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ABSTRACT 
Social Image clustering is a data intensive application that 

provides novel challenges to high performance computing. 

Already this field has reached 10-100 million images represented 

as points in a high dimensional (up to 2048) vector space that are 

to be divided into up to 1-10 million clusters. In recent years 

MapReduce has become popular in processing big data problems 

due to its attractive programming interface with scalability and 

reliability. However, because social image clustering is an 

iterative data mining application, the performance of traditional 

MapReduce frameworks is poor on this problem due to the 

overhead of repeated disk access. By caching invariant data 

between iterations into local memory on each node, our Twister 

system is able to accelerate MapReduce iterations. In each 

iteration, data is processed through 5 stages: Broadcast, Map, 

Shuffle, Reduce and Combine and this paper focuses on the four 

collective communication stages where the large data sizes allow 

and demand performance optimization where we combine ideas 

from the MapReduce and MPI communities. We present detailed 

analysis of the division of 7 million image feature vectors in 512 

dimensions into 1 million clusters, executing the application on 

1000 cores (125 nodes each of which has 8 cores) with 10000 

Map tasks and 125 Reduce tasks. Particular challenges are the 

20TB of intermediate data generated in the shuffling stage and 

512MB of data to be broadcast. We compare several approaches 

to broadcasting showing that a topology-aware and pipeline-based 

method gives improved performance of a factor of 120 compared 

to simple method; a factor of 5 compared to basic pipelined 

methods and a factor 1.2 compared to MPI. Further we add a local 

reduction stage before the shuffle which reduces the 20 TB 

intermediate data to “just” 250 GB. We discuss the next steps that 

will scale to larger problems and introduce new algorithms that 

will speed up the map stage by one to two orders of magnitude 

and highlight need for high performance collectives developed in 

this paper. 

Categories and Subject Descriptors 

C.2.4 [Computer-Communication Networks]: 

Distributed Systems – Distributed applications. 

General Terms 

Algorithms, Measurement, Performance, Design, 

Experimentation. 

Keywords 
Social Images, Data Intensive, High Dimension, Iterative 

MapReduce, Collective Communication 

1. INTRODUCTION 
The rate of data generation has now exceeded the growth of 

computational power predicted by Moore’s law. Challenges from 

computation are related to mining and analysis of these massive 

data sources for the translation of large-scale data into knowledge-

based innovation. However, many existing analysis tools are not 

capable of handling such big data sets. MapReduce frameworks 

have become popular in recent years for their scalability and fault 

tolerance in large data processing and simplicity in programming 

interface. Hadoop [1], an open source implementation following 

original Google’s MapReduce [2] concept, has been widely used 

in industry and academia.   

Intel’s RMS (Recognition, Mining and Synthesis) taxonomy [3] 

identifies iterative solvers and basic matrix primitives as the 

common computing kernels for computer vision, rendering, 

physical simulation, financial analysis and data mining. These 

observations suggest that iterative MapReduce will be a runtime 

important to a spectrum of e-Science or e-Research applications 

as the kernel framework for large scale data processing. Several 

new frameworks designed for iterative MapReduce are proposed 

to solve this problem, including Twister [4] and HaLoop [5]. 

Social image clustering is such a kind of application which is not 

only a big data problem but also needs an iterative solver.  

Already problems in this space can involve 10-100 million images 

represented as points in a high dimension (500-2000) space which 

are to be divided into 1-10 million clusters. This produces 

challenges for both new algorithms and efficiency of the parallel 

execution which involves very large collective communication 

steps. We are addressing all these issues with an extension of 

Elkan's algorithm [40] drastically speeding up the computing 

(map) step of algorithm by use of the triangle inequality to 

remove unnecessary computation. However his just highlights the 

need for efficient communication that we study here. Note 

communication has been well studied, especially for MPI, but the 

new application area stresses different usage modes from most 

previous work. Secondly k-means clustering algorithm, the 

algorithm used to solve the clustering problem needs several 

iterations to reach the local optimization. However, classic 

MapReduce frameworks such as Hadoop are too inefficient to 

meet the requirement of executing this iterative algorithm. The 

reason is that input data and all kinds of intermediate data are very 

large which can arrive to terabytes in our experiments and they 

are loaded again and again between iterations. 

Twister is an iterative MapReduce framework and we have 

discussed it’s distributed in memory design in detail [4]. In this 
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paper, we study large-scale image clustering application and 

identify performance issues of collective communication in 

iterative algorithms for both Hadoop MapReduce (Allreduce) and 

Twister (Broadcast and Reduce). We observe that in the image 

clustering application, broadcasting and shuffling could cost lots 

of execution time and limit the scalability of the execution. To 

cluster 7 million image feature vectors to 1 million clusters, we 

execute the application on 1000 cores (125 nodes each of which 

has 8 cores) with 10000 Map tasks and 125 Reduce tasks. In 

broadcasting, the root node (driver) broadcasts 512 MB data to all 

compute nodes. In shuffling, 20 TB intermediate data generated in 

Map stage is transferred in the shuffling stage. It is not possible to 

handle 20 TB intermediate data directly in memory and overhead 

of a sequential broadcasting is substantial. In this paper, we 

propose a topology-aware pipeline-based method to accelerate 

broadcasting by at least a factor of 120 compared with simple 

algorithm (sequentially sending data from root node to each 

destination node) and show that it outperforms classic MPI 

methods [6] by 20%. We also use local reduction before shuffling 

to reduce the size of intermediate data by at least 90% and reduce 

20 TB intermediate data to 250 GB. These methods provide 

important capabilities of our new iterative MapReduce framework 

for data intensive applications. Finally we evaluate our new 

methods in PolarGrid [7] cluster at Indiana University.  

The rest of paper is organized as follows. Section 2 discusses the 

image clustering application. Section 3 introduce Twister tool and 

analyzes the data model inside Twister and how it is used to 

process big data problem. Section 4 presents the design of 

broadcasting algorithm. Section 5 investigates how the new 

shuffling mechanism works. Section 6 shows experiments and 

results. Section 7 discusses related work and Section 8 is about 

conclusion and future work. 

2. IMAGE CLUSTERING APPLICATION 
Image clustering application is to group millions of images to 

millions of clusters each of which contains as set images with 

similar visual features. Before doing image clustering, we notice 

that the original data of each image is high-dimensional and the 

total data set is huge, so the dimensionality reduction is done first 

and each image is represented in a much lower space with a set of 

important visual components which are called “feature vectors”. 

