
Clustering Social Images with MapReduce and High
Performance Collective Communication
Bingjing Zhang

Department of Computer Science
Indiana University Bloomington

zhangbj@indiana.edu

Judy Qiu
Department of Computer Science

Indiana University Bloomington
xqiu@indiana.edu

ABSTRACT
Social Image clustering is a data intensive application that

provides novel challenges to high performance computing.

Already this field has reached 10-100 million images represented

as points in a high dimensional (up to 2048) vector space that are

to be divided into up to 1-10 million clusters. In recent years

MapReduce has become popular in processing big data problems

due to its attractive programming interface with scalability and

reliability. However, because social image clustering is an

iterative data mining application, the performance of traditional

MapReduce frameworks is poor on this problem due to the

overhead of repeated disk access. By caching invariant data

between iterations into local memory on each node, our Twister

system is able to accelerate MapReduce iterations. In each

iteration, data is processed through 5 stages: Broadcast, Map,

Shuffle, Reduce and Combine and this paper focuses on the four

collective communication stages where the large data sizes allow

and demand performance optimization where we combine ideas

from the MapReduce and MPI communities. We present detailed

analysis of the division of 7 million image feature vectors in 512

dimensions into 1 million clusters, executing the application on

1000 cores (125 nodes each of which has 8 cores) with 10000

Map tasks and 125 Reduce tasks. Particular challenges are the

20TB of intermediate data generated in the shuffling stage and

512MB of data to be broadcast. We compare several approaches

to broadcasting showing that a topology-aware and pipeline-based

method gives improved performance of a factor of 120 compared

to simple method; a factor of 5 compared to basic pipelined

methods and a factor 1.2 compared to MPI. Further we add a local

reduction stage before the shuffle which reduces the 20 TB

intermediate data to “just” 250 GB. We discuss the next steps that

will scale to larger problems and introduce new algorithms that

will speed up the map stage by one to two orders of magnitude

and highlight need for high performance collectives developed in

this paper.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]:

Distributed Systems – Distributed applications.

General Terms

Algorithms, Measurement, Performance, Design,

Experimentation.

Keywords
Social Images, Data Intensive, High Dimension, Iterative

MapReduce, Collective Communication

1. INTRODUCTION
The rate of data generation has now exceeded the growth of

computational power predicted by Moore’s law. Challenges from

computation are related to mining and analysis of these massive

data sources for the translation of large-scale data into knowledge-

based innovation. However, many existing analysis tools are not

capable of handling such big data sets. MapReduce frameworks

have become popular in recent years for their scalability and fault

tolerance in large data processing and simplicity in programming

interface. Hadoop [1], an open source implementation following

original Google’s MapReduce [2] concept, has been widely used

in industry and academia.

Intel’s RMS (Recognition, Mining and Synthesis) taxonomy [3]

identifies iterative solvers and basic matrix primitives as the

common computing kernels for computer vision, rendering,

physical simulation, financial analysis and data mining. These

observations suggest that iterative MapReduce will be a runtime

important to a spectrum of e-Science or e-Research applications

as the kernel framework for large scale data processing. Several

new frameworks designed for iterative MapReduce are proposed

to solve this problem, including Twister [4] and HaLoop [5].

Social image clustering is such a kind of application which is not

only a big data problem but also needs an iterative solver.

Already problems in this space can involve 10-100 million images

represented as points in a high dimension (500-2000) space which

are to be divided into 1-10 million clusters. This produces

challenges for both new algorithms and efficiency of the parallel

execution which involves very large collective communication

steps. We are addressing all these issues with an extension of

Elkan's algorithm [40] drastically speeding up the computing

(map) step of algorithm by use of the triangle inequality to

remove unnecessary computation. However his just highlights the

need for efficient communication that we study here. Note

communication has been well studied, especially for MPI, but the

new application area stresses different usage modes from most

previous work. Secondly k-means clustering algorithm, the

algorithm used to solve the clustering problem needs several

iterations to reach the local optimization. However, classic

MapReduce frameworks such as Hadoop are too inefficient to

meet the requirement of executing this iterative algorithm. The

reason is that input data and all kinds of intermediate data are very

large which can arrive to terabytes in our experiments and they

are loaded again and again between iterations.

Twister is an iterative MapReduce framework and we have

discussed it’s distributed in memory design in detail [4]. In this

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on

the first page. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a

fee.

HPDC ’13 New York City, USA

Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

paper, we study large-scale image clustering application and

identify performance issues of collective communication in

iterative algorithms for both Hadoop MapReduce (Allreduce) and

Twister (Broadcast and Reduce). We observe that in the image

clustering application, broadcasting and shuffling could cost lots

of execution time and limit the scalability of the execution. To

cluster 7 million image feature vectors to 1 million clusters, we

execute the application on 1000 cores (125 nodes each of which

has 8 cores) with 10000 Map tasks and 125 Reduce tasks. In

broadcasting, the root node (driver) broadcasts 512 MB data to all

compute nodes. In shuffling, 20 TB intermediate data generated in

Map stage is transferred in the shuffling stage. It is not possible to

handle 20 TB intermediate data directly in memory and overhead

of a sequential broadcasting is substantial. In this paper, we

propose a topology-aware pipeline-based method to accelerate

broadcasting by at least a factor of 120 compared with simple

algorithm (sequentially sending data from root node to each

destination node) and show that it outperforms classic MPI

methods [6] by 20%. We also use local reduction before shuffling

to reduce the size of intermediate data by at least 90% and reduce

20 TB intermediate data to 250 GB. These methods provide

important capabilities of our new iterative MapReduce framework

for data intensive applications. Finally we evaluate our new

methods in PolarGrid [7] cluster at Indiana University.

The rest of paper is organized as follows. Section 2 discusses the

image clustering application. Section 3 introduce Twister tool and

analyzes the data model inside Twister and how it is used to

process big data problem. Section 4 presents the design of

broadcasting algorithm. Section 5 investigates how the new

shuffling mechanism works. Section 6 shows experiments and

results. Section 7 discusses related work and Section 8 is about

conclusion and future work.

2. IMAGE CLUSTERING APPLICATION
Image clustering application is to group millions of images to

millions of clusters each of which contains as set images with

similar visual features. Before doing image clustering, we notice

that the original data of each image is high-dimensional and the

total data set is huge, so the dimensionality reduction is done first

and each image is represented in a much lower space with a set of

important visual components which are called “feature vectors”.

Analogous to how “key words” are used in a document retrieval

system, these “features vectors” become the “key words” of an

image. In this application, we select 5 patches from each image

and represent each patch by a HOG (Histograms of Oriented

Gradients) feature vector of 512 dimensions. The basic idea of

HOG features is to characterize the local object appearance and

shape by the distribution of local intensity gradients or edge

directions [8] (See Figure 1). In the application input data, each

HOG feature vector is presented as a line of text starting with

picture ID, row ID and column ID, then being followed by 512

numbers f1, f2 …and fdim.

