
Draft:

Cloud Resource Scheduling Taxonomy
Rajni Aron2, Gregor von Laszewski1∗, Geoffrey C. Fox1

Contents

1 Introduction 2

2 General Scheduling Terminology for Clouds 3

3 Scheduling Taxonomy for Clouds 3
3.1 Layered scheduling . 3
3.2 Resource Provider Focused Y-Cloud Taxonomy . 4
3.3 Cloud Scheduling Model . 4
3.4 Taxonomy of Challenges in Cloud Scheduling . 5
3.5 Scheduling Challenges Arising form use of Containers . 7
3.6 Challenges in Function as a Service . 7
3.7 Taxonomy of Scheduling Units . 7
3.8 Taxonomy Classification of Resource Scheduling Algorithms 8

4 Literature review of Cloud Resource Scheduling Algorithms 8
4.1 Dynamic Scheduling . 9
4.2 Cloud Metric-based Scheduling . 9

4.2.1 Energy Aware Scheduling . 9
4.2.2 Network Aware Scheduling . 9
4.2.3 Cost Aware Scheduling . 10
4.2.4 Time based Scheduling . 10
4.2.5 Reliability Aware Scheduling . 10
4.2.6 Security based Scheduling . 10

4.3 Heuristic based Scheduling . 11
4.4 HPC and Cloud Computing Scheduling . 11
4.5 Workflow Scheduling Frameworks . 11
4.6 Scheduling in Public Cloud Providers . 12
4.7 Scheduling in Container Frameworks . 12
4.8 Function Scheduling Algorithms . 13
4.9 Scheduling among Distributed Resources and Providers . 13
4.10 Service Meshups . 14

5 Conclusion and Lessons Learned 14

1

Cloud Resource Scheduling Taxonomy

Rajni Aron2, Gregor von Laszewski1∗, Geoffrey C. Fox1

∗ Corresponding Author: laszewski@gmail.com
1 Intelligent Systems Engineering Dep., Indiana University, Bloomington, IN 47408, USA.

2 School of Computer Science and Engineering, Lovely Professional University, Punjab, India

Abstract

The growth and development of scientific applica-
tions in the cloud demands the creation of efficient
resource management systems. Due to the scale of
resources, the heterogeneity of services, their inter-
dependencies and unpredictability of load this is a
complex problem. We present a resource schedul-
ing taxonomy that is originating from our experience
in utilizing and managing multi-cloud environments.
Our study is backed up by a literature review that
targets not only virtual machine, but also container
and Function as a Service frameworks. It justifies our
model and provides a an overview of existing schedul-
ing techniques in cloud computing. As a result this
work can lead a better understanding of scheduling
for clouds in general. The study promotes the vision
of a layered scheduling architecture that will be useful
for the implementation of application and resource-
based scheduling frameworks in support of the NIST
Big Data Reference Architecture.

1 Introduction

COLOR IN BLUE = modified by Gregor

Cloud computing has emerged as a computing
paradigm to solve large-scale application in many do-
mains including science, e-commerce, lifestyle, and
many other areas. According to the definition of
NIST, Cloud computing is a model for enabling ubiq-
uitous, convenient, on-demand network access to a
shared pool of configurable computing resources that
can be rapidly provisioned and released with minimal
management effort or service provider interaction [1].
Sustaining efficient resource provisioning and utiliza-
tion in clouds is a formidable challenge. Poor re-
source management results in high costs that are am-
plified by long term and dynamic-scalable usage pat-
terns we see in large scale cloud applications. Hence,

scheduling plays an important role in improving re-
source utilization providing the necessary guidance
to optimize the allocation of resource. Consequently,
Resource scheduling is an important service of any
cloud framework as it is responsible for orchestrating
the resources to both cloud providers and cloud users
in an efficient manner.
We showcase that scheduling in the cloud requires a
multi-layered approach that not only schedules tasks
and jobs, but also integrates provisioning of resources
and dynamic adaptation of loads during the run-time
of applications. Information has to be passed be-
tween the various layers that comprise our scheduling
architecture for clouds to guide the optimal place-
ment onto resources. This cloud-based scheduling
models is more comprehensive than previous classical
scheduling approaches as it is conducted on scales and
resource pools that were previously not considered.
The scheduling is not only done on the task, job, and
cluster level but integrates the data center and even
regional and global data centers while adding on de-
mand resource needs. Our study identifies services
that assist in the formulation of the scheduling needs
and interfaces for the NIST Big Data Reference Ar-
chitecture (NIST-BDRA) [2] and it’s interface defini-
tions currently under development [3].
The paper is structured as follows. We present first in
Section 2 our general terminology we use throughout
the paper. Next we present in Section ?? our ar-
chitecture view and taxonomy that we have derived
from our practical experience with FutureGrid [4, 5],
FutureSystem, and Software such as Cloudmesh [6],
Virtual Clusters [7], and Rain [8, 9, 10] while work-
ing on multi-hosted heterogeneous cloud frameworks.
This view is backed up by our extensive literature re-
search in Sections 4 and our classification based on
the taxonomy we introduced in the previous sections.
Lastly, we summarize some open issues in Section 5
that this study revealed and some concluding remarks
in Section ??.

2

2 General Scheduling Termi-
nology for Clouds

We use the following terminology for Cloud comput-
ing and Resource scheduling:

Cloud Computing: According to the definition of
NIST, Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network ac-
cess to a shared pool of configurable computing
resources that can be rapidly provisioned and re-
leased with minimal management effort or ser-
vice provider interaction [1].

Cloud Resource: Is a resource offered by a cloud
provider as part of the implementation of a cloud
application that may use this resource.

Cloud Service: Is a service offered by a cloud
provider or developed as part of an application
utilizing cloud resources and exposing the func-
tionality as a service.

Cloud Application: Is an application that uses
cloud services and resources to target an applica-
tion providing concrete implementations for its
instantiation and execution.

Resource Provisioning in the Cloud: The allo-
cation of the resources demanded by users to
specific applications is called provisioning.

Resource Scheduling in the Cloud: Resource
scheduling in the cloud refers to the map-
ping of resources to fulfill the jobs resource
requirements.

3 Scheduling Taxonomy for
Clouds

In this section we introduce our scheduling taxon-
omy for clouds. Our taxonomy integrates the classi-
cal cloud architecture as defined by NIST [1]. How-
ever, as scheduling is conducted with resources in
mind we also focus on aspects to deal with cloud
resources, their physical instantiation and their con-
nectivity while showcasing their relationship in our
taxonomy.

3.1 Layered scheduling

The NIST cloud model promotes an easy to under-
stand separation between infrastructure, platforms

and services. This separation motivates a scheduling
taxonomy separated by the different layers in which
service providers and users attempt to place compute,
data and other services in order to optimize the use
of the infrastructure as is showcased in Figure 1 while
enhancing it with Function as a Service (FaaS).

IaaS:Scheduling is done
top optimize resources in
the infrastructure level.

PaaS: Scheduling is done so that
the platform offered is optimized.

SaaS: Scheduling is done on
the software as a service side.

FaaS: A serverless abstraction
is introduced leaving scheduling

decisions to the underlaying levels.

Figure 1: Multi-phase scheduling in a hierarchical re-
source model with less scheduling control and needs
in the higher service levels by the user [11].

resource
scheduling

platform
scheduling

appli-
cation

scheduling

function
scheduling

Figure 2: Multi-layered scheduling in a hierarchical
resource model motivated by the NIST cloud archi-
tecture [11].

A platform provider may utilize insights of the infras-
tructure to offer to the users an optimized platform
placement, while a software provider or application
user may utilize information form the platform and
or the infrastructure to offer scheduling on levels ac-
cessible to them. To facilitate the scheduling on the
lower levels, scheduling information has to be passed
along to them to provide enough information to the
provider to integrate scheduling of resources that are
not under direct control by the developer and users.
Thus one strategy to develop scheduling algorithms
for the cloud is to integrate the service boundaries
of the layered cloud architecture into the strategy
of conducting a multi-layered scheduling approach
in which we separate concerns as showcased in Fig-
ure 2. As most recently the FaaS model is introduced
by the community we added it to the figure to in-
dicate that although they are defined by the user,
the functions have well defined resource constraints
that make scheduling decisions on the infrastructure

3

provider level easier. Hence to optimize usage of the
infrastructure, providers have come up with an easy
to use extension to the original NIST model allowing
for better potential of utilizing the infrastructure by
scheduling small well defined functions with limited
resource needs.

Certainly the goal of hiding the scheduling decisions
between each layer is still important, but enough in-
formation between the layers needs to be exchanged
to facilitate good scheduling decisions on each of the
layers.

When put together, we distinguish several aspects
that comprise Cloud scheduling. This includes
metrics, cloud scheduling models, cloud scheduling
challenges, the cloud infrastructure, and algorithms
specifically designed to address clouds as seen in FIg-
ure F:mindmap. These aspects are elaborated in
more detail next.

Figure 3: Cloud scheduling aspects

Cloud Scheduling Infrastructure

Connectivity
Model

Resource
Model

Physical
Model

Cloud
Scheduling
Algorithms

Strategy

Deterministic

Heuristic

Cloud
Scheduling
Challenges

Diversity

Multi-
tenancy

Heterogeneity

Distributed

Scalability

Dynamicity

Traditional
Scheduling
Challenges

General
Metrics

Cloud
Scheduling

Model

Compute
Resource-
based

Data-based

Location-
based

Energy-
based

Security-
based

3.2 Resource Provider Focused Y-
Cloud Taxonomy

To showcase the interaction between the different lay-
ers more clearly we like to refer the reader to the
Y-cloud scheduling diagram introduced by Laszewski
in [11].

In this taxonomy we are concerned about how re-
sources are placed on physical models and are inter-
connected with each other to facilitate scheduling al-
gorithms. Figure 4 depicts the different models inte-
grated in the Taxonomy. It includes:

Physical Model representing major physical re-
source layers to enable a hierarchical scheduling
strategy across multiple data centers, data cen-
ters, racks, servers, and computing cores.

Resource Model representing models that the
scheduling algorithm addresses including con-
tainers and functions, virtual machines and jobs,
virtual clusters, provider managed resources,
and multi-region provider managed resources.

Connectivity Model introduces a connectivity be-
tween components when addressing scheduling.
This includes components such as memory, pro-
cesses, connectivity to distributed resources,
hyper-graphs to formulate hierarchies of provider
based resources, and region enhanced hyper-
graphs. The connectivity model allows us to
leverage classical scheduling algorithms while ap-
plying such models and leveraging established or
new scheduling algorithms for these models.

Conectivity Model Resource Model

Physical Model

Region-enhanced Hypergraph

HyperGraph

Distributed

Process

Memory

Multi-Region Provider

Provider

Cluster

VM/OS/Job

Container/Function

Multiple Data Centers

Data Center

Rack

Server

Core

Figure 4: Resource Provider Focused Y-Cloud Tax-
onomy [11].

3.3 Cloud Scheduling Model

Now that we have identified the resource provider fo-
cused Y-Cloud taxonomy we can identify some impor-
tant aspects that govern the scheduling decisions to
effectively use these resources. This includes metrics
that influence the scheduling. Traditional scheduling

4

metrics and attributes for scheduling algorithms are
shown in Figure 5. They include typically cost, time,
space, reliability, energy, and security.

General Schedul-
ing Metrics

Cost

Time

Space

Reliability

Energy

Security

Figure 5: Traditional Compute Scheduling Metrics

When looking into the specifics of these metrics ap-
plied to cloud computing we can easily identify more
details for these traditional metrics that apply to the
various infrastructure components that constitute a
cloud including compute, data, energy, quality of ser-
vice, and security. We depict some of the major at-
tributes that influence the scheduling decisions in Fig-
ure 6. Furthermore each of the attributes in the cate-
gories Compute, Data, Security, Energy, and Quality
of service can be combined if not already included
in the specific scheduling attribute. For example in
order to identify scheduling model based on virtual
machines, attributes such as the once in data, energy,
QoS, or security may be introduced in the scheduling
decision.
This information can now be used to define provision-
ing and service scheduling as categorized next.

3.4 Taxonomy of Challenges in Cloud
Scheduling

Some of the obvious characteristics and challenges
that are specifically related to clouds are listed next
and are summarized in Figure 7 while enhancing the
traditional scheduling challenges we introduced ear-
lier.

Large scale: Clouds offer large number of resources
to its users that need to be optimally utilized un-
der quality of service constraints set by providers
and users. A cloud involving a plethora of re-
sources spanning across the globe is obviously
a huge infrastructure. The range of functions,
tasks, jobs and applications need to get catered
at any point of time too can be in large scale.
Handling them in such scale requires efficient

Cloud
Scheduling Model

Compute-
Resource-based

Workflow-based

Job-based

VM-based

Task based

Container-based

Function-based

Platform-based

Data-based

Storage Type

Volume

Redundancy

Bandwidth

Latency

Location-based

Processor-based

Server-based

Room-based

Datacenter-based

Region-based

Global-based

Energy-based

HVAC

Green IT

PUE

Energy Source

VM Migration

Security-based

Public

Private

Figure 6: Cloud Scheduling Model Metrics

resource management. As such, scheduling be-
comes a complex endeavour. Rather a complex,
dynamic and multi-faceted scheduling is neces-
sary.

5

Dynamic nature of clouds: Due to the dynamic
nature of the physical cloud infrastructure in
which resources belonging to different adminis-
trative domains keep on joining and leaving the
system scheduling must be adaptive.

Heterogeneous providers and services: There
is no single cloud, but we have to recognize
that the competitive nature in the cloud mar-
ket promotes not only heterogeneous cloud
providers, but also heterogeneous cloud services
that may compete with each other and either
offer the same or customized services targeting
a particular user community. Resources in cloud
environment are highly diversified in nature,
capacity, working style and administrative do-
mains. Being owned by different organizations,
the resources offer minimal control over them
making multi-layered scheduling necessary,

Highly diversified: Due to the large diverse set
of applications (but also infrastructure) smart
strategies to schedule such applications on the
required resources are needed.

Decentralized: The resources in the cloud are dis-
tributed among various data centers, rack, and
servers. Although they may belong to a provider,
they can still be utilized across provider bound-
aries and even if within the same provider re-
gions, calling for a high degree of decentraliza-
tion.

Limited control by users: Due to the fundamen-
tal nature of the cloud access to low level
scheduling mechanisms are often hidden and
only available to the provider. On the other
hand users still have their own scheduling re-
quirements in regards to for example cost, and
deadlines.

Dynamic loads: Due to the size of the user com-
munity sporadic burst on resource requirements
lead to challenges to adjust provisioned resources
and schedule application onto them.

Security concerns: Another important require-
ment for scheduling is the ability to integrate is-
sues such as privacy and security considerations
as the provider needs to assure that local laws
as well as the general privacy and security con-
cerns are addressed. This is especially of concern
when government or health care providers need

to schedule resources in a cloud for their appli-
cation needs, making it necessary to distinguish
problems that can be executed on public vs pri-
vate clouds through scheduling but also through
policy decisions that integrate with scheduling
algorithms.

