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In order to identify similarities and differences between parallel systems and distributed systems,             
comparisons were done on features and functionality of MPI, Charm++, HPX (parallel) and Spark, Flink               
(distributed) frameworks. This report lists important features and functionality of such frameworks and             
discusses each of them. This is by no mean a complete list, there may be many other important features                   
that can be compared and discussed.  
 
Fault tolerance 

One of the main advantages that distributed frameworks such as Spark and Flink have over parallel                
frameworks such as MPI is the inherent support for fault tolerance. Most distributed frameworks are               
designed with fault tolerance as one of the main objectives. Which is why fault tolerance is supported                 
from the very basic level of abstraction. For example RDD’s[7] in Spark which is its basic abstraction                 
layer supports fault tolerance.  
 
On the other hand parallel frameworks like MPI do not provide inherent support for fault tolerance. Many                 
projects have worked on adding Fault tolerance support to parallel frameworks but none of the seem to be                  
as seamless as in the case of distributed frameworks where the algorithm developer does not have to                 
consider anything regarding fault tolerance when implementing the algorithm. Most of the fault tolerance              
support created around MPI are based on checkpoint restart model, Run through stabilization[1] was              
another fault tolerance method proposed by the fault tolerance working group. Charm++ has double              
checkpoint-based fault tolerance support[2] which performs checkpointing in-memory. 
 
Support of collectives  

Parallel frameworks provide a more rich set of collective operations than distributed frameworks.             
Distributed frameworks mainly provide support for broadcast, scatter, gather and reduce operations.            
Parallel frameworks provide a much more richer set of collectives such as allReduce, allGather. These               
collectives are implemented in an highly efficient manner in parallel frameworks such as MPI and HPX.                
Frameworks such as Spark and Flink have very limited communication between worker nodes other than               
broadcast variables and accumulators. Some other frameworks such as Harp do provide such collectives              
on top of Hadoop. Because of the absence of such collectives it is not possible to program algorithms in                   
BSP model, which is a very efficient model to use for some algorithm implementations.  
 
 
 
 



Dynamic resources utilizations  

Another major area of concern for parallel and distributed frameworks is dynamic resource utilization. It               
is important that frameworks are able to scale up and scale down the number of resources that are used                   
with the load of work that is done. Distributed systems are well adept for this and are able to dynamically                    
scale with the workload and the amount resources (number of nodes) that are available. Parallel               
frameworks such as HPX and Charm++ do also support dynamic resource allocation but available              
implementations in MPI do not provide such functionality.  
 
Communication protocols 

Parallel systems such as MPI, HPX and Charm++ support high end communication protocols such as               
Infiniband and GEMINI in addition to Ethernet. Which gives parallel frameworks the ability to leverage               
high end performance from the networks. On the other hand distributed systems such as Spark, Flink only                 
support ethernet by default. However there are several research projects that work providing such support               
to distributed frameworks[1] 
 
Level of abstraction  

Another important aspect of distributed and parallel frameworks are the level of abstraction provided to               
the user ( algorithm developer ). In this regard distributed systems provide a higher level of abstraction to                  
users. Users can think of data structures such as arrays as distributed arrays. Parallel frameworks such as                 
MPI provide a lower level of abstraction. But frameworks such as Charm++ and HPX do provide some                 
higher level constructs. It is also noteworthy that MPI IO and MPI collectives can be considered to be                  
higher level abstractions.  
 
Higher level and lower level abstraction both have pros and cons. Higher level abstractions allows the                
user to develop algorithms without having to worry about low level details, which makes algorithm               
development more easy. With lower level abstractions the user has more control over the system and can                 
obtain more performance from the system. 
 
Performance-Ease of Use tradeoffs in fault tolerance 

One of the main selling points of distributed frameworks such as Spark and Flink is the fact that the                   
frameworks handles fault tolerance within the framework. Even though it is quite straightforward to add a                
fault tolerance model like checkpoint-restart to an application in parallel frameworks like MPI, it does               
need to be done by the programmer. Thus not having to worry about this aspect is one of the main reasons                     
for the popularity of distributed frameworks . But this automatic fault tolerance does come with hefty                
price on performance as one can observe in performance differences between MPI, Spark and Flink.               
Sometimes the difference in performance can be more than an order of magnitude. For complex long                
running applications this can have a huge impact. For instance if one could write an certain application in                  
MPI and it takes 1 day to generate a solution, implementing the same application in Spark, Flink might                  



end up taking 10 days to reach the same solution. Of course this difference depends on the application and                   
its features, but for some applications domains the difference is significant. 
 