Analogous to how “key words” are used in a document retrieval 

system, these “features vectors” become the “key words” of an 

image. In this application, we select 5 patches from each image 

and represent each patch by a HOG (Histograms of Oriented 

Gradients) feature vector of 512 dimensions. The basic idea of 

HOG features is to characterize the local object appearance and 

shape by the distribution of local intensity gradients or edge 

directions [8] (See Figure 1). In the application input data, each 

HOG feature vector is presented as a line of text starting with 

picture ID, row ID and column ID, then being followed by 512 

numbers f1, f2 …and fdim. 

We apply K-means Clustering [9] to cluster the similar HOG 

feature vectors and use Twister MapReduce framework to 

paralyze the computation. We depict K-means Clustering 

algorithm as a chain of MapReduce jobs with each iteration per 

MapReduce job. We treat input data, a large number of feature 

vectors as high dimensional data points each of which contains 

512 dimensions and use Euclidean distance calculation to 

compare the distances between data points. We notice that the 

vectors are static over iterations. So we partition the vectors and 

cache each partition in memory and assign it to a Map task during 

the job configuration. Later in each iteration execution, the job 

driver firstly broadcasts cluster centers to all Map tasks and then 

each Map task assign points to their nearest cluster centers based 

on Euclidean distance calculation and for each cluster, for each 

cluster center, Map tasks collect the sum of coordination values of 

data points in the cluster and count the total number of these data 

points. The Reduce task (To simplify the algorithm introduction, 

we use only one Reduce task here) processes the output collected 

from each Map task and calculate new cluster centers of the 

iteration by adding all partial sums of coordination values together 

and letting it be divided by the total count of the data points in the 

cluster. By combining these new centroids from Reduce tasks, the 

job driver gets all updated centroids and the control flow enters 

the next iteration (See Table 1). 

A major challenge of this application is the amount of the image 

data can be very large. Currently we have near 1 TB data and it 

can grow as long as new images are put into the data set. For such 

a large input data, though we can increase the number of machines 

to lower down the data size per node, the total data size required 

for broadcasting and shuffling still grows.  

For example, in a real job execution, we need to cluster 7 million 

vectors to 1 million clusters. In one iteration, the execution is 

done on 1000 cores (125 nodes, each of which has 8 cores) in 10 

rounds with a total of 10000 Map tasks. For 7 million image data, 

each task only needs to cache 700 vectors which is about 358KB 

and each node only needs to cache 56K vectors which are about 

30MB in total. But for broadcasting data, by the requirement of 

image clustering, the number of cluster centers is very large and 

the total size of 1 million cluster centers is about 512MB. So the 

centroids data per task received through broadcasting is much 

larger than the image feature vectors per task. Since each Map 

task needs a full copy of the centroids data. The total data sent 

through broadcasting grows as the number of node grows. For 125 

nodes and the execution above, the total data sent through 

broadcasting is about 64 GB (Because Map tasks are executed on 

thread level, broadcasting data can be shared among tasks on one 

node).  

Besides, for shuffling data, because each map task generates about 

2 GB intermediate data, the total intermediate data size in 

shuffling is about 20 TB. This kind of big data cannot be handled 

by Twister in-memory work model because 20 TB far exceeds the 

total memory size of 125 nodes (each of which has 16 GB 

memory, 2 TB in total). It also makes the computation difficult to 

 

Figure 1. Workflow of the image clustering application 



scale as the data size grows with the number of nodes. In this 

paper, we successfully reduce 20 TB intermediate data to 250 GB. 

But due to the memory limitation, 250 GB still cannot be handled 

by one Reduce task. So we chunk the output from each Map task 

to 125 blocks (numbered with Block ID from 0 to 124) and use 

125 reduce tasks (one task per node) to process the intermediate 

data. In this way, each Reduce task only process 2 GB data. 

Reduce task 0 processes all Block 0 from all Map tasks, Reduce 

task 1 processes all Block 1 from all Map tasks, and so on. The 

output from each Reduce task is only about 4 MB. For 125 

Reduce tasks, the total data required to be combined back to the 

job driver is about 512 MB which is very small and easy to 

handle. 

 

Table 1. Algorithms and implementation of Image Clustering 

Application (one Reduce task only) 

Algorithm 1 Job Driver 

numLoop ← maximum iterations 

centroids[0] ← initial centroids value 

driver  ← new TwisterDriver(jobConf) 

driver.configureMapTasks(partitionFile) 

 

for(i ← 0;  i < numLoop; i ← i+1) 

    driver.broadcast(centroids[i]) 

    driver.runMapReduceJob() 

    centroids[i+1] ←driver.getCurrentCombiner().getResults() 

Algorithm 2 Map Task 

vectors ← load and cached from files  

centroids ← load from memory cache 

minDis ← new int[numVectors] 

minCentroidIndex ← new int[numVectors] 

 

for (i ← 0; i < numVectors; i ← i+1)  

    for (j ← 0; j < numCentroids; j ← j+1)  

        dis ← getEuclidean(vectors[i], centroids[j]) 

        if (j = 0)  

            minDis[i] ← dis 

            minCentroidIndex[i] ← 0 

        if (dis < minDis[i])   

            minDis[i] ← dis  

            minCentroidIndex[i] ← j 

localSum ← new int[numCentroids][512] 

localCount ← new int[numCentroids] 

for(i ← 0; i < numVectors; i ← i+1)  

     localSum[minCentroidIndex[i]] +← vectors[i] 

     localCount[minCentroidIndex[i]] +← 1 

collect(localSum, localCount) 

Algorithm 3 Reduce Task 

localSums ← collected from Map tasks 

localCounts ← collected from Map tasks 

totalSum ← new int[numCentroids][512] 

totalCount ← new int[numCentroids] 

newCentroids ← new byte[numCentroids][512] 

 

for (i ← 0; i < numLocalSums; i ← i+1) 

    for (j ← 0; j < numCentroids; j← j+1)  

        totalSum[j] = totalSum[j] + localSums.get(i)[j] 

        totalCount[j] = totalCount[j] + localCounts.get(i)[j] 

for (i ← 0; i < numCentroids; i← i+1) 

    newCentroids[i] = totalSum[i]/ totalCount[i] 

collect(newCentroids) 

 

Here we also give the time complexity of each algorithm, we use 

𝑝 as the number of nodes, 𝑚 as the number of Map tasks and  𝑟 as 

the number of Reduce tasks. For data,  𝑘 as the size of centroid 

data, 𝑛 as the total number of image feature vectors, and 𝑙 as the 

number of dimensions.  (See Table 2). We add for map, an 

approximate estimate of the improvement gotten by using triangle 

inequalities (see figure 9 and discussion) 

 

Table 2. Time complexity of each stage 

Stage Simple Improved 

Broadcasting 𝑂(𝑘𝑙𝑝) 𝑂(𝑘𝑙) 

Map 𝑂(𝑘𝑛𝑙/𝑚) See Section 8 

Shuffle 𝑂(𝑚𝑘𝑙/𝑟) 𝑂(𝑝𝑘𝑙/𝑟) 

Reduce 𝑂(𝑚𝑘𝑙/𝑟) 𝑂(𝑝𝑘𝑙/𝑟) 

Combine 𝑂(𝑘𝑙) 𝑂(𝑘𝑙) 

 

3. PARALLEL PROCESSING 

FRAMEWORKS 
In this section, we compare several parallel processing tools 

including Hadoop, MPI and iterative MapReduce show how they 

are used to process big data problems. Section 3.1 discusses the 

control flow and Section 3.2 talks about the data model. 

3.1 Control Flow 
Hadoop MapReduce and iterative MapReduce both follow 

MapReduce control flow but the latter makes some extensions to 

support iterative algorithms. For fault tolerance, Hadoop provides 

task level fault tolerance, but iterative MapReduce needs to 

provide checkpointing between iterations. Besides there are other 

detailed differences in implementation (See Table 3).  

Another commonly used parallel data processing framework is 

MPI. MPI can spawn several processes working in parallel but 

doesn’t follow MapReduce model. On the contrary, programmer 

needs to design what each process does and how they 

communicate with each other. MPI is flexible to simulate 

MapReduce model or run under other user defined control flows. 

But comparing with MapReduce model, its programming model is 

very complicated to use. In implementation, MPI is highly 

optimized in performance with added fault tolerance.  

 

Table 3. Comparison of the control flows 

 Twister Hadoop MPI 

Language Java Java C 

Environment 
clusters, 

HPC, cloud 

clusters, 

cloud 

HPC, super 

computers 

Job Control 
Iterative 

MapReduce 
MapReduce 

parallel 

processes 

Fault Tolerance 
iteration 

level 
task level 

added fault 

tolerance 

Communication 

Protocol 

broker [10] 

[11], TCP 
RPC, TCP 

TCP, shared 

memory, 

Infiniband 

[12]  

Work Unit thread process process 

Scheduling static 
dynamic, 

speculative 
static 

 



3.2 Data Model  
The reason why these three frameworks have different control 

flows is that they serve different application and data. We see MPI 

and Hadoop are at the two ends of the whole data tool spectrum. 

MPI is a computation-centric solution. It doesn’t have fixed 

control flow so that users can customize and optimize the work 

flow for any applications. MPI serves scientific applications 

which are not only complicated in control flow but also intensive 

in computation. 

At the same time, Hadoop is a data-centric solution. With the 

support of HDFS [13], users don’t need to think about data 

accessing and loading as what they do in MPI programs. Besides, 

computation is moved to the place where data is stored. This 

framework is scalable when processing big data but its control 

flow is constrained to MapReduce pattern. The typical data 

processed in Hadoop is records and logs. This type of data is easy 

to split into small Key-Value objects and not like scientific data 

which contains large chunks of vectors or matrices. And usually 

the computation on these data can be easily expressed in Map-

Reduce pattern.   

As a result, iterative MapReduce interpolates between Hadoop 

and MPI. We hope to provide an easy-to-use and data-centric 

solution to process big data in data mining or scientific 

applications efficiently. We extend MapReduce model to iterative 

MapReduce model to support iterative algorithms. This kind of 

model is more powerful than traditional MapReduce model but 

still keep the simplicity. For data model, we move toward Hadoop 

direction and intend to add HDFS support, but not follow MPI 

(See Table 4).    

 

Table 4. Comparison of the data models 

 Twister Hadoop MPI 

Application 

Data Category 

scientific data 

(vectors, 

matrices) 

records, logs 

scientific 

data 

(vectors, 

matrices) 

Data Source 
local disk, 

DFS 

local disk, 

HDFS 
DFS 

Data Format text/binary text/binary 

text/binary/ 

HDF5 

/NetCDF 

Data Loading 
partition 

based 

InputSplit, 

InputFormat 
customized 

Data Caching in memory local files in memory 

Data Processing 

Unit 

Key-Value 

objects 

Key-Value 

objects 

basic types, 

vectors 

Data Collective 

Communication 

broadcasting, 

shuffling 

broadcasting, 

shuffling 

multiple 

kinds 

 

We notice that the data used in computation is not organized in 

the same way as the data stored in disks. For example, the data in 

the image clustering application are stored in a set of text files. 

Each file contains feature vectors generated from a related set of 

images. The length of file and the number of files usually varies. 

However, in computation we hope the number of data partitions is 

the same as the number of cores or the multiple of the number of 

cores so that we can evenly distribute the computation. So we 

need to convert “raw” stored data in disks to “cooked” data ready 

for computation. Currently we split original data files into even 

sized data partitions. But Hadoop can automatically load data 

from blocks with self-defined InputSplit or InputFormat class. At 

the same time, MPI requires user to split data or use special file 

format HDF5 [15] and NetCDF [16] commonly used in scientific 

applications. 

We also notice that in many parallel applications data is not 

processed and outputted in local directly. It is common that 

intermediate data generated during processing are required to be 

exchanged under collective communication operations. Currently 

iterative MapReduce supports two communication operations on 

intermediate data. One is broadcasting and another is shuffling. 

Since data is cached in memory, we optimize the memory-to-

memory collective communication. Hadoop also supports these 

two operations but only simply support them with file transfers. 

On the contrary, MPI provide abundant options for memory-to-

memory collective communication operations [17]. 

4. BROADCASTING TRANSFERS 
To solve the performance issue of broadcasting in image 

clustering application, we replace original simple methods with 

new pipeline–based chain method. We firstly discuss the 

broadcasting in Hadoop, MPI and Twister. And then we propose 

our new chain method which can utilize the bandwidth per link 

and topology advantage more efficiently. 

