
Similarities and Differences Between Parallel Systems and
Distributed Systems

Pulasthi Wickramasinghe, Geoffrey Fox
School of Informatics and Computing ,Indiana University, Bloomington, IN 47408, USA

In order to identify similarities and differences between parallel systems and distributed systems,
comparisons were done on features and functionality of MPI, Charm++, HPX (parallel) and Spark, Flink
(distributed) frameworks. This report lists important features and functionality of such frameworks and
discusses each of them. This is by no mean a complete list, there may be many other important features
that can be compared and discussed.

Fault tolerance

One of the main advantages that distributed frameworks such as Spark and Flink have over parallel
frameworks such as MPI is the inherent support for fault tolerance. Most distributed frameworks are
designed with fault tolerance as one of the main objectives. Which is why fault tolerance is supported
from the very basic level of abstraction. For example RDD’s[7] in Spark which is its basic abstraction
layer supports fault tolerance.

On the other hand parallel frameworks like MPI do not provide inherent support for fault tolerance. Many
projects have worked on adding Fault tolerance support to parallel frameworks but none of the seem to be
as seamless as in the case of distributed frameworks where the algorithm developer does not have to
consider anything regarding fault tolerance when implementing the algorithm. Most of the fault tolerance
support created around MPI are based on checkpoint restart model, Run through stabilization[1] was
another fault tolerance method proposed by the fault tolerance working group. Charm++ has double
checkpoint-based fault tolerance support[2] which performs checkpointing in-memory.

Support of collectives

Parallel frameworks provide a more rich set of collective operations than distributed frameworks.
Distributed frameworks mainly provide support for broadcast, scatter, gather and reduce operations.
Parallel frameworks provide a much more richer set of collectives such as allReduce, allGather. These
collectives are implemented in an highly efficient manner in parallel frameworks such as MPI and HPX.
Frameworks such as Spark and Flink have very limited communication between worker nodes other than
broadcast variables and accumulators. Some other frameworks such as Harp do provide such collectives
on top of Hadoop. Because of the absence of such collectives it is not possible to program algorithms in
BSP model, which is a very efficient model to use for some algorithm implementations.

Dynamic resources utilizations

Another major area of concern for parallel and distributed frameworks is dynamic resource utilization. It
is important that frameworks are able to scale up and scale down the number of resources that are used
with the load of work that is done. Distributed systems are well adept for this and are able to dynamically
scale with the workload and the amount resources (number of nodes) that are available. Parallel
frameworks such as HPX and Charm++ do also support dynamic resource allocation but available
implementations in MPI do not provide such functionality.

Communication protocols

Parallel systems such as MPI, HPX and Charm++ support high end communication protocols such as
Infiniband and GEMINI in addition to Ethernet. Which gives parallel frameworks the ability to leverage
high end performance from the networks. On the other hand distributed systems such as Spark, Flink only
support ethernet by default. However there are several research projects that work providing such support
to distributed frameworks[1]

Level of abstraction

Another important aspect of distributed and parallel frameworks are the level of abstraction provided to
the user (algorithm developer). In this regard distributed systems provide a higher level of abstraction to
users. Users can think of data structures such as arrays as distributed arrays. Parallel frameworks such as
MPI provide a lower level of abstraction. But frameworks such as Charm++ and HPX do provide some
higher level constructs. It is also noteworthy that MPI IO and MPI collectives can be considered to be
higher level abstractions.

Higher level and lower level abstraction both have pros and cons. Higher level abstractions allows the
user to develop algorithms without having to worry about low level details, which makes algorithm
development more easy. With lower level abstractions the user has more control over the system and can
obtain more performance from the system.

Performance-Ease of Use tradeoffs in fault tolerance

One of the main selling points of distributed frameworks such as Spark and Flink is the fact that the
frameworks handles fault tolerance within the framework. Even though it is quite straightforward to add a
fault tolerance model like checkpoint-restart to an application in parallel frameworks like MPI, it does
need to be done by the programmer. Thus not having to worry about this aspect is one of the main reasons
for the popularity of distributed frameworks . But this automatic fault tolerance does come with hefty
price on performance as one can observe in performance differences between MPI, Spark and Flink.
Sometimes the difference in performance can be more than an order of magnitude. For complex long
running applications this can have a huge impact. For instance if one could write an certain application in
MPI and it takes 1 day to generate a solution, implementing the same application in Spark, Flink might

end up taking 10 days to reach the same solution. Of course this difference depends on the application and
its features, but for some applications domains the difference is significant.

Another reason that frameworks like Spark and Flink are popular is their ease of use, automatic handling
of faults is one major contributor to the ease of use, and for some application domains (which we will
look into in a following section) the performance numbers achieved through the use of distributed
frameworks is more than enough and thus the use of distributed frameworks are clearly justified, but for
some application domains a little bit of complexity on the code is clearly justified when looking at the
gain of performance and reduction of time to solution.