Another reason that frameworks like Spark and Flink are popular is their ease of use, automatic handling                 
of faults is one major contributor to the ease of use, and for some application domains (which we will                   
look into in a following section ) the performance numbers achieved through the use of distributed                
frameworks is more than enough and thus the use of distributed frameworks are clearly justified, but for                 
some application domains a little bit of complexity on the code is clearly justified when looking at the                  
gain of performance and reduction of time to solution.  
 
The performance degradation in distributed frameworks is largely due to the model they follow which               
allows fault tolerance to be handled automatically. Spark and Flink use a data flow model where the data                  
objects are immutable. This allows lost partitions to be recalculated based on existing data since the data                 
is not modified in place, which in turn allows the framework to be developed in an fault tolerant manner.                   
The major downside of this model is that we need to create new copies of data when the data is processed                     
since we cannot alter the original data. This means higher memory and CPU consumption. The rationale                
behind this decision is that achieving fault tolerance at the cost of memory and CPU time is justified since                   
the latter is cheaper. This may very well be true for some application domains, but for some this is not.                    
Below we take a quick look what feature of distributed frameworks affect memory consumption and CPU                
usage 
 
Memory 
Since data objects are immutable in Spark and Flink, each transformation creates a new set of data objects                  
which consumes more memory than doing the transformations in place. For some applications memory              
can be a limiting factor and having to create new copies of data would be troublesome. For examples if                   
the application involves large matrix operations having to keep more than one copy of the matrix would                 
be problematic. 
 
CPU 
The main reason for higher CPU usage is overheads that are inherent in the distributed frameworks.                
Because tasks (workers) are not able to communicate with one another, Spark and Flink do not provide                 
all-to-all operations such as AllReduce.This means for iterative applications which require data to be              
exchanged between parallel tasks at each iterations data needs to be gathered at the master process and                 
redistributed back. This also means for each iterations a new set of tasks need to be started. This adds                   
several overheads such as task serialization task deserialisation.  
 
 
I/O 
Because all-to-all operations are not available I/O overheads are also increased. There are two factors that                
contribute to I/O overheads. The first is because performing an AllReduce operation (as in MPI) is much                 
more efficient than performing a reduce and then a broadcast. Secondly more overhead is added because                
tasks need to be distributed at each iteration.  
  



 Which applications are suited for which model. 

Most popular distributed frameworks such as Spark and Flink are based on the MapReduce model, even                
though they extend the capability of the plain MapReduce model by providing iterative MapReduce,              
In-Memory processing, caching, etc., these frameworks are built around the core mapreduce model. The              
MapReduce model enforces an application to be consistent of Map and Reduce phases, since it is not                 
possible to reduce all applications in this manner some applications cannot be built with these               
frameworks. On the other hand parallel frameworks such as MPI are much more flexible, this allows a                 
wide variety of applications to be build with such frameworks. Although it is hard to clearly define when                  
to use distributed frameworks and when to use parallel frameworks there are several key points that can                 
be used to help with the decision. 
 
Time to develop  
The time to develop a solution (application) is generally lower with distributed frameworks such as Spark                
and Flink and requires a lower level of expertise. This is because the programing interface and API’s are                  
normally more simpler than MPI and are much easier to grasp for a beginner. Developers do not have to                   
worry about some aspects of the program such as fault tolerance. So if the main goal is to get a solution as                      
soon as possible at the cost of lower performance frameworks such as Spark and Flink are favorable. But                  
it is important to note that the target application must be broken down to map and reduce phases. 
 
Time to Solution 
If the main goal of the application is time taken to get an result for a given input then MPI is the best                       
choice. MPI perform efficiently because it has very little inherent overheads that would increase the time                
to solution. On the other hand distributed frameworks have several inherent overheads that are caused due                
to the models that they have adopted which were discussed above. This is in addition to limitations that                  
would be caused by the MapReduce model, specially for complex applications which require a large               
amount of interprocess communication. 
 
Resource Utilization  
If the usage and requirement of hardware resources such as RAM and CPU need to be kept at a minimum                    
for the application execution MPI would be the best choice. This is clear since distributed frameworks                
require more CPU time and RAM as discussed above. 
 
