potential For this system, the
potential energy is given by

ot — 23 — 1622 + 4z + 48 n sin (30(z + 5))

Ulw) = 50 5

&)
The dataset is generated by varying two input parame-
ters: mass of the particle m € [1,10] and the initial po-
sition of the particle g € [—6.1,6.1]. The parameter
sweep generated a dataset of 640 simulations, each hav-
ing 64,000 position and velocity values.
Many particles interacting with LJ potential ~ For this
3D system, the interaction potential energy between any
two particles is given by the LJ potential:

1\ " 1\°
U(r) = 4e <<T> — (T> >+0.0163e for r < 2.5.

(6)
For r > 2.5, U is 0. We prepared two different types of
simulation boxes to generate the datasets: cubic box with

Position Error (log)
Position Error (log)

4008

-A- 10008 =0 4000A

Position Error (log)

102

10000 0 2000

4000

€000 10000 0 8000 10000

Time

8000

FIG. 3. (A) Errors using ¥ with timestep dt = 10A. (B) and (C) show errors using % for DW and LJ potentials respectively for
Agr = 100A (circles), 400A (squares), 1000A (triangles), and 4000A (pentagons).

periodic boundary conditions and spherical box with re-
flective boundary. In each box, we performed simula-
tions with N = 3,8 and 16 particles. Each of these
simulations was created as a separate dataset that yielded
6 different datasets to train and test %. The dataset is
generated by varying two input parameters: mass of the
particle m € [1,10] and the initial position of the par-
ticles (xo, yo, z0) with each Cartesian coordinate chosen
between —3.0 and 3.0. The well depth was held constant
to € = 1 in creating the training dataset. Initial velocities
were chosen to be zero. The parameter sweep generated
a dataset of 5000 simulations for each of the aforemen-
tioned cases (or 30,000 simulations in total).

SUPPORTING EXPERIMENTS AND RESULTS

Trajectory errors in 1D simulations Figure 3 shows
the errors (log scale) in position updates for 1D simu-
lations as a function of time. Results are shown for er-
rors obtained using Verlet integrator ¥ with timestep dt=
10A for 4 different potentials: SHO with mass m = 10,
spring constant £ = 1, initial position zyp = —10; DW
with m = 1, xp —2; LI withm = 1, z¢ = 2; and
rugged with m = 1, xyp = —6. Results are also shown
for errors incurred in time evolution using RNN integra-
tor # for 2 potentials: DW with m = 1, o = —2 and
LJ with m = 1, zp = 2. Trajectories obtained using ¥’
with A = 0.001 are taken as the ground truth.

Testing Z with different sequence lengths In this ex-
periment, we tested the dependence of the accuracy of
time evolution performed by & integrator on the se-
quence length of input configurations used to train the
operator. We trained % with different input sequence
length Sy experimenting with Sg = 3,4 and 5. The
training was performed using the same dataset employed
in the original 1D LJ system experiment. The resulting
integrator was used to evolve the dynamics of the 1D
system of a particle in an LJ potential. Figure 4 shows
the position error 47 incurred in the time evolution up
to ¢ = 1000 vs. A using different integrators. dr is
evaluated using the ground truth results obtained with the
2nd order baseline Verlet integrator ¥ with A= 0.001.

.

10° /|

/
/
— o
[=1]
2 107 K
o J
e !
~ 10! /
’

L A —5- VerktOPSa =3
= ;
T . / —a- RK4
5 1 . : ABM4
= =" / #5023
c 107t - —— 3,5 =4
=] "
S o —4 2,5.=5
Z .
o -2 "
g w .

10-2 M

10
timestep dt {log)

102 10°

FIG. 4. Error in position at time ¢ = 1000 for different timestep
dt > 1072 in 1D simulations of a particle of mass m = 1
in an LJ potential with initial position o = 2.0. Open sym-
bols correspond to traditional numerical integrators and closed
symbols are results from the % integrator. Open circles are
the errors obtained with the traditional Verlet integrator (¥")
with dt > 1072. Open triangles and pentagons are the er-
rors obtained with 4th order Runge-Kutta (RK4) and 4th or-
der Adams-Bashforth-Moulton (ABM4) respectively. Closed
squares, triangles, and diamonds are errors incurred using Z
with Sg = 3,4 and 5 respectively.

We find that for smaller sequence length Sy = 3 or
4, Z fails to accurately perform the time evolution for
AR 2 10A incurring errors 6r > O(A~2) (SI Figure
4). For Sg = 3, the error associated with Z rises steeply
for Ag > 10A and spans over 4 orders of magnitude,
similar to the results for the 2nd order Verlet integra-
tor. For Sg = 4, the accuracy improves and error scal-
ing is similar to that produced by traditional 4th order
integrators such as Runge-Kutta or Adams-Bashforth-
Moulton method. Z# integrator trained with sequence
length Sg = 5 shows a much weaker rise in error limited
to within an order of magnitude as Ag rises up to 4000A.

Speedup Table 1 shows S, for different 1D experi-
ments (first 4 rows) and 3D experiments (last 2 rows)
at different Ag computed using the metric proposed in
the main text for time evolution up to t = 10° requiring

St = 107 steps. Note that S, < 1 data is for 1D systems
with Ag = 1004, 200A, where ty < tg.

TABLE 1. Net speedup .S, using the % integrator
Expt./Ag 100 200 400 1000 2000 4000

SHO 05 13 32 86 200 450
Double-well 06 12 28 87 173 38.0
LJ 09 15 39 128 225 423
Rugged 04 08 21 47 97 206
L], 8 600 1000 1500 5500 8300 12000
LJ, 16 3000 4900 7100 20000 28000 32000

* kadu@iu.edu

 gef@iuedu
1 vjadhao@iu.edu

[1] Francois Chollet et al., “Keras,” (2015).

[2] Lars Buitinck et al., “Api design for machine learn-
ing software: experiences from the scikit-learn project,”
arXiv:1309.0238 (2013).

[3] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al., “Tensor-
flow: a system for large-scale machine learning.” in OSDI,
Vol. 16 (2016) pp. 265-283.

[4] Xavier Glorot and Yoshua Bengio, “Understanding the
difficulty of training deep feedforward neural networks,”
(2010) pp. 249-256.