Thus we need to distinguish a number of schedul-
ing challenges one of which is governed by on dif-
ferentiating users and providers. Here, on the one
hand, we focus on cloud providers that try to utilize
in the best possible way the existing resources for
the customers under optimization constraints such as
cost, high availability, fault tolerance for the provid-
ing cloud resources and services. On the other hand,
we have customers that expect these quality assur-
ances, but also have own constraints such as dead-
lines, cost, and implicit requirements from their ap-
plications such as data placement and management.

In both cases we need to address the challenge of pro-
visioning resources and also the challenge of schedul-
ing services onto these resources. Although these
steps can be done independently it is obvious that
interrelationship between them is needed in case of
re-provisioning and dynamic adaptation to dynamic
loads placed on the resources.

In both cases under-utilization prevents a resource
from performing optimally, incurring idle time,
whereas over-utilization causes a resource to function
more, thereby, sometimes, degrading the node’s per-
formance.

Cloud Scheduling
Challenges

Diversity

Infrastructure

Platforms

Services
Multi-tenancy

Heterogeneity

Distributed

Scalability Huge Infras-
tructure

Dynamicity

Traditional
Challenges

Efficiency

Cost

Time

Space

Reliability

Energy

Security Privacy

Figure 7: Scheduling challenges applied to all levels

6

3.5 Scheduling Challenges Arising
form use of Containers

By using virtualization technologies such as virtual
machines, they help to provide the illusion of a hard-
ware resources but introduce a cost to also virtualize
the operating system. Containers however use virtu-
alization within the operating system level. Multiple
containers run on the top of the operating system
kernel. Hence, a container is a lightweight approach
to implement the virtualization technology leverag-
ing the underlying OS. The memory consumption by
containers is less then the resources required to boot
a virtual machine with its virtualized OS. As exam-
ple we point out Kubernetes [12] where containers
within a pod [13] share an IP address and find each
other via local host. Communication among them is
done by inter-process communications, such as, Sys-
temV semaphores or POSIX shared memory. Con-
tainers in different pods cannot communicate directly
as they have distinct IP addresses. Kubernetes com-
monly uses flannel to accomplish container network-
ing. Containers are joined in a virtual network. Ku-
bernetes, provides mechanisms to utilize a number
of pre-existing scheduling algorithms, but also pro-
vides the ability to replace them with customized ap-
proaches.
The challenge here is to assure that containers be-
tween users do not create security or violate privacy
issues. Also the access to potentially elevated sys-
tem privileges may cause other issues. Therefore sys-
tems such as Singularity offer users an isolated use of
containers within traditional HPC queuing systems
to mitigate that issue. Still once on such a system,
we still have to be aware of elevated privileges, and
containers may only be offered in limited form to its
users. Once this has been clarified, also for contain-
ers the typical quality assertions during its use apply
just as for virtual machines. Such challenges must
be integrated into a scheduling strategy when adding
containerized cloud resources.

3.6 Challenges in Function as a Ser-
vice

The Function as a Service model allows the devel-
opers to build and execute their programs through a
combination of functions, that limit resource require-
ments. Functions are uploaded to FaaS supporting
infrastructure and services and triggered by events.
Due to the resource limitations they provide signifi-
cant information for the underlaying layers to provide

more efficient resource scheduling. However, moni-
toring tools and fault tolerance have to be carefully
integrated in order to avoid FaaS failures based on
resource starvation or an excess of resources used. In
addition more resource intense functions may require
splitting them up in smaller functions so they can
be fulfill resource constraints of the FaaS framework.
Such limitations must be understood by the developer
in order not to create a function that is impossible to
schedule.

3.7 Taxonomy of Scheduling Units

The traditional units for scheduling include, pro-
cesses, tasks, and jobs. However in the cloud we have
an enhanced model that needs in addition to this ad-
dress scheduling of virtual machines, containers, func-
tions, platforms, clusters, and other infrastructure or
services used by the clients or cloud related services.
Naturally such units can be abstracted into tasks that
are coordinated as part of workflows. Hence, we dis-
tinguish as part of this model the following units that
typically define work units:

Task: represents an abstract unit to be run on a
cloud that may have complex resource associ-
ation attached with it and may itself be build
from other tasks with dependencies. It is not
yet mapped onto a resource.

Job: A job is a computational activity made up of
several tasks that may require different process-
ing capabilities.

Function: represents a small computational unit
with precisely specified resource requirements to
run on a cloud.

Application: An application is a software for solv-
ing a (large) problem in a computational infras-
tructure; it may require splitting the computa-
tion into many jobs or it may be a monolithic
application. In the later case, the whole applica-
tion is allocated in a computational node and is
usually referred to as application deployment.

Workflow: A workflow contains a combination of
Tasks, Jobs, Functions, and applications with
dependencies assuring the order of execution.

On the other hand we find resources units that are
typically associated with the provisioning step:

7

Resource: A resource is a basic computational en-
tity that can be used to fulfill the requirements
of application’s execution. Resources have their
own characteristics such as CPU characteristics,
memory, software, etc. It can be a source of
information and expertise. Resource is phe-
nomenon that enhances the quality of applica-
tion. Various parameters are associated with a
resource, among them, the data speed, the pro-
cessing speed, space and workload, which change
over time.

Deployment: A deployment is a series of jobs that
deploy a service onto the cloud that can be used
for subsequent use.

Containers: can be defined as a any service related
to scheduling, made available to users on demand
from a cloud computing provider’s servers.

Virtual machine: Virtual Machine (VM) is a sim-
ple software program which simulates the func-
tions of a physical machine.

Virtual clusters: An agglomeration of virtual ser-
vices that build the core of a computational
resource hosted in the cloud. They can be
comprised out of many resources including vir-
tual machines, containers, platform as a service
frameworks, data services and resources, and
more. A virtual cluster is typically associated
with an application and utilized for it. Just as
containers or virtual machines it can be created,
suspended, resumed, or terminated

Schedulers: Schedulers are processes that decide
which task and process should be accessed and
run at what time by the available resources. It
helps to keep the performance of cloud at the
highest level by scheduling in optimized way.
Based on the frequency of schedulers operations,
categorization is done: local scheduler, global
scheduler and enterprise scheduler etc.

3.8 Taxonomy Classification of Re-
source Scheduling Algorithms

Next we present a short sample on resource schedul-
ing algorithms that we found in literature related to
cloud computing scheduling as showcased in Figure 8.
We present in the figure only a relevant subset of al-
gorithm classifications including the distinction be-
tween VM placement and QoS parameters based al-
gorithms. Dependent on the locality and scope of

the scheduling task often a deterministic approach is
not suitable. When looking at heuristics [14] we find
traditional algorithms such as hill-climbing but also
a variety of nature inspired algorithms. The detail
description of existing work in the field of resource
scheduling algorithm is done in the next section.

Resource Schedul-
ing Algorithms

VM Place-
ment based

Dynamic VM
placement

Network aware
VM placement

Energy aware
VM placement

Quality of Ser-
vice based

Cost based

Time based

Reliability based

Security based
Heuristic based

Container based

Function based

Figure 8: Classification of Resource Scheduling Algo-
rithms

4 Literature review of Cloud
Resource Scheduling Algo-
rithms

In this section we conduct an exemplary but exten-
sive literature review of cloud scheduling in order to
confirm our taxonomy. As part of this review, we
present a number of tables to compare the reviewed
research and frameworks related to cloud scheduling.
We organize this section by scheduling aspects related
to
dynamic scheduling (Section 4.1) cloud metric based
scheduling with emphasize (Section 4.2) on en-
ergy (Section 4.2.1) network (Section 4.2.2) cost
(Section 4.2.3) time (Section 4.2.4) reliability (Sec-
tion 4.2.5) security (Section 4.2.6), and heuristics
(Section 4.3).
We review scheduling needs for HPC in the cloud
(Section 4.4) and workflows (Section 4.5).
We mention scheduling in public clouds (Section 4.6)
while also looking at containers (Section 4.7), func-

8

tion as a service (Section 4.8) as well as distributed
resource providers (Section 4.9) which can utilize ser-
vice meshs (Section 4.10).

4.1 Dynamic Scheduling

As part of this scheduling task we often also find
the distinction between static scheduling, where
resources are scheduled once, [15] and dynamic
scheduling, which is constantly updated during exe-
cution to find better resource utilization over time.
The later is often motivated by need for scalabil-
ity [16] across and within data centers or increased
fault tolerance [17]. Association of other metrics into
the dynamic scheduling approach is common to for
example integrate power, reduce network bandwidth
and enable more sophisticated Service level agree-
ments [17]. In many cases not only the cloud user,
but obviously also the cloud provider can benefit from
dynamic scheduling [18]. We find that it can be bene-
ficial to separate the scheduling task in multiple steps
such as shown in [19]. Here live migration for corre-
lated VMs is optimizing on data, compute, and band-
width. Other cloud metrics such as price [20] are also
common and will be in more detail addressed in Sec-
tion 4.2.3. Obviously a rich number of algorithm can
be applied such as shown in Section 4.3.

Table 1 lists a number of efforts related to dynamic
scheduling while focusing on virtual machine place-
ment.

4.2 Cloud Metric-based Scheduling

Due to the complexity of cloud environments, many
different metrics are used to guide the scheduling of
virtual machines, containers, platforms, tasks, batch
jobs and workflows. Figure 8 showcases many differ-
ent metrics that influence their schedule.

4.2.1 Energy Aware Scheduling

Energy consumption is a key issue for cloud providers
due to the enormous cost associated with operating
large cloud data center. By using server consolida-
tion, optimizing operation on physical machines and
using dynamic voltage scaling processors, energy con-
sumption can be reduced as shown in [21, 22, 23].

Various scheduling methods such as minimize the to-
tal makespan [24], dynamic meta-heuristic [25], frac-
tal mathematics [26], and machine learning clustering
and stochastic [27] have been utilized.

It is obvious that multiple metrics must be included
the correlate for example CPU, RAM and band-
width [28]. Dynamicity, for example, while address-
ing peak loads [26] or migration [29] has naturally
also an impact on the energy cost. Energy in hy-
brid and multiple data centers in the clouds is used
in [30, 31, 32] while at the same time increasing the
cloud provider brokers revenue. Energy consump-
tion in heterogeneous clouds has also been consid-
ered [33]. Others create models to predict the energy
consumption of each virtual machine [34] this requires
certainly proper monitoring of the underlying server
farms in the cloud in [35]. Integration of historical
or previous program executions while recording their
energy consumption can also be utilized [36]. Oth-
ers focus on predicting future resource consumption
needs [37].
A comparison of energy aware scheduling algorithm
in cloud computing is shown in Table 2.

4.2.2 Network Aware Scheduling

As clouds project remote large scale resources net-
work traffic to, from, and within must be considered
for scheduling. This not only contains moving data
in and out of the compute center or storage, but also
may contain message exchange between to sometime
complex distributed applications that run in these
cloud data centers. Minimizing the distance between
data providers and data consumers while for example
replicating data [38] can save significant amount of
traffic and has long been applied in the internet as one
of its beneficial strategies. Service level agreements
(SLA) [39] are playing an important role to achieve
proper utilization as part of the scheduling effort.
Treating the network as shared scarce resource [40]
motivates the development of network-based schedul-
ing algorithms. Just as in other metric-based schedul-
ing models, we find the distingtion between static [41]
and dynamic scheduling during runtime so we can
deal with traffic bursts.
A variety of resource abstractions (see Figure 5)
are applicable also to scheduling as part of the net-
work traffic, such as demonstrated by [42] to opti-
mize traffic in virtual clusters. Scheduling across on
multiple layers is especially of benefit for network-
ing [43] to minimize across different tiers. Schedul-
ing of platforms such as Hadoop offers naturally ad-
vantages when networking is integrated [44]. Having
access to lower level infrastructure such as offered by
OpenStack presents opportunities to include Network
Function Virtualization (NVF) [45]

9

Table 3 shows examples for network aware scheduling
algorithms in cloud computing.

4.2.3 Cost Aware Scheduling

Cost in clouds arise for using the data center fa-
cilities. These costs are passed along to the users.
Through shared use of the facilities and keeping
under-utilization low, clouds can have an advanta-
geous cost performance in regards to on-premise com-
pute and data centers. Costs for such centers include
hardware operation cost such as energy and equip-
ment, as well as, operating costs such as software li-
censing and update and personnel costs. Dependent
on the hardware and software used, cloud providers
offer a tiered cost model that allows users to assess
need for data, speed, and reliability as part of their
cost. Other options such as renewable energy use of
the data center in case of energy aware customers
may also play a role.

Cost aware scheduling has been applied to virtual ma-
chines [46], tasks [47, 48], workflows [49, 50], as well as
high-throughput [51] computing. Revenue maximiza-
tion [52] has not only been applied to metrics such
as latency [53], but is also useful via advanced dy-
namic Voltage and Frequency Scaling (DVFS) [54, 23]
due do reducing the high energy costs with little
performance reduction. This also could be achieved
through delayed execution [55] or relaxation of dead-
lines [56]. Other strategies include the introduction
of penalties as part of SLA [57]. Typical resource uti-
lization such as optimizing processor sharing [58] data
placements [58], have known to decrease cost. Obvi-
ously also dynamic dynamic adaptations at runtime
allow reduction of cost [59]

Table 4 presents a comparison of cost aware schedul-
ing algorithms.

4.2.4 Time based Scheduling

Cloud users have the desire to reduce the time it takes
to execute their applications. This is often motivated
to fulfill deadlines [60].

Besides virtual machine and task scheduling it is
also important to integrate data-aware scheduling
to reduce access time to the data [61]. As already
mentioned previously, historical data [62] or prox-
ies [63] about execution times help designing time-
aware scheduling algorithms.

We find algorithms that integrate deadline constraint
[64], completion time [65] with fairness [66], low

downtime to improve time for execution [67], and de-
lay bounds [68].
Table 5 presents a comparison of time aware schedul-
ing algorithms.

4.2.5 Reliability Aware Scheduling

Users and providers need the guarantee of reliabil-
ity. Thus many scheduling efforts integrate how to
increase reliability. Strategies such as replication of
data and compute services are common practice. Ob-
viously this comes often at a price and increased cost
may occur when reliability is concerned. The dis-
tributed nature of clouds make it a formidable chal-
lenge to offer reliability. However at the same time
while providing large scale data centers to offer cloud
services with highly specialized operating staff and
abilities to replicate and migrate workloads to other
services increases reliability when compared to on-
premise data centers due to larger efficiency of the
cloud data centers in regards to overall cost for its
users.
Various studies have been conducted to analyze the
effect of reliability on clouds.
This includes reliability assessment models [69], inte-
gration of communication and networks [70], increase
of resource availability [71]. Trade offs between differ-
ent scheduling metrics such as energy and reliability
have also been studied [72].
A comparison of reliability and scheduling is given in
Table 6.

4.2.6 Security based Scheduling

As mentioned earlier security as a key aspect cloud
users and providers require in order for cloud infras-
tructure to be useful for many applications.
Virtual machine scheduling requires the need for iso-
lation, that can be controlled by security policies [73].
Isolation can also apply to the incoming and outgo-
ing data [74, 75]. Risks occurring by inspecting the
connections among VMs [76] can be analyzed and
integrated in scheduling strategies. To enable trust
between components in the cloud background key
exchanges have been proposed [77] Multi-objectives
(possibly contradictory) need to be also considered.
Most often it includes cost vs. security scheduling
frameworks [75, 78, 79]. As many edge devices need
to interface with cloud services due to their computa-
tional and data limitations, privacy-preserving solu-
tions to interface between clouds and mobile devices
have been considered [80].