We apply K-means Clustering [9] to cluster the similar HOG

feature vectors and use Twister MapReduce framework to

paralyze the computation. We depict K-means Clustering

algorithm as a chain of MapReduce jobs with each iteration per

MapReduce job. We treat input data, a large number of feature

vectors as high dimensional data points each of which contains

512 dimensions and use Euclidean distance calculation to

compare the distances between data points. We notice that the

vectors are static over iterations. So we partition the vectors and

cache each partition in memory and assign it to a Map task during

the job configuration. Later in each iteration execution, the job

driver firstly broadcasts cluster centers to all Map tasks and then

each Map task assign points to their nearest cluster centers based

on Euclidean distance calculation and for each cluster, for each

cluster center, Map tasks collect the sum of coordination values of

data points in the cluster and count the total number of these data

points. The Reduce task (To simplify the algorithm introduction,

we use only one Reduce task here) processes the output collected

from each Map task and calculate new cluster centers of the

iteration by adding all partial sums of coordination values together

and letting it be divided by the total count of the data points in the

cluster. By combining these new centroids from Reduce tasks, the

job driver gets all updated centroids and the control flow enters

the next iteration (See Table 1).

A major challenge of this application is the amount of the image

data can be very large. Currently we have near 1 TB data and it

can grow as long as new images are put into the data set. For such

a large input data, though we can increase the number of machines

to lower down the data size per node, the total data size required

for broadcasting and shuffling still grows.

For example, in a real job execution, we need to cluster 7 million

vectors to 1 million clusters. In one iteration, the execution is

done on 1000 cores (125 nodes, each of which has 8 cores) in 10

rounds with a total of 10000 Map tasks. For 7 million image data,

each task only needs to cache 700 vectors which is about 358KB

and each node only needs to cache 56K vectors which are about

30MB in total. But for broadcasting data, by the requirement of

image clustering, the number of cluster centers is very large and

the total size of 1 million cluster centers is about 512MB. So the

centroids data per task received through broadcasting is much

larger than the image feature vectors per task. Since each Map

task needs a full copy of the centroids data. The total data sent

through broadcasting grows as the number of node grows. For 125

nodes and the execution above, the total data sent through

broadcasting is about 64 GB (Because Map tasks are executed on

thread level, broadcasting data can be shared among tasks on one

node).

Besides, for shuffling data, because each map task generates about

2 GB intermediate data, the total intermediate data size in

shuffling is about 20 TB. This kind of big data cannot be handled

by Twister in-memory work model because 20 TB far exceeds the

total memory size of 125 nodes (each of which has 16 GB

memory, 2 TB in total). It also makes the computation difficult to

Figure 1. Workflow of the image clustering application

scale as the data size grows with the number of nodes. In this

paper, we successfully reduce 20 TB intermediate data to 250 GB.

But due to the memory limitation, 250 GB still cannot be handled

by one Reduce task. So we chunk the output from each Map task

to 125 blocks (numbered with Block ID from 0 to 124) and use

125 reduce tasks (one task per node) to process the intermediate

data. In this way, each Reduce task only process 2 GB data.

Reduce task 0 processes all Block 0 from all Map tasks, Reduce

task 1 processes all Block 1 from all Map tasks, and so on. The

output from each Reduce task is only about 4 MB. For 125

Reduce tasks, the total data required to be combined back to the

job driver is about 512 MB which is very small and easy to

handle.

Table 1. Algorithms and implementation of Image Clustering

Application (one Reduce task only)

Algorithm 1 Job Driver

numLoop ← maximum iterations

centroids[0] ← initial centroids value

driver ← new TwisterDriver(jobConf)

driver.configureMapTasks(partitionFile)

for(i ← 0; i < numLoop; i ← i+1)

 driver.broadcast(centroids[i])

 driver.runMapReduceJob()

 centroids[i+1] ←driver.getCurrentCombiner().getResults()

Algorithm 2 Map Task

vectors ← load and cached from files

centroids ← load from memory cache

minDis ← new int[numVectors]

minCentroidIndex ← new int[numVectors]

for (i ← 0; i < numVectors; i ← i+1)

 for (j ← 0; j < numCentroids; j ← j+1)

 dis ← getEuclidean(vectors[i], centroids[j])

 if (j = 0)

 minDis[i] ← dis

 minCentroidIndex[i] ← 0

 if (dis < minDis[i])

 minDis[i] ← dis

 minCentroidIndex[i] ← j

localSum ← new int[numCentroids][512]

localCount ← new int[numCentroids]

for(i ← 0; i < numVectors; i ← i+1)

 localSum[minCentroidIndex[i]] +← vectors[i]

 localCount[minCentroidIndex[i]] +← 1

collect(localSum, localCount)

Algorithm 3 Reduce Task

localSums ← collected from Map tasks

localCounts ← collected from Map tasks

totalSum ← new int[numCentroids][512]

totalCount ← new int[numCentroids]

newCentroids ← new byte[numCentroids][512]

for (i ← 0; i < numLocalSums; i ← i+1)

 for (j ← 0; j < numCentroids; j← j+1)

 totalSum[j] = totalSum[j] + localSums.get(i)[j]

 totalCount[j] = totalCount[j] + localCounts.get(i)[j]

for (i ← 0; i < numCentroids; i← i+1)

 newCentroids[i] = totalSum[i]/ totalCount[i]

collect(newCentroids)

Here we also give the time complexity of each algorithm, we use

𝑝 as the number of nodes, 𝑚 as the number of Map tasks and 𝑟 as

the number of Reduce tasks. For data, 𝑘 as the size of centroid

data, 𝑛 as the total number of image feature vectors, and 𝑙 as the

number of dimensions. (See Table 2). We add for map, an

approximate estimate of the improvement gotten by using triangle

inequalities (see figure 9 and discussion)

Table 2. Time complexity of each stage

Stage Simple Improved

Broadcasting 𝑂(𝑘𝑙𝑝) 𝑂(𝑘𝑙)

Map 𝑂(𝑘𝑛𝑙/𝑚) See Section 8

Shuffle 𝑂(𝑚𝑘𝑙/𝑟) 𝑂(𝑝𝑘𝑙/𝑟)

Reduce 𝑂(𝑚𝑘𝑙/𝑟) 𝑂(𝑝𝑘𝑙/𝑟)

Combine 𝑂(𝑘𝑙) 𝑂(𝑘𝑙)

3. PARALLEL PROCESSING

FRAMEWORKS
In this section, we compare several parallel processing tools

including Hadoop, MPI and iterative MapReduce show how they

are used to process big data problems. Section 3.1 discusses the

control flow and Section 3.2 talks about the data model.

3.1 Control Flow
Hadoop MapReduce and iterative MapReduce both follow

MapReduce control flow but the latter makes some extensions to

support iterative algorithms. For fault tolerance, Hadoop provides

task level fault tolerance, but iterative MapReduce needs to

provide checkpointing between iterations. Besides there are other

detailed differences in implementation (See Table 3).