What Applications Suit Distributed Frameworks 

There are however a range of applications that work well with distributed frameworks. Below we look at                 
several such application types. This by no mean a complete list, therefore there maybe other applications                
and applications types that work well in distributed frameworks that are not covered by the areas                
mentioned below. 
 
 
 



Pleasingly Parallel (Map Only) 
Map only applications that have little to no communication between processes are well suited for               
distributed frameworks. Since tasks can be run in parallel without having to do any reduction step the                 
overheads caused are minimal. And for applications with large amounts of data distributed frameworks              
can be scaled up and down as needed easily. Since a failure in a single node does not affect the other tasks                      
automatic fault tolerance in systems like Spark and Flink can recompute the lost values without any affect                 
to currently running tasks. Examples for such applications are Protein docking, bio-imagery that involves              
local analytics[4].  
 
Classic MapReduce 
Classical MapReduce applications involve a single reduce operation. These are also well suited for              
distributed frameworks because of the same reasons as map only tasks. The ability to automatically               
recompute failed tasks allow distributed frameworks to be run on large scale commodity clusters which               
are prone to faults. Searching, Indexing and Querying are some examples for classical mapreduce              
applications.  
 
 
 
Map Collective (Iterative MapReduce) 
Unlike the previous two areas for iterative mapreduce choosing distributed frameworks over parallel             
frameworks depend on other factors like time to solution, time to develop, data communication patterns,               
etc. This is because most iterative mapreduce applications can be implemented much more efficiently              
with all-to-all operations such as AllReduce that are available in parallel frameworks. Most machine              
learning applications such as KMeans fall under  
this category.  
  
 
What Applications Suit Parallel Frameworks 

Parallel frameworks such as MPI, Charm++ are very flexible and can be used to implement almost any                 
application domain effectively. Even the areas that are listed above can be implemented with MPI               
however the developer needs to handle fault tolerance at the application level.  
 
Most applications and algorithms which involve inter-process communication (halo exchange) are well            
suited to be implemented with parallel frameworks. Examples for such applications span a wide area               
including scientific applications and complex algorithms. These algorithms can leverage highly from            
all-to-all operations such as AllReduce and other optimizations that are available in parallel frameworks.  
 
 
 
 
 
 



Summary 

Table 1​  summaries the findings in the report.  
 

 Distributed Frameworks (   
Spark, Flink) 

Parallel Frameworks (MPI,   
HPX, Charm++) 

Fault tolerance 
 

Built in, programmer does not     
need to write additional code to      
handle. 

Generally left to be handled by      
the programmer. Needs   
additional code. 

Support of collectives Limited, all-to-all collectives are    
generally not supported. 

Fully Support, and highly    
optimized. 

Dynamic resources utilizations Generally Available in most    
frameworks. 

Available in some frameworks    
(ex. HPX, Charm++), But not     
supported currently in MPI    
implementations. 

Communication protocols 
 
 

Generally only supports   
ethernet. 

Supports a wide variety of     
protocols (ex. Infiniband,   
GEMINI, Ethernet). 

Level of abstraction High level of abstraction. The     
programmers generally do not    
need to think about low level      
details. 

Both Low level and high level      
depending on implementation.   
But generally at a lower level      
than distributed frameworks. 

Memory Usage Comparatively higher.  
Constraints such as data    
immutability are main reasons    
for higher memory usage. 

Comparatively lower. In place    
changes to data structures allow     
for lesser memory usage. 

CPU Usage Comparatively higher. Because   
of overheads caused by    
framework model. Especially   
for fault tolerance 

Comparatively lower. Very little    
overheads and optimized   
collective functions allow for    
lower CPU usage. 

I/O Usage Comparatively higher. The   
inability to perform all-to-all    
collective operations is one main     
factor contributing to higher I/O     
usage. 

Comparatively lower. Highly   
optimized collective operations   
allow for lower I/O usage. 

Time to develop Comparatively Lower. Can be    
generally developed faster   
because of simplified API’s. 

Comparatively Higher.  
Generally a little more complex     
to code.  



Level of Expertise required Low. Can be used to develop      
applications with lower level of     
expertise because of simplified    
API’s 

High. Programmers need a good     
understanding of parallel   
computing concepts and data    
structures to develop   
applications. 

Time to Solution (Run time) Comparatively Higher. Because   
of the inherent overheads in the      
frameworks, time to solution    
tends to be higher 

Comparatively Lower. The low    
amount of overheads and    
optimized collective functions   
allow lower time to solution.     
Also easy to do low level      
optimizations. 

Table 1: Summary 
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