10

Security based scheduling algorithms are presented
(see Table 7).

4.3 Heuristic based Scheduling

Heuristic methods help to design efficient algorithm
to fulfill the users application requirements. We pro-
vide here a small sample of different heuristics as
found in literature. This includes particle swarm
optimization [81], multi-objective genetic algorithm-
based [82, 83], colony optimization with swarm in-
telligence [84], bee colony [85], artificial neural net-
works [86], simulated annealing [?], game-theory [83],
and Game theory by minimizing the Pareto domi-
nance and makespan [87]. Other heuristics utilize
classical models such as using the critical path in
multi-phase scheduling algorithms [88]. Besides vir-
tual machines we often also find workflows to be the
scheduling unit in heuristics [89].

A comparison of heuristic methods based scheduling
algorithm is done in 8.

4.4 HPC and Cloud Computing
Scheduling

Next we review scheduling aspects related to tradi-
tional High Performance Computing (HPC). It is im-
portant to recognize, that HPC and its frameworks
must not be excluded as part of cloud scheduling due
to its exposure for scientific application in industry
and academia. More importantly HPC is now also
offered as one of the supported compute services in
public cloud providers. When looking at the services
offered and needed we distinguish HPC batch queu-
ing in the cloud, cloud bursting of on premise HPC
tasks, container isolation, on demand platforms and
bare metal provisioning:

HPC Batch Queuing in the Cloud. These are
specialized high-performance super-computing
systems that are offered to customers with
computation needs that can only be fulfilled
by large scale specialized hardware. Grand
challenge problems are often motivators for
such hardware. In industry we for example find
computational fluid dynamics, and modeling of
biochemical processes as one of its user com-
munities. Example offerings for HPC in AWS
[90], Azure [91], Google [92], but also other less
prominent clouds such as Penguin Computing
HPC in the cloud [93], and SabalCore [94].

Cloud Bursting of On Premise HPC tasks.
The HPC systems are often over-utilized and
thus the situation of resource starvation is to be
considered. For this reason many batch queuing
system allow the integration of cloud resources
in such a fashion that task and workflows may
be executed in the cloud through the integration
of commercial or on premise cloud resources. In
this case the term cloud bursting is used [?, 95].
Example for the integration in prominent HPC
scheduling includes Slurm [96], Univa Grid
Engine [97], PBSpro [98], LSF [99], Moab [100].

Container Isolation. Due to the usage of queu-
ing systems it is also possible to provide in
part an improved container security framework,
while executing containerized tasks as part of
the queuing system. An example would be to
utilize all cores in a compute server that is al-
located with a queuing system processor. This
feature can be integrated into many queuing sys-
tems while using Singularity [?].

On Demand Platforms. Resource starvation in
academic cloud and super computing centers
motivate also the ability to run platforms that
would typically run also in the cloud but provide
a cheaper alternative if run locally in the existing
HPC centers. A good example is Hadoop that
can be run through myhadoop [101] in HPC cen-
ters [102].

Bare Metal Provisioning. In other cases it may be
better to provide bare metal provisioning capa-
bilities in case the existing platform or cloud ab-
straction may not be sufficient. Academic efforts
such as Futuregrid [5] now followed by Comet [7]
and Chaleleoncloud [103] are good examples for
it. Commercial efforts in this regard include
OpenStack Ironic [104], IBM [105], AWS [106]
and Rackspace [107].

4.5 Workflow Scheduling Frameworks

In the previous sections we already pointed out sev-
eral workflow related scheduling algorithms while us-
ing specific metrics to conduct the scheduling. In ad-
dition we can integrate virtual machines, containers,
and tasks.
Workflow schedulers are often distinguished by
DAG [108, 109, 110] and non-DAG scheduling while
some support both [111, 112, 113]. Even prior to

11

the official FaaS frameworks existed that focused on
the execution of functions [114]. Scientific applica-
tions such as bio-informatics have introduced not only
workflow systems, but also promoted graphical work-
flow design tools to create dependency graphs the are
executed by workflow schedulers [115, 116].

In addition to our findings, in [117] workflows are also
organized by design, scheduling and data movement
abilities.

It is often an overlooked fact that existing HPC batch
queuing systems contain features for job dependency
management. In many cases these features can be
used to accommodate the users needs for scheduling
workflows onto the same hardware or in some cases
clusters that are managed through the same queuing
system [99, 100, 118, 98].

4.6 Scheduling in Public Cloud
Providers

Next, we compare scheduling methods and needs of-
fered in public cloud service providers are presented.
This includes AWS, Azure, Google, Rackspace,
but also academic clouds such as FutureGrid and
FutureSystems Comet, Jetstream, and Chameleon
Cloud.

It is important to recognize that today public cloud
providers offer not only virtual machines to the users,
but a large variety of compute, data, and analyti-
cal services. Some of them may even use bare metal
while others are having heightened security demands
to for example fulfill heath care or government isola-
tion needs as part of the infrastructure. All these as-
pects naturally influence the scheduling efforts which
need to be addressed by the provider. In many cases
we do not find some of the information on how such
scheduling is conducted due to security and company
secrets.

However we find metrics that users can utilize to for-
mulate their own strategies as we have introduced in
the previous section if such metrics are communicated
to the users. This typically includes cost and allows
to leverage for example virtual machine with reliabil-
ity constraints such as AWS spot pricing compared
to regular pricing [119]. Cost also motivates users
to suspend usage of VMs instead of running them
without concern. This has happened to the authors
of this paper, where in a class a student, refused to
shutdown experimental virtual machines and within
two weeks consumed thousands of compute hours on
an academic cloud, while the actual calculation was

irrelevant.

One of the schedulers provided by public clouds are
job and instance schedulers that promote start and
stop times for the resources used [120, 121, 122,
123]. Such schedulers can integrate functions, data
and compute instances. More sophisticated sched-
ulers can switch workloads between cloud data cen-
ters [124].

In [122] cloud load-balancer, round robin and least
connections based algorithms are commonly used so
that workload could be distributed equally on all re-
sources. As one of the original tasks of clouds was
hosting of Web services under traffic load. public
clouds include strategies the scale up and down the
services based on such loads and allocate dynamically
through a scheduler resources to fulfill this demand.

Other providers have focused on making use of mul-
ticloud virtual machine placement possible while of-
fering optimization strategies for workflows [125] in-
cluding detailed analysis of cost metrics [126]

Other efforts such as [4, 5] have early on uniquely
focused on scheduling bare metal resources between
the use of HPC and clouds, while running HPC queu-
ing systems on the same resources as cloud resources.
Dynamic provisioning allowed resources to be provi-
sioned to the one or the other by demand. In [7]
the re-provisioning is even done with the help of a
traditional batch queuing system.

Table 10 depicts examples as used in public cloud
providers.

4.7 Scheduling in Container Frame-
works

Container schedulers provide mechanisms to fine-
tune the selection processes of containers onto dis-
tributed resources [127, 128]. Typically a default de-
fault scheduling policy is provided. Policies might
place new services on hosts with the fewest currently
active services.

Based on our Y-diagram we need to distinguish 2 dif-
ferent services. First, scheduling on the same server
and second scheduling on a number of servers that
are treated typically as one abstract resource.

For the first scheduling task we need to consider data
management to efficiently utilize the memory hier-
archy, but also for example execution deadlines or
privacy concerns to organize the computation tasks
as required. In the distributed case we also need to
integrate communication related aspects. We focus
next on the distributed frameworks in more detail we

12

focus on Docker Swarm, Kubernetes, Singularity, and
Mesos.

4.7.0.1 Docker Swarm. Docker Swarm is a
clustering and scheduling tool for Docker containers
[129] across compute servers. In a docker swarm we
distinguish manager nodes and worker nodes. The
manager uses load balancing to place the containers
onto the worker nodes. Once a task is placed on a
server it is executed there. Docker swarm uses a sin-
gle scheduling strategy [130].

4.7.0.2 Kubernetes. Kubernetes is an open-
source orchestrator developed by Google for automat-
ing container management and deployment [13]. The
basic deploy-able object is a Pod which consists of
one or more containers running in a shared context.
An API is used to declare policies and scalability con-
straints. The Kubernetes scheduler is topology aware
and workload aware which can be integrated into the
policy policy constraints to expose availability, per-
formance and capacity. Auto-scaling, load balancing
and secrets managements are also provided by Ku-
bernetes.

4.7.0.3 Singularity. Singularity can be using a
variety of container frameworks as backend. It al-
lows the use of containers without being superuser.
Due to this, singularity is a popular choice for run-
ning containers on traditional HPC systems [?]. Due
to this scheduling can be supported directly by the
under-laying queuing system.

4.7.0.4 Mesos. Mesos [131, 132] provides an API
for resource management and scheduling in data
centers. Mesos abstracts CPU, memory, storage,
and other compute resources. It integrates fault-
tolerance. Mesos provides a thin resource sharing
layer that helps to furnish fine-grained sharing by
providing common interfaces among different cluster
frameworks. It’s goal is improved utilization, respond
quickly to workload changes, by maintaining system’s
capability in terms of scalability and robustness.

4.7.0.5 Community Efforts. Many community
efforts to improve container scheduling are con-
ducted. This includes for example the use of genetic
algorithm [133], container and host selection policies
for cloud deployment models [134] with SLA’s, the
characterization of applications [135] scheduling of

virtual clusters [136], and migration [137], and sys-
tems integrating multiple schedulers such as Nomad
which offer service scheduler, batch scheduler and a
systems scheduler while focusing on the support of
long running jobs [138]. .
Table 11 shows the comparison of existing work re-
lated to scheduling.

4.8 Function Scheduling Algorithms

To further improve scheduling on cloud resources, the
concept of function as a services was introduced. It
allows the invocation of small functions with limited
resource constraints on servers [139]. For example a
minimum execution time per request is five minutes
provided by AWS lambda and azure functions [140].
It supports manage user defined functions on highly
available infrastructure in an unified manner [141].
This also allows the scheduling of workflows com-
prised out of functions [142]. In [143] we discuss the
status of serverless computing and function as a ser-
vice in Industry and research. Serverless computing
is considered the backend for running FaaS at run-
time. System allocation and other resource manage-
ment activities are provided by the backend. Thus
the users has not to worry about activities conducted
by the server. Hence, the name serverless comput-
ing. Through the use of FaaS and serverless comput-
ing cost can be reduced by more efficiently scheduling
smaller tasks on resources.
A number of FaaS frameworks exist that can be used
on public clouds but also self hosted clouds or network
of workstations.
Scheduling in FaaS is provided by triggers. Such trig-
gers offer a publish subscribe model in which events
are conducted, once the trigger is fired. This includes
triggers for time, data, and executions. Time based
scheduling is supported by cron. These frameworks
are supported by all major public clouds including
AWS lambda [144], Google cloud functions [145],
Azure Function [146]
Other open source frameworks such as Apache Open-
Whisk [147] allow users to install FaaS services on
their own infrastructure.

4.9 Scheduling among Distributed
Resources and Providers

Users may have the desire to not only use services on
one cloud but on multiple clouds. This is motivated
largely by avoiding vendor lock-in, unique service of-
ferings, or combining services from different vendors.

13

Such efforts contain Eagle, a hybrid data center
scheduler for data-parallel programs [148]; Hop-
per [149], a job scheduler that trades off exist-
ing and speculated job scheduling decisions; Tetris
[150], a cluster scheduler that aims to match multi-
resource task requirements with resource availabil-
ity; Fawkes [151] a multi-cluster systems for map-
reduce; Omega [152] with optimistic concurrency con-
trol; OurGrid [153, 154] for worldwide computing
platform with isolated environments; Sparrow [155]
and fine-grained task scheduling scheduler.

We can also find more prominent schedulers such a
contains Apache’s Hadoop YARN [156] which acts as
a resource management systems to for example sched-
ule Hadoop distributed processing framework consid-
ering QoS, scalability, higher efficiency and fair re-
source usage.

We contrast different resource management systems,
used for maintaining resources in distributed environ-
ments such as Clouds (see Table)

4.10 Service Meshups

To support scheduling across clouds and services, ser-
vice mashups can be used. This includes long stand-
ing efforts such as Cloudmesh, which targets the cre-
ation of reproducable environments to easily man-
age virtual machines, bare metal provisioned operat-
ing systems, platform deployments and more recently
data services in a multi-cloud environment. It is a
goal to integrate custom schedulers in such service
mashups. Another example is Terraform [157] which
focuses on reproducible environments.

5 Conclusion and Lessons
Learned

In this section we summarize some of the lessons we
learned from our activities.

More than VM scheduling. Due to the shift and
enhancement of clouds from VM to containers
and FaaS, we must consider also new scheduling
strategies as motivated by thes new cloud com-
pute offerings.

Integration for data. Big Data and management
of data in general motivate the integration
of data resources as firs class activity within
scheduling.

Energy. Energy costs for data centers are enormous
and this play a significant roll for providers, but
also for users to which energy cost are passed
along. Not only good scheduling algorithms are
needed, but the design of the data center close
to cheap energy is an important aspect.

Y-Diagram. Our Y-diagram promotes scheduling
across scale and models. This allows to create
hierarchy of interfacing scheduling approaches
for integrated and layered scheduling between re-
sources at different scales.

Multi-Metric and Multi-Objectivity.
Scheduling algorithms must use multiple
metrics and multiple objectives to provide
effective scheduling decisions. In many cases
contradictory scheduling goals such as reliability
vs cost are to be considered.

Policy driven. Due to multi-metric and multi-
objective scheduling goals modern schedulers
will expose them through policies to users and
providers.

Iterative Optimization in Layers. Due to the
complexity of the scheduling efforts motivated
by out Y-diagarm, a layered scheduling approach
seems appropriate.

Analytics Services. While FaaS provide the abil-
ity to schedule resource restricted functions the
next level of schedulers will address Analytics
as a Service (AaaS) where more resource bound
functions are cast as analytical calculations.

Security and Privacy. We need to deal more strin-
gently with security and privacy as part of
our scheduling needs which contrasts traditional
HPC scheduling efforts.

Fault tolerance and Risk Analysis. As part of
the policy driven service level agreements with
the cloud providers scheduling must include the
ability to integrate fault tolerance while leverag-
ing risk analysis.

Traditional Scheduling. Naturally we need to
deal in scheduling with traditional issues such
as load balancing, congestion, and service spikes.
However they are amplified by the large resource
management issues in hyper-scale data centers.

14

Edge Computing and Fog computing. Due to
the increased edge and Fog computing compu-
tational powers available. significant activities
can also be conducted on edge devices. Bil-
lions of cellphones today already conduct a sig-
nificant amount of computation thus scheduling
must balance between activities that can take
place on the edge (Fog) or needs to be conducted
in the cloud.

In this paper, we have surveyed the many impor-
tant aspects of scheduling problems in cloud comput-
ing. After introducing the needed terminology, we
presented a comprehensive taxonomy of the different
cloud scheduling approaches and issues. A layered
and phased scheduling model is presented that dif-
ferentiates the concerns between infrastructure, plat-
form, servers and function as a service models. A
comprehensive investigation has been conducted to
verify that the taxonomy is valid and that existing
scheduling techniques motivate its validity.