Another commonly used parallel data processing framework is

MPI. MPI can spawn several processes working in parallel but

doesn’t follow MapReduce model. On the contrary, programmer

needs to design what each process does and how they

communicate with each other. MPI is flexible to simulate

MapReduce model or run under other user defined control flows.

But comparing with MapReduce model, its programming model is

very complicated to use. In implementation, MPI is highly

optimized in performance with added fault tolerance.

Table 3. Comparison of the control flows

 Twister Hadoop MPI

Language Java Java C

Environment
clusters,

HPC, cloud

clusters,

cloud

HPC, super

computers

Job Control
Iterative

MapReduce
MapReduce

parallel

processes

Fault Tolerance
iteration

level
task level

added fault

tolerance

Communication

Protocol

broker [10]

[11], TCP
RPC, TCP

TCP, shared

memory,

Infiniband

[12]

Work Unit thread process process

Scheduling static
dynamic,

speculative
static

3.2 Data Model
The reason why these three frameworks have different control

flows is that they serve different application and data. We see MPI

and Hadoop are at the two ends of the whole data tool spectrum.

MPI is a computation-centric solution. It doesn’t have fixed

control flow so that users can customize and optimize the work

flow for any applications. MPI serves scientific applications

which are not only complicated in control flow but also intensive

in computation.

At the same time, Hadoop is a data-centric solution. With the

support of HDFS [13], users don’t need to think about data

accessing and loading as what they do in MPI programs. Besides,

computation is moved to the place where data is stored. This

framework is scalable when processing big data but its control

flow is constrained to MapReduce pattern. The typical data

processed in Hadoop is records and logs. This type of data is easy

to split into small Key-Value objects and not like scientific data

which contains large chunks of vectors or matrices. And usually

the computation on these data can be easily expressed in Map-

Reduce pattern.

As a result, iterative MapReduce interpolates between Hadoop

and MPI. We hope to provide an easy-to-use and data-centric

solution to process big data in data mining or scientific

applications efficiently. We extend MapReduce model to iterative

MapReduce model to support iterative algorithms. This kind of

model is more powerful than traditional MapReduce model but

still keep the simplicity. For data model, we move toward Hadoop

direction and intend to add HDFS support, but not follow MPI

(See Table 4).

Table 4. Comparison of the data models

 Twister Hadoop MPI

Application

Data Category

scientific data

(vectors,

matrices)

records, logs

scientific

data

(vectors,

matrices)

Data Source
local disk,

DFS

local disk,

HDFS
DFS

Data Format text/binary text/binary

text/binary/

HDF5

/NetCDF

Data Loading
partition

based

InputSplit,

InputFormat
customized

Data Caching in memory local files in memory

Data Processing

Unit

Key-Value

objects

Key-Value

objects

basic types,

vectors

Data Collective

Communication

broadcasting,

shuffling

broadcasting,

shuffling

multiple

kinds

We notice that the data used in computation is not organized in

the same way as the data stored in disks. For example, the data in

the image clustering application are stored in a set of text files.

Each file contains feature vectors generated from a related set of

images. The length of file and the number of files usually varies.

However, in computation we hope the number of data partitions is

the same as the number of cores or the multiple of the number of

cores so that we can evenly distribute the computation. So we

need to convert “raw” stored data in disks to “cooked” data ready

for computation. Currently we split original data files into even

sized data partitions. But Hadoop can automatically load data

from blocks with self-defined InputSplit or InputFormat class. At

the same time, MPI requires user to split data or use special file

format HDF5 [15] and NetCDF [16] commonly used in scientific

applications.

We also notice that in many parallel applications data is not

processed and outputted in local directly. It is common that

intermediate data generated during processing are required to be

exchanged under collective communication operations. Currently

iterative MapReduce supports two communication operations on

intermediate data. One is broadcasting and another is shuffling.

Since data is cached in memory, we optimize the memory-to-

memory collective communication. Hadoop also supports these

two operations but only simply support them with file transfers.

On the contrary, MPI provide abundant options for memory-to-

memory collective communication operations [17].

4. BROADCASTING TRANSFERS
To solve the performance issue of broadcasting in image

clustering application, we replace original simple methods with

new pipeline–based chain method. We firstly discuss the

broadcasting in Hadoop, MPI and Twister. And then we propose

our new chain method which can utilize the bandwidth per link

and topology advantage more efficiently.

4.1 Broadcasting in Twister, Hadoop and MPI
We used to conduct data broadcasting with brokers. However, we

find this method the following issues. Firstly, unnecessary

communication hops through brokers are added in data transfers

between clients, which give poor performance for big messages as

they often need significant time to transfer from one point to

another point. Secondly, the broker network doesn’t provide

optimal routing for data transferring between a set of brokers and

clients in collective communication operations. Thirdly, brokers

are not always reliable in message transmission and message loss

can happen.

Hadoop system relies on HDFS to do broadcasting. A component

named Distributed Cache is used to cache data from HDFS to

local disk of compute nodes. The API addCacheFile and

getLocalCacheFiles co-work together to finish the process of

broadcasting. However, there is no special optimization for the

whole process. The data downloading speed depends on the

number of replicas in HDFS [18].

These kinds of methods are simple because they basically send

data to all the nodes one by one. Though using multiple brokers or

using multiple replicas in HDFS could contain a simple 2-level

broadcasting tree and ease the performance issue, they won’t

fundamentally solve the problem.

In MPI, several algorithms are used for broadcasting. MST

(Minimum-spanning Tree) method is a typical broadcasting

method used in MPI [17]. In this method, nodes form a minimum

spanning tree and data is forwarded along the links. In this way,

the number of nodes which have the data grows in geometric

progression. Here we use 𝑝 as the number of nodes, 𝑛 as the data

size, 𝛼 as communication startup time and 𝛽 as data transfer time

per unit. The performance model can be described by the formula

below:

𝑇𝑀𝑆𝑇(𝑝, 𝑛) = ⌈𝑙𝑜𝑔2𝑝⌉(𝛼 + 𝑛𝛽) (1)

Though this method is much better than the simple broadcasting

by changing the factor 𝑝 to ⌈𝑙𝑜𝑔2𝑝⌉ , the method is still slow

because the term (𝛼 + 𝑛𝛽) is getting large as the size of message

increases.

Scatter-allgather-bucket algorithm is another algorithm used in

MPI for long vectors broadcasting which follows the style of

“divide, distribute and gather” [19]. In “scatter” phase, it scatters

the data to all the nodes. To do this, it can use MST algorithm or a

simple algorithm. Then in “allgather” phase, it views the nodes as

a chain. At each step, each node sends data to its right neighbor

[17]. By taking advantage of the fact that messages traversing a

link in opposite direction do not conflict, we can do “allgather” in

parallel without any network contention. The performance model

can be established as follow:

𝑇𝑏𝑢𝑐𝑘𝑒𝑡(𝑝, 𝑛) = 𝑝(𝛼 + 𝑛𝛽 𝑝⁄) + (𝑝 − 1)(𝛼 +
𝑛𝛽 𝑝⁄) (2)

In large data broadcasting, assuming α is small, the broadcasting

time is about 2𝑛𝛽. This is much better than MST method because

the time looks constant. However, since it is not easy to set global

barrier between “scatter” and “allgather” phases to enable all the

nodes to do “allgather” at the same global time through software

control, some links will have more load than the others and thus it

causes network contention. Here is performance result of our

rough implementation of this method on PolarGrid (See Table 5).