4.1 Broadcasting in Twister, Hadoop and MPI 
We used to conduct data broadcasting with brokers. However, we 

find this method the following issues. Firstly, unnecessary 

communication hops through brokers are added in data transfers 

between clients, which give poor performance for big messages as 

they often need significant time to transfer from one point to 

another point. Secondly, the broker network doesn’t provide 

optimal routing for data transferring between a set of brokers and 

clients in collective communication operations. Thirdly, brokers 

are not always reliable in message transmission and message loss 

can happen. 

Hadoop system relies on HDFS to do broadcasting. A component 

named Distributed Cache is used to cache data from HDFS to 

local disk of compute nodes. The API addCacheFile and 

getLocalCacheFiles co-work together to finish the process of 

broadcasting.  However, there is no special optimization for the 

whole process. The data downloading speed depends on the 

number of replicas in HDFS [18].  

These kinds of methods are simple because they basically send 

data to all the nodes one by one. Though using multiple brokers or 

using multiple replicas in HDFS could contain a simple 2-level 

broadcasting tree and ease the performance issue, they won’t 

fundamentally solve the problem. 

In MPI, several algorithms are used for broadcasting. MST 

(Minimum-spanning Tree) method is a typical broadcasting 

method used in MPI [17]. In this method, nodes form a minimum 

spanning tree and data is forwarded along the links. In this way, 

the number of nodes which have the data grows in geometric 

progression. Here we use 𝑝 as the number of nodes, 𝑛 as the data 

size, 𝛼 as communication startup time and 𝛽 as data transfer time 

per unit. The performance model can be described by the formula 

below: 

𝑇𝑀𝑆𝑇(𝑝, 𝑛) = ⌈𝑙𝑜𝑔2𝑝⌉(𝛼 + 𝑛𝛽)                                             (1)                              

Though this method is much better than the simple broadcasting 

by changing the factor  𝑝  to ⌈𝑙𝑜𝑔2𝑝⌉ , the method is still slow 



because the term (𝛼 + 𝑛𝛽) is getting large as the size of message 

increases.  

Scatter-allgather-bucket algorithm is another algorithm used in 

MPI for long vectors broadcasting which follows the style of 

“divide, distribute and gather” [19]. In “scatter” phase, it scatters 

the data to all the nodes. To do this, it can use MST algorithm or a 

simple algorithm. Then in “allgather” phase, it views the nodes as 

a chain. At each step, each node sends data to its right neighbor 

[17]. By taking advantage of the fact that messages traversing a 

link in opposite direction do not conflict, we can do “allgather” in 

parallel without any network contention. The performance model 

can be established as follow: 

𝑇𝑏𝑢𝑐𝑘𝑒𝑡(𝑝, 𝑛) = 𝑝(𝛼 + 𝑛𝛽 𝑝⁄ ) + (𝑝 − 1)(𝛼 +
𝑛𝛽 𝑝⁄ )                                                                                          (2)  

In large data broadcasting, assuming α is small, the broadcasting 

time is about 2𝑛𝛽. This is much better than MST method because 

the time looks constant. However, since it is not easy to set global 

barrier between “scatter” and “allgather” phases to enable all the 

nodes to do “allgather” at the same global time through software 

control, some links will have more load than the others and thus it 

causes network contention. Here is performance result of our 

rough implementation of this method on PolarGrid (See Table 5).  

We see that the time is stable as the number of nodes grows and 

about twofold time cost of 1 GB transferring between 2 nodes. 

 

Table 5. Scatter-allgather-bucket performance on IU 

PolarGrid with 1 GB data broadcasting 

Node# 1 25 50 75 100 125 

Seconds 11.4 20.57 20.62 20.68 20.79 21.2 

 

There is also InfiniBand multicast based broadcasting method in 

MPI [20]. Since many clusters have hardware-supported multicast 

operation, multicast has advantage to do broadcasting. However, 

multicast also has problems mainly because its transportation is 

not reliable, order is not guaranteed and the package size is 

limited. So after the first stage of multicasting, broadcasting is 

enhanced with a chain-like broadcasting in the second stage. The 

second stage of broadcasting is reliable to make sure every 

process has completed data receiving.  In the second stage, the 

nodes are formed into a virtual ring topology. Each MPI process 

that gets the message via multicast serves as a new “root” within 

the virtual ring topology and exchange data to the predecessor and 

successor in the ring. This is similar to the bucket algorithm we 

discuss above. 

4.2 Chain Broadcasting Algorithm 
Here we propose chain method, an algorithm based on pipelined 

broadcasting [21]. In this method, compute nodes in Fat-Tree 

topology [22] are treated as a linear array and data is forwarded 

from one node to its neighbor chunk by chunk. The performance 

is gained by dividing the data into many small chunks and 

overlapping the transmission of data on nodes. For example, the 

first node would send a data chunk to the second node. Then, 

while the second node sends the data to the third node, the first 

node would send another data chunk to the second node, and so 

forth [21]. This kind of pipelined data forwarding is called “a 

chain”. It is particularly suitable for the large data sizes in our 

communication problem. 

The performance of pipelined broadcasting depends on the 

selection of chunk size. In an ideal case, if every transfer can be 

overlapped seamlessly, the theoretical performance is as follows: 

𝑇𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝑝, 𝑘, 𝑛) = 𝑝(𝛼 + 𝑛𝛽 𝑘⁄ ) + (𝑘 − 1)(𝛼 +

𝑛𝛽 𝑘⁄ )                                                                                          (3)                                                                     

Here 𝑝 is the number of nodes, 𝑘 is the number of data chunks, 𝑛 

is the data size, 𝛼  is communication startup time and 𝛽  is data 

transfer time per unit. In large data broadcasting, assuming 𝛼 is 

small and 𝑘  is large, the main item of the formula 

is (𝑝 + 𝑘 − 1)𝑛𝛽 𝑘⁄ ≈ 𝑛𝛽  which is close to constant. From the 

formula, the best number of chunks 𝑘𝑜𝑝𝑡 = √(𝑝 − 1)𝑛𝛽/𝛼 

when 𝜕𝑇 𝜕𝑘⁄ = 0 [21]. However, in practice, the real chunk size 

per sending is decided by the system and the speed of data 

transfers on each link could vary as network congestion could 

happen when data is kept forwarded into the pipeline. As a result, 

formula (3) cannot be applied directly to predict real performance 

of our chain broadcasting implementation. But the experiment 

results we will present later still show that as 𝑝  grows, the 

broadcasting time keeps constant and close to the bandwidth 

boundarylimit.  