Postface

We realize that although we have analyzed a large
number of papers, there are more papers in that
area available. Please inform us as we¡ intend to
collect them for further updates to this paper. We
like to especially pay attention to papers that may
motivate us to refine our taxonomy. Please send
us your reference in format while adding in the ab-
stract what your paper provides and how it fits in
our scheduling taxonomy. The contribution can be
send either to laszewski@gmail.com, or via a github
pull request at https://github.com/cloudmesh/

bib/blob/master/cloud-scheduling.bib.

References

[1] P. Mell, T. Grance, et al., The nist definition
of cloud computing.

[2] nist big data interoperability framework: Vol-
ume 6, reference architecture.

[3] G. von Laszewski, W. L. Chang, NIST Big
Data Interoperability Framework: Volume 8,
Reference Architecture Interfaces (Dec. 2018).
URL https://github.com/cloudmesh-

community/nist/blob/master/docs/

nistvol8-2.pdf

[4] G. C. Fox, G. von Laszewski, J. Diaz, K. Kea-
hey, J. Fortes, R. Figueiredo, S. Smallen,
W. Smith, A. Grimshaw, FutureGrid - a
reconfigurable testbed for Cloud, HPC and
Grid Computing, in: Contemporary HPC
Architectures, draft Edition, 2012.
URL https://laszewski.github.io/

papers/vonLaszewski-12-fg-bookchapter.

pdf

[5] G. C. Fox, G. von Laszewski, J. Diaz, K. Kea-
hey, J. Fortes, R. Figueiredo, S. Smallen,
W. Smith, A. Grimshaw, Futuregrid: a recon-
figurable testbed for cloud, hpc, and grid com-
puting, in: Contemporary High Performance
Computing, Chapman and Hall/CRC, 2013,
pp. 603–635.

[6] G. Von Laszewski, F. Wang, H. Lee, H. Chen,
G. C. Fox, Accessing multiple clouds with
cloudmesh, in: Proceedings of the 2014 ACM
international workshop on Software-defined
ecosystems, ACM, 2014, pp. 21–28.

[7] S. M. Strande, H. Cai, T. Cooper, K. Flammer,
C. Irving, G. von Laszewski, A. Majumdar,
D. Mishin, P. Papadopoulos, W. Pfeiffer, R. S.
Sinkovits, M. Tatineni, R. Wagner, F. Wang,
N. Wilkins-Diehr, N. Wolter, M. L. Norman,
Comet: Tales from the long tail: Two years
in and 10,000 users later, in: Proceedings
of the Practice and Experience in Advanced
Research Computing 2017 on Sustainabil-
ity, Success and Impact, PEARC17, ACM,
New York, NY, USA, 2017, pp. 38:1–38:7.
doi:10.1145/3093338.3093383.
URL http://doi.acm.org/10.1145/

3093338.3093383

[8] J. Diaz, G. von Laszewski, F. Wang, A. J.
Younge, G. C. Fox, FutureGrid Image Repos-
itory: A Generic Catalog and Storage System
for Heterogeneous Virtual Machine Images,
in: Third IEEE International Conference on
Coud Computing Technology and Science
(CloudCom2011), Athens, Greece, 2011, pp.
560–564. doi:10.1109/CloudCom.2011.85.
URL https://laszewski.github.

io/papers/vonLaszewski-draft-11-

imagerepo.pdf

[9] G. von Laszewski, G. C. Fox, G. von Laszewski,
G. C. Fox, F. Team, Dynamic Provisioned

15

https://github.com/cloudmesh/bib/blob/master/cloud-scheduling.bib
https://github.com/cloudmesh/bib/blob/master/cloud-scheduling.bib
https://github.com/cloudmesh-community/nist/blob/master/docs/nistvol8-2.pdf
https://github.com/cloudmesh-community/nist/blob/master/docs/nistvol8-2.pdf
https://github.com/cloudmesh-community/nist/blob/master/docs/nistvol8-2.pdf
https://github.com/cloudmesh-community/nist/blob/master/docs/nistvol8-2.pdf
https://github.com/cloudmesh-community/nist/blob/master/docs/nistvol8-2.pdf
https://github.com/cloudmesh-community/nist/blob/master/docs/nistvol8-2.pdf
https://laszewski.github.io/papers/vonLaszewski-12-fg-bookchapter.pdf
https://laszewski.github.io/papers/vonLaszewski-12-fg-bookchapter.pdf
https://laszewski.github.io/papers/vonLaszewski-12-fg-bookchapter.pdf
https://laszewski.github.io/papers/vonLaszewski-12-fg-bookchapter.pdf
https://laszewski.github.io/papers/vonLaszewski-12-fg-bookchapter.pdf
https://laszewski.github.io/papers/vonLaszewski-12-fg-bookchapter.pdf
http://doi.acm.org/10.1145/3093338.3093383
http://doi.acm.org/10.1145/3093338.3093383
https://doi.org/10.1145/3093338.3093383
http://doi.acm.org/10.1145/3093338.3093383
http://doi.acm.org/10.1145/3093338.3093383
https://laszewski.github.io/papers/vonLaszewski-draft-11-imagerepo.pdf
https://laszewski.github.io/papers/vonLaszewski-draft-11-imagerepo.pdf
https://laszewski.github.io/papers/vonLaszewski-draft-11-imagerepo.pdf
https://doi.org/10.1109/CloudCom.2011.85
https://laszewski.github.io/papers/vonLaszewski-draft-11-imagerepo.pdf
https://laszewski.github.io/papers/vonLaszewski-draft-11-imagerepo.pdf
https://laszewski.github.io/papers/vonLaszewski-draft-11-imagerepo.pdf
http://grids.ucs.indiana.edu/ptliupages/presentations/vonLaszewski-10-FG-proj-management.pdf

Experiments in FutureGrid, 2nd IEEE In-
ternational Conference on Cloud Computing
Technology and Science (CloudCom2010),
Indianapolis, IN (12/1/2010 2010).
URL http://grids.ucs.indiana.edu/

ptliupages/presentations/vonLaszewski-

10-FG-proj-management.pdf

[10] G. von Laszewski, H. Lee, J. Diaz, F. Wang,
K. Tanaka, S. Karavinkoppa, G. C. Fox,
T. Furlani, Design of an accounting and
metric-basedcloud-shifting and cloud-seeding
framework for federatedclouds and bare-metal
environments, in: Proceedings of the 2012
Workshop on Cloud Services, Federation, and
the 8th Open Cirrus Summit, FederatedClouds
’12, ACM, New York, NY, USA, 2012, pp.
25–32. doi:10.1145/2378975.2378982.
URL http://doi.acm.org/10.1145/

2378975.2378982

[11] G. von Laszewski, Towards a cloud scheduling
taxonomy (Dec. 2018).
URL https://github.com/cyberaide/

paper-cloud-scheduling-whitepaper/

tree/master

[12] Kubernates (2018).
URL https://kubernetes.io/docs/

concepts/

[13] Kubernates (2018).
URL https://github.com/kubernetes/

kubernetes

[14] K. Vivekanandan, et al., A study on scheduling
in grid environment, in: International Journal
on Computer Science and Engineering (IJCSE),
Citeseer, 2011.

[15] B. Jennings, R. Stadler, Resource management
in clouds: Survey and research challenges, Jour-
nal of Network and Systems Management 23 (3)
(2015) 567–619.

[16] G. Keller, M. Tighe, H. Lutfiyya, M. Bauer,
A hierarchical, topology-aware approach to
dynamic data centre management, in: Net-
work Operations and Management Symposium
(NOMS), 2014 IEEE, IEEE, 2014, pp. 1–7.

[17] M. Tighe, G. Keller, M. Bauer, H. Lutfiyya,
A distributed approach to dynamic vm man-
agement, in: Network and Service Management

(CNSM), 2013 9th International Conference on,
IEEE, 2013, pp. 166–170.

[18] M. Tighe, M. Bauer, Integrating cloud appli-
cation autoscaling with dynamic vm allocation,
in: Network Operations and Management Sym-
posium (NOMS), 2014 IEEE, IEEE, 2014, pp.
1–9.

[19] G. Sun, D. Liao, D. Zhao, Z. Xu, H. Yu, Live
migration for multiple correlated virtual ma-
chines in cloud-based data centers, IEEE Trans-
actions on Services Computing.

[20] J. Tordsson, R. S. Montero, R. Moreno-
Vozmediano, I. M. Llorente, Cloud brokering
mechanisms for optimized placement of vir-
tual machines across multiple providers, Future
Generation Computer Systems 28 (2) (2012)
358–367.

[21] G. von Laszewski, L. Wang, A. J. Younge,
X. He, Power-aware scheduling of virtual ma-
chines in dvfs-enabled clusters, in: 2009 IEEE
International Conference on Cluster Comput-
ing and Workshops, 2009, pp. 1–10. doi:

10.1109/CLUSTR.2009.5289182.

[22] L. Wang, G. von Laszewski, J. Dayal,
F. Wang, Towards energy aware scheduling
for precedence constrained parallel tasks
in a cluster with dvfs, in: Proceedings of
the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Com-
puting, CCGRID ’10, IEEE Computer Society,
Washington, DC, USA, 2010, pp. 368–377.
doi:10.1109/CCGRID.2010.19.
URL https://doi.org/10.1109/CCGRID.

2010.19

[23] R. N. Calheiros, R. Buyya, Energy-efficient
scheduling of urgent bag-of-tasks applications
in clouds through dvfs, in: Cloud Comput-
ing Technology and Science (CloudCom), 2014
IEEE 6th International Conference on, IEEE,
2014, pp. 342–349.

[24] N. Bessis, S. Sotiriadis, F. Pop, V. Cristea,
Using a novel message-exchanging optimiza-
tion (meo) model to reduce energy consump-
tion in distributed systems, Simulation Mod-
elling Practice and Theory 39 (2013) 104–120.

[25] J. Bi, H. Yuan, W. Tan, M. Zhou, Y. Fan,
J. Zhang, J. Li, Application-aware dynamic

16

http://grids.ucs.indiana.edu/ptliupages/presentations/vonLaszewski-10-FG-proj-management.pdf
http://grids.ucs.indiana.edu/ptliupages/presentations/vonLaszewski-10-FG-proj-management.pdf
http://grids.ucs.indiana.edu/ptliupages/presentations/vonLaszewski-10-FG-proj-management.pdf
http://grids.ucs.indiana.edu/ptliupages/presentations/vonLaszewski-10-FG-proj-management.pdf
http://doi.acm.org/10.1145/2378975.2378982
http://doi.acm.org/10.1145/2378975.2378982
http://doi.acm.org/10.1145/2378975.2378982
http://doi.acm.org/10.1145/2378975.2378982
https://doi.org/10.1145/2378975.2378982
http://doi.acm.org/10.1145/2378975.2378982
http://doi.acm.org/10.1145/2378975.2378982
https://github.com/cyberaide/paper-cloud-scheduling-whitepaper/tree/master
https://github.com/cyberaide/paper-cloud-scheduling-whitepaper/tree/master
https://github.com/cyberaide/paper-cloud-scheduling-whitepaper/tree/master
https://github.com/cyberaide/paper-cloud-scheduling-whitepaper/tree/master
https://github.com/cyberaide/paper-cloud-scheduling-whitepaper/tree/master
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://doi.org/10.1109/CLUSTR.2009.5289182
https://doi.org/10.1109/CLUSTR.2009.5289182
https://doi.org/10.1109/CCGRID.2010.19
https://doi.org/10.1109/CCGRID.2010.19
https://doi.org/10.1109/CCGRID.2010.19
https://doi.org/10.1109/CCGRID.2010.19
https://doi.org/10.1109/CCGRID.2010.19
https://doi.org/10.1109/CCGRID.2010.19

fine-grained resource provisioning in a virtu-
alized cloud data center, IEEE Transactions
on Automation Science and Engineering 14 (2)
(2017) 1172–1184.

[26] H. Duan, C. Chen, G. Min, Y. Wu, Energy-
aware scheduling of virtual machines in hetero-
geneous cloud computing systems, Future Gen-
eration Computer Systems.

[27] D.-M. Bui, Y. Yoon, E.-N. Huh, S. Jun, S. Lee,
Energy efficiency for cloud computing system
based on predictive optimization, Journal of
Parallel and Distributed Computing.

[28] W. Zhu, Y. Zhuang, L. Zhang, A three-
dimensional virtual resource scheduling method
for energy saving in cloud computing, Future
Generation Computer Systems 69 (2017) 66–
74.

[29] A. Beloglazov, R. Buyya, Energy efficient re-
source management in virtualized cloud data
centers, in: Proceedings of the 2010 10th
IEEE/ACM international conference on clus-
ter, cloud and grid computing, IEEE Computer
Society, 2010, pp. 826–831.

[30] A. Quarati, A. Clematis, A. Galizia,
D. D Agostino, Hybrid clouds brokering:
business opportunities, qos and energy-saving
issues, Simulation Modelling Practice and
Theory 39 (2013) 121–134.

[31] S. K. Garg, C. S. Yeo, A. Anandasivam,
R. Buyya, Environment-conscious scheduling of
hpc applications on distributed cloud-oriented
data centers, Journal of Parallel and Dis-
tributed Computing 71 (6) (2011) 732–749.

[32] K. Gai, M. Qiu, H. Zhao, L. Tao, Z. Zong,
Dynamic energy-aware cloudlet-based mobile
cloud computing model for green computing,
Journal of Network and Computer Applications
59 (2016) 46–54.

[33] Y. Ding, X. Qin, L. Liu, T. Wang, Energy effi-
cient scheduling of virtual machines in cloud
with deadline constraint, Future Generation
Computer Systems 50 (2015) 62–74.

[34] N. Kim, J. Cho, E. Seo, Energy-credit sched-
uler: an energy-aware virtual machine sched-
uler for cloud systems, Future Generation Com-
puter Systems 32 (2014) 128–137.

[35] T. Van Do, C. Rotter, Comparison of schedul-
ing schemes for on-demand iaas requests, Jour-
nal of Systems and Software 85 (6) (2012) 1400–
1408.

[36] J. Hu, J. Gu, G. Sun, T. Zhao, A schedul-
ing strategy on load balancing of virtual ma-
chine resources in cloud computing environ-
ment, in: Parallel Architectures, Algorithms
and Programming (PAAP), 2010 Third Inter-
national Symposium on, IEEE, 2010, pp. 89–
96.

[37] M. Dabbagh, B. Hamdaoui, M. Guizani,
A. Rayes, Energy-efficient resource allocation
and provisioning framework for cloud data cen-
ters, IEEE Transactions on Network and Ser-
vice Management 12 (3) (2015) 377–391.

[38] Akamai, Web Page.
URL https://www.akamai.com/

[39] D. Breitgand, A. Epstein, Improving consolida-
tion of virtual machines with risk-aware band-
width oversubscription in compute clouds, in:
INFOCOM, 2012 Proceedings IEEE, IEEE,
2012, pp. 2861–2865.

[40] S. Rampersaud, D. Grosu, Sharing-aware on-
line virtual machine packing in heterogeneous
resource clouds, IEEE Transactions on Parallel
and Distributed Systems.