The performance degradation in distributed frameworks is largely due to the model they follow which
allows fault tolerance to be handled automatically. Spark and Flink use a data flow model where the data
objects are immutable. This allows lost partitions to be recalculated based on existing data since the data
is not modified in place, which in turn allows the framework to be developed in an fault tolerant manner.
The major downside of this model is that we need to create new copies of data when the data is processed
since we cannot alter the original data. This means higher memory and CPU consumption. The rationale
behind this decision is that achieving fault tolerance at the cost of memory and CPU time is justified since
the latter is cheaper. This may very well be true for some application domains, but for some this is not.
Below we take a quick look what feature of distributed frameworks affect memory consumption and CPU
usage

Memory
Since data objects are immutable in Spark and Flink, each transformation creates a new set of data objects
which consumes more memory than doing the transformations in place. For some applications memory
can be a limiting factor and having to create new copies of data would be troublesome. For examples if
the application involves large matrix operations having to keep more than one copy of the matrix would
be problematic.

CPU
The main reason for higher CPU usage is overheads that are inherent in the distributed frameworks.
Because tasks (workers) are not able to communicate with one another, Spark and Flink do not provide
all-to-all operations such as AllReduce.This means for iterative applications which require data to be
exchanged between parallel tasks at each iterations data needs to be gathered at the master process and
redistributed back. This also means for each iterations a new set of tasks need to be started. This adds
several overheads such as task serialization task deserialisation.

I/O
Because all-to-all operations are not available I/O overheads are also increased. There are two factors that
contribute to I/O overheads. The first is because performing an AllReduce operation (as in MPI) is much
more efficient than performing a reduce and then a broadcast. Secondly more overhead is added because
tasks need to be distributed at each iteration.

 Which applications are suited for which model.

Most popular distributed frameworks such as Spark and Flink are based on the MapReduce model, even
though they extend the capability of the plain MapReduce model by providing iterative MapReduce,
In-Memory processing, caching, etc., these frameworks are built around the core mapreduce model. The
MapReduce model enforces an application to be consistent of Map and Reduce phases, since it is not
possible to reduce all applications in this manner some applications cannot be built with these
frameworks. On the other hand parallel frameworks such as MPI are much more flexible, this allows a
wide variety of applications to be build with such frameworks. Although it is hard to clearly define when
to use distributed frameworks and when to use parallel frameworks there are several key points that can
be used to help with the decision.

Time to develop
The time to develop a solution (application) is generally lower with distributed frameworks such as Spark
and Flink and requires a lower level of expertise. This is because the programing interface and API’s are
normally more simpler than MPI and are much easier to grasp for a beginner. Developers do not have to
worry about some aspects of the program such as fault tolerance. So if the main goal is to get a solution as
soon as possible at the cost of lower performance frameworks such as Spark and Flink are favorable. But
it is important to note that the target application must be broken down to map and reduce phases.

Time to Solution
If the main goal of the application is time taken to get an result for a given input then MPI is the best
choice. MPI perform efficiently because it has very little inherent overheads that would increase the time
to solution. On the other hand distributed frameworks have several inherent overheads that are caused due
to the models that they have adopted which were discussed above. This is in addition to limitations that
would be caused by the MapReduce model, specially for complex applications which require a large
amount of interprocess communication.

Resource Utilization
If the usage and requirement of hardware resources such as RAM and CPU need to be kept at a minimum
for the application execution MPI would be the best choice. This is clear since distributed frameworks
require more CPU time and RAM as discussed above.

What Applications Suit Distributed Frameworks

There are however a range of applications that work well with distributed frameworks. Below we look at
several such application types. This by no mean a complete list, therefore there maybe other applications
and applications types that work well in distributed frameworks that are not covered by the areas
mentioned below.

Pleasingly Parallel (Map Only)
Map only applications that have little to no communication between processes are well suited for
distributed frameworks. Since tasks can be run in parallel without having to do any reduction step the
overheads caused are minimal. And for applications with large amounts of data distributed frameworks
can be scaled up and down as needed easily. Since a failure in a single node does not affect the other tasks
automatic fault tolerance in systems like Spark and Flink can recompute the lost values without any affect
to currently running tasks. Examples for such applications are Protein docking, bio-imagery that involves
local analytics[4].

Classic MapReduce
Classical MapReduce applications involve a single reduce operation. These are also well suited for
distributed frameworks because of the same reasons as map only tasks. The ability to automatically
recompute failed tasks allow distributed frameworks to be run on large scale commodity clusters which
are prone to faults. Searching, Indexing and Querying are some examples for classical mapreduce
applications.

Map Collective (Iterative MapReduce)
Unlike the previous two areas for iterative mapreduce choosing distributed frameworks over parallel
frameworks depend on other factors like time to solution, time to develop, data communication patterns,
etc. This is because most iterative mapreduce applications can be implemented much more efficiently
with all-to-all operations such as AllReduce that are available in parallel frameworks. Most machine
learning applications such as KMeans fall under
this category.

What Applications Suit Parallel Frameworks

Parallel frameworks such as MPI, Charm++ are very flexible and can be used to implement almost any
application domain effectively. Even the areas that are listed above can be implemented with MPI
however the developer needs to handle fault tolerance at the application level.

Most applications and algorithms which involve inter-process communication (halo exchange) are well
suited to be implemented with parallel frameworks. Examples for such applications span a wide area
including scientific applications and complex algorithms. These algorithms can leverage highly from
all-to-all operations such as AllReduce and other optimizations that are available in parallel frameworks.

Summary

Table 1​ summaries the findings in the report.

 Distributed Frameworks (
Spark, Flink)

Parallel Frameworks (MPI,
HPX, Charm++)

Fault tolerance

Built in, programmer does not
need to write additional code to
handle.

Generally left to be handled by
the programmer. Needs
additional code.

Support of collectives Limited, all-to-all collectives are
generally not supported.

Fully Support, and highly
optimized.

Dynamic resources utilizations Generally Available in most
frameworks.

Available in some frameworks
(ex. HPX, Charm++), But not
supported currently in MPI
implementations.

Communication protocols

Generally only supports
ethernet.

Supports a wide variety of
protocols (ex. Infiniband,
GEMINI, Ethernet).

Level of abstraction High level of abstraction. The
programmers generally do not
need to think about low level
details.

Both Low level and high level
depending on implementation.
But generally at a lower level
than distributed frameworks.

Memory Usage Comparatively higher.
Constraints such as data
immutability are main reasons
for higher memory usage.

Comparatively lower. In place
changes to data structures allow
for lesser memory usage.

CPU Usage Comparatively higher. Because
of overheads caused by
framework model. Especially
for fault tolerance

Comparatively lower. Very little
overheads and optimized
collective functions allow for
lower CPU usage.

I/O Usage Comparatively higher. The
inability to perform all-to-all
collective operations is one main
factor contributing to higher I/O
usage.

Comparatively lower. Highly
optimized collective operations
allow for lower I/O usage.

Time to develop Comparatively Lower. Can be
generally developed faster
because of simplified API’s.

Comparatively Higher.
Generally a little more complex
to code.

Level of Expertise required Low. Can be used to develop
applications with lower level of
expertise because of simplified
API’s

High. Programmers need a good
understanding of parallel
computing concepts and data
structures to develop
applications.

Time to Solution (Run time) Comparatively Higher. Because
of the inherent overheads in the
frameworks, time to solution
tends to be higher

Comparatively Lower. The low
amount of overheads and
optimized collective functions
allow lower time to solution.
Also easy to do low level
optimizations.

Table 1: Summary

References

[1] ​Hursey, Joshua, et al. "Run-through stabilization: An MPI proposal for process fault tolerance." European MPI
Users' Group Meeting. Springer Berlin Heidelberg, 2011.
[2] ​Parallel Programming Laboratory: Fault Tolerance Support, ​http://charm.cs.uiuc.edu/research/ft​, accessed Nov
20 2016.
[3] High-Performance Big Data (HiBD), ​http://hibd.cse.ohio-state.edu/​, accessed Nov 14 2016.
[4] ​Fox, Geoffrey C., et al. "Towards an understanding of facets and exemplars of big data applications."
Proceedings of the 20 Years of Beowulf Workshop on Honor of Thomas Sterling's 65th Birthday. ACM, 2014.
[5] ​Tikotekar, Anand, Chokchai Leangsuksun, and Stephen L. Scott. "On the survivability of standard MPI
applications." LCI International Conference on Linux Clusters: The HPC Revolution. 2006.
[6] Bronevetsky, Greg, et al. "Automated application-level checkpointing of MPI programs." ACM Sigplan Notices.
Vol. 38. No. 10. ACM, 2003.
[7] Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing." Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 2012.
[8] Elnozahy, Elmootazbellah Nabil, et al. "A survey of rollback-recovery protocols in message-passing systems."
ACM Computing Surveys (CSUR)34.3 (2002): 375-408.
[9] Carbone, Paris, et al. "Apache flink: Stream and batch processing in a single engine." Data Engineering (2015):
28.
[10] Hursey, Joshua, et al. "Run-through stabilization: An MPI proposal for process fault tolerance." European MPI
Users' Group Meeting. Springer Berlin Heidelberg, 2011.
[11] Reyes-Ortiz, Jorge L., Luca Oneto, and Davide Anguita. "Big data analytics in the cloud: Spark on hadoop vs
mpi/openmp on beowulf." Procedia Computer Science 53 (2015): 121-130.
[12] Jha, Shantenu, et al. "Introducing distributed dynamic data-intensive (d3) science: Understanding applications
and infrastructure." (2014).
[13] Jha, Shantenu, et al. "Distributed computing practice for large-scale science and engineering applications."
Concurrency and Computation: Practice and Experience 25.11 (2013): 1559-1585.

http://charm.cs.uiuc.edu/research/ft
http://hibd.cse.ohio-state.edu/