We see that the time is stable as the number of nodes grows and

about twofold time cost of 1 GB transferring between 2 nodes.

Table 5. Scatter-allgather-bucket performance on IU

PolarGrid with 1 GB data broadcasting

Node# 1 25 50 75 100 125

Seconds 11.4 20.57 20.62 20.68 20.79 21.2

There is also InfiniBand multicast based broadcasting method in

MPI [20]. Since many clusters have hardware-supported multicast

operation, multicast has advantage to do broadcasting. However,

multicast also has problems mainly because its transportation is

not reliable, order is not guaranteed and the package size is

limited. So after the first stage of multicasting, broadcasting is

enhanced with a chain-like broadcasting in the second stage. The

second stage of broadcasting is reliable to make sure every

process has completed data receiving. In the second stage, the

nodes are formed into a virtual ring topology. Each MPI process

that gets the message via multicast serves as a new “root” within

the virtual ring topology and exchange data to the predecessor and

successor in the ring. This is similar to the bucket algorithm we

discuss above.

4.2 Chain Broadcasting Algorithm
Here we propose chain method, an algorithm based on pipelined

broadcasting [21]. In this method, compute nodes in Fat-Tree

topology [22] are treated as a linear array and data is forwarded

from one node to its neighbor chunk by chunk. The performance

is gained by dividing the data into many small chunks and

overlapping the transmission of data on nodes. For example, the

first node would send a data chunk to the second node. Then,

while the second node sends the data to the third node, the first

node would send another data chunk to the second node, and so

forth [21]. This kind of pipelined data forwarding is called “a

chain”. It is particularly suitable for the large data sizes in our

communication problem.

The performance of pipelined broadcasting depends on the

selection of chunk size. In an ideal case, if every transfer can be

overlapped seamlessly, the theoretical performance is as follows:

𝑇𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝑝, 𝑘, 𝑛) = 𝑝(𝛼 + 𝑛𝛽 𝑘⁄) + (𝑘 − 1)(𝛼 +

𝑛𝛽 𝑘⁄) (3)

Here 𝑝 is the number of nodes, 𝑘 is the number of data chunks, 𝑛

is the data size, 𝛼 is communication startup time and 𝛽 is data

transfer time per unit. In large data broadcasting, assuming 𝛼 is

small and 𝑘 is large, the main item of the formula

is (𝑝 + 𝑘 − 1)𝑛𝛽 𝑘⁄ ≈ 𝑛𝛽 which is close to constant. From the

formula, the best number of chunks 𝑘𝑜𝑝𝑡 = √(𝑝 − 1)𝑛𝛽/𝛼

when 𝜕𝑇 𝜕𝑘⁄ = 0 [21]. However, in practice, the real chunk size

per sending is decided by the system and the speed of data

transfers on each link could vary as network congestion could

happen when data is kept forwarded into the pipeline. As a result,

formula (3) cannot be applied directly to predict real performance

of our chain broadcasting implementation. But the experiment

results we will present later still show that as 𝑝 grows, the

broadcasting time keeps constant and close to the bandwidth

boundarylimit.

4.3 Topology Impact
This chain method is suitable for Fat-Tree topology which is a

commonly used network topology in clusters or in data centers

[22] [23]. Since each node only has only two links, which is less

than the number of links per node in Mesh/Torus [24] topology,

chain broadcasting can maximize the utilization of the links per

node. We also make the chain be topology-aware by allocating

nodes within the same rack close in the chain. Assuming the racks

are numbered as 𝑅1, 𝑅2 and 𝑅3…, the nodes in 𝑅1 are put at the

beginning of the chain, then the nodes in 𝑅2 follow the nodes

in 𝑅1, and then nodes in 𝑅3 follow nodes in 𝑅2 …. Otherwise, if

the nodes in 𝑅1 are intertwined with nodes in 𝑅2 in the chain

sequence, the chain flow will jump between switches, and makes

the core switch overburdened.

To support topology-awareness, we define the chain sequence

based on the topology and save the information on each node.

Each node can tell its predecessor and successor by loading the

information when starting. In future, we are also looking into

supporting Automatic automatic topology detection to replace the

static specification of topology information loading.

4.4 Buffer Usage
Another important factor affecting broadcasting speed is the

buffer usage. The cost of buffer allocation and data copying

between buffers are not presented in formula (3). There are 2

levels of buffers used in data transmission. The first level is the

system buffer and the second level is the application buffer.

System buffer is used by TCP socket to hold the partial data

transmitted from the network. The application buffer is created by

the user to integrate the data from the socket buffer. Usually the

socket buffer size is much smaller than the application buffer size.

The default buffer size setting of Java socket object in IU

PolarGrid is 128KB while the application buffer we choose for

broadcasting is the total size of the data required to be

broadcasted.

We observed the performance degradation caused by buffer

usage. One issue is that if the socket buffer is smaller than 128

KB, the broadcasting performance can be slowed down probably

because the TCP window cannot open up fully and result in

throttling of the sender. Besides Further the large-sized user buffer

allocation during the pipeline forwarding can also slightly slow-

down of the overall performance. To make a clean n apple-to-

apple comparison with MPI which does buffer initialization

before broadcasting, we initialize a pool of free buffers once the

receiver program starts instead of allocating one buffers during

the broadcasting.

4.5 Object Serialization and De-serialization
In memory-to-memory broadcasting, data are abstracted and

presentedstored as an object in memory. So we need to serialize

the object to byte array before broadcasting and de-serialize byte

array back to an object after broadcasting. We manage

serialization and deserialization inside of the framework and we

provide interfaces to let user be able to write different basic types

into the byte array, such as “int”, “long”, “double”, “byte” and

“String”.

We observe that large-sized data object serialization and de-

serialization can take very long timebe slow for large size data

and further the serialization speed d. Dependsing on the data type,

the serialization speed varies. Our experiments show that

serializing 1 GB “double” data is much faster than serializing 1

GB “byte” data. Moreover, desterilizing 1 GB “byte” data even

uses even longer time than serializing it. The time cost on this part

can take tens of seconds. Since it is local operation and can be

optimized at some cost in portability, currently we leave them

theremeasure these overheads and separate them from the core

broadcasting operation.

4.6 Fault Tolerance in Broadcasting
FFurthermore, fault tolerance is must also be considered in chain

broadcasting. When large data are transmitted among large

number of nodes, node communication failures become likely is

inevitable. Several strategies are applied here in our approach.

Firstly it if there are failures in establishing connection from node-

to-node, a retry is issued. Alternatively it moves on toone tries

other destinations. Secondly, if the chain is broken and exceptions

thrown in the root side, the whole broadcasting will restart.

Thirdly, at the end of broadcasting, the root waits and checks if all

the nodes have received all the data blocks. If the root doesn’t get

all the ACK within a time window, it restarts the whole

broadcasting.

4.7 Implementation
We implement the chain broadcasting algorithm in the following

way: it starts with a request from the root to the first node in the

topology-aware chain sequence. Then the root keeps sending a

small portion of the data to the next node. At the meanwhile, for

the nodes in the chain, each node creates a connection to the

successor node in the chain. Next each node receives a partial data

from the socket stream, store it into the application buffer and

forward it to the next node (See Table 6).

Table 6. Broadcasting algorithm

Algorithm 1 root side “send” method

nodeID ← 0

connection ← connectToNextNode(nodeID)

dout ← connection.getDataOutputStream()

bytes ← byte array serialized from the broadcasting object

totalBytes ← total size of bytes

SEND_UNIT ← 8192

start ← 0

dout.write(totalBytes)

while (start + SEND_UNIT < totalBytes)

 dout.write(bytes, start, SEND_UNIT)

 start ← start + SEND_UNIT

 dout.flush()

if (start < totalBytes)

 dout.write(bytes, start, totalBytes - start)

 dout.flush()

waitForCompletion()

Algorithm 2 Compute node side “receive” method

connection ← serverSocket.accept()

dout ← connection.getDataOutputStream()

din ← connection.getDataInputStream()

nodeID ← this.nodeID + 1

connNextD ← connectToNextNode(nodeID)

doutNextD ←connToNextD.getDataOutputStream()

dinNextD ← connToNextD.getDataInputStream()

totalBytes ← din.readInt()

doutNextD.writeInt(totalBytes)

doutNextD.flush()

bytesBuffer ← getFromBufferPool(totalBytes)

RECV_UNIT ← 8192

recvLen ← 0

while ((len ← din.read(bytesBuffer, recvLen, RECV_UNIT)) > 0)

 doutNextD.write(bytesBuffer, recvLen, len)

 doutNextD.flush()

 recvLen ← recvLen + len

 if (recvLen = totalBytes) break

notifyForCompletion()

5. SHUFFLING TRANSFERS
There is no similar shuffling operation in MPI because MPI

doesn’t group data into Key-Value objects. In Hadoop

MapReduce framework, shuffling operation relies on disks and

causes repetitive merges and disk access. As this could be very

inefficient, we leverage memory to do shuffling operation by

directly transferring intermediate data through the network from

memory to memory between Map task and Reduce tasks.

The performance of shuffling mainly depends on the size of

intermediate data. As the data size increases, the performance

degrades drastically. For example, in the image clustering

application, the data required to be transferred in shuffling is

about 𝑚𝑝𝑛 bytes, 𝑚 is the number Map task per node, 𝑝 is the

number of nodes, and 𝑛 is the data per Map task. Therefore, even

if the data per task is small, as long as 𝑚 and 𝑝 are large, the

program can generate large intermediate data. We reduce the

intermediate data size by using local reduction across Map tasks.

To support local reduction, we provide appropriate interface to

help users define the reduction operation.

5.1 Local Reduction
The current memory-based shuffling mechanism is efficient

compared with original disk-based shuffling mechanism.

However, in big data processing, the data transferred in the

shuffling stage is incredibly large and the number of links can be

used for data transmission is limited, therefore the cost of

shuffling is very high and the whole process is unstable. Some

solutions try to use Weighted Shuffle Scheduling (WSS) [18] to

balance the data transfers by making the number of transferring

flow to be proportional to the data size. But for this image

clustering application, this won’t help our application because the

data size generated per for each Map task is the same.

We notice that each Key-Value pair in intermediate data is a

partial sum of the coordination valuescomponents of data points

in aassociated with a particular cluster. Since addition is an

operation with both commutative and associative properties, for

any two values belonging to the same key, we can do addition on

them and merge them to a single Key-Value pair and this doesn’t

change the final result. This property can be illustrated by the

following formula:

𝑓(𝑘𝑣1, ⋯ , 𝑘𝑣𝑖 , ⋯ , 𝑘𝑣𝑗 , ⋯ , 𝑘𝑣𝑛) = 𝑓(𝑘𝑣1, ⋯ , (𝑘𝑣𝑖 ⊕

𝑘𝑣𝑗), ⋯ , 𝑘𝑣𝑛) = 𝑓(𝑘𝑣1, ⋯ , (𝑘𝑣𝑗 ⊕

𝑘𝑣𝑖), ⋯ , 𝑘𝑣𝑛) ∀ 𝑖, 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛 (4)

Here ⊕ presents a set of operations which are similar to addition

operation which can be applied on any two Key-Value pairs and

can generate a new Key-Value pair by operating, 𝑓 is the Reduce

function and 𝑛 is the number of Key-Value pairs belonging to the

same key. In our image clustering application, ⊕ is the addition

of two partial sums. In other applications, we can also find

similar property. In Word Count [2], ⊕ is the addition of two

partial counts of the same word. Besides ⊕ can be operations

other than addition, such as multiplication and max/min value

selection, or just simple combination of the two values.

With ⊕ operation and noting the fact that Map tasks work at

thread level on compute nodes, we do local reduction in the

memory shared by Map tasks. Once a Map task is finished, it

doesn’t send data out immediately but caches the data to a shared

memory pool. When the key conflict happens, the program

invokes user defined operation to merge two Key-Value pairs into

one. A barrier is set so that the data in the pools are not transferred

until all the Map tasks in a node are finished. By exchanging

swapping communication time with computation time, the data

required to be transferred can be significantly reduced.

5.2 Interface Support
To support shuffling and local reduction, we provide new

interfaces to allow users define the Key and Value objects and ⊕

operation. We abstract data presentation through interface Key

and Value extended from TwisterSerializable, which defines the

interface for object serialization. In interface Key, an API named

isMergeableInShuffle is defined to check if the current Key-Value

pair can be merged in shuffling. At the same time, an API

mergeInShuffle is defined in interface Value. It can take a Value

object as a parameter and merge the data to the current Value

object (See Table 7).

Table 7. New interfaces of “Key” and “Value”

Interface “Key”

public interface Key extends TwisterSerializable {

 public boolean equals(Object key);

 public int hashCode();

 public boolean isMergeableInShuffle();

}

Interface “Value”

public interface Value extends TwisterSerializable {

 public void mergeInShuffle(Value value);

}

6. Experiments
To evaluate the performance of the new proposed collective

communication methods proposed, we conduct experiments about

broadcasting and shuffling on IU PolarGrid cluster in the context

of microboth kernel-benchmarking and application benchmarking.

The results demonstrate that chain method achieves the better best

performance on big data broadcasting compared with both the

other MapReduce and MPI methods and shuffling with local

reduction can out-perform the original shuffling significantly.

6.1 IU PolarGrid
IU PolarGrid cluster uses a Fat-Tree topology to connect compute

nodes. The nodes are split into sections of 42 nodes which are

then tied together with 10 GigE to a Cisco Nexus core switch. For

each section, nodes are connected with 1 GigE to an IBM System

Networking Rack Switch G8000. This forms a 2-level Fat-Tree

structure with the first level of 10 GigE connections and the

second level of 1 GigE connections (See Figure 2). For computing

capacity, each compute node in PolarGrid uses a 4-core 8-thread

Intel Xeon CPU E5410 2.33 GHz processor. The L2 cache size

per core is 12 MB. Each compute node has 16 GB total memory.

This kind of topology can easily generate contention when there

are many inter-switch communication pairs. The bottleneck is that

inter-switch communication is through the one and only core

switch and the connection is also limited to 10 GigE. Assuming

that every 1 GigE link under the leaf switch is fully utilized, a 10

GigE connection can only support at most 10 parallel

communication pairs across two leaf switches. If there are more

inter-switch communication pairs between any two leaf switches,

they could affect each other in performance. As a result, reducing

the number of inter-switch communication times is considered the

highest priority in design of efficient collective communication

algorithms under for a fat-tree topology.

6.2 Broadcasting
We test several broadcasting methods on IU PolarGrid: chain

method in Twister, MPI_BCAST in Open MPI 1.4.1 [25], and the

broadcasting method in MPJ Express 0.38 [26]. We also compare

the current Twister chain broadcasting method with other designs

such as chain method without topology awareness and simple

broadcasting to show the efficiency of the new method.

Figure 2. Fat-Tree topology in IU PolarGrid

Formatted: Highlight

We measure the broadcasting time from the start of calling the

broadcasting method, to the end of return of the calling. We test

the performance of broadcasting from a small scale to a medium

large scale. The range includes 1 node, 25 nodes with 1 switch, 50

nodes under 2 switches, 75 nodes with 3 switches, 100 nodes with

4 switches, 125 nodes with 5 switches, and 150 nodes with 5

switches. The tests are for different data size, including 0.5 GB

(500MB), 1 GB, and 2 GB. Each result is the average of 10

executions. Since there are only milliseconds of differences

between execution times we don’t show the negligible

measurement error bars in the following charts.

Figure 3 shows the comparison between chain method and

MPI_BCAST method in Open MPI. The time cost of the new

chain method is stable as the number of processes increases. This

matches the broadcasting formula (3) and we can conclude that

with proper implementation, the real performance of the chain

method can achieve near constant execution time. Besides, the

new method achieves 20% better performance than MPI_BCAST.

Figure 4 shows the comparison between Twister chain method

and broadcasting method in MPJ. Due to exceptions, we couldn’t

launch MPJ broadcasting on 2GB data. So we draw a dash line to

mark the prediction. Since 1GB MPJ broadcasting uses twice the

time of 0.5GB MPJ broadcasting, we assume 2 GB MPJ

broadcasting also costs double time of 1 GB MPJ broadcasting.

MPJ broadcasting method is also stable as the number of

processes grows, but it is pretty slow. Twister chain broadcasting

is only about 25% of the time cost in MPJ broadcasting. Besides,

there is a significant gap between 1-node broadcasting and 25-

node broadcasting in MPJ.

However if the chain sequence is randomly generated but not

topology-aware, the performance degrades quickly as the scale

grows. Figure 5 shows that chain method with topology-

awareness is 5 times faster than time of the chain method without

topology-awareness. For broadcasting in 1 switch, we see that as

expected, there is not much difference between two methods.

However, as the number of nodes and the number of switches

increase, the execution time increases significantly. When there

are more than 3 switches, the execution time become stable and

doesn’t change much. Because there are many inter-switch

communications, the performance is constrained by the 10 Gb

bandwidth and the throughput ability of the core switch.

We show the performance of simple broadcasting and compare it

with Twister chain method in Table 8. Since simple broadcasting

takes very long time, we don’t present a chart here. The purpose

is to show the baseline of broadcasting performance in IU

PolarGrid. Because of 1 Gb connection on each node, we see the

transmission speed is about 8 seconds per GB which matches the

setting of the bandwidth value. With With the new algorithm, we

successfully reduce the cost by about a factor of 𝑝 from 𝑂(𝑝𝑛)

to 𝑂(𝑛). Here 𝑝 is the number of compute nodes and 𝑛 is data

size.

By looking inside chain method, we also examine the potential

affect from socket buffer size. As what we mention above in

Section 2.5, small socket buffer could cause slow-down of the

sender. We take broadcasting 1 GB data on 125 nodes as an

example and increase the socket buffer size gradually from 8KB

to 1MB. We find that when buffer size is 8 KB, the performance

is the worst; t of all. Then as the buffer size grows the time cost

gets lower. When the buffer size is larger than 128 KB, we get the

best performance and stable execution time. The experiment

shows that as what is analyzed above,that the socket buffer size

can affect the performance a lot because TCP window cannot

open up fully when buffer size is small. With proper buffer size,

the broadcasting performance can be improved by 90%almost an

order of magnitude from small to large buffer sizes (See Table 9).

Table 8. Performance comparison between chain broadcasting

and simple broadcasting (in seconds)

Node#
Twister Chain Simple Broadcasting

0.5 GB 1 GB 2 GB 0.5 GB 1 GB 2 GB

1 4.04 8.09 16.17 4.04 8.08 16.16

25 4.13 8.22 16.4 101 202 441.64

50 4.15 8.24 16.42 202.01 404.04 882.63

75 4.16 8.28 16.43 303.04 606.09 1325.63

100 4.18 8.28 16.44 404.08 808.21 1765.46

125 4.2 8.29 16.46 505.14 1010.71 2021.3

150 4.23 8.3 16.48 606.14 1212.21 2648.6

Figure 3. Performance comparison of Twister chain

method and MPI_Bcast

Figure 4. Performance comparison of Twister chain

method and MPJ broadcasting method (MPJ 2GB is

prediction only)

Table 9. Chain method performance under different socket

buffer sizes

Buffer Size (KB) 8 16 32 64

Time (seconds) 65.5 45.46 17.77 10.8

Buffer Size (KB) 128 256 512 1024

Time (seconds) 8.29 8.27 8.27 8.27

Serialization and de-serialization are necessary steps to provide

byte data array format required by broadcasting operation. We

measure the time cost of these steps in Figure 6. We see the cost

of serialization and de-serialization both are very high. We notice

that serialization and de-serialization operations are sensitive to

data types. For the same-sized data, “byte” type data uses more

time to serialize and de-serialize than “double” type data. And for

“byte” data, de-serialization even uses longer time than

serialization. For image clustering application, we use “byte” to

store broadcasting data in order to reduce the data size. As a

result, the time cost on broadcasting is only about 10% of the total

broadcasting time cost with the o. Other 90% is spent on

serialization and deserialization. Since these operations are

required steps and they are local operation with stable time cost,

currently we don’t have not developed a special optimization for

them yet. We will of course address in production system.

6.3 Shuffling
To benchmark the performance of shuffling, we choose the

following settings to run the image clustering application. For job

settings, we choose 125 nodes which is a relatively large scale to

run the application with 1000 Map tasks (each node with 8 Map

tasks) and 125 reduce tasks (each node with 1 Reduce task). For

data settings, we keep the number of centroids to 500K and focus

on testing the performance of collective communication. Since

500K centroids can generate about 1 GB intermediate data per

task, the overhead from shuffling is significant. We measure the

total time from the start of shuffling to the end of Reduce phase

because reducers start asynchronously. Time costs on Reduce

tasks are included but averagely it is just around 1 second and is

negligible compared with the data transfer time.

Figure 7 shows the time difference of shuffling with or without

local reduction in this mode. Without using local reduction, the

output per node is 8 GB and the total data for shuffling is about 1

TB, after using local reduction, the output per node is reduced to 1

GB and the total data for shuffling is only about 125 GB. The time

cost on shuffling is only 10% of the original time which is

changed from about 8 minutes to only 40 seconds. To reduce

intermediate data from 1 TB data to 125 GB data, we only use

extra 20 seconds in computation.

6.4 Image Clustering Application
Finally we present a real full execution of the image clustering

application here. We successfully cluster 7,420,000 vectors into 1

million cluster centers. We create 10000 map tasks on 125 nodes.

Each node has 80 tasks. Each task caches 742 vectors. For 1

million centroids, broadcasting data size is about 512 MB.

Shuffling data before local reduction is 20 TB, while the data size

after local reduction is about 250 GB. Since the total memory size

on 125 nodes is 2 TB, we even cannot execute the program if no

local reduction. Figure 8 presents the collective communication

cost per iteration, which is 169 seconds (less than 3 minutes).

We're developing a new fast Kmeans algorithm which will be

presented as a separate work, and can will drastically reduce the

current hour-long computation time in Map stage by decreasing

execution time by a factor that’s almost a factor of l (the

dimension which is currently 512 to 2048) in final iterations of the

algorithm as seen in figure 9 later..

7. RELATED WORK
Collective communication algorithms are well studied in MPI

runtime. Each communication operation has several different

algorithms based on message size and network topology such as

linear array, mesh and hypercube [17]. Basic algorithms are

pipeline broadcast method [21], minimum-spanning tree method,

bidirectional exchange algorithm, and bucket algorithm [17].

Since these algorithms have different advantages, algorithm

combination (polymorphism) is widely used to improve the

communication performance [17]. And Further some solution also

provides auto algorithm selection [27].

However, many solutions have a different focus from our work.

Some of them only study small data transfers up to megabytes

level [17][28]. Some solution relies on special hardware support

[19]. The data type is typically vectors and arrays whereas we are

Figure 5. Chain method with/without topology-awareness

Figure 6. Serialization, broadcasting and de-

serialization NEEDS COLORS DEFINED

Formatted Table

Formatted Table

Formatted: Font: Italic

Formatted: Highlight

considering objects. Many algorithms such as “allgather” have the

assumption that each node has the same amount of data [17][19],

which is not common in MapReduce model. As a result, though

shuffling can be viewed as a Reduce-Scatter operation, its

algorithm cannot be applied directly on shuffling because the data

amount generated by each Map task is unbalanced in most

MapReduce applications.

There are several solutions to improve the performance of data

transfers in MapReduce. Orchestra [18] is such a global control

service and architecture to manage intra and inter-transfer

activities on Spark [29]. It not only provides control, scheduling

and monitoring on data transfers, but also provides optimization

on broadcasting and shuffling. For broadcasting, it uses an

optimized BitTorrent [30] like protocol called Cornet, augmented

by topology detection. Although this method achieves similar

performance as our chain method, it is still unclear about its

internal design and details of communication graph formed in data

transfer and we will compare it with our methods in future. For

shuffling, it Orchestra uses weighted shuffle Scheduling (WSS) to

set the weight of the flow to be proportional to the data size; we

noted earlier this optimization is not relevant in our application.

We will give a full comparison of Orchestra with our approach in

future work..

Hadoop-A [31] provides a pipeline to overlap the shuffle, merge

and reduce phases and uses an alternative Infiniband RDMA

based protocol to leverage RDMA inter-connects for fast data

shuffling. MATE-EC2 [32] is a MapReduce like framework for

EC2 [33] and S3 [34]. For shuffling, it uses local reduction and

global reduction. The strategy is similar to what we did in Twister

but as it focuses on EC2 cloud environment, the design and

implementation are totally different. iMapReduce [35] iHadoop

[36] are iterative Mapreduce frameworks that optimize the data

transfers between iterations asynchronously, where there’s no

barrier between two iterations. However, this design doesn’t work

for applications which need broadcast data in every iteration

because all the outputs from Reduce tasks are needed for every

Map task.

8. CONCLUSIONS AND FUTURE WORKN
In this paper, we have demonstrated performance improvement of

big data transfers in Twister iterative MapReduce framework

enabling data intensive applications. We replace broker-based

methods and design and implement a new topology-aware chain

broadcasting algorithm. Compared with the naive simple

broadcast algorithm, the new algorithm reduces the time cost of

broadcasting by at least a factor 120 over 125 nodes. It reduces

20% costgives 20% better performance than MPI methods and

80% of the cost thana factor of 5 improvement over un-optimized

(for topology) pipeline-based method over 150 nodes. The

shuffling cost with local reduction is only 10% of the original

time. In summary, the acceleration of broadcasting

communication has significantly improved the intermediate data

transfer for large scale image clustering problems.

There are a number of directions for future work. We will apply

the new Twister framework to other iterative applications [37].

We will integrate Twister with Infiniband RDMA based protocol

and compare various communication scenarios. The initial

observation suggests a different performance profile from that of

Ethernet. Further we will integrate topology and link speed

detection services and utilize services such as ZooKeeper [38] to

provide coordination and fault detection. We are also planning to

improve K-means clustering algorithm in the image clustering

application based on a new algorithm using triangle inequalities as

introduced in [40] [41]. Early encouraging results from this are

given in figure 9 showing that < 0.1% of distances need to be

calculated in the final iterations of the Kmeans algorithm when

the triangle inequality is fully efficient. The algorithm calculates

essentially all distances for the first few iterations but is down to

needing < 10% of distance computations at iteration 10.

9. ACKNOWLEDGEMENT
The authors would like to thank Prof. David Crandall at Indiana

University for providing the social image data. This work is in

part supported by National Science Foundation Grant OCI-

1149432

Figure 8. Communication cost per iteration of the image

clustering application

Figure 7. Comparison between shuffling with and

/without local reduction

Figure 9. Fraction of distances needing to be calculated as a

function of Kmeans iteration. These are given for three

choices of number of lower bounds kept for each point. This

test problem had 2048 dimensions, 76800 points and 3200

centers

10. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org.