[41] O. Biran, A. Corradi, M. Fanelli, L. Foschini,
A. Nus, D. Raz, E. Silvera, A stable network-
aware vm placement for cloud systems, in:
Cluster, Cloud and Grid Computing (CCGrid),
2012 12th IEEE/ACM International Sympo-
sium on, IEEE, 2012, pp. 498–506.

[42] R. Yu, G. Xue, X. Zhang, D. Li, Survivable
and bandwidth-guaranteed embedding of vir-
tual clusters in cloud data centers, in: IEEE
INFOCOM, 2017.

[43] J. Bi, H. Yuan, M. Tie, W. Tan, Sla-based op-
timisation of virtualised resource for multi-tier
web applications in cloud data centres, Enter-
prise Information Systems 9 (7) (2015) 743–
767.

[44] P. Kondikoppa, C.-H. Chiu, C. Cui, L. Xue, S.-
J. Park, Network-aware scheduling of mapre-
duce framework ondistributed clusters over
high speed networks, in: Proceedings of the

17

https://www.akamai.com/
https://www.akamai.com/

2012 workshop on Cloud services, federation,
and the 8th open cirrus summit, ACM, 2012,
pp. 39–44.

[45] F. Lucrezia, G. Marchetto, F. Risso, V. Vercel-
lone, Introducing network-aware scheduling ca-
pabilities in openstack, in: Network Softwariza-
tion (NetSoft), 2015 1st IEEE Conference on,
IEEE, 2015, pp. 1–5.

[46] H. Yuan, J. Bi, W. Tan, M. Zhou, B. H. Li,
J. Li, Ttsa: An effective scheduling approach
for delay bounded tasks in hybrid clouds, IEEE
transactions on cybernetics 47 (11) (2017)
3658–3668.

[47] H. Yuan, J. Bi, W. Tan, B. H. Li, Tempo-
ral task scheduling with constrained service de-
lay for profit maximization in hybrid clouds.,
IEEE Trans. Automation Science and Engi-
neering 14 (1) (2017) 337–348.

[48] L. Zuo, L. Shu, S. Dong, C. Zhu, T. Hara,
A multi-objective optimization scheduling
method based on the ant colony algorithm in
cloud computing, IEEE Access 3 (2015) 2687–
2699.

[49] V. Arabnejad, K. Bubendorfer, Cost effec-
tive and deadline constrained scientific work-
flow scheduling for commercial clouds, in:
Network Computing and Applications (NCA),
2015 IEEE 14th International Symposium on,
IEEE, 2015, pp. 106–113.

[50] V. Arabnejad, K. Bubendorfer, B. Ng, A
budget-aware algorithm for scheduling scien-
tific workflows in cloud, in: High Performance
Computing and Communications; IEEE 14th
International Conference on Smart City; IEEE
2nd International Conference on Data Science
and Systems (HPCC/SmartCity/DSS), 2016
IEEE 18th International Conference on, IEEE,
2016, pp. 1188–1195.

[51] H. Yuan, J. Bi, W. Tan, B. H. Li, Cawsac:
Cost-aware workload scheduling and admission
control for distributed cloud data centers, IEEE
Transactions on Automation Science and Engi-
neering 13 (2) (2016) 976–985.

[52] H. Yuan, J. Bi, M. Zhou, K. Sedraoui,
Warm: Workload-aware multi-application task

scheduling for revenue maximization in sdn-
based cloud data center, IEEE Access 6 (2018)
645–657.

[53] M. H. Ghahramani, M. Zhou, C. T. Hon, To-
ward cloud computing qos architecture: Anal-
ysis of cloud systems and cloud services,
IEEE/CAA Journal of Automatica Sinica 4 (1)
(2017) 6–18.

[54] A. J. Younge, G. von Laszewski, L. Wang,
S. Lopez-Alarcon, W. Carithers, Efficient re-
source management for cloud computing en-
vironments, in: International Conference on
Green Computing, 2010, pp. 357–364. doi:

10.1109/GREENCOMP.2010.5598294.

[55] J. Bi, H. Yuan, W. Tan, B. H. Li, Trs: Tempo-
ral request scheduling with bounded delay as-
surance in a green cloud data center, Informa-
tion Sciences 360 (2016) 57–72.

[56] P. Zhang, M. Zhou, Dynamic cloud task
scheduling based on a two-stage strategy, IEEE
Transactions on Automation Science and Engi-
neering 15 (2) (2018) 772–783.

[57] L. Wu, S. K. Garg, R. Buyya, Sla-based admis-
sion control for a software-as-a-service provider
in cloud computing environments, Journal of
Computer and System Sciences 78 (5) (2012)
1280–1299.

[58] Y. C. Lee, C. Wang, A. Y. Zomaya, B. B. Zhou,
Profit-driven scheduling for cloud services with
data access awareness, Journal of Parallel and
Distributed Computing 72 (4) (2012) 591–602.

[59] I. Ari, N. Muhtaroglu, Design and implementa-
tion of a cloud computing service for finite el-
ement analysis, Advances in Engineering Soft-
ware 60 (2013) 122–135.

[60] V. Arabnejad, K. Bubendorfer, B. Ng, Schedul-
ing deadline constrained scientific workflows on
dynamically provisioned cloud resources, Fu-
ture Generation Computer Systems.

[61] R. Van den Bossche, K. Vanmechelen,
J. Broeckhove, Online cost-efficient scheduling
of deadline-constrained workloads on hybrid
clouds, Future Generation Computer Systems
29 (4) (2013) 973–985.

18

https://doi.org/10.1109/GREENCOMP.2010.5598294
https://doi.org/10.1109/GREENCOMP.2010.5598294

[62] A. Thomas, G. Krishnalal, V. J. Raj, Credit
based scheduling algorithm in cloud comput-
ing environment, Procedia Computer Science
46 (2015) 913–920.

[63] D. C. Erdil, Autonomic cloud resource sharing
for intercloud federations, Future Generation
Computer Systems 29 (7) (2013) 1700–1708.

[64] H. Li, H. Zhu, G. Ren, H. Wang, H. Zhang,
L. Chen, Energy-aware scheduling of workflow
in cloud center with deadline constraint, in:
Computational Intelligence and Security (CIS),
2016 12th International Conference on, IEEE,
2016, pp. 415–418.

[65] B. Xu, C. Zhao, E. Hu, B. Hu, Job scheduling
algorithm based on berger model in cloud en-
vironment, Advances in Engineering Software
42 (7) (2011) 419–425.

[66] G. Jasso, The theory of the distributive-justice
force in human affairs: Analyzing the three
central questions, in: Sociological theories in
progress: New formulations, Sage, 1989.

[67] M. E. Fr̂ıncu, Scheduling highly available ap-
plications on cloud environments, Future Gen-
eration Computer Systems 32 (2014) 138–153.

[68] H. Yuan, J. Bi, M. Zhou, A. C. Ammari, Time-
aware multi-application task scheduling with
guaranteed delay constraints in green data cen-
ter, IEEE Transactions on Automation Science
and Engineering 15 (3).

[69] S. Malik, F. Huet, D. Caromel, Reliability
aware scheduling in cloud computing, in: In-
ternet Technology And Secured Transactions,
2012 International Conference for, IEEE, 2012,
pp. 194–200.

[70] W. Jing, Y. Liu, H. Shao, Reliability-aware dag
scheduling with primary-backup in cloud com-
puting, International Journal of Computer Ap-
plications in Technology 52 (1) (2015) 86–93.

[71] M. S. A. Latiff, S. H. H. Madni, M. Abdullahi,
et al., Fault tolerance aware scheduling tech-
nique for cloud computing environment using
dynamic clustering algorithm, Neural Comput-
ing and Applications (2016) 1–15.

[72] X. Tang, W. Tan, Energy-efficient reliability-
aware scheduling algorithm on heterogeneous

systems, Scientific Programming 2016 (2016)
14.

[73] Z. Afoulki, A. Bousquet, J. Rouzaud-Cornabas,
A security-aware scheduler for virtual machines
on iaas clouds, Report 2011.

[74] B. K. Chejerla, S. K. Madria, Qos guarantee-
ing robust scheduling in attack resilient cloud
integrated cyber physical system, Future Gen-
eration Computer Systems.

[75] R. Kashyap, D. P. Vidyarthi, Security-aware
real-time scheduling for hypervisors, in: Com-
putational Science and Engineering (CSE),
2014 IEEE 17th International Conference on,
IEEE, 2014, pp. 1520–1527.

[76] S. Shetty, X. Yuchi, M. Song, Security-aware
virtual machine placement in cloud data cen-
ter, in: Moving Target Defense for Distributed
Systems, Springer, 2016, pp. 13–24.

[77] C. Liu, X. Zhang, C. Yang, J. Chen, Ccbke ses-
sion key negotiation for fast and secure schedul-
ing of scientific applications in cloud com-
puting, Future Generation Computer Systems
29 (5) (2013) 1300–1308.

[78] L. Zeng, B. Veeravalli, X. Li, Saba: A security-
aware and budget-aware workflow scheduling
strategy in clouds, Journal of parallel and Dis-
tributed computing 75 (2015) 141–151.

[79] W. Wang, G. Zeng, D. Tang, J. Yao, Cloud-dls:
Dynamic trusted scheduling for cloud comput-
ing, Expert Systems with Applications 39 (3)
(2012) 2321–2329.

[80] I. Bilogrevic, M. Jadliwala, P. Kumar, S. S.
Walia, J.-P. Hubaux, I. Aad, V. Niemi, Meet-
ings through the cloud: privacy-preserving
scheduling on mobile devices, Journal of Sys-
tems and Software 84 (11) (2011) 1910–1927.

[81] S. Pandey, L. Wu, S. M. Guru, R. Buyya, A
particle swarm optimization-based heuristic for
scheduling workflow applications in cloud com-
puting environments, in: Advanced informa-
tion networking and applications (AINA), 2010
24th IEEE international conference on, IEEE,
2010, pp. 400–407.

[82] M. Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee,
E.-G. Talbi, A. Y. Zomaya, D. Tuyttens, A

19

parallel bi-objective hybrid metaheuristic for
energy-aware scheduling for cloud computing
systems, Journal of Parallel and Distributed
Computing 71 (11) (2011) 1497–1508.

[83] J. Gasior, F. Seredyński, Metaheuristic ap-
proaches to multiobjective job scheduling in
cloud computing systems, in: Cloud Comput-
ing Technology and Science (CloudCom), 2016
IEEE International Conference on, IEEE, 2016,
pp. 222–229.

[84] C. Mateos, E. Pacini, C. G. Garino, An aco-
inspired algorithm for minimizing weighted
flowtime in cloud-based parameter sweep ex-
periments, Advances in Engineering Software
56 (2013) 38–50.

[85] D. B. LD, P. V. Krishna, Honey bee behavior
inspired load balancing of tasks in cloud com-
puting environments, Applied Soft Computing
13 (5) (2013) 2292–2303.

[86] G. Kousiouris, T. Cucinotta, T. Varvarigou,
The effects of scheduling, workload type and
consolidation scenarios on virtual machine per-
formance and their prediction through opti-
mized artificial neural networks, Journal of Sys-
tems and Software 84 (8) (2011) 1270–1291.

[87] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang,
J. Wang, Cost-efficient task scheduling for ex-
ecuting large programs in the cloud, Parallel
Computing 39 (4) (2013) 177–188.

[88] S. Abrishami, M. Naghibzadeh, D. H. Epema,
Deadline-constrained workflow scheduling algo-
rithms for infrastructure as a service clouds,
Future Generation Computer Systems 29 (1)
(2013) 158–169.

[89] K. Bousselmi, Z. Brahmi, M. M. Gammoudi,
Qos-aware scheduling of workflows in cloud
computing environments, in: Advanced Infor-
mation Networking and Applications (AINA),
2016 IEEE 30th International Conference on,
IEEE, 2016, pp. 737–745.

[90] Amazon, Job scheduling.
URL https://docs.aws.amazon.com/batch/

latest/userguide/job_scheduling.html

[91] Microsoft Azure, Big compute.
URL https://azure.microsoft.com/en-us/

solutions/big-compute/

[92] Google, Hpc perfomance computing, Web
Page.
URL https://cloud.google.com/

solutions/hpc/

[93] Pod hpc cloud (2019).
URL https://www.penguincomputing.com/

pod-hpc-cloud

[94] Sabalcore (2019).
URL http://www.sabalcore.com/

[95] Bursting hpc (2019).
URL https://insidehpc.com/2018/04/

universities-step-cloud-bursting/

[96] Slurm workload manager (2018).
URL https://slurm.schedmd.com/

[97] Univa (2018).
URL http://www.univa.com/

[98] PBS, Pbs pro user guide, Online Manual.
URL https://www.pbsworks.com/pdfs/

PBSUserGuide14.2.pdf

[99] IBM, Lsf job dependencies, Manual.
URL https://www.ibm.com/support/

knowledgecenter/en/SSETD4_9.1.3/lsf_

admin/job_dep_sched.html

[100] Adaptive Computing, Moab job dependencies.
URL http://docs.adaptivecomputing.

com/mwm/7-2-8/Content/topics/

jobAdministration/jobdependencies.html

[101] S. Krishnan, M. Tatineni, C. Baru, myhadoop-
hadoop-on-demand on traditional hpc re-
sources, San Diego Supercomputer Center
Technical Report TR-2011-2, University of Cal-
ifornia, San Diego.

[102] San diego supercomputer center (2019).
URL https://www.sdsc.edu/support/user_

guides/tutorials/hadoop.html

[103] Chameleoncloud (2019).
URL https://www.chameleoncloud.org/

[104] Openstack ironic (2019).
URL https://docs.openstack.org/ironic/

latest/

[105] Ibm bare metal (2019).
URL https://www.ibm.com/cloud/bare-

metal-servers

20

https://docs.aws.amazon.com/batch/latest/userguide/job_scheduling.html
https://docs.aws.amazon.com/batch/latest/userguide/job_scheduling.html
https://docs.aws.amazon.com/batch/latest/userguide/job_scheduling.html
https://azure.microsoft.com/en-us/solutions/big-compute/
https://azure.microsoft.com/en-us/solutions/big-compute/
https://azure.microsoft.com/en-us/solutions/big-compute/
https://cloud.google.com/solutions/hpc/
https://cloud.google.com/solutions/hpc/
https://cloud.google.com/solutions/hpc/
https://www.penguincomputing.com/pod-hpc-cloud
https://www.penguincomputing.com/pod-hpc-cloud
https://www.penguincomputing.com/pod-hpc-cloud
http://www.sabalcore.com/
http://www.sabalcore.com/
https://insidehpc.com/2018/04/universities-step-cloud-bursting/
https://insidehpc.com/2018/04/universities-step-cloud-bursting/
https://insidehpc.com/2018/04/universities-step-cloud-bursting/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
http://www.univa.com/
http://www.univa.com/
https://www.pbsworks.com/pdfs/PBSUserGuide14.2.pdf
https://www.pbsworks.com/pdfs/PBSUserGuide14.2.pdf
https://www.pbsworks.com/pdfs/PBSUserGuide14.2.pdf
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_admin/job_dep_sched.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_admin/job_dep_sched.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_admin/job_dep_sched.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_admin/job_dep_sched.html
http://docs.adaptivecomputing.com/mwm/7-2-8/Content/topics/jobAdministration/jobdependencies.html
http://docs.adaptivecomputing.com/mwm/7-2-8/Content/topics/jobAdministration/jobdependencies.html
http://docs.adaptivecomputing.com/mwm/7-2-8/Content/topics/jobAdministration/jobdependencies.html
http://docs.adaptivecomputing.com/mwm/7-2-8/Content/topics/jobAdministration/jobdependencies.html
https://www.sdsc.edu/support/user_guides/tutorials/hadoop.html
https://www.sdsc.edu/support/user_guides/tutorials/hadoop.html
https://www.sdsc.edu/support/user_guides/tutorials/hadoop.html
https://www.chameleoncloud.org/
https://www.chameleoncloud.org/
https://docs.openstack.org/ironic/latest/
https://docs.openstack.org/ironic/latest/
https://docs.openstack.org/ironic/latest/
https://www.ibm.com/cloud/bare-metal-servers
https://www.ibm.com/cloud/bare-metal-servers
https://www.ibm.com/cloud/bare-metal-servers

[106] Aws (2019).
URL https://aws.amazon.com/about-aws/

whats-new/2019/02/introducing-five-

new-amazon-ec2-bare-metal-instances/

[107] Rackspace (2019).
URL https://www.rackspace.com/en-

us/cloud/servers/onmetal

[108] E. Deelman, G. Singh, M.-H. Su, J. Blythe,
Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B.
Berriman, J. Good, et al., Pegasus: A frame-
work for mapping complex scientific workflows
onto distributed systems, Scientific Program-
ming 13 (3) (2005) 219–237.

[109] E. Deelman, J. Blythe, Y. Gil, C. Kessel-
man, G. Mehta, S. Patil, M.-H. Su, K. Vahi,
M. Livny, Pegasus: Mapping scientific work-
flows onto the grid, in: Grid Computing,
Springer, 2004, pp. 11–20.

[110] D. Thain, T. Tannenbaum, M. Livny, Dis-
tributed computing in practice: the condor ex-
perience, Concurrency and computation: prac-
tice and experience 17 (2-4) (2005) 323–356.

[111] G. von Laszewski, M. Hategan, Work-
flow concepts of the java cog kit, J.
Grid Comput. 3 (3-4) (2005) 239–258.
doi:10.1007/s10723-005-9013-5.
URL https://doi.org/10.1007/s10723-

005-9013-5

[112] G. von Laszewski, I. Foster, J. Gawor, Cog kits:
A bridge between commodity distributed com-
puting and high-performance grids, in: Pro-
ceedings of the ACM 2000 Conference on Java
Grande, JAVA ’00, ACM, New York, NY,
USA, 2000, pp. 97–106. doi:10.1145/337449.
337491.
URL http://doi.acm.org/10.1145/337449.

337491

[113] G. von Laszewski, M. Hategan, D. Kodeboyina,
Grid workflow with the java cog kit, in: I. J.
Taylor, E. Deelman, D. B. Gannon, M. Shields
(Eds.), Workflows for E-science: Scientific
Workflows for Grids, Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2007.
URL https://laszewski.github.io/

papers/vonLaszewski-workflow-book.pdf

[114] G. von Laszewski, J. Gawor, C. J. Peña, I. Fos-
ter, Infogram: A grid service that supports

both information queries and job execution,
in: Proceedings of the 11th IEEE International
Symposium on High Performance Distributed
Computing, HPDC ’02, IEEE Computer Soci-
ety, Washington, DC, USA, 2002, pp. 333–.
URL http://dl.acm.org/citation.cfm?id=

822086.823347

[115] T. Oinn, M. Addis, J. Ferris, D. Mar-
vin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, et al.,
Taverna: a tool for the composition and en-
actment of bioinformatics workflows, Bioinfor-
matics 20 (17) (2004) 3045–3054.

[116] W. Tan, P. Missier, I. Foster, R. Madduri,
D. De Roure, C. Goble, A comparison of us-
ing taverna and bpel in building scientific work-
flows: the case of cagrid, Concurrency and
Computation: Practice and Experience 22 (9)
(2010) 1098–1117.

[117] J. Yu, R. Buyya, A taxonomy of scientific work-
flow systems for grid computing, ACM Sigmod
Record 34 (3) (2005) 44–49.

[118] Univa, Grid engine manual, Online Manual.
URL http://www.univa.com/resources/

files/univa_user_guide_univa__grid_

engine_854.pdf

[119] Amazon ec2 (2015).
URL https://aws.amazon.com/ec2/

[120] Aws instance scheduler (2019).
URL https://aws.amazon.com/solutions/

instance-scheduler/

[121] Azure scheduler (2019).
URL https://azure.microsoft.com/en-in/

services/scheduler/

[122] Rackspace (2016).
URL https://www.rackspace.com/en-

in/why-rackspace

[123] Google app engine (2018).
URL https://cloud.google.com/

appengine/docs/

[124] Microsoft azure (2014).
URL https://azure.microsoft.com/en-in/

services/scheduler/

21

https://aws.amazon.com/about-aws/whats-new/2019/02/introducing-five-new-amazon-ec2-bare-metal-instances/
https://aws.amazon.com/about-aws/whats-new/2019/02/introducing-five-new-amazon-ec2-bare-metal-instances/
https://aws.amazon.com/about-aws/whats-new/2019/02/introducing-five-new-amazon-ec2-bare-metal-instances/
https://aws.amazon.com/about-aws/whats-new/2019/02/introducing-five-new-amazon-ec2-bare-metal-instances/
https://www.rackspace.com/en-us/cloud/servers/onmetal
https://www.rackspace.com/en-us/cloud/servers/onmetal
https://www.rackspace.com/en-us/cloud/servers/onmetal
https://doi.org/10.1007/s10723-005-9013-5
https://doi.org/10.1007/s10723-005-9013-5
https://doi.org/10.1007/s10723-005-9013-5
https://doi.org/10.1007/s10723-005-9013-5
https://doi.org/10.1007/s10723-005-9013-5
http://doi.acm.org/10.1145/337449.337491
http://doi.acm.org/10.1145/337449.337491
http://doi.acm.org/10.1145/337449.337491
https://doi.org/10.1145/337449.337491
https://doi.org/10.1145/337449.337491
http://doi.acm.org/10.1145/337449.337491
http://doi.acm.org/10.1145/337449.337491
https://laszewski.github.io/papers/vonLaszewski-workflow-book.pdf
https://laszewski.github.io/papers/vonLaszewski-workflow-book.pdf
https://laszewski.github.io/papers/vonLaszewski-workflow-book.pdf
http://dl.acm.org/citation.cfm?id=822086.823347
http://dl.acm.org/citation.cfm?id=822086.823347
http://dl.acm.org/citation.cfm?id=822086.823347
http://dl.acm.org/citation.cfm?id=822086.823347
http://www.univa.com/resources/files/univa_user_guide_univa__grid_engine_854.pdf
http://www.univa.com/resources/files/univa_user_guide_univa__grid_engine_854.pdf
http://www.univa.com/resources/files/univa_user_guide_univa__grid_engine_854.pdf
http://www.univa.com/resources/files/univa_user_guide_univa__grid_engine_854.pdf
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/solutions/instance-scheduler/
https://aws.amazon.com/solutions/instance-scheduler/
https://aws.amazon.com/solutions/instance-scheduler/
https://azure.microsoft.com/en-in/services/scheduler/
https://azure.microsoft.com/en-in/services/scheduler/
https://azure.microsoft.com/en-in/services/scheduler/
https://www.rackspace.com/en-in/why-rackspace
https://www.rackspace.com/en-in/why-rackspace
https://www.rackspace.com/en-in/why-rackspace
https://cloud.google.com/appengine/docs/
https://cloud.google.com/appengine/docs/
https://cloud.google.com/appengine/docs/
https://azure.microsoft.com/en-in/services/scheduler/
https://azure.microsoft.com/en-in/services/scheduler/
https://azure.microsoft.com/en-in/services/scheduler/

[125] Cloud sigma (2016).
URL https://www.cloudsigma.com/

features/

[126] Cloud metrics (2019).
URL https://www.rightscale.com/

about-cloud-management/cloud-cost-

optimization/cloud-pricing-comparison

[127] Containers (2018).
URL https://www.digitalocean.com/

community/tutorials/the-docker-

ecosystem-scheduling-and-orchestration

[128] M. D. de Assuncao, A. da Silva Veith,
R. Buyya, Distributed data stream processing
and edge computing: A survey on resource elas-
ticity and future directions, Journal of Network
and Computer Applications 103 (2018) 1–17.

[129] Docker swarm engine (2018).
URL https://docs.docker.com/engine/

swarm/manage-nodes

[130] Docker swarm (2018).
URL https://semaphoreci.com/community/

tutorials/scheduling-services-on-a-

docker-swarm-mode-cluster

[131] B. Hindman, A. Konwinski, M. Zaharia, A. Gh-
odsi, A. D. Joseph, R. H. Katz, S. Shenker,
I. Stoica, Mesos: A platform for fine-grained
resource sharing in the data center., in: NSDI,
Vol. 11, 2011, pp. 22–22.

[132] Mesos (2018).
URL http://mesos.apache.org/getting-

started/

[133] C. Guerrero, I. Lera, C. Juiz, Genetic algorithm
for multi-objective optimization of container al-
location in cloud architecture, Journal of Grid
Computing 16 (1) (2018) 113–135.

[134] W. A. Hanafy, A. E. Mohamed, S. A. Salem,
Novel selection policies for container-based
cloud deployment models, in: Computer En-
gineering Conference (ICENCO), 2017 13th In-
ternational, IEEE, 2017, pp. 237–242.

[135] V. Medel, C. Tolón, U. Arronategui,
R. Tolosana-Calasanz, J. Á. Bañares, O. F.
Rana, Client-side scheduling based on ap-
plication characterization on kubernetes, in:
International Conference on the Economics of

Grids, Clouds, Systems, and Services, Springer,
2017, pp. 162–176.

[136] P. Dziurzanski, L. Indrusiak, Value-based al-
location of docker containers, in: Proceedings
of the 26th Euromicro International Conference
on Parallel, Distributed and Network-Based
Processing, York.

[137] Flocker, Flocker (2018).
URL https://docs.clusterhq.com/en/1.0.

3/

[138] Nomad (2018).
URL https://www.nomadproject.io/docs/

internals/scheduling.html

[139] G. von Laszewski, G. C. Fox, F. Wang, Cloud
computing (Apr. 2019).
URL https://github.com/cloudmesh-

community/book/blob/master/

vonLaszewski-cloud.epub

[140] Serverlesscomputing (2018).
URL https://www.apriorit.com/dev-blog/

551-serverless-computing

[141] S. Nastic, T. Rausch, O. Scekic, S. Dustdar,
M. Gusev, B. Koteska, M. Kostoska, B. Jaki-
movski, S. Ristov, R. Prodan, A serverless real-
time data analytics platform for edge comput-
ing, IEEE Internet Computing 21 (4) (2017)
64–71.

[142] O. Alqaryouti, N. Siyam, Serverless comput-
ing and scheduling tasks on cloud: A review,
American Scientific Research Journal for Engi-
neering, Technology, and Sciences (ASRJETS)
40 (1) (2018) 235–247.

[143] G. C. Fox, V. Ishakian, V. Muthusamy,
A. Slominski, Status of serverless computing
and function-as-a-service (faas) in industry and
research, arXiv preprint arXiv:1708.08028.

[144] Aws lambda (2018).
URL https://aws.amazon.com/lambda/

[145] Google, Google cloud functions (2018).
URL https://cloud.google.com/

functions/

[146] Azure functions (Nov. 2018).
URL https://azure.microsoft.com/en-in/

services/functions/

22

https://www.cloudsigma.com/features/
https://www.cloudsigma.com/features/
https://www.cloudsigma.com/features/
https://www.rightscale.com/about-cloud-management/cloud-cost-optimization/cloud-pricing-comparison
https://www.rightscale.com/about-cloud-management/cloud-cost-optimization/cloud-pricing-comparison
https://www.rightscale.com/about-cloud-management/cloud-cost-optimization/cloud-pricing-comparison
https://www.rightscale.com/about-cloud-management/cloud-cost-optimization/cloud-pricing-comparison
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-scheduling-and-orchestration
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-scheduling-and-orchestration
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-scheduling-and-orchestration
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-scheduling-and-orchestration
https://docs.docker.com/engine/swarm/manage-nodes
https://docs.docker.com/engine/swarm/manage-nodes
https://docs.docker.com/engine/swarm/manage-nodes
https://semaphoreci.com/community/tutorials/scheduling-services-on-a-docker-swarm-mode-cluster
https://semaphoreci.com/community/tutorials/scheduling-services-on-a-docker-swarm-mode-cluster
https://semaphoreci.com/community/tutorials/scheduling-services-on-a-docker-swarm-mode-cluster
https://semaphoreci.com/community/tutorials/scheduling-services-on-a-docker-swarm-mode-cluster
http://mesos.apache.org/getting-started/
http://mesos.apache.org/getting-started/
http://mesos.apache.org/getting-started/
https://docs.clusterhq.com/en/1.0.3/
https://docs.clusterhq.com/en/1.0.3/
https://docs.clusterhq.com/en/1.0.3/
https://www.nomadproject.io/docs/internals/scheduling.html
https://www.nomadproject.io/docs/internals/scheduling.html
https://www.nomadproject.io/docs/internals/scheduling.html
https://github.com/cloudmesh-community/book/blob/master/vonLaszewski-cloud.epub
https://github.com/cloudmesh-community/book/blob/master/vonLaszewski-cloud.epub
https://github.com/cloudmesh-community/book/blob/master/vonLaszewski-cloud.epub
https://github.com/cloudmesh-community/book/blob/master/vonLaszewski-cloud.epub
https://github.com/cloudmesh-community/book/blob/master/vonLaszewski-cloud.epub
https://www.apriorit.com/dev-blog/551-serverless-computing
https://www.apriorit.com/dev-blog/551-serverless-computing
https://www.apriorit.com/dev-blog/551-serverless-computing
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/

[147] Openwhisk (2018).
URL https://openwhisk.apache.org/

[148] P. Delgado, D. Didona, F. Dinu,
W. Zwaenepoel, Job-aware scheduling in
eagle: Divide and stick to your probes, in: Pro-
ceedings of the Seventh ACM Symposium on
Cloud Computing, ACM, 2016, pp. 497–509.

[149] X. Ren, G. Ananthanarayanan, A. Wierman,
M. Yu, Hopper: Decentralized speculation-
aware cluster scheduling at scale, in: ACM SIG-
COMM Computer Communication Review,
Vol. 45, ACM, 2015, pp. 379–392.

[150] R. Grandl, G. Ananthanarayanan, S. Kandula,
S. Rao, A. Akella, Multi-resource packing for
cluster schedulers, ACM SIGCOMM Computer
Communication Review 44 (4) (2015) 455–466.

[151] B. Ghit, N. Yigitbasi, A. Iosup, D. Epema, Bal-
anced resource allocations across multiple dy-
namic mapreduce clusters, in: ACM SIGMET-
RICS Performance Evaluation Review, Vol. 42,
ACM, 2014, pp. 329–341.

[152] M. Schwarzkopf, A. Konwinski, M. Abd-El-
Malek, J. Wilkes, Omega: flexible, scalable
schedulers for large compute clusters, in: Pro-
ceedings of the 8th ACM European Conference
on Computer Systems, ACM, 2013, pp. 351–
364.

[153] N. Andrade, W. Cirne, F. Brasileiro, P. Roisen-
berg, Ourgrid: An approach to easily assemble
grids with equitable resource sharing, in: Work-
shop on Job Scheduling Strategies for Parallel
Processing, Springer, 2003, pp. 61–86.

[154] W. Cirne, F. Brasileiro, N. Andrade, L. B.
Costa, A. Andrade, R. Novaes, M. Mowbray,
Labs of the world, unite!!!, Journal of Grid
Computing 4 (3) (2006) 225–246.

[155] K. Ousterhout, P. Wendell, M. Zaharia, I. Sto-
ica, Sparrow: distributed, low latency schedul-
ing, in: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Prin-
ciples, ACM, 2013, pp. 69–84.

[156] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, et al., Apache
hadoop yarn: Yet another resource negotiator,
in: Proceedings of the 4th annual Symposium
on Cloud Computing, ACM, 2013, p. 5.

[157] Hashicorp, Terraform, Web Page.
URL https://www.terraform.io/

[158] J. O. Gutierrez-Garcia, K. M. Sim, A family of
heuristics for agent-based elastic cloud bag-of-
tasks concurrent scheduling, Future Generation
Computer Systems 29 (7) (2013) 1682–1699.

[159] E. Torabzadeh, M. Zandieh, Cloud theory-
based simulated annealing approach for
scheduling in the two-stage assembly flowshop,
Advances in Engineering Software 41 (10)
(2010) 1238–1243.

[160] LSF (2018). [link].
URL https://www.ibm.com/support/

knowledgecenter/en/SSETD4_9.1.3/lsf_

foundations/lsf_introduction_to.html

[161] OpenPBS: The Portable Batch System Soft-
ware (2018).
URL https://www.pbspro.org/

[162] R. Henderson, Job Scheduling Under the
Portable Batch System, in: Proceedings of the
1995 Workshop on Job Scheduling Strategies
for Parallel Processing, Santa Barbara, CA,
USA, 1995.

[163] Moab (2019).
URL https://www.adaptivecomputing.com/

moab-hpc-basic-edition/

[164] Openstack (2018).
URL https://www.openstack.org/

[165] OpenNebula, Opennebula (2018).
URL https://opennebula.org/

[166] C. Guerrero, I. Lera, C. Juiz, Resource op-
timization of container orchestration: a case
study in multi-cloud microservices-based appli-
cations, The Journal of Supercomputing (2018)
1–28.

23

https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://www.terraform.io/
https://www.terraform.io/
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_foundations/lsf_introduction_to.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_foundations/lsf_introduction_to.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_foundations/lsf_introduction_to.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_foundations/lsf_introduction_to.html
https://www.pbspro.org/
https://www.pbspro.org/
https://www.pbspro.org/
https://www.adaptivecomputing.com/moab-hpc-basic-edition/
https://www.adaptivecomputing.com/moab-hpc-basic-edition/
https://www.adaptivecomputing.com/moab-hpc-basic-edition/
https://www.openstack.org/
https://www.openstack.org/
https://opennebula.org/
https://opennebula.org/

List of Tables

1 Comparison of Dynamic Scheduling Algorithms . 25
2 Comparison of Energy aware VM Placement based Scheduling Algorithms 26
3 Comparison of Network aware VM Placement based Scheduling Algorithms 27
4 Comparison of Cost based Scheduling Algorithms . 28
5 Comparison of Time based Scheduling Algorithms . 29
6 Comparison of Reliability based Scheduling Algorithms . 30
7 Comparison of Security based Scheduling Algorithms . 31
8 Comparison of Heuristic based Scheduling Algorithms . 32
9 Comparison of Different Batch Resource Management Systems 33
10 Comparison of Different IaaS Models . 34
11 Comparison of Container based Scheduling Algorithms . 35
12 Comparison of Different Resource Management Systems . 36

24

Table 1: Comparison of Dynamic Scheduling Algorithms
Author Basis Advantages Disadvantages Scheduling

techniques
Experimental
Scale

Experimental
Parameters

Taxonomy
Classifica-
tion

Sun et al. [19] Introduction of
a virtual data
center to solve
VM migration
issues

Low complexity Fixed band-with Heuristic algo-
rithm

Simulated envi-
ronment

VM migration
cost and time

Energy
based, en-
ergy source

Tighe et al. [18] Auto scaling al-
gorithm along-
side a dynamic
VM allocation
algorithm

Reduce a num-
ber of migra-
tions

No optimization
criteria

Rule based
heuristic

DC Sim Power, SLA, Mi-
grations

Energy
based, VM
migration

Keller et
al. [16]

Management of
data center re-
sources to re-
duce the man-
agement scope

Reducing the
overhead in
the data centre
management
network

High complexity Greedy algo-
rithm

DCSim Power, number
of migrations,
average number
of racks, active
hosts

Energy
based

Tighe et al. [17] Trade-off among
number of mi-
grations, SLA
violation and
power

Consider energy
and SLA

more bandwidth
usage

First fit algo-
rithm

DCSim Power consump-
tion, number of
migrations, SLA
violations

Energy-
based, PUE

Tordsson et
al. [20]

Optimized
placement of
applications
in multi-cloud
environments

Emphasized
on Price and
performance
in terms of
hardware con-
figuration, load
balancing

Ignored security
and energy effi-
ciency at time of
scheduling

Integer pro-
gramming
formulations

Amazon EC2 Throughput,
number of jobs

Compute-
resource
based, VM
based

Younge et
al. [54]

Power aware reduces cost slight reduction
in performance

heuristic on premise
cloud

power consump-
tion

Energy-
based,
VM-based

25

Table 2: Comparison of Energy aware VM Placement based Scheduling Algorithms
Author Basis Advantages Disadvantages Scheduling

techniques
Experimental
Scale

Experimental
Parameters

Taxonomy
Classification

Younge et
al. [54]

Power aware reduces cost slight reduction
in performance

heuristic on premise
cloud

power consump-
tion

Energy-based,
VM-based

Bi et al. [25] Dynamic
Scheduling
algorithm for
reducing energy
consumption

Focused on per-
formance and
energy cost

High complexity
due to virtual-
ized Data cen-
ters

meta heuristic
methods

Simulated envi-
ronment

Profit, CPU uti-
lization

Energy based,
Energy source

Zhu et
al. [28]

Data center bal-
ance while sav-
ing power con-
sumption

Improved man-
agement of VM
resource

High complexity Multi-
dimensional
vector bin pack-
ing problem
based heuristic

CloudSim SLA viola-
tions, Resource
utilization

Energy based,
Energy source

Duan et
al. [26]

Scheduling of
VM machines

Improved the
CPU load
prediction

No optimization Ant colony opti-
mization

CloudSim Energy Con-
sumption

Energy based,
Compute re-
source based,
VM

Li et al. [64] Scheduling
algorithm to
reduce energy
consumption
while meeting
the deadline
constraint

Focused on
energy con-
sumption

Ignored pro-
cessing power
energy con-
sumption, VM
migration

Heuristic
method

Simulated envi-
ronment

Energy con-
sumption

Energy based,
Energy source,
Compute re-
source based,
workflow

Keke et
al. [32]

Cloudlets for en-
ergy reduction

Reduced energy
consumption

No time consid-
eration

FCFS schedul-
ing policy

DECM-Sim Energy con-
sumption

Energy based
Green IT

Bui et
al. [27]

Balance be-
tween energy
efficiency and
quality of ser-
vice

Low complexity Ignored cost,
scalability

Greedy first fit
algorithm

Simulated Envi-
ronment

Energy, Mem-
ory, CPU

Energy based -
Energy source

Dabbagh et
al. [37]

Energy-aware
resource man-
agement deci-
sions

improved per-
formance

No optimization
criteria, high
complexity

K- means clus-
tering

Testbed Average CPU
and Network
utilization

energy source,
VM based

Ding et
al. [33]

Dynamic VMs
scheduling

Increased Pro-
cessing Capac-
ity

Ignored VM mi-
gration, Power
penalties of sta-
tus transitions
of processor

FCFS Simulated envi-
ronment

Deadline, En-
ergy consump-
tion

Energy source,
PUE

Calheiros et
al. [23]

Intelligent
scheduling com-
bined DVFS
capability

Improved en-
ergy efficiency

Ignored Net-
work and
Storage energy
consumption

Rank method Cloud Sim Energy con-
sumption

Energy source,
Compute re-
source based,
Job based

Kim et
al. [34]

VM energy
consumption
estimation
model

Reduced cost,
power consump-
tion

More complex
to implement,
Ignored time

Power aware
scheduling
algorithm

Xen 4.0 hypervi-
sor

Energy con-
sumption, error
rate

energy source,
VM based

Quarati et
al. [30]

Reservation of a
quota of private
resources

Reduced energy
consumption
and carbon
emission

Lacks imple-
mentation on a
real-world cloud
platform

Round robin al-
gorithm

Discrete Event
Simulator

User satisfac-
tion, energy
saving, energy
consumption

Energy source
and Compute
resource based
,VM

Bessis et
al. [24]

Improving com-
munication for
Distributed sys-
tems at the time
of scheduling

Improved sys-
tem perfor-
mance

High complexity Graph theory
concepts

SIMIC makespan,
latency times

Energy based,
PUE

Van Do et
al. in [35]

Interaction as-
pects between
on-demand
requests and
the alloca-
tion of virtual
machines

Reduced energy
consumption

No cost and
time optimiza-
tion

Power aware
scheduling
algorithm

Numerical Sim-
ulation

Average Energy
consumption,
average heat
emission

Computer re-
source based,
VM

Garg et
al. [31]

Optimal
scheduling
policies

Reduced energy
cost, energy
consumption

Ignored security Meta-scheduling
policies

Simulated envi-
ronment

Average energy
consumption,
average car-
bon emission,
arrival rate of
application

PUE, Job based

Beloglazov
et al. [29]

Enhancement
of resource
utilization by
re-allocation of
the resources.

Considered
different types
of workloads,
No prior infor-
mation about
applications

Ignored cost and
time

Heuristic algo-
rithm

CloudSim Energy, Average
SLA, migrations

Energ based En-
ergy source

26

Table 3: Comparison of Network aware VM Placement based Scheduling Algorithms
Author Basis Advantages Disadvantages scheduling

techniques
Experimental
Scale

Experimental
Parameters

Taxonomy
Classification

Yu et al. [42] Service provi-
sioning on IaaS
platform while
focusing on the
inter-connected
VMs.

High availability High complexity Heuristic algo-
rithm

Simulator Average VM
consumption
ratio, average
running time

VM based

Bi et
al. [43] [55]

Architecture for
self manage-
ment of data
centers

Considered tem-
poral request of
multi-tier web
applications

does not con-
sider security
parameters

Queuing ap-
proach

trace-driven
simulation

Cost compute re-
source based,
VM based

Rampersaud et
al. [40]

Used page-
sharing concept
to handle VM
Packing prob-
lem

Improvement
of memory
sharing dur-
ing allocation
decisions

High complexity Linear program-
ming technique

Simulated envi-
ronment

Memory reduc-
tion, number of
excess servers

Compute re-
source based

Lucrezia et
al. [45]

Investigated
OpenStack for
the deployment
of network
service graphs

Increased
throughput

Analyzing
time is more,
Ignored policy-
constraints in
order to define
administration
rules

Brute force al-
gorithm

KVM hypervi-
sors

VM locations,
traffic through-
put and latency

Compute
resource-VM
based

Biran et al. [41] Consideration
of traffic bursts
in deployed
services

Minimizing the
maximum load
ratio over all the
network

Ignored energy
consumption

Greedy heuristic
algorithm

Testbed Average packet
delivery delay ,
placement solv-
ing time

Compute re-
source VM
based

Kondikoppa et
al. [44]

To make
Hadoop sched-
uler aware of
network topol-
ogy

Improved data
locality

Ignored cost,
energy, security

FIFO Eucalyptus
based testbed

Execution
time, delay for
scheduling task

Compute-
resource based
workflow based

27

Table 4: Comparison of Cost based Scheduling Algorithms
Author Basis Advantages Disadvantages scheduling

techniques
Experimental
Scale

Experimental
Parameters

Taxonomy
Classification

Yuan et
al. [47] [46]

Emphasizing
profit maxi-
mization

handles service
delay bound

High complexity PSO and SA simulation envi-
ronment

Revenue Compute re-
source, Data
based, task,
latency, VM

Bi et
al. [43] [55]

Architecture for
self manage-
ment of data
centers

Considered tem-
poral request of
multi-tier web
applications

does not con-
sider security
parameters

Queuing ap-
proach

trace-driven
simulation

Cost compute re-
source based,
task based

Arabnejad et
al. arabne-
jad2015cost

Re-use of pre-
provisioned
instances for
scheduling

Less complexity Ignored security
and energy effi-
ciency

Deadline early
Tree algorithm

CloudSim Cost and dead-
line

compute re-
source based,
workflow based

Zuo et al. [48] Multi-objective
Task Scheduling

Improved per-
formance

Ignored energy
consumption

Ant colony opti-
mization

CloudSim Cost, makespan,
deadline viola-
tion rate

compute re-
source based,
task based

Ari et al. [59] Finite Element
Analysis cloud
service with a
focus on me-
chanical struc-
tural analysis,
performance
characterization
and job schedul-
ing issues

Throughput im-
provement and
resource utiliza-
tion

Ignored cost Adaptive algo-
rithm

Testbed Throughput and
time

compute-
resource based,
VM based

Wu et al. [57] VM usage effi-
ciency designed
utility function
by consider-
ing dynamic
VM deploying
time, processing
time and data
transfer time

Improved cost
saving

Does not sup-
port security
and energy
efficient

Admission
control and
scheduling
algorithm

CloudSim Average re-
sponse time,
total profit

compute re-
source based,
VM

Lee et al. [58] Personalized
features of the
user request and
the elasticity of
SLA properties

Reduced opera-
tional costs and
increase profits

Objectives con-
flict with each
other

binary integer
programming

CloudSim Average utiliza-
tion, average
net profit
rate, average
response time

Data based , ac-
cess type

28

Table 5: Comparison of Time based Scheduling Algorithms
Author Basis Advantages Disadvantages scheduling

techniques
Experimental
Scale

Experimental
Parameters

Taxonomy
Classification

Yuan et al. [68] Task scheduling
in green data
centers

Investigated
temporal varia-
tions

Ignored energy
consumption
and cost

PSO and SA Simulated Envi-
ronment

Delay bound
and time

Compute-
resource based,
task

Arabnejad et
al. [60]

Dynamically
provisioned
commercial
cloud environ-
ments

Evaluation of
task selection
algorithms re-
veals impact
of workflow
symmetry

High complexity Rank method CloudSim Response time,
Cost

Compute re-
source based
workflow

Thomas et
al. [62]

Task length
aware schedul-
ing

Lesser
makespan
and increased
resource utiliza-
tion

No comparison
with existing al-
gorithm

Min-min CloudSim Makespan Compute-
resource based,
Workflow

Frincu [67] A priory
scheduling
and searching
for an optimal
allocation of
components on
nodes in order
to ensure a
homogeneous
spread of com-
ponent types on
every node.

Minimizing the
application cost

Centralized
approach rep-
resents a single
point of failure

Nonlinear-
programming

Simulator plat-
form

Average load
per node, opti-
mal allocation,
reliability

Compute-
resource based,
VM

Erdil [63] Disseminated
information
as agents of
dissemina-
tion sources
for resource
scheduling

Availability
of resource
state, reduces
dissemination
overhead

Ignored cost as
parameters

Adaptive proxy
algorithm

Scalable simu-
lation network
framework

Query satisfac-
tion rates, ran-
dom walk hop
count limit

Compute-
resource based,
VM

van den Boss-
che et al.
in [61]

Deadline-based
workloads in
a hybrid cloud
setting

Minimize cost
and time

does not han-
dle multiple
workflows

hybrid schedul-
ing approach

Simulator Total Cost,
application
deadline met,
turnaround
time, data
transferred

Compute-
resource based,
Data based,
Task-based

Xu et al. [65] Berger model
and assign tasks
on optimal
resources to
meet user’s QoS
requirements

Optimal com-
pletion time

Ignored cost
and energy effi-
ciency, security

Resource alloca-
tion algorithm
and then fol-
lowed by job
scheduling

CloudSim Time, band-
width

Compute-
resource based ,
task

29

Table 6: Comparison of Reliability based Scheduling Algorithms
Author Basis Advantages Disadvantages scheduling

techniques
Experimental
Environments

Performance
matrices

Taxonomy
Classification

Abdulhamid et
al. [71]

Uncountable
numeric nodes
for resource in
clouds

Lower makespan No optimization League cham-
pionship algo-
rithm

CloudSim Failure ratio,
the failure slow-
down and the
performance
improvement
rate

Compute -
resource based,
Task based

Tang et al. [72] Reliability and
energy aware
task scheduling
architecture

To get good
trade off among
performance,
reliability, and
energy con-
sumption

No support for
cost optimiza-
tion

Heuristic
method

Discrete event
simulation
environment

Schedule length,
Energy con-
sumption,
Application
reliability

Energy based ,
energy source

Jing et al. [70] Model for fault-
tolerant aware
scheduling

Low complexity No cost, time
optimization

Adaptive secure
scheduling algo-
rithm

Simulated envi-
ronment

Reliability Compute-
resource based,
Job based

Malik et al. [69] Reliability
assessment
mechanism
for scheduling
resources

Reliability
assessment
algorithms
for general
applications
and real time
applications

No security
and energy
parameters
consideration

Max -min Amazon EC2
cloud

Fault tolerance,
time

Compute re-
source based,
Job based

30

Table 7: Comparison of Security based Scheduling Algorithms
Author Basis Advantages Disadvantages scheduling

techniques
Experimental
Scale

Experimental
Parameters

Taxonomy
Classification

Chejerla et
al. [74]

Scheduling of
resources in
cloud integrated
Cyber-physical
Systems

Consideration of
security, time

High complexity Heuristic algo-
rithm

Simulated envi-
ronment

Speed up,
resource utiliza-
tion, makespan

Compute-
resource and
Data based

Shetty et
al. [76]

VM placement
techniques to
reduce security
risks

Reduced com-
puting costs
and deployment
costs

No optimization
criteria

Heuristic algo-
rithm

Simulated envi-
ronment

Cost, security
risks

Compute-
resource based,
VM based

Zeng et al. [78] Scheduling
algorithm for
resource utiliza-
tion

Low complexity Ignored energy
consumption

Clustering and
prioritization al-
gorithm

Simulated envi-
ronment

Makespan and
speed up

Compute re-
source based-
workflow

Kashyap et
al. [75]

Secure aware
scheduling of
real time based
applications

Improved re-
sponse time and
overall security

High complexity Priority Algo-
rithm

Hypervisor Deadline, Secu-
rity

Compute-
resource based,
VM based

Liu et al. [77] Scheme for
security aware
scheduling

Reduced the
computational
load and execu-
tion time

No cost op-
timization
involved

Adaptive secure
scheduling algo-
rithm

KVM hyper-
visor

Time unit con-
sumed per com-
putational load

Compute-
resource based,
Workflow

Wang et al. [79] Uncountable
numeric nodes
for resource in
clouds

Provided
scheduling
of resources in
secure way

Ignored cost Bayesian algo-
rithm

CloudSim Trust value, av-
erage schedule
length

Compute-
resource based,
Task based

Afoulki et
al. [73]

Security risk
management in
a cloud

Less complexity Consolidation
issues while
implementing
policies

Greedy Algo-
rithm

Simulated envi-
ronment

VM placement
time

Compute-
resource based,
VM based

Bilogrevic et
al. [80]

Scheduling ser-
vices on the
cloud for mobile
devices

Enhanced Per-
formance

No support cost
optimization,
Ignores power
consumption by
the network

Privacy aware
scheduling
schema

Testbed Time, Data
exchanged,
privacy in
approach

Compute-
resource based,
VM based

31

Table 8: Comparison of Heuristic based Scheduling Algorithms
Author Basis Advantages Disadvantages scheduling

techniques
Experimental
Scale

Experimental
Parameters

Taxonomy
Classification

Gasior et
al. [83]

Parallel and dis-
tributed scheme
for scheduling
jobs

Multi-objective
optimization,
consideration of
security risks
also

No cost consid-
eration

Genetic algo-
rithm

Simulation
Testbed

Flow time,
makespan,
turnaround
time

compute re-
source based,
job based

Bousselm et
al. [89]

QoS based Consideration of
QoS parameters

High complexity Parallel Cat
Swarm Opti-
mization

Simulated envi-
ronment

Execution time,
execution and
storage cost,
availability of
resources and
data transmis-
sion time

Compute re-
source based,
workflow based

Cristian et
al. [84]

Scheduler for
job scheduling,
consider static
cloud

Minimize
weighted
flowtime and
makespan

does not han-
dle energy con-
sumption

Ant colony
optimization
and swarm
intelligence
approach

CloudSim makepan compute re-
source based,
job based

Abrishami et
al. [88]

Cost-optimized,
deadline-
constrained
execution of
workflows in
cloud. consid-
ered required
run-time and
data estimates
in order to op-
timize workflow
execution

Minimize execu-
tion cost with in
deadline

Ignored data
transfer time,
security

PCP algorithm Simulated envi-
ronment

Normalized cost Compute re-
source based,
workflow

Sen et al. [87] Cost-efficient
task-scheduling
algorithm using
two heuristic
strategies

Reduced mone-
tary costs

Ignored security Heuristic strate-
gies

Numerical
experiments

Makespan Compute re-
source based,
task based

Gutierrez-
Garcia et
al. [158]

Scheduling of
Bag-of-tasks
based on al-
location times
of virtualized
cloud resources

Makespan Ignored cost Heuristic algo-
rithm

Testbed Makepan, over-
head time

Compute-
resource based,
Job based

Babu [85] Based prior-
ity of tasks,
designed load
balancing algo-
rithm

Maximize
throughput

High opera-
tional complex-
ity

Honey Bee algo-
rithm

CloudSim Makespan,
Number of task
migrations

Compute re-
source based,
task based,
energy based

Kousiouris et
al. [86]

Virtual ma-
chines affect
the performance
of other VMs
executing on
the same node

Reduce perfor-
mance overhead

Lacks imple-
mentation on a
real-world cloud
platform

Genetic algo-
rithm

Simulated envi-
ronment

Degradation,
test score delay

compute re-
source based,
task based

Mezmaz et
al. [82]

Addressed the
precedence-
constrained
parallel applica-
tions for cloud
computing

Reduced energy
consumption

High complexity
of implementa-
tion and opera-
tion

Genetic algo-
rithm

Simulated envi-
ronment

Energy, speed
up

Compute re-
source based,
Job based

Torabzadeh et
al. [159]

Flowshow job
problem

Minimized
makespan and
mean comple-
tion time

Not considered
cost

Simulated an-
nealing

Simulated envi-
ronment

Computation
time

Compute re-
source based,
VM based

32

Table 9: Comparison of Different Batch Resource Management Systems
Framework Batch Fea-

tures
Bursting Containers Bare Metal Cloud Plat-

forms
Comment

Load Shar-
ing Facility
(LSF) [160]

policy driven,
backfill, ex-
clusive and
non-exclusive
access to com-
pute nodes

IBM Cloud,
AWS, Google
and Azure

Yes Yes ? cloud plat-
form

previously
OpenLava, IBM
Open Source ?

Slurm [?] policy driven,
backfill, ex-
clusive and
non-exclusive
access to com-
pute nodes

Amazon EC2,
Google Cloud
Platform

Yes ? Bare metal ? cloud plat-
from

Open Source,
popular

Open Portable
Batch System
(OpenPBS) [161,
162]

policy driven,
backfill, ex-
clusive and
non-exclusive
access to com-
pute nodes,
fault tolerant
master

AWS, Azure,
Google Cloud
Platform, Or-
acle Cloud
Platform

Yes ? Bare metal ? cloud plat-
from

Open Source

Moab [163] fairness policies,
dynamic priori-
ties, and exten-
sive reservations

AWS, Azure,
Telecom, Or-
acle, Google
Cloud

Yes Yes ? cloud plat-
from

? Open Source

Univa Grid En-
gine [?]

policy driven,
backfill, ex-
clusive and
non-exclusive
access to com-
pute nodes,
fault tolerant
master

AWS, Azure,
Google

yes ? Bare metal ? cloud plat-
form

previously SUN
Grid Engine,
Genias Codine

33

Table 10: Comparison of Different IaaS Models

Provider or
Framework

Pricing Database
RDS

Reliability Monitoring Base OS Programming
Framework

Amazon
EC2 [119]

Pay-as-you-
go or Yearly,
reserved, spot

My SQL, Ms
SQL, Oracle

Good Good Linux and win-
dows

Python, Java,
PHP, Ruby

Microsoft
Window
Azure [124]

Pay-as-you-go,
semester, year

Microsoft SQL
Database

Average Average Windows and
linux

Java, Php, .net

Rackspace [122] Pay-as-you-go MySQL Good Extensive Ubuntu Java, Python
Google App
Engine [123]

Pay as you go Cloud SQL Extensive good linux, free
BSD, windows

Python, Java,
PHP and Go,
Node.js

Cloud
Sigma [125]

Pay-as-you-go SQL Good Good Average Python, Java,
PHP, Python,
Ruby, Clojour

Openstack [164] Pay-as you go,
monthly

My SQL Good Extensive Linux, windows Python, Perl,
PHP,

Open Neb-
ula [165]

Subscription My SQL High Good Linux C,C++, Ruby,
java,

Future Grid
(discontin-
ued) [4, 5]

Free Academic User Choice Good Good Linux Openstack,
OpenCirrus,
Eucalyptus,
Cloudmesh

34

Table 11: Comparison of Container based Scheduling Algorithms
Author Basis Advantages Disadvantages Scheduling

techniques
Experimental
Scale

Experimental
Parameters

Taxonomy
Classifications

Guerrero et al.
[166]

Optimized
the deploy-
ment of micro
services-based
applications

Improved secu-
rity

High complexity Genetic algo-
rithm

Simulation envi-
ronment

Resource uti-
lization

Compute re-
source based,
Container

Guerrero et
al. [133]

Optimize physi-
cal machine uti-
lization

Increase re-
source utiliza-
tion

High complexity Genetic Algo-
rithm

Simulation envi-
ronment

Resource Uti-
lization , Per-
formance

Compute-
resource based,
Container

Dziurzanski et
al. [136]

Optimization of
the container al-
location

Easy to imple-
ment

Ignored network
optimization

Heuristic
method

Simulated envi-
ronment

Performance Compute-
resource based,
Container

Medel et
al. [135]

Scheduler for
minimizing
resource con-
tentions

Reduce resource
contention

Ignored Time
optimization

Priority algo-
rithm

Kubernetes Time Compute-
resource based,
Container

Hanaf et
al. [134]

Container and
host selection
policies

Improved SLA Highly complex Pre-Selection
method

Simulated envi-
ronment

Energy Con-
sumption

Compute-
resource based,
Energy based

35

Table 12: Comparison of Different Resource Management Systems
Framework Architecture Usage Open source Support Applications Programming

Framework
Eagle [148] Hybrid Differentiates

short and long
jobs

EPFL IC IIN-
FCOM LABOS,
Switzerland

Spark Different work-
loads and Paral-
lel jobs

Python, Java,
PHP, Python,
Ruby

Hopper [149] Decentralized Speculation-
aware job
scheduler

Microsoft Re-
search

Spark CPU intensive Java, Php, .net

Tetris [150] Centralized Multi-resource
bin-packing

Microsoft Generic applica-
tions

CPU intensive Python, Perl,
Java, PHP,
Ruby, Node.js,
Erlang, Scala,

Fawkes [151] Centralized Dynamic re-
source balanc-
ing

TU Delft Mapreduce
frameworks

Data intensive Python, Java,
PHP, Python,
Ruby

Omega [152] Decentralized Shared state ab-
straction

University of
Cambridge

Custom applica-
tions

Parallel applica-
tions

Java, Php, .net

OurGrid [153] Centralized Equitable Re-
source Sharing

Universidade
Federal de
CampinaGrand,
Brazil

Generic applica-
tions

Bag of Tasks Java, Python

Sparrow [155] Decentralized Randomized
sampling ap-
proach

U.C. Berkeley
AMPLab

Spark CPU intensive Python, Perl,
Java, PHP,
Ruby, Node.js,
Erlang, Scala,
Clojure, .Net

Yarn [156] Monolithic Resource re-
quests with
containers

Hadoop Spark Data intensive Python, Java,
PHP, Python,
Ruby, Clojour

Mesos [132] Two way proto-
col

Pessimistic
resource offers

University of
California,
Berkeley

Spark CPU and Data
Intensive

Python, Perl,
PHP, Rest,
Ruby, .net, C#

36

	Introduction
	General Scheduling Terminology for Clouds
	Scheduling Taxonomy for Clouds
	Layered scheduling
	Resource Provider Focused Y-Cloud Taxonomy
	Cloud Scheduling Model
	Taxonomy of Challenges in Cloud Scheduling
	Scheduling Challenges Arising form use of Containers
	Challenges in Function as a Service
	Taxonomy of Scheduling Units
	Taxonomy Classification of Resource Scheduling Algorithms

	Literature review of Cloud Resource Scheduling Algorithms
	Dynamic Scheduling
	Cloud Metric-based Scheduling
	Energy Aware Scheduling
	Network Aware Scheduling
	Cost Aware Scheduling
	Time based Scheduling
	Reliability Aware Scheduling
	Security based Scheduling

	Heuristic based Scheduling
	HPC and Cloud Computing Scheduling
	Workflow Scheduling Frameworks
	Scheduling in Public Cloud Providers
	Scheduling in Container Frameworks
	Function Scheduling Algorithms
	Scheduling among Distributed Resources and Providers
	Service Meshups

	Conclusion and Lessons Learned