4.3 Topology Impact 
This chain method is suitable for Fat-Tree topology which is a 

commonly used network topology in clusters or in data centers 

[22] [23]. Since each node only has only two links, which is less 

than the number of links per node in Mesh/Torus [24] topology, 

chain broadcasting can maximize the utilization of the links per 

node. We also make the chain be topology-aware by allocating 

nodes within the same rack close in the chain. Assuming the racks 

are numbered as 𝑅1, 𝑅2 and 𝑅3…, the nodes in 𝑅1 are put at the 

beginning of the chain, then the nodes in 𝑅2  follow the nodes 

in 𝑅1, and then nodes in 𝑅3 follow nodes in 𝑅2 …. Otherwise, if 

the nodes in  𝑅1  are intertwined with nodes in  𝑅2  in the chain 

sequence, the chain flow will jump between switches, and makes 

the core switch overburdened.  

To support topology-awareness, we define the chain sequence 

based on the topology and save the information on each node. 

Each node can tell its predecessor and successor by loading the 

information when starting. In future, we are also looking into 

supporting Automatic automatic topology detection to replace the 

static specification of topology information loading. 

4.4 Buffer Usage 
Another important factor affecting broadcasting speed is the 

buffer usage. The cost of buffer allocation and data copying 

between buffers are not presented in formula (3). There are 2 

levels of buffers used in data transmission. The first level is the 

system buffer and the second level is the application buffer. 

System buffer is used by TCP socket to hold the partial data 

transmitted from the network. The application buffer is created by 

the user to integrate the data from the socket buffer.  Usually the 

socket buffer size is much smaller than the application buffer size. 

The default buffer size setting of Java socket object in IU 

PolarGrid is 128KB while the application buffer we choose for 

broadcasting is the total size of the data required to be 

broadcasted. 

We observed the performance degradation caused by buffer 

usage. One issue is that if the socket buffer is smaller than 128 

KB, the broadcasting performance can be slowed down probably 

because the TCP window cannot open up fully and result in 



throttling of the sender. Besides Further the large-sized user buffer 

allocation during the pipeline forwarding can also slightly slow-

down of the overall performance. To make a clean n apple-to-

apple comparison with MPI which does buffer initialization 

before broadcasting, we initialize a pool of free buffers once the 

receiver program starts instead of allocating one buffers during 

the broadcasting. 

4.5 Object Serialization and De-serialization 
In memory-to-memory broadcasting, data are abstracted and 

presentedstored as an object in memory. So we need to serialize 

the object to byte array before broadcasting and de-serialize byte 

array back to an object after broadcasting. We manage 

serialization and deserialization inside of the framework and we 

provide interfaces to let user be able to write different basic types 

into the byte array, such as “int”, “long”, “double”, “byte” and 

“String”.  

We observe that large-sized data object serialization and de-

serialization can take very long timebe slow for large size data 

and further the serialization speed d. Dependsing on the data type, 

the serialization speed varies. Our experiments show that 

serializing 1 GB “double” data is much faster than serializing 1 

GB “byte” data. Moreover, desterilizing 1 GB “byte” data even 

uses even longer time than serializing it. The time cost on this part 

can take tens of seconds. Since it is local operation and can be 

optimized at some cost in portability, currently we leave them 

theremeasure these overheads and separate them from the core 

broadcasting operation.  

4.6 Fault Tolerance in Broadcasting 
FFurthermore, fault tolerance is must also be considered in chain 

broadcasting. When large data are transmitted among large 

number of nodes, node communication failures become likely is 

inevitable. Several strategies are applied here in our approach. 

Firstly it if there are failures in establishing connection from node-

to-node, a retry is issued. Alternatively it moves on toone tries 

other destinations. Secondly, if the chain is broken and exceptions 

thrown in the root side, the whole broadcasting will restart. 

Thirdly, at the end of broadcasting, the root waits and checks if all 

the nodes have received all the data blocks. If the root doesn’t get 

all the ACK within a time window, it restarts the whole 

broadcasting. 

4.7 Implementation 
We implement the chain broadcasting algorithm in the following 

way: it starts with a request from the root to the first node in the 

topology-aware chain sequence. Then the root keeps sending a 

small portion of the data to the next node. At the meanwhile, for 

the nodes in the chain, each node creates a connection to the 

successor node in the chain. Next each node receives a partial data 

from the socket stream, store it into the application buffer and 

forward it to the next node (See Table 6). 

 

Table 6. Broadcasting algorithm 

Algorithm 1 root side “send” method 

nodeID ← 0 

connection ← connectToNextNode(nodeID) 

dout ← connection.getDataOutputStream() 

bytes ← byte array serialized from the broadcasting object 

totalBytes ← total size of bytes 

SEND_UNIT ← 8192  

start ← 0 

 

dout.write(totalBytes) 

while (start +  SEND_UNIT <  totalBytes) 

    dout.write(bytes, start, SEND_UNIT) 

    start ← start + SEND_UNIT  

    dout.flush() 

if (start < totalBytes) 

    dout.write(bytes, start, totalBytes - start) 

    dout.flush() 

waitForCompletion() 

Algorithm 2 Compute node side “receive” method 

connection ← serverSocket.accept() 

dout ← connection.getDataOutputStream() 

din ← connection.getDataInputStream() 

nodeID ← this.nodeID + 1 

connNextD ← connectToNextNode(nodeID) 

doutNextD ←connToNextD.getDataOutputStream() 

dinNextD ← connToNextD.getDataInputStream() 

 

totalBytes ← din.readInt() 

doutNextD.writeInt(totalBytes) 

doutNextD.flush() 

bytesBuffer ← getFromBufferPool(totalBytes) 

RECV_UNIT ← 8192  

recvLen ← 0 

while ((len ← din.read(bytesBuffer, recvLen, RECV_UNIT)) > 0)  

    doutNextD.write(bytesBuffer, recvLen, len) 

    doutNextD.flush() 

    recvLen ← recvLen + len 

    if (recvLen = totalBytes) break 

notifyForCompletion() 

 

5. SHUFFLING TRANSFERS 
There is no similar shuffling operation in MPI because MPI 

doesn’t group data into Key-Value objects. In Hadoop 

MapReduce framework, shuffling operation relies on disks and 

causes repetitive merges and disk access. As this could be very 

inefficient, we leverage memory to do shuffling operation by 

directly transferring intermediate data through the network from 

memory to memory between Map task and Reduce tasks.  

The performance of shuffling mainly depends on the size of 

intermediate data. As the data size increases, the performance 

degrades drastically. For example, in the image clustering 

application, the data required to be transferred in shuffling is 

about 𝑚𝑝𝑛 bytes, 𝑚 is the number Map task per node, 𝑝 is the 

number of nodes, and 𝑛 is the data per Map task. Therefore, even 

if the data per task is small, as long as 𝑚 and 𝑝 are large, the 

program can generate large intermediate data. We reduce the 

intermediate data size by using local reduction across Map tasks. 

To support local reduction, we provide appropriate interface to 

help users define the reduction operation.  

5.1 Local Reduction 
The current memory-based shuffling mechanism is efficient 

compared with original disk-based shuffling mechanism. 

However, in big data processing, the data transferred in the 

shuffling stage is incredibly large and the number of links can be 

used for data transmission is limited, therefore the cost of 

shuffling is very high and the whole process is unstable. Some 

solutions try to use Weighted Shuffle Scheduling (WSS) [18] to 

balance the data transfers by making the number of transferring 

flow to be proportional to the data size. But for this image 



clustering application, this won’t help our application because the 

data size generated per for each Map task is the same.  

We notice that each Key-Value pair in intermediate data is a 

partial sum of the coordination valuescomponents of data points 

in aassociated with a particular cluster. Since addition is an 

operation with both commutative and associative properties, for 

any two values belonging to the same key, we can do addition on 

them and merge them to a single Key-Value pair and this doesn’t 

change the final result. This property can be illustrated by the 

following formula: 

𝑓(𝑘𝑣1, ⋯ , 𝑘𝑣𝑖 , ⋯ , 𝑘𝑣𝑗 , ⋯ , 𝑘𝑣𝑛) = 𝑓(𝑘𝑣1, ⋯ , (𝑘𝑣𝑖 ⊕

𝑘𝑣𝑗), ⋯ , 𝑘𝑣𝑛) = 𝑓(𝑘𝑣1, ⋯ , (𝑘𝑣𝑗 ⊕

𝑘𝑣𝑖), ⋯ , 𝑘𝑣𝑛) ∀ 𝑖, 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛         (4)   

Here ⊕ presents a set of operations which are similar to addition 

operation which can be applied on any two Key-Value pairs and 

can generate a new Key-Value pair by operating, 𝑓 is the Reduce 

function and 𝑛 is the number of Key-Value pairs belonging to the 

same key. In our image clustering application, ⊕ is the addition 

of two partial sums.  In other applications, we can also find 

similar property. In Word Count [2], ⊕ is the addition of two 

partial counts of the same word. Besides ⊕  can be operations 

other than addition, such as multiplication and max/min value 

selection, or just simple combination of the two values. 

With ⊕  operation and noting the fact that Map tasks work at 

thread level on compute nodes, we do local reduction in the 

memory shared by Map tasks. Once a Map task is finished, it 

doesn’t send data out immediately but caches the data to a shared 

memory pool. When the key conflict happens, the program 

invokes user defined operation to merge two Key-Value pairs into 

one. A barrier is set so that the data in the pools are not transferred 

until all the Map tasks in a node are finished. By exchanging 

swapping communication time with computation time, the data 

required to be transferred can be significantly reduced. 

5.2 Interface Support 
To support shuffling and local reduction, we provide new 

interfaces to allow users define the Key and Value objects and ⊕ 

operation. We abstract data presentation through interface Key 

and Value extended from TwisterSerializable, which defines the 

interface for object serialization. In interface Key, an API named 

isMergeableInShuffle is defined to check if the current Key-Value 

pair can be merged in shuffling. At the same time, an API 

mergeInShuffle is defined in interface Value. It can take a Value 

object as a parameter and merge the data to the current Value 

object (See Table 7). 

 

Table 7. New interfaces of “Key” and “Value”  

Interface “Key” 

public interface Key extends TwisterSerializable { 

    public boolean equals(Object key); 

    public int hashCode(); 

    public boolean isMergeableInShuffle(); 

} 

Interface “Value” 

public interface Value extends TwisterSerializable { 

  public void mergeInShuffle(Value value); 

} 

 

6. Experiments 
To evaluate the performance of the new proposed collective 

communication methods proposed, we conduct experiments about 

broadcasting and shuffling on IU PolarGrid cluster in the context 

of microboth kernel-benchmarking and application benchmarking. 

The results demonstrate that chain method achieves the better best 

performance on big data broadcasting compared with both the 

other MapReduce and MPI methods and shuffling with local 

reduction can out-perform the original shuffling significantly. 

6.1 IU PolarGrid 
IU PolarGrid cluster uses a Fat-Tree topology to connect compute 

nodes. The nodes are split into sections of 42 nodes which are 

then tied together with 10 GigE to a Cisco Nexus core switch.  For 

each section, nodes are connected with 1 GigE to an IBM System 

Networking Rack Switch G8000. This forms a 2-level Fat-Tree 

structure with the first level of 10 GigE connections and the 

second level of 1 GigE connections (See Figure 2). For computing 

capacity, each compute node in PolarGrid uses a 4-core 8-thread 

Intel Xeon CPU E5410 2.33 GHz processor. The L2 cache size 

per core is 12 MB. Each compute node has 16 GB total memory.   

This kind of topology can easily generate contention when there 

are many inter-switch communication pairs. The bottleneck is that 

inter-switch communication is through the one and only core 

switch and the connection is also limited to 10 GigE. Assuming 

that every 1 GigE link under the leaf switch is fully utilized, a 10 

GigE connection can only support at most 10 parallel 

communication pairs across two leaf switches. If there are more 

inter-switch communication pairs between any two leaf switches, 

they could affect each other in performance. As a result, reducing 

the number of inter-switch communication times is considered the 

highest priority in design of efficient collective communication 

algorithms under for a fat-tree topology. 

6.2 Broadcasting 
We test several broadcasting methods on IU PolarGrid: chain 

method in Twister, MPI_BCAST in Open MPI 1.4.1 [25], and the 

broadcasting method in MPJ Express 0.38 [26]. We also compare 

the current Twister chain broadcasting method with other designs 

such as chain method without topology awareness and simple 

broadcasting to show the efficiency of the new method.  

