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Abstract. Compute-intensive biological applications are heavily reliant 
on the availability of computing resources. Grid based HPC clusters 
and emerging Cloud computing clusters provide a large scale 
computing environment for scientific users. However, large scale 
biological application often involves various types of computational 
tasks which can benefit from different types of computing clusters. 
Therefore, a high level job scheduling environment which integrates the 
Grid style HPC clusters and the Cloud computing clusters and manages 
jobs accordingly based on the characteristics of the jobs is required.  In 
this paper, we propose a Web service framework for high-level job 
scheduling – Swarm. Swarm is developed for scientific applications 
that must submit massive number of high-throughput jobs or workflows 
to highly distributed computing clusters. Swarm allows the users to 
submit jobs to both Grid HPC and Cloud computing clusters. The 
Swarm service itself is designed to be extensible, lightweight, and 
easily installable on a desktop or a small server. As a Web service, 
derivative services based on Swarm can be straightforwardly integrated 
with Web portals and science gateways.  This paper provides the 
motivation for this research, the architecture of the Swarm framework, 
and a performance evaluation of the system prototype. 
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1 Introduction 

Recent activity in biologically based research has required substantial amount of 
computing resources, and is currently impeded by limited local computing 
infrastructure. National cyberinfrastructure (such as the TeraGrid [1] and Open 
Science Grid [2]) can potentially be harnessed if it can be made easier to use.  
Furthermore, the fundamental nature of this infrastructure is likely to change over the 
next five years as Cloud Computing [3] approaches are evaluated and adopted. 

Cloud and grid computing approaches are complementary and need to be 
integrated: clouds are well suited for on-demand jobs that individually last a few 
seconds or minutes, but they are not a good fit for closely coupled parallel 
applications, where the TeraGrid is better suited. Since many of our applications 
require both types of resources, an infrastructure which can cope with the distinctive 
characteristics of resources are required.  

To benefit from powerful computing resources, users login to remote machines or 
submit jobs through Grid toolkits such as the Globus Toolkit [4]. Similarly, Cloud 
computing clusters provide a Web service interface to manage the machine instances 
and is actively adapting map-reduce like programming paradigm. However, the sheer 
number of jobs easily exceeds one’s ability to manage them manually. Finding the 
most efficient resource to submit, and monitoring such submitted jobs, is not feasible 
without intelligent support from the middleware.  Furthermore, Gateway-style 
applications also require interfaces to distributed resources on behalf of the users. 

Therefore, we have developed Swarm[5], a robust job management system that 
allows users to easily submit and monitor millions of serial or parallel jobs to multiple 
computers in Grid and Cloud computing clusters. Swarm currently supports job 
submission to the TeraGrid and Amazon’s EC2 cloud [3]. Swarm provides a standard 
Web Service interface that can be easily integrated into Web portal style applications 
or Workflow engines. In addition, Swarm provides a highly extensible software 
design so that scientists or developers can easily customize it based on their 
application specific requirements.  

Swarm capabilities include, (1) scheduling large number of jobs over distributed 
HPC clusters including Grid clusters and Cloud clusters (2) monitoring framework for 
large scale jobs (3) standard Web Service interface for web applications (4) extensible 
design for the domain specific software logics (5) use of Condor-G and Birdbath for 
the Grid clusters and Hadoop Map-Reduce engine for the Cloud clusters. 

The aims of this paper are threefold: first, to present the architecture of the Swarm 
job scheduling framework; second, to describe the scheme that manages job 
submissions to Grid and Cloud computing clusters; and finally, to evaluate 
performance at the job submission and process level. 

The rest of the paper is organized as follows: Section 2 describes bioinformatics 
research projects that motivated our research. In the section 3, we describe the 
architecture of Swarm. Related work is discussed in the section 4.  Performance 
evaluation of the Swarm system is presented in section 5. Conclusions and future 
work are discussed in section 6. 



2 Computational Challenges in the EST Sequencing 

 
An EST (Expressed Sequence Tag) corresponds to messenger RNAs (mRNAs) 

transcribed from the genes residing on chromosomes. Each individual EST sequence 
represents a fragment of mRNA, and the EST assembly aims to re-construct full-
length mRNA sequences for each expressed gene. Because ESTs correspond to the 
gene regions of a genome, EST sequencing has become a standard practice for gene 
discovery, especially for the genomes of many organisms that may be too complex for 
whole-genome sequencing.  For example, many agriculturally important plants (e.g., 
wheat) have huge genomes that are full of repetitive elements.  The repetitive 
elements pose an unsolved challenge for correct assembly.  For those organisms, EST 
sequencing remains as the only efficient way to discover genes in large scale. Even 
species for which whole-genome sequences are available, EST contigs are important 
data for accurate gene annotation. In particular, the EST sequencing and assembly of 
daphnia, sea urchin, tick, lizard, wasp, and a number of other growing organisms are 
major target tasks.  Many computational steps for a typical EST assembly task (e.g., 
repeat masking or running CAP3 or other assembler on clustered data set) can be 
easily sped up in the data parallelization fashion if sufficient computing resource can 
be accessed. 

Challenge 1: Executing tens of thousands of jobs. 
Around the world, the number of EST sequences is also growing at an ever-

increasing rate. For example, more than 100 plant species have at least 10,000 EST 
sequences. Therefore, the assembly process (e.g. a CAP3 application) creates tens of 
thousands of computing jobs to be processed. Current Grid based clusters do not 
allow users to submit 1000s of jobs concurrently to batch queue systems. 

  Challenge 2: Requirement of job processing is various. 
Even in the EST sequencing process for a single species, the EST assembly 

process composes various types of computation jobs to be processed. It includes large 
scale parallel processing, serial processing and embarrassingly parallel jobs. Some of 
the jobs require more than 100 computing nodes to process the parallel jobs, and there 
are small jobs which need a single processor and runs only few seconds. This variety 
often leads the biologist to search the various types of clusters which fit the 
computing requirements. 

3 Architecture 

Swarm provides a standard Web service interface to desktop users and Web 
applications to submit and manage the jobs. Each of the operations and parameters are 
defined in the WSDL associated with the services.  As seen in Fig. 1, the requests 
from the users are delivered to the Large Task Load Optimizer of the Swarm-
Analysis. Each of the jobs is distributed to the Swarm-Grid, Swarm-Dryad, or Swarm-
Hadoop based on the characteristics of the job. Each of the components, Swarm-Grid, 
Swarm-Dryad and Swarm-Hadoop are also Web services. Therefore, users are 



allowed to access each of the resource-specific Web services directly. Similarly, 
applications can host any of sub Web services for their own purpose. 

Requests from the users are delivered to the Request Manager. The Request 
Manager creates a 128-bit universally unique identifier ticket for the series of jobs. To 
provide the capability to track a large number of jobs, Swarm provides a simple 
structure to the submitted jobs. Jobs are identified by their ticket and internal ID. 
Here, internal ID is the identity of the job, which is unique within the job group. This 
structure is especially useful for the scientific web application, which deals with 
multiple experiments launched by multiple users.  

 

 
 

Fig. 1 Architecture of the Swarm infrastructure 
 

For the high-throughput jobs, Swarm considers traditional Grid HPC clusters as 
the suitable computing resource. Parallel jobs (e.g. MPI jobs) or jobs requiring longer 
execution time are considered to be distributed to the Swarm-Grid. The Job 
submission process interacts with the Resource Ranking Manager, which prioritizes 
the resources over which the job is submitted to optimize the job execution process. 
This is especially designed for the Grid HPC clusters network such as TeraGrid. 
Users are allowed to specify multiple resources (computing clusters) to submit the 
job. To prioritize the resources listed in the user's job description, Swarm interacts 
with the QBETS [6] batch queue prediction service. The Data Model Manager 
determines the data model for the input, output and temporary files during the 
process.  

The Fault Manager decides how to respond to the faults encountered during the 
job submission and execution. Swarm categorizes faults into two catagories: fatal 
fault and recoverable fault. A fatal fault is defined as faults that cannot be recovered 
without new inputs from the users or relocating the jobs on different computing 
clusters. Recoverable fault refers to faults that can possibly be recovered without 
contacting the user. It is mostly related to resource specifications such as expected 
execution time or memory requirements. When Swarm suspects that the fault is due to 
insufficient resource specifications, the jobs are resubmitted with modified arguments.  

Under the Request Manager and Resource Ranking Manager, there is a group of 
software components; referred to as Job Board. Swarm maintains a Job Board for 
each user. Each Job Board contains a Job Queue, Job Distributor, and Resource 



Connector. Users do not share any of these components. Matchmaking between the 
jobs and the resources are done in the user’s Job Board.  

When the Job Distributor finds a match with an available remote resource, the Job 
Execution Manager will submit the job through CodorG [11] Resource Connector to 
the Grid HPC clusters and Condor Resource Connector to the traditional Condor 
Cluster.  
 

 
 
                  Fig. 1 Swarm-Grid architecture 

 

 
 

Fig. 3 Architecture of the 
Swarm-Hadoop 

 
 
Swarm-Hadoop is a software component which enables users to submit jobs to the 

cloud computing clusters such as Amazon’s EC2. Swarm-Cloud interacts with 
Swarm-Analysis via a Web service interface. Therefore, users can access Swarm-
Cloud directly, if their jobs are suitable for the Cloud computing cluster. 

Swarm-Hadoop requires a Cloud computing cluster with the Hadoop map-reduce 
engine. For convenient management of the Cloud computing cluster combined with 
the Swarm infrastructure, Swarm requires Hadoop’s master nodes to reside on the 
machine running the Web Service container of the Swarm-Hadoop Web service. 
Therefore, the machine instances of EC2 or any Hadoop worker node can be 
integrated into the Cloud computing cluster.  

Each of the jobs is processed as a single Map function in the map-reduce style 
application. Since many of scientific applications are not developed in the map-reduce 
style, Swarm-Cloud provides an interface for legacy applications. To process non-
map-reduce software, Swarm-Cloud provides additional processes including: 



• Transferring input files from the user’s local file system to the location that 
Hadoop’s worker nodes can access (e.g. Hadoop distributed file system, Web 
accessible location, or storage service such as Amazon S3)   

• Transferring input and executables files from the Hadoop distributed file system, 
storage service (e.g. Amazon S3), or Web accessible location to the local file 
system of the computing nodes. 

• Transferring output and standard output files from the local file system of the 
computing nodes to the Hadoop distributed file system or storage service. 

Swarm-Hadoop also provides DataModel Manager which determines the location 
of the input, output and temporary files.   

4 Performance Evaluation 

We have implemented a prototype of the Swarm framework, in Java, based on 
Apache Axis2[7].  The server was hosted on a machine with 3.40GHz Intel Pentium 4 
CPUs and 1GB RAM. The client software was hosted on a machine with a 2.33 GHz 
Intel Xeon CPU and 8GB RAM. The machines involved in the benchmark were 
hosted on 1 Gbps network.  

We installed Swarm-Grid and Swarm-Cloud on a machine with 3.40 GHz Intel 
Pentium 4 CPUs with 1GB RAM. For Swarm-Grid, this testbed provided 7 of the 
TeraGrid roaming clusters including as described in Table 1. However, during the 
period of this performance evaluation, we could access only 2-3 of clusters at a time 
due to system downtime or service failure.  Table 1 shows the capacity of the clusters. 

For Swarm-Cloud, we used the EC2 cluster from the Amazon Web Service with 
the m1.small instance. Each of the instances is running on a machine with 2.5 GHz 
Dual-Core AMD Opteron Processor with 1.7 GB RAM.  

We used partial set of the human EST fragments published by NCBI GenBank 
[8]. Data set is categorized based on the execution time on a single CPU machine with 
3.40GHz Intel Pentium 4 CPUs and 1GB RAM: very small job(less than 1minute), 
small job (1 ~ 3 minutes), medium jobs (3 ~ 10 minutes), large job(longer than 10 
minutes). 

 
Table 1. Computing Capacity of TeraGrid HPC clusters  

TeraGrid 
Cluster 

CPU 
(each 
core, 
GHz)  

Distributed 
Memory 
(TBytes) 

Total 
number of 
nodes 

Total 
number of 
processors 

Disk 
space(TBytes) 

BigRed       2.5 6.00 768 3072 266 
Ranger 2.3    125.00 3936 62976 1730 

Abe 2.3 9.38 1200 9600 100 
Cobalt 1.6 3.00 1024 1024 100 

ANL IA-32 2.4 0.24 96 128 4 
NSTG 3.0 0.07 28 56 2 
Steele 2.3     12.40 893 6496 170 



However, the execution time may be different for different machines and clusters. 
For the TeraGrid, clusters provide an environment for the high throughput computing 
such as larger distributed memory and storage. In this paper, we considered only 
serial jobs.  The test application we executed on each of the target cluster was CAP3 
[9] which assembles the gene sequence from the file containing a set of fragments that 
are already clustered. We assume that the input data set resides at the clusters. For 
instance, for the Grid resources, we launched jobs after the data is stored in each of 
the clusters. For Swarm-Hadoop, jobs are launched with the input data stored in the 
local file system of the server which is also the master node of the Hadoop cluster. 

We have noticed there are significant amount of overhead for the jobs submitted 
to the TeraGrid HPC clusters: it includes: 

• Overhead from the job submission middleware: in our case, Condor, Globus 
Toolkit job submission service. This overhead is typically 30 seconds to few 
minutes.  

• Overhead within the clusters: between many of computing nodes and batch queue 
systems, there was overhead especially for the synchronization of the status and 
file systems. This overhead is various from site to site.  

• Wait time in the batch queue: Depending on the local policy and the status of the 
job queue, it varies from few seconds to hours.  

• Overhead during the file stage in and out: after the job is completed, file transfer 
adds another set of overheads in the middleware and within the cluster. 

Therefore, we have experienced job execution times in the order of a few minutes 
for the very small jobs which take less than 1 minute. This overhead could be 
considered as trivial amount for high-throughput computing jobs. However, for a 
large number of very small jobs, the accumulated overhead could be a serious 
bottleneck in executing jobs over Grid style resources.  

 
Fig. 4 Total Execution Time for the Various Numbers of Jobs (~1minute) with 

Swarm-Grid and Swarm-Hadoop 
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As seen in the Fig. 4, Swarm-Hadoop processes smaller size of jobs much more 
efficiently than the Swarm-Grid.  Cloud Computing clusters such as Amazon EC2 or 
Eucalyptus[10] provide immediate access to the resources with smaller overhead for 
each of jobs without waiting time in the job queue, and overhead due to the additional 
software stacks using polling mechanism to synchronize status.  

 
Fig. 5 Job Execution time in Swarm-Hadoop using Hadoop distributed file system 

Although compared to the Grid HPC clusters, Cloud computing clusters provides 
a more suitable job execution environment for small size serial jobs, we have 
observed that there are non trivial amounts of data movement to cope with map-
reduce style programming paradigm. Since most of current scientific application is 
not developed as map-reduce style, we developed a software component which 
distributes serial jobs to the map function and provides a local environment for each 
of the computing nodes. Fig. 5 depicts the execution time for the preprocess and map-
reduce for various number of jobs. Preprocess time includes the time for copying the 
input files from the local file system of master node to the Hadoop distributed file 
system.  Map-reduce time includes the time for copying input, output, executable files 
between Hadoop distributed file system and the local file system of the computing 
node, and process jobs on the computing node. 

For medium sized jobs (3~10minutes), Swarm-Grid processed 100 jobs in 217 
seconds.  Similarly, Swarm-Grid processed 17 large size jobs (>10 minutes) in 3718 
seconds. For the medium or large size jobs, Swarm-Grid provides reasonable 
execution time. In addition, we have observed that the numbers of medium and large 
size jobs are significantly smaller than the number of small and very small size jobs in 
the EST sequencing (actually, they appear to be distributed according to a simple 
power law). Therefore, the overhead in the medium and large size jobs is not expected 
to accumulate and impact the overall performance. 
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5 Related Works 

There have been several approaches in the HPC community, especially in the Grid 
community to manage jobs remotely. Condor [11] is a well-known high-throughput 
resource management system that has been widely adopted in the scientific computing 
community. Swarm-Grid utilizes CondorG as the basic job submitter. GridWay [12] 
is another metascheduling framework for grid resources. Besides the scheduling 
capability, GridWay provides other advanced features − such as fault tolerance, 
checkpoints, and process migration − that are not available  to users who access Grid 
resources directly. Similarly, PanDa[13] provides a large-scale job scheduling and 
analysis framework. Condor-G, GridWay, and PanDa harness the Globus toolkit to 
cope with security and policy issues in Grid settings.   

myCluster [14]  and Falkon[15] are built on top of the glide-in approach. 
myCluster provides the capability of provisioning a large number of distributed 
resources across the TeraGrid into personal clusters created on-demand. Falkon 
provides support for provisioning a large number of distributed resources and allows 
user groups to access resources via a Web service interface. It also factors in data 
management techniques to improve the performance. Glide-in style approach 
provides transparent access to remote resources.   

 Cloud computing is relatively new to the scientific community.  Many activities 
to integrate Clouds and Grids are underway, but these are in early stages. However, 
there has been active research to adapt Cloud computing technology to scientific 
problems. There are several Cloud computing infrastructures available including 
Amazon EC2 [3], Eucalyptus [6], and Nimbus [16]. These infrastructures provide 
scientific application such as Matlab, and mpi.  

6 Conclusions and Future Work 

In this paper, we have introduced a high-level job scheduling framