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Abstract
The COVID-19 pandemic has profound global consequences on health, eco-

nomic, social, political, and almost every major aspect of human life. Therefore,
it is of great importance to model COVID-19 and other pandemics in terms of the
broader social contexts in which they take place. We present the architecture of
AICov, which provides an integrative deep learning framework for COVID-19 fore-
casting with population covariates, some of which may serve as putative risk factors.
We have integrated multiple different strategies into AICov, including the ability to
use deep learning strategies based on LSTM and even modeling. To demonstrate our
approach, we have conducted a pilot that integrates population covariates from mul-
tiple sources. Thus, AICov not only includes data on COVID-19 cases and deaths
but, more importantly, the population’s socioeconomic, health and behavioral risk
factors at a local level. The compiled data are fed into AICov, and thus we obtain
improved prediction by integration of the data to our model as compared to one
that only uses case and death data.

Key words and phrases: COVID-19, deep learning, prediction, risk factors, co-
morbidities.

1. Introduction

COVID-19. The COVID-19 pandemic has caused unprecedented health and humanitarian
crisis worldwide. It is unlike any other single phenomenon that has occurred in modern history
since the end of World War II. The pandemic’s effects have spanned over a range that is so vast
over space, and yet so condensed over time, that the dual blows of intensity and rapidity have
exposed myriad systemic vulnerabilities in many societies around the world.

The first known case was traced back to 17 November 2019. Since the emergence of a cluster
of cases in Wuhan, China, on 31 December 2019, COVID-19 has spread rapidly worldwide. Just
six months later, as of 23 June 2020, there are 8,993,659 COVID-19 cases and 469,587 deaths



globally. On 30 January 2020, the World Health Organization (WHO) [28] declared COVID-19
to be a Public Health Emergency of International Concern and subsequently on 11 March 2020,
declared it to be pandemic in lieu of the alarming levels of spread and severity and lack of actions
taken by governments around the world to curb transmission and prevent adverse outcomes.

In the United States, the first case of COVID-19 was confirmed on 20 January 2020 in Wash-
ington State, and as of 23 June 2020, there were over 2.3 million confirmed cases and 121,167
deaths [18]. In the absence of a vaccine or treatment to effectively combat the disease, non-
pharmaceutical policy interventions such as social distancing and lockdowns are recommended
by health experts to prevent further transmission. To gain insights into the possible impact
of such measures on COVID-19 outcomes, we depend upon the ability to accurately forecast
the spread of reported cases and confirmed deaths and recoveries. Naturally, the accuracy of
forecasting relies on the availability of current, reliable data and historical data to determine
estimates of uncertainty.

During outbreaks of epidemics, there tends to be little to no reliable data in the begin-
ning, and the quality of data annotation, validation, and aggregation might be uncertain. For
instance, changes in clinical data entry, such as the addition of a new category clinically di-
agnosed to the existing lab-confirmed category, may likely have been reflected in the reporting
[20]. Initial fears about COVID-19 among the general population with regards to the trajectory
of the pandemic could also affect administrative reporting. Diverse media sources and differ-
ences in local and federal policies may add to the general uncertainty about disease progression.
Nevertheless, a data-driven approach to forecasting can offer valuable insights into the disease
dynamics, and thereby an ability to objectively plan for the near future.

Unlike earlier global outbreaks, during COVID-19, the current worldwide digital ecosystem
allows for real-time data collection, which in turn is used by AI and deep learning systems to
understand healthcare trends, model risk associations, and predict outcomes [26]. In addition
to traditional public health surveillance strategies available to most countries, a variety of static
and dynamic data types may be integrated to model the scale and dynamics of this pandemic
[21]. Several organizations, including the John’s Hopkins University’s Center for Systems Science
and Engineering, the New York Times, the Atlantic’s COVID-19 tracking project, among others
have developed real-time tracking maps for following COVID-19 cases around the world using
data from the Centers for Disease Control and Prevention (CDC), WHO, and other international
health agencies. Notably, the CDC receives forecasts from several modeling groups that use a
wide variety of approaches ranging from SEIR (Susceptible-Exposed-Infectious-Recovered) to
Agent-based to Bayesian models to understand the non-pharmaceutical policy interventions (or
the lack thereof) to predict disease dynamics and its impact on human lives [6].

Deep Learning Framework. For precise and contextually relevant modeling of COVID-19
dynamics for a given population or community, we need to begin with a process of systematic
generation of realistic micro (and macro) level data in the absence of their real counterparts.
We will use data integration to combine community-specific health and behavioral risk factors,
demographic and socioeconomic variables that are known at the local levels along with the
cases and deaths data for COVID-19. Further, we use microsimulation methods to model a
novel macro-level joint distribution of spatial, demographic and risk factor parameters that
can provide a novel foundation to build our generative and forecasting model of COVID-19
dynamics.

While leveraging the recently developed and increasingly popular deep learning strategies
to forecast COVID-19 dynamics, we will integrate spatial, demographic, socioeconomic, health,
and behavioral risk factors in our model.

We develop a parallel computing platform called AICov standing for AI-driven Platform
for COVID-19 to implement the different components of our framework and obtain the needed



resources through multi-cloud interfaces in a robust manner.

Data Integration. In this study, while we incorporate information from community and
county-specific covariates to inform our forecasting model for each metropolitan area, we want
to avoid the so-called ecological fallacy in drawing inferences about individual disease outcomes
based on large area-level aggregated risk factors. Our main objective is to draw attention to the
nuanced roles played by pre-existing socioeconomic and other conditions of a given community
that can act as determinants of its health outcomes and possible disparities, especially under
the sudden stresses to its current systems that are felt during a pandemic.

Paper Organization. The paper is structured as follows. In Section 2, we will provide a
short overview of time series forecasting that we use in our framework. In Section 3, we outline
our architecture in order to lower the learning curve to apply a sophisticated time series forecast
while integrating risk factors in addition to the time-series data. In Section 4, we describe the
input data for our work. Next, we provide our analysis of the risk factors and identify those
that impact our prediction. After that, we present our conclusion.

2. LSTM

In this section, we present a short overview of the recurrent neural network algorithms
used in this work (Section 6). Additionally, we provide a short introduction of the LSTM
implementation as used in Keras (Section 2.2) that we use as a foundation of this work.

2.1 LSTM Background

Within this work, we will be using a Long Short-Term Memory (LSTM) algorithm for
our predictions [15, 12]. An LSTM is a recurrent neural network (RNN) [23] with feedback
connections allowing the use of data input sequences to predict data output sequences. LSTM’s
have been applied to many application areas from handwriting [10], image, feature detection,
and time series prediction [24]. LSTM’s have an internal state that is used to prevent the
vanishing gradient problem [11] during the training of RNNs.

Different variants of LSTM algorithms exist. One of them we use is based on an LSTM
cell that we depict in Figure 1. It has an input gate, output gate, and a forget gate. The cell
is maintaining how a subsequent value is calculated. This includes (a) how input values are
influencing the cell via the input gate, (b) how the forget gate influences a memory value within
the cell via the forget gate, and (c) how the output gate influences the output activation of the
LSTM unit. A cell has a number of inputs and outputs that are weighted. During a training
step, these weights are learned so that they can be reused in a prediction process between input
and output sequences.

We have summarized the equations used in LST in Figure 2. We denote variables in lower
case and matrices in upper case letters. Wq and Uq contain the weights of the input and recurrent
connections, where the subscript q denotes either the input gate i, the output gate o, the forget
gate f or the memory cell c. It is important o note that ct ∈ Rh is not just one cell of one LSTM
unit, but contains h LSTM unit’s cells, representing a vector. To summarize our variables we
use ◦ is the Hadaman product; σ is the sigmoid function; d number of input features; h number
of hidden units; xt ∈ Rd is the input vector to the LSTM unit ft ∈ Rh is the forget gate’s



Figure 1: LSTM Unit Diagram

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ tanh(ct)

Figure 2: LSTM Equations

activation vector it ∈ Rh is the input/update gate’s activation vector ot ∈ Rh is the output
gate’s activation vector ht ∈ Rhis the hidden state vector (e.g. the output vector of the LSTM
unit) c̃t ∈ Rh is the cell input activation vector ct ∈ Rh is the cell state vector W ∈ Rh×d,
U ∈ Rh×h and b ∈ Rh are the weight matrices and bias vector parameters which need to be
learned during training.

2.2 LSTM in Keras

LSTM has been available in Keras since 2015 [15, 16]. However, it does require some level
of expertise and understanding of RNNs due to the needed manipulation of the input data
that needs to be adjusted for the application. The lack of advanced reusable examples focusing
on multiple input and output variables in conjunction with secondary information requires
significant attention from the users. Most examples focus on very simple usage of LSTM and
do not take into account the integration of other variables, such as our risk factors, in addition
to time series data as input and output as we utilize in our approach.

An additional issue is that Keras depends and is distributed with Tensorflow [25]. Although
Tensorflow claims to be the most popular Deep Learning framework, it is surprising that its
adoption within modern operating systems has recently lacked behind other frameworks such as
PyTorch [22]. Furthermore, it is also dependent on NVIDIAs drivers and ports to the OS that
presently lacks behind. Although a container image is presented, the examples demonstrated
for using it are limited.

3. Architecture

We discuss and present our requirements that lead to our architecture framework and how
we address them.

The motivation for an architecture is based on our experience with deep learning toolkits
such as Keras and PyTorch. Although these systems provide the necessary APIs to integrate
time series solutions for data sets, they target primarily more general user communities. In
particular, they do not consider existing data sets or specific needs and analysis options to
evaluate them for the use within COVID-19 risk factor integration. The availability of such
a tool would make it more suitable for scientists to reuse such a framework while focusing on
the analysis part. We list in more detail some of the requirements in a more formal way that
motivate our architectural design:



Easy to Use. One of our main criteria is that the framework must be easy to use, and exten-
sions are provided that address usability on the API as well as the user interface level.
Solution: To address these issues, we are devising a specialized time series API for
COVID-19 that integrates common tasks such as automated filtering and normalization
of the data.

Interactive. Due to the experimental nature of analyzing the data, the framework must sup-
port the exploration of the data in an interactive fashion. Solution: As many data sci-
entists use Jupyter Notebooks to integrate their work interactively, our framework must
also integrate easily into such notebooks. Jupyter notebooks allow easy modification of
the analysis workflow through the ease of Python as programming language. At the same
time, they provide a level of sophistication to formulate easily scientific analytics workflows
with the help of Python.

Expandable API. As we assume that new models and other analysis algorithms are devel-
oped over time, our framework must allow the integration of these APIs. Solution: For
this reason, we develop an abstraction API for data, analysis, and metadata parameter
adjustments. Furthermore, external services can be integrated with the help of REST
services.

Data Source Integration. The integration of various data sources is a key part of our frame-
work. Solution: To achieve this goal, we provide a number of abstractions and data
manipulation functions to extract needed data from established sources. Furthermore, the
data can be combined, and additional data wrangling activities through outside groups can
be integrated. Through such abstraction, it will be possible to replace, add, and correct
data sets that are part of the analysis. This allows us to compare different results created
from different data sets. Moreover, we include integrate data integration capabilities di-
rectly in our abstractions to easily and quickly resue the enhanced data. An important
example is that the data is not static throughout the disease but is continuously updated.
This also has a significant impact on our analytics algorithms.

Automated Recalculation of the Analytics. As the data can change, a previous analysis
may have to be rerun to stay up to date. Solution: Our forecast is not only a single script,
but includes a mechanism to register multiple analysis workflows that are automatically
rerun once new data is made available to the system. Old results are maintained. Metadata
with these runs can retrieve the versioned data sets used for the calculation and store the
versioned analytics workflow.

Flexible Model definition. We want to experiment with a variety of models that need to be
easily and flexibly be definable as workflows. Solution: We need functional abstraction
definitions that allow us to define the models ourselves or integrate third party models
describing the spread of the disease.

Deep Learning Forecast. As the forecasting models depend on changing data that are made
available daily, it is important that we rapidly adopt to the new data availability. Many
models can be applied to this, including moving averages based models, or models that
are purely derived from deep learning. Our framework will allow the integration of both.
Furthermore, in our deep learning framework, we will integrate an automated search for
important risk factors.

Model Orchestration. To coordinate the different model predictions and the generation of the
deep learning forecasts, we need to be able to orchestrate them while applying a number of



parameters. Solution: the framework includes the ability to integrate parameter sweeps
to, for example, identify hyperparameters, or integrate different data sets as parameters
to identify suitable forecast models that deliver the best fit.

Compute Resource Mapping. As others want to use the framework, we need to integrate
a flexible resource utilization framework. Solution: We will leverage from our earlier
work and utilize through Cloudmesh and NIST NBDIF definitions cloud services into the
architecture. This will include containers but also infrastructure in the cloud and locally
that provides GPUs that can be leveraged within our architecture.

Interface. As we have a wide variety of users, we need to enable interfaces used by the various
communities. Solution: As discussed, we will provide a number of API’s, REST services
and make them assailable via Jupyter Notebooks. In addition, we will develop some cus-
tom widgets for the notebooks that are specifically targeted towards the data integration,
parameter manipulation, and visualization of the results

Putting those requirements together results in an architecture as shown in Figure 3.

Figure 3: AICov Architecture

The architecture allows the inclusion of new data sources and models. An orchestrator
enables the modification of parameters and the selection of data sources and models used in
the analysis. The framework can be accessed via the interface layer that includes APIs, REST,
and Jupyter Notebooks. Compute interfaces are provided either by direct access of GPUs
from local resources or through the staging of automatically generated REST services via our
Cloudmesh REST Service integrator. Additionally, we can also access through abstractions
cloud services that are offered by the various cloud providers and are targeting our application
domain. Different models can be integrated into our framework to verify our forecast or enhance
our forecast based on models and data selected by the users.



4. Data for the COVID-19 Analysis

While the U.S. has seen an overall case fatality rate of 5.14%, some U.S. locations have
experienced a disproportionate number of deaths compared to others. This disparity of deaths
among different communities could be attributed to a diversity of local risk factors and socioe-
conomic determinants of health that now constitute a very active area of investigation. The
researchers are studying the effects of different community-specific socioeconomic variables, un-
derlying health conditions and comorbidities, infrastructure, and systemic responses. Given
the complexity of such underlying conditions that can determine individual disease outcomes,
where and under what conditions people get infected by the virus, and then recover or die take
place not in isolation but rather in an interplay of diverse factors that are characteristic to a
local community, which need to be synthesized. In other words, a basic requirement for effective
modeling of COVID-19 dynamics is that the information regarding a particular community’s
vulnerabilities and strengths pertaining to the disease must be as comprehensive and integrative
as possible. The regular reporting of accurate Coronavirus outbreaks data from local health
departments has been understandably difficult, especially in the areas that are hardest hit. We
use data on community-specific health and behavioral risk factors aggregated at county level
from the large-scale longitudinal CDC BRFSS surveys [5], and demographic and socioeconomic
data from the US Census Bureau that are known at the local levels along with the cases and
deaths data compiled by NCHS [7] and integrate them with other data sources.

4.1 Data collection and processing

Among the different sources of data on daily cases and deaths data collected and aggregated
at different spatial levels, especially for the US, many are either freely available repositories
such as GitHub or accessible via specifically developed online resources such as the New York
Times [19] and the Johns Hopkins Coronavirus Resource Center [13]. For this study, we gen-
erated two datasets based on the latter resource upon our checking for the locations and times
at which cumulative counts of COVID-19 cases and deaths on any given day were no less than
those on the previous day. This led us to compile daily coronavirus cases and deaths data for
345 US counties from 32 states and the District of Columbia and matched by five-digit FIPS
code or county name to dynamic and static variables from additional data sources.

The static data in this repository was collected from the US Census Bureau, and the Centers
for Disease Control and Prevention (CDC). The different fields cover the domains of behavioral
and health risk factors, hospital capacity, and socioeconomic and demographic conditions. Data
on health outcomes, prevention measures, and unhealthy behaviors were extracted from the
CDC’s 500 Cities Local Data for Better Health program [8] in the form of crude or age-adjusted
prevalence of conditions such as respiratory disease, obesity or smoking. These values were
aggregated from census tract to the county level using the first five digits of the eleven-digit
tract FIPS code. Because a single county may consist of multiple individual cities, we include
the list of all city labels within each aggregate group to represent a greater metropolitan area.
110 of such metropolitan areas that had more than 500 reported cases of COVID-19 by April
15, 2020, were selected for this study.

Notably, a greater metropolitan area such as New York City could be spread across more
than one counties, which can lead to the complexity of aggregating counts and other variables.
Time series data for the 5 individual counties (boroughs) in New York City were not available
in the Johns Hopkins CSSE dataset. Rather, the total number of cases and deaths for the entire
city of New York are reported and assigned the FIPS code of New York County (Manhattan).
To ensure consistent geography across the static and dynamic data, we compute the population-



weighted sum or median of each covariate over the assigned counties.
Demographic variables were gathered from the Census QuickFacts [27] online resource using

an automated web scraping algorithm and cover relevant areas such as age, race, income and
population density. Additional socioeconomic variables include the Gini Index, which measures
economic inequality and CDC Social Vulnerability Index (SVI) [9]. The SVI was created to
guide public health officials and disaster response efforts by identifying the communities across
the United States most likely to need support during a crisis. Census tracts and corresponding
counties are ranked across 15 social factors, which are grouped into four themes: socioeconomic
status, household composition and disability, minority status and language, and housing and
transportation.

Lastly, the total number of general acute care, critical access, and military hospitals within
each county are included in the data. Such variables included the number of relevant hospitals
per county, and the estimated number of beds (total known bed counts added to the number
of hospitals in the county with missing data times the average number of beds per hospital in
that state) per 1,000 people using the American Hospital Directory [1].

5. Analysis

5.1 Covariance Analysis

For each FIPS we have a number of risk factors for which we have values. These values can
be correlated with each other through a correlation analysis. To provide an initial idea how the
risk factors are correlated with each other we showcase in Figure 4 and 5 in the scale of -1.0 to
1.0. While the first figure shows all variables, we display in the second figure, only the variables
related to health measurements and not social-economic factors. In addition, we show in Figure
6 the more detailed pair plots. However, an online version of this plot is available, as indicated
in the caption, as the information for the later is very condensed.

We observe that most social-economic variables are more strongly correlated with each other
than the health variables. This is evident from the plot due to its coloring that is darker than
the rest of Figure 4. Obviously, the number of available hospitals vs. the number of estimated
beds and the population are strongly correlated.

When looking at the health-related risk factors, we, for example, see that diabetes and
high blood pressure are correlated with each other. This reflects observations from health
care providers that have correlated these two variables. A similar correlation we see in the
correlation between obesity and diabetes. Having such detailed information at hand makes it
now suitable to integrate such health-related factors to COVID-19 cases and death. This is
conducted through two different pilot studies.

In the first, we relate the risk factors based on information we predict for the maximum of
the cases and death from the model we used for the given time period. The second is when we
use our model predictions and find the best predictions while minimizing the cumulative error
for the given prediction time period. To be complete, we have included all risk factors in our
analysis rather than to restrict them based on our correlation matrix.
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Figure 4: Covariance Analysis Heatmap of Socio-economic and Health Risk Factors
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Figure 5: Covariance Analysis Heatmap of Health Related Risk Factors



Figure 6: Covariance Analysis Pairplot of Socio-economic and Health Risk Factors. An online

version of the image is available at https://github.com/laszewski/papers/blob/master/

vonLaszewski-covid19-cov-factors.pdf

https://github.com/laszewski/papers/blob/master/vonLaszewski-covid19-cov-factors.pdf
https://github.com/laszewski/papers/blob/master/vonLaszewski-covid19-cov-factors.pdf


5.2 Empirical Fits

One of our goals is to integrate datasets describing risk factors in particular but social and
environmental determinants of health in general and determine their combinations that are
relevant for our model predictions. This will allow us to model the disease dynamics in a much
broader and powerful framework. We not only focus on time-dependent and spatial instances of
the disease, but also on the underlying population characteristics. To establish the feasibility of
our approach, we have, in our analysis, compared them to epidemiological models with empirical
fits [17]. The time series were 100 days long, and a multi-layered Long Short-Term Memory
(LSTM) [30] recurrent network was used. It differed by learning not only from the demographics
(fixed data for each city) and time-dependent data but by integrating the population model for
the underlying prediction, as shown in Fig. 2. Such model predictive integration capability is
important in any application with multiple time scales. For example, it will allow us to integrate
multiscale time effects into the forecast, which could address the combination of general forecasts
and the next time steps of choice such as days, weeks, months, or longer. For this pilot, we
used 37 of the 110 cities with reliable empirical (not deep learning) fits for the case and death
data up to April 15, 2020 [17]. Our pilot identified a sophisticated single deep learning time
evolution operator that can describe these 37 separate datasets, and smooth fitted data leads
to very accurate deep learning descriptions as depicted in both Figure 7. These models can
be reused to conduct further studies to identify correlations towards particular risk factors, as
shown in Section 5.3.

Figure 7: Empirical fits can be very accurately predicted with LSTM

5.3 Correlation to the Maximum

One of the questions that arise is what risk factors, in addition to the cases and death,
influence the prediction. In this study, we are not focusing on the cause, but like to identify
suitable candidates to analyze further. For this reason, we look at the risk factors that are
listed in Table 4. To identify a first set of suitable candidates, we used the model as described
in Section 5.2 and identified for each risk factor the maximum for death and for cases for each
of the 110 FIPS. We display the bivariate plots for each of the risk factors in Figures 8 and 9.
We can see two types of effects in these bivariate plots.

Increased numbers with increased population when a risk factor is present.
When looking at the variables we see for example that the risk factor STROKE has a
stronger correlation to the death per population, then it has for the number of cases.
Although we are not commenting on the causality, it is intuitive for this variable to think
about that a person with prior history of a STROKE has an increased risk to dying
in case of an infection. However, we also see an increased number for the cases. THis
indicates that STROKE is a potential important RISK factor and should be considered
when conducting predictions based on death and cases.



Figure 8: Bivariate plot of risk factors when looking at maximum of cases and death in the

empirical fit



Figure 9: Bivariate plot of risk factors when looking at maximum of cases and death in the

empirical fit



Value dependency categories for risk factors.
When looking at the bivariate plots for death and for cases for a particular risk factor,
we can identify trends within the plot that cluster some of the 110 FIPS into different
categories. In the most simple aspect of this we can find liner trends that define the
upper and lower bound of the risk factor bivariate plot. For example, when we look at the
encompassing trend lines for cases vs. death by population, we find on the one hand FIPS
for 17031,6037, 36119, 12086, representing Cook, Illinois, US, Los Angeles, California, US
and Miami-Dade, Florida with the PVI indices 0.582, 0.63, 0.635. On the other hand,
we find Wayne, Michigan, Essex, New Jersey, Hartford, Connecticut, Oakland, Michigan,
Macomb, Michigan, Norfolk, Massachusetts. Which have a PVI index of 0.477, 0.564,
0.527, 0.471, 0.499, 0.498 respectively. Hence, we can assume that a factor falling into
different categories such as high PVI vs. low PVI have an impact on the cases and death.
Associating them with the maximum cases and death helps to identify such categories. In
our follow up analysis, we will identify if this is indeed the case.

6. LSTM Prediction

As we wont to evaluate the influence of the risk factors on our prediction framework using
not only models but deep learning algorithms, we have devised a parameter sweep framework
based on LSTM that conducts the prediction on the 110 cities while also considering the risk
factors as listed in Table 4. We ask:

Can we increase accuracy of prediction while integration risk factors?

For this experiment, we have chosen a start date range between 2020-02-01 and 2020-05-
25. For the LSTM we have selected the activation function based on Rectified Linear Units
(RELU). A drop out rate of 0.2 is used, we use 16 input nodes, and have a batch size of 110.
The maximum epoch is chosen to be 200. the number of nodes internally is 32. The total
number of Samples is maximal 12540 when using 3 days as input length. We use a two-layer
LSTM, as shown in Table 1. Within our system we have the ability to set a number of input
days. For this experiment, we have chosen three different input length, namely 3, 4, and 5 days.

We have run the training on all 110 cities represented by the FIPS while not including
any risk factors and running them with a single risk factor. We then summed up all absolute
errors for the predicted data points over the same time period and repeated each experiment
10 times. We than agglomerated all results into a box-whisker diagram for death and for cases,
respectively. We sorted the diagram in such a fashion that the risk factor that has the model
with the lowest error comes first. We preceded the graph with the modes that did not use any
risk factors to provide a comparison for minimizing the overall error. This calculation was done
to identify risk factors that may have a better impact than others. The graphs are depicted in
Figures 10 and 11. The order that we received for the best prediction models based on the risk
factors for case and death are as follows:

Order of the cases sorted by minimum model error: None, pop density 2010, PHLTH,
Insurance, Percentblacks, Percenthispanics, Nhosp, INSURANCE, CHOLSCREEN, DIA-
BETES, STROKE, CHD, CHECKUP, Nbeds, svi overall, KIDNEY, CASTHMA, black
percent, BPMED, LPA, CSMOKING, ARTHRITIS, poverty percent, Estbeds, MHLTH,
senior percent, COPD, CANCER, Nbeds per1000, BPHIGH, HIGHCHOL, BINGE, OBE-
SITY, svi minority



Order of the death sorted by minimum model error: None, svi overall, CSMOKING,
Percenthispanics, pop density 2010, senior percent, CHOLSCREEN, CASTHMA, In-
surance, INSURANCE, MHLTH, LPA, poverty percent, OBESITY, CANCER, black
percent, Nbeds per1000, Percentblacks, DIABETES, ARTHRITIS, Nbeds, Nhosp,
BPHIGH, CHECKUP, PHLTH, CHD, STROKE, HIGHCHOL, Estbeds, KIDNEY,
BINGE, BPMED, COPD, svi minority

To show the values for the errors and their association with the risk factor, we include
Table 2, where cum error represents the cumulative error of the prediction. We sorted it by the
cumulative error for cases. We see that in our experiment, almost all risk factors lead to an
increased model prediction. As a result, we find that when including factors such as population
density, physical health Insurance, population breakdown by ethnicity number of hospitals, and
diabetes Leeds to better overall predictions for cases, We also see that many of them are on
average better,

We are obtaining a different picture for the death, where we only identified two risk factors,
namely the Social Vulnerability Index (SVI) and chain-smoking, that, when integrated into our
model, leads to better prediction results. However, the accuracy of the overall prediction for
death is far less precise than that of the cases. To showcase this, we have included Figures 12
and 13 that show the respective errors. This is following our input data distribution in which we
find much higher fluctuations relative to the overall value. A mitigation to this issue would be
using a seven day average over the analyzed period. However, we have not done this on purpose
for this analysis as we wanted to identify how an LSTM behaves based on the daily fluctuations.
This was done to avoid any needed prepossessing and to run and to identify the capability of
the deep learning framework to adapt to such changes without any special activities. This is
done to prepare our framework for an automated ingest of data on a daily basis for data fusion
of new cases and death information. This way, we can train the model with new incoming data
every day and make sure that the mode is kept state-of-the-art. Through this testing, we found
that the hyperparameters such as epochs and dropout values work well for our experiments.

We conducted one additional analysis to plot the best risk factor prediction model errors, the
five best, and the ten best to identify if we have a difficult time getting stuck in bad predictions.
Thus we show Figures 14 to 19. As we can see, we identified that a jump occurs when we sort
the top 10 model predictions at around 330 models from a total of 3400 automatically generated
models. This also showcases that we must run our AICov model generator multiple times to
obtain reasonable parameters resulting in us having to run our model generator for each factor
at least ten times. This is a variable parameter to our model generator and can be adjusted.



Table 1: The deep learning parameters used for the model sweep creation in as exported by

Keras using 1 risk factor. The activation function is RELU and the recurrent activation function

is sigmoid.

Layer (type) Output

Shape

Parameters

for 0 risk

factor

Output

Shape

Parameters

for 1 risk

factor

Output

Shape

Parameters

for 33 risk

factors

Output

Shape

Parameters

for 37 risk

factors

dense (Dense) (None,1,32) 96 (None,1,32) 128 (None,5,32) 1152 (None,5,32) 1280

lstm (LSTM) (None,1,16) 3136 (None,1,16) 3136 (None,5,16) 3136 (None,5,16) 3136

lstm 1 (LSTM) (None,16) 2112 (None,16) 2112 (None,16) 2112 (None,16) 2112

dense 1 (Dense) (None,32) 544 (None,32) 544 (None,32) 544 (None,32) 544

dense 2 (Dense) (None,30) 990 (None,30) 990 (None,30) 990 (None,30) 990

Sequential model with a total of 6,910 trainable parameters in case we include one risk factor.

In the case, we only include no risk factor, it is 6878, and when we include 33 risk factors, it is

7934.

Table 2: Best models for each risk factor and their respective errors

rmse cases rmse death cum error cases cum error death days in risk place

0.055443 0.067617 7.94 22.74 5 pop density 2010 0

0.054795 0.068529 8.01 20.55 3 PHLTH 1

0.055199 0.067641 8.07 20.43 4 Insurance 2

0.055028 0.067207 8.12 20.17 4 Percentblacks 3

0.056061 0.067489 8.22 19.04 5 Percenthispanics 4

0.054621 0.068255 8.26 20.10 3 Nhosp 5

0.054557 0.068572 8.34 24.61 3 INSURANCE 6

0.054712 0.069121 8.37 21.70 3 CHOLSCREEN 7

0.054586 0.067636 8.40 20.50 5 DIABETES 8

0.054160 0.066906 8.45 20.16 4 STROKE 9

0.054027 0.067642 8.46 21.93 5 CHD 10

0.054927 0.067652 8.51 20.42 5 CHECKUP 11

0.054146 0.067536 8.54 21.15 5 Nbeds 12

0.054795 0.067676 8.58 19.94 5 svi overall 13

0.054600 0.067565 8.61 21.86 5 KIDNEY 14

0.055089 0.068248 8.63 22.58 5 CASTHMA 15

0.054547 0.068266 8.68 20.49 3 black percent 16

0.054685 0.068920 8.74 21.69 3 BPMED 17

0.054323 0.067149 8.75 19.54 5 LPA 18

0.053716 0.066898 8.75 19.01 5 CSMOKING 19

0.054053 0.068716 8.83 20.94 3 ARTHRITIS 20

0.055029 0.068672 8.84 22.02 3 poverty percent 21

0.054545 0.067267 8.86 21.22 4 Estbeds 22

0.054864 0.068742 8.90 19.53 3 MHLTH 23

0.055079 0.069024 8.93 21.23 3 senior percent 24

0.055589 0.068250 8.93 23.26 4 COPD 25

0.054500 0.068363 8.99 19.70 3 CANCER 26

0.054397 0.068491 9.05 21.89 3 Nbeds per1000 27

0.054609 0.067346 9.13 21.29 4 BPHIGH 28

0.054868 0.069432 9.26 25.88 3 None 29

0.056429 0.069345 9.28 20.98 3 HIGHCHOL 30

0.054317 0.067638 9.32 21.00 5 BINGE 31

0.054469 0.068540 9.50 20.65 3 OBESITY 32

0.055094 0.067443 9.54 21.53 4 svi minority 33
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Figure 10: Influence of risk factors on the accuracy of the prediction of COVID-19 cases
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Figure 11: Influence of risk factors on the accuracy of the prediction of COVID-19 death



Figure 12: Model prediction error for cu-

mulative cases when including one risk fac-

tor - pop density 2010 in the features, in

addition to the past number of cases and

deaths.

Figure 13: Model prediction error for cu-

mulative deaths when including one risk

factor - pop density 2010 in the features,

in addition to the past number of cases and

deaths.
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Figure 14: Place Top1 Cases
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Figure 15: Place Top1 Death
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Figure 16: Place Top5 Cases
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7. Setting up the Deep Learning Framework

We often think of the laws of physics described by operators that evolve the system given
sufficient initial conditions and in this language, we have shown how to represent Newton’s law
operator by a recurrent network [14]. We expect that the time dependence of many complex
systems: Covid pandemics, Southern California earthquakes, traffic flow, security events can
be described by deep learning operators that both capture the dynamics and allow predictions
[? ]. In this paper, we adopt this approach to describe the time dependence of COVID-19
infection and fatality counts in different regions. We start with a basic LSTM operator shown
in table 1 with a similar architecture to [14] with two layers of LSTM and initial and final fully
connected layers. We intend to process the two time-series (infections, fatalities) associated with
each city plus the covariates (fixed in time but dependent on region) to build a model for the
time evolution of the data. There is a nontrivial architecture design choice as to the method of
handling the time-independent covariates. We could combine a recurrent network for the time
series with some fixed network for the covariates. However, that does not fit with our concept of
deriving an evolution operator for COVID-19 data that naturally depends on the covariates for
each city. Thus instead we feed the covariates into the recurrent network as additional features
leading to 35 of them if we use 33 covariates. We did look at two related ways of doing this

a) Have covariates fixed in time

b) Multiply the covariates by the times series (we used the average of infections and fatalities)

We expected the second choice to be the most natural as it gives all 35 input streams similar
time dependence. However, in our initial tests, we found these choices gave very similar results
and so we fixed on the simpler choice a) in this paper. In the runs discussed here, we either
used 0, 33, or 1 covariate. Choosing 33 gives the best description (reducing loss by about 1%)
while using each covariate as a solitary extra feature allows us a rather sensitive study of the
importance of each individual covariate.

The final architecture choice was the quantities to predict (and train on). We choose this
to be both the infection/fatality values at the time value following the sequence combined with
the same quantities for the following 14 days. This gives us 30 different output features for each
sequence. We renormalized so the two basic features (following day) contributed 50% of the
loss function. We supported this in TensorFlow with a custom mean square error (MSE) loss
function that dropped training values that were not available for time sequences near the end of
the examined period. Although one can’t train on future values, one can predict them as seen
in our sample outputs. We extensively studied both 2 and 30 output features and they give
similar descriptions of the observed data with the 30 feature choice enabling 14-day predictions.

We performed an extensive hyper-parameter search and the values presented in Table 1 are
good values that give robust results without overfitting. We looked at four different activation
functions in the LSTM and fully connected layers. Selu, Relu and Tanh activations gave very
similar results while Sigmoid activation was much worse. We also looked at the number of
hidden units (separately for LSTM and fully connected layers), the number of LSTM layers
and the dropout values. Only the latter product significant change and for example removing
dropouts would decrease the loss by about 16% but we kept to provide a robust environment.
We chose randomly 20% of the data for validation and testing and this had similar loss values
to the training data (the other 80%) with our chosen dropout.

The final technical issue concerns the data normalization where each feature is transformed
by a feature dependent but city independent way to lie between 0 and 1. Further all ex-
tensive (proportional to size) covariates were first divided by the city population except for
population itself where we took the logarithm; intensive covariates were just rescaled to lie be-
tween 0 and 1. The basic COVID-19 daily data is extensive but compared two approaches



with and without renormalization but in case we took the square root of the data value.
This is natural if there are counting (square root(N) for N observations) errors as the deep
learning loss function is (predicted − observed)2 without the error traditional in χ2, namely
((predicted − observed)/error)2. This approach with standard deep learning MSE appears
sound without dividing by the population. That approach will emphasize the error contribution
of smaller cities but is still interesting to look at as there are clearly many systematic (not
counting) errors.

8. Direct Deductions from Deep Learning Data Representation

he deep learning model contains much information of which we have only done a preliminary
analysis as discussed already in Section 6 and Figures 7 and 12. In addition, we have looked
at the sensitivity of the results as measured by the predicted daily rates and the value of the
loss function. In Table 3, we present one way of looking at it. We calculate the correlation
coefficients of many of the covariates from an accurate LSTM model fit to the data. We divide
the time series into three regions

• Past or all days up to 14 days before the final observed date (May 25, 2020)

• Now or the 14 days from May 12 to May 25, 2020

• Future or the 14 days after May 25, 2020 predicted by the model

These results are different between population normed or direct un-normalized data and
here we keep the square-root used in the model but divide model values by the square root
of the population when calculating correlation. Significant positive correlations are seen for
CASTHMA, HIGHCHOL, DIABETES, OBESITY, CSMOKING, CHD, and CHECKUP while
negative correlations for PVI and norm pop. We also looked at the impact of these covariates
on the evolution function. As this operates on data at previous time values, this is sensitive
to variations across cities and times. The evolution operator is intuitively the time derivative
of the absolute values of daily rates seen in the correlation in Table 3. Nhosp and Estbeds
have the most significance in impacting (as a reduction) the values of both the infection and
fatality rates from the evolution operator. The fatality rates are also significantly impacted
by Insurance and norm pop (reduction) and senior percent and OBESITY (increase) from the
evolution operator. norm pop impacts infection values as an increase. We can also identify
which covariates have the most significant impact on the loss function. Here Nhosp, CHD,
KIDNEY, BINGE, PHLTH give 5% or more reduction in loss function while norm pop, svi
overall, CASTHMA, DIABETES, BPHIGH have small (1%) effects.

9. Conclusion and Future Work

We present AICov as an integrative deep learning framework for COVID-19 forecasting
with population covariates. One of the important features of the Architecture for AICov is that
it is by design targeting Cloud and HPC resources to conduct parameter sweeps to leverage
sophisticated deep learning toolkits. The architecture allows the integration of various data
sources that can update the data from its sources on demand and update its model predictions



Table 3: Correlation Matrix

Risk Factor Past Case Now Case Future Case Past Death Now Death Future Death

PVI -0.425 -0.292 -0.124 -0.434 -0.373 -0.239

Insurance 0.018 0.017 0.012 0.018 -0.002 0.001

Nbeds 0.136 0.131 0.217 0.089 0.080 0.109

Nbeds per1000 0.138 0.121 0.209 0.092 0.069 0.088

Nhosp 0.074 0.119 0.165 -0.009 0.028 0.021

Estbeds 0.136 0.131 0.217 0.089 0.08 0.109

senior percent 0.104 0.028 0.033 0.152 0.164 0.156

black percent 0.209 0.099 0.208 0.216 0.085 0.116

Percenthispanics -0.072 -0.032 -0.064 -0.091 -0.068 -0.046

popdensity 2010 -0.302 -0.21 -0.175 -0.272 -0.231 -0.216

poverty percent 0.128 0.059 0.2 0.148 0.031 0.08

svi minority 0.029 0.069 0.081 0.01 0.006 0.087

svi overall 0.14 0.158 0.238 0.125 0.113 0.179

CASTHMA 0.238 0.271 0.307 0.205 0.288 0.309

HIGHCHOL 0.202 0.185 0.131 0.192 0.243 0.224

DIABETES 0.200 0.200 0.178 0.206 0.232 0.23

OBESITY 0.199 0.205 0.194 0.191 0.229 0.212

CANCER -0.145 -0.102 -0.129 -0.138 -0.058 -0.059

STROKE 0.123 0.125 0.117 0.167 0.143 0.135

MHLTH 0.11 0.161 0.186 0.076 0.175 0.222

CSMOKING 0.189 0.258 0.249 0.16 0.289 0.323

CHOLSCREEN 0.164 0.001 -0.026 0.187 0.07 0.038

INSURANCE 0.018 0.017 0.012 0.018 -0.002 0.001

CHD 0.225 0.284 0.233 0.178 0.327 0.337

CHECKUP 0.206 0.221 0.28 0.201 0.272 0.343

KIDNEY 0.045 0.028 0.032 0.022 0.071 0.053

BINGE 0.031 0.044 0.009 0.083 0.03 0.022

LPA 0.191 0.187 0.197 0.147 0.22 0.214

ARTHRITIS 0.046 0.013 -0.021 0.061 0.089 0.079

BPMED 0.060 0.080 0.124 0.056 0.073 0.09

PHLTH 0.064 0.132 0.104 0.022 0.129 0.114

BPHIGH 0.056 0.051 0.048 0.058 0.084 0.068

COPD 0.163 0.163 0.153 0.175 0.22 0.24

norm pop -0.305 -0.258 -0.218 -0.193 -0.218 -0.099

based on new data being injected. Parameters can easily be adjusted via Jupyter notebooks
that intern call the computational backends on HPC and cloud resources.

In addition to this architecture, we used data collected from multiple public sources and
agencies, and integrated the same across spatially contiguous units such as cities or metropolitan
areas. In our pilot study, we have focused on 110 selected cities of the US, but the framework
is general and can be used for analysis of other worldwide data.

The analysis we have conducted can be understood as a pilot to identify if it is feasible to
be used. From this pilot, we deduce it actually can lead to an improved prediction once we



integrate risk factors in addition to the time-dependent data such as cases and death resulting
from COVID-19. While the improvements we have observed are modes, they do present a way of
improving the forecast models. Inclusion of further putative factors from the ongoing worldwide
studies on Covid-19 will only strengthen the future applications of our integrative framework.

We have shown that deep learning can return very good results while using smooth data
as we used in our empirical fits. For real data as presented to us for the daily changes, it still
produced good results. Also, we have used in our data only cases and death, but we intend to
expand this by using data about recovery.

We have experimented with different hyperparameters and included in this study a selection
of hyperparameters that have worked well for this data set.

As we have set up the first version of our AICov software, we will improve it to include
high-performance computers instead of just cloud resources to leverage the universities’ compute
infrastructure. Furthermore, we are currently conducting experiments with multiple risk factors
at the same time to identify the most significant combinations of them. As we have shown that
the bivariate analysis has a locality dependency, we will explore categorizing locations with
similar demographics and conduct our experiments on demo-graphical similar regions. We will
improve the implementation with the goal of open-sourcing the software.
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10. Abbreviations

We are using the following abbreviations in the paper and the data with data from [2], [3]
and [4] of population >= 18 years of age that have been data fused by University of Pittsburgh.

Table 4: Risk factor abbreviations

Risk Factor Description

PHLTH Percent of Physical Health

ARTHRITIS Percent of arthritis

BINGE Percent of binge drinking

BPHIGH Percent of high blood pressure

BPMED Percent of taking blood pressure medication

CANCER Percent of cancer patients

CASTHMA Percent of current asthma

CHD Coronary heart disease

CHECKUP Percent of health checkup

CHOLSCREEN Percent of cholesterol screening

COPD Percent of Chronic obstructive pulmonary disease

CSMOKING Current smoking in percent

DIABETES Percent of diabetes

Estbeds Number of estimated beds in hospitals

HIGHCHOL Percent of high cholesterol

Insurance Percent of Insurance

KIDNEY Percent of kidney disease

LPA Percent of No leisure-time physical activity

MHLTH Percent of not good mental health

Nbeds Number of beds in hospitals

Nbeds per1000 Number of beds per 1000 people

Nhosp Number of hospitals

OBESITY Percent of population that is obese

PHLTH Percent of Physical Health

PVI Pandemic vulnerability index

Percentblacks Percent of Blacks in the population

Percenthispanics Percent of Hispanics in the population

STROKE Percent of stroke

None no risk factor used

black percent Percent of blacks in the population

poverty percent Percent of poverty in the population

senior percent Percent of seniors in the population

svi minority Percent of social vulnerability index in the minority population

svi overall Percent of social vulnerability index in the overall population
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