 

Figure 2. Fat-Tree topology in IU PolarGrid 
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We measure the broadcasting time from the start of calling the 

broadcasting method, to the end of return of the calling. We test 

the performance of broadcasting from a small scale to a medium 

large scale. The range includes 1 node, 25 nodes with 1 switch, 50 

nodes under 2 switches, 75 nodes with 3 switches, 100 nodes with 

4 switches, 125 nodes with 5 switches, and 150 nodes with 5 

switches. The tests are for different data size, including 0.5 GB 

(500MB), 1 GB, and 2 GB. Each result is the average of 10 

executions. Since there are only milliseconds of differences 

between execution times we don’t show the negligible 

measurement error bars in the following charts.  

Figure 3 shows the comparison between chain method and 

MPI_BCAST method in Open MPI. The time cost of the new 

chain method is stable as the number of processes increases. This 

matches the broadcasting formula (3) and we can conclude that 

with proper implementation, the real performance of the chain 

method can achieve near constant execution time. Besides, the 

new method achieves 20% better performance than MPI_BCAST.  

Figure 4 shows the comparison between Twister chain method 

and broadcasting method in MPJ. Due to exceptions, we couldn’t 

launch MPJ broadcasting on 2GB data. So we draw a dash line to 

mark the prediction. Since 1GB MPJ broadcasting uses twice the 

time of 0.5GB MPJ broadcasting, we assume 2 GB MPJ 

broadcasting also costs double time of 1 GB MPJ broadcasting. 

MPJ broadcasting method is also stable as the number of 

processes grows, but it is pretty slow. Twister chain broadcasting 

is only about 25% of the time cost in MPJ broadcasting. Besides, 

there is a significant gap between 1-node broadcasting and 25-

node broadcasting in MPJ. 

However if the chain sequence is randomly generated but not 

topology-aware, the performance degrades quickly as the scale 

grows. Figure 5 shows that chain method with topology-

awareness is 5 times faster than time of the chain method without 

topology-awareness.  For broadcasting in 1 switch, we see that as 

expected, there is not much difference between two methods. 

However, as the number of nodes and the number of switches 

increase, the execution time increases significantly. When there 

are more than 3 switches, the execution time become stable and 

doesn’t change much. Because there are many inter-switch 

communications, the performance is constrained by the 10 Gb 

bandwidth and the throughput ability of the core switch. 

We show the performance of simple broadcasting and compare it 

with Twister chain method in Table 8. Since simple broadcasting 

takes very long time, we don’t present a chart here.  The purpose 

is to show the baseline of broadcasting performance in IU 

PolarGrid. Because of 1 Gb connection on each node, we see the 

transmission speed is about 8 seconds per GB which matches the 

setting of the bandwidth value. With With the new algorithm, we 

successfully reduce the cost by about a factor of 𝑝 from  𝑂(𝑝𝑛) 

to 𝑂(𝑛). Here 𝑝 is the number of compute nodes and  𝑛 is data 

size. 

By looking inside chain method, we also examine the potential 

affect from socket buffer size. As what we mention above in 

Section 2.5, small socket buffer could cause slow-down of the 

sender. We take broadcasting 1 GB data on 125 nodes as an 

example and increase the socket buffer size gradually from 8KB 

to 1MB. We find that when buffer size is 8 KB, the performance 

is the worst; t of all. Then as the buffer size grows the time cost 

gets lower. When the buffer size is larger than 128 KB, we get the 

best performance and stable execution time. The experiment 

shows that as what is analyzed above,that  the socket buffer size 

can affect the performance a lot because TCP window cannot 

open up fully when buffer size is small. With proper buffer size, 

the broadcasting performance can be improved by 90%almost an 

order of magnitude from small to large buffer sizes (See Table 9). 

Table 8. Performance comparison between chain broadcasting 

and simple broadcasting (in seconds) 

Node# 
Twister Chain Simple Broadcasting 

0.5 GB 1 GB 2 GB 0.5 GB 1 GB 2 GB 

1 4.04 8.09 16.17 4.04 8.08 16.16 

25 4.13 8.22 16.4 101 202 441.64 

50 4.15 8.24 16.42 202.01 404.04 882.63 

75 4.16 8.28 16.43 303.04 606.09 1325.63 

100 4.18 8.28 16.44 404.08 808.21 1765.46 

125 4.2 8.29 16.46 505.14 1010.71 2021.3 

150 4.23 8.3 16.48 606.14 1212.21 2648.6 

 

 

Figure 3. Performance comparison of Twister chain 

method and MPI_Bcast 

 

Figure 4. Performance comparison of Twister chain 

method and MPJ broadcasting method (MPJ 2GB is 

prediction only) 



Table 9. Chain method performance under different socket 

buffer sizes 

Buffer Size (KB) 8 16 32 64 

Time (seconds) 65.5 45.46 17.77 10.8 

Buffer Size (KB) 128 256 512 1024 

Time (seconds) 8.29 8.27 8.27 8.27 

 

Serialization and de-serialization are necessary steps to provide 

byte data array format required by broadcasting operation. We 

measure the time cost of these steps in Figure 6. We see the cost 

of serialization and de-serialization both are very high. We notice 

that serialization and de-serialization operations are sensitive to 

data types.  For the same-sized data, “byte” type data uses more 

time to serialize and de-serialize than “double” type data. And for 

“byte” data, de-serialization even uses longer time than 

serialization. For image clustering application, we use “byte” to 

store broadcasting data in order to reduce the data size. As a 

result, the time cost on broadcasting is only about 10% of the total 

broadcasting time cost with the o. Other 90% is spent on 

serialization and deserialization. Since these operations are 

required steps and they are local operation with stable time cost, 

currently we don’t have not developed a special optimization for 

them yet. We will of course address in production system.  

 

6.3 Shuffling  
To benchmark the performance of shuffling, we choose the 

following settings to run the image clustering application. For job 

settings, we choose 125 nodes which is a relatively large scale to 

run the application with 1000 Map tasks (each node with 8 Map 

tasks) and 125 reduce tasks (each node with 1 Reduce task). For 

data settings, we keep the number of centroids to 500K and focus 

on testing the performance of collective communication. Since 

500K centroids can generate about 1 GB intermediate data per 

task, the overhead from shuffling is significant. We measure the 

total time from the start of shuffling to the end of Reduce phase 

because reducers start asynchronously. Time costs on Reduce 

tasks are included but averagely it is just around 1 second and is 

negligible compared with the data transfer time.  

Figure 7 shows the time difference of shuffling with or without 

local reduction in this mode. Without using local reduction, the 

output per node is 8 GB and the total data for shuffling is about 1 

TB, after using local reduction, the output per node is reduced to 1 

GB and the total data for shuffling is only about 125 GB. The time 

cost on shuffling is only 10% of the original time which is 

changed from about 8 minutes to only 40 seconds. To reduce 

intermediate data from 1 TB data to 125 GB data, we only use 

extra 20 seconds in computation. 

6.4 Image Clustering Application 
Finally we present a real full execution of the image clustering 

application here. We successfully cluster 7,420,000 vectors into 1 

million cluster centers. We create 10000 map tasks on 125 nodes. 

Each node has 80 tasks. Each task caches 742 vectors. For 1 

million centroids, broadcasting data size is about 512 MB.  

Shuffling data before local reduction is 20 TB, while the data size 

after local reduction is about 250 GB. Since the total memory size 

on 125 nodes is 2 TB, we even cannot execute the program if no 

local reduction. Figure 8 presents the collective communication 

cost per iteration, which is 169 seconds (less than 3 minutes). 

We're developing a new fast Kmeans algorithm which will be 

presented as a separate work, and can will drastically reduce the 

current hour-long computation time in Map stage by decreasing 

execution time by a factor that’s almost a factor of l (the 

dimension which is currently 512 to 2048) in final iterations of the 

algorithm as seen in figure 9 later..   

7. RELATED WORK 
Collective communication algorithms are well studied in MPI 

runtime. Each communication operation has several different 

algorithms based on message size and network topology such as 

linear array, mesh and hypercube [17]. Basic algorithms are 

pipeline broadcast method [21], minimum-spanning tree method, 

bidirectional exchange algorithm, and bucket algorithm [17]. 

Since these algorithms have different advantages, algorithm 

combination (polymorphism) is widely used to improve the 

communication performance [17]. And Further some solution also 

provides auto algorithm selection [27].  

However, many solutions have a different focus from our work. 

Some of them only study small data transfers up to megabytes 

level [17][28]. Some solution relies on special hardware support 

[19]. The data type is typically vectors and arrays whereas we are 

 

Figure 5. Chain method with/without topology-awareness 
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considering objects. Many algorithms such as “allgather” have the 

assumption that each node has the same amount of data [17][19], 

which is not common in MapReduce model. As a result, though 

shuffling can be viewed as a Reduce-Scatter operation, its 

algorithm cannot be applied directly on shuffling because the data 

amount generated by each Map task is unbalanced in most 

MapReduce applications.  

There are several solutions to improve the performance of data 

transfers in MapReduce. Orchestra [18] is such a global control 

service and architecture to manage intra and inter-transfer 

activities on Spark [29]. It not only provides control, scheduling 

and monitoring on data transfers, but also provides optimization 

on broadcasting and shuffling. For broadcasting, it uses an 

optimized BitTorrent [30] like protocol called Cornet, augmented 

by topology detection. Although this method achieves similar 

performance as our chain method, it is still unclear about its 

internal design and details of communication graph formed in data 

transfer and we will compare it with our methods in future. For 

shuffling, it Orchestra uses weighted shuffle Scheduling (WSS) to 

set the weight of the flow to be proportional to the data size; we 

noted earlier this optimization is not relevant in our application. 

We will give a full comparison of Orchestra with our approach in 

future work..  

Hadoop-A [31] provides a pipeline to overlap the shuffle, merge 

and reduce phases and uses an alternative Infiniband RDMA 

based protocol to leverage RDMA inter-connects for fast data 

shuffling. MATE-EC2 [32] is a MapReduce like framework for 

EC2 [33] and S3 [34]. For shuffling, it uses local reduction and 

global reduction. The strategy is similar to what we did in Twister 

but as it focuses on EC2 cloud environment, the design and 

implementation are totally different. iMapReduce [35] iHadoop 

[36] are iterative Mapreduce frameworks that optimize the data 

transfers between iterations asynchronously, where there’s no 

barrier between two iterations. However, this design doesn’t work 

for applications which need broadcast data in every iteration 

because all the outputs from Reduce tasks are needed for every 

Map task.  

8. CONCLUSIONS AND FUTURE WORKN 
In this paper, we have demonstrated performance improvement of 

big data transfers in Twister iterative MapReduce framework 

enabling data intensive applications. We replace broker-based 

methods and design and implement a new topology-aware chain 

broadcasting algorithm. Compared with the naive simple 

broadcast algorithm, the new algorithm reduces the time cost of 

broadcasting by at least a factor 120 over 125 nodes. It reduces 

20% costgives 20% better performance than MPI methods and 

80% of the cost thana factor of 5 improvement over un-optimized 

(for topology) pipeline-based method over 150 nodes. The 

shuffling cost with local reduction is only 10% of the original 

time.  In summary, the acceleration of broadcasting 

communication has significantly improved the intermediate data 

transfer for large scale image clustering problems.  

There are a number of directions for future work. We will apply 

the new Twister framework to other iterative applications [37]. 

We will integrate Twister with Infiniband RDMA based protocol 

and compare various communication scenarios. The initial 

observation suggests a different performance profile from that of 

Ethernet. Further we will integrate topology and link speed 

detection services and utilize services such as ZooKeeper [38] to 

provide coordination and fault detection. We are also planning to 

improve K-means clustering algorithm in the image clustering 

application based on a new algorithm using triangle inequalities as 

introduced in [40] [41]. Early encouraging results from this are 

given in figure 9 showing that < 0.1% of distances need to be 

calculated in the final iterations of the Kmeans algorithm when 

the triangle inequality is fully efficient. The algorithm calculates 

essentially all distances for the first few iterations but is down to 

needing < 10% of distance computations at iteration 10. 
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Figure 8. Communication cost per iteration of the image 

clustering application 

 

 

Figure 7. Comparison between shuffling with and 

/without local reduction 



 

Figure 9. Fraction of distances needing to be calculated as a 

function of Kmeans iteration. These are given for three 

choices of number of lower bounds kept for each point. This 

test problem had 2048 dimensions, 76800 points and 3200 

centers 
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