[2] J. Dean and S. Ghemawat. Mapreduce: Simplified data

processing on large clusters. Sixth Symp. on Operating

System Design and Implementation, pp. 137–150, December

2004.

[3] Dubey, Pradeep. A Platform 2015 Model: Recognition,

Mining and Synthesis Moves Computers to the Era of Tera.

Compute-Intensive, Highly Parallel Applications and Uses.

Volume 09 Issue 02. ISSN 1535-864X. February 2005.

[4] Jaliya.Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne,

Seung-Hee Bae, Judy Qiu, Geoffrey Fox. Twister: A Runtime for

iterative MapReduce, in Proceedings of the First International

Workshop on MapReduce and its Applications of ACM HPDC 2010

conference June 20-25, 2010. 2010, ACM: Chicago, Illinois.

[5] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael

D. Ernst. Haloop: Efficient Iterative Data Processing on

Large Clusters. Proceedings of the VLDB Endowment, 3,

September 2010.

[6] MPI Forum, “MPI: A Message Passing Interface,” in

Proceedings of Supercomputing, 1993.

[7] PolarGrid. http://polargrid.org/polargrid.

[8] N. Dalal, B. Triggs. Histograms of Oriented Gradients for

Human Detection. CVPR. 2005

[9] J. B. MacQueen, Some Methods for Classification and

Analysis of MultiVariate Observations, in Proc. of the fifth

Berkeley Symposium on Mathematical Statistics and

Probability. vol. 1, L. M. L. Cam and J. Neyman, Eds., ed:

University of California Press, 1967.

[10] ActiveMQ. http://activemq.apache.org/

[11] S. Pallickara, G. Fox, NaradaBrokering: A Distributed

Middleware Framework and Architecture for Enabling

Durable Peer to-Peer Grids, Middleware 2003, 2003.

[12] Infiniband Trade Association. http://www.infinibandta.org.

[13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, The

Hadoop Distributed File System. IEEE 26th Symposium on

Mass Storage Systems and Technologies (MSST), 2010

[14] Ford L.R. Jr., Fulkerson D.R., Maximal Flow through a

Network, Canadian Journal of Mathematics , 1956, pp.399-

404.

[15] HDF5, http://www.hdfgroup.org/HDF5/whatishdf5.html

[16] NetCDF, http://www.unidata.ucar.edu/software/netcdf/

[17] E. Chan, M. Heimlich, A. Purkayastha, and R. A. van de

Geijn. Collective communication: theory, practice, and

experience. Concurrency and Computation: Practice and

Experience, 2007, vol 19, pp. 1749–1783.

[18] Mosharaf Chowdhury et al. Managing Data Transfers in

Computer Clusters with Orchestra, Proceedings of the ACM

SIGCOMM 2011 conference, 2011

[19] Nikhil Jain, Yogish Sabharwal, Optimal Bucket Algorithms

for Large MPI Collectives on Torus Interconnects, ICS '10

Proceedings of the 24th ACM International Conference on

Supercomputing, 2010

[20] T. Hoefler, C. Siebert, and W. Rehm. Infiniband Multicast A

practically constant-time MPI Broadcast Algorithm for large-

scale InfiniBand Clusters with Multicast. Proceedings of the

21st IEEE International Parallel & Distributed Processing

Symposium. 2007

[21] Watts J, van de Geijn R. A pipelined broadcast for

multidimensional meshes. Parallel Processing Letters, 1995,

vol.5, pp. 281–292.

[22] Charles E. Leiserson, Fat-trees: universal networks for

hardware efficient supercomputing, IEEE Transactions on

Computers, vol. 34 , no. 10, Oct. 1985, pp. 892-901.

[23] Radhika Niranjan Mysore, etc. PortLand: A Scalable Fault-

Tolerant Layer 2 Data Center Network Fabric, SIGCOMM,

2009

[24] S. Kumar, Y. Sabharwal, R. Garg, P. Heidelberger,

Optimization of All-to-all Communication on the Blue

Gene/L Supercomputer, 37th International Conference on

Parallel Processing, 2008

[25] Open MPI, http://www.open-mpi.org

[26] MPJ Express, http://mpj-express.org/

[27] H. Mamadou T. Nanri, and K. Murakami. A Robust

Dynamic Optimization for MPI AlltoAll Operation,

IPDPS’09 Proceedings of IEEE International Symposium on

Parallel & Distributed Processing, 2009

[28] P. Balaji, A. Chan, R. Thakur, W. Gropp, and E. Lusk.

Toward message passing for a million processes:

Characterizing MPI on a massive scale Blue Gene/P.

Computer Science - Research and Development, vol. 24, pp.

11-19, 2009.

[29] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and

I. Stoica. Spark: Cluster Computing with Working Sets. In

HotCloud, 2010.

[30] BitTorrent. http://www.bittorrent.com.

[31] Yangdong Wang et al. Hadoop Acceleration Through

Network Levitated Merge, International Conference for High

Performance Computing, Networking, Storage and Analysis

(SC'11), 2011

0.0001

0.001

0.01

0.1

1

0 20 40 60 80

Fr
ac

ti
o

n
 D

is
ta

n
ce

s
C

al
cu

la
te

d

Iteration Number

76800 Points 3200 Centers

3200 LB's

800 LB's

400 LB's

Formatted: Font: 8 pt

[32] T. Bicer, D. Chiu, and G. Agrawal. MATE-EC2: A

Middleware for Processing Data with AWS, Proceedings of

the 2011 ACM international workshop on Many task

computing on grids and supercomputers, 2011

[33] EC2. http://aws.amazon.com/ec2/.

[34] S3. http://aws.amazon.com/s3/.

[35] Y. Zhang, Q. Gao, L. Gao, and C. Wang. imapreduce: A

distributed computing framework for iterative computation.

In DataCloud '11, 2011.

[36] E. Elnikety, T. Elsayed, and H. Ramadan. iHadoop:

Asynchronous Iterations for MapReduce, Proceedings of the

3rd IEE International conference on Cloud Computing

Technology and Science (CloudCom), 2011

[37] Bingjing Zhang, Yang Ruan, Tak-Lon Wu, Judy Qiu, Adam

Hughes, Geoffrey Fox. Applying Twister to Scientific

Applications, Proceedings of the 2nd IEE International

conference on Cloud Computing Technology and Science

(CloudCom), 2010

[38] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, ZooKeeper:

wait-free coordination for internet-scale systems, in

USENIXATC’10: USENIX conference on USENIX annual

technical conference, 2010, pp. 11–11.

[39] Charles Elkan, Using the triangle inequality to accelerate k-

means, in TWENTIETH INTERNATIONAL

CONFERENCE ON MACHINE LEARNING, Tom Fawcett

and Nina Mishra, Editors. August 21-24, 2003. Washington

DC. pages. 147-153.

[40] Jonathan Drake and Greg Hamerly, Accelerated k-means

with adaptive distance bounds, in 5th NIPS Workshop on

Optimization for Machine Learning. Dec 8th, 2012. Lake

Tahoe, Nevada, USA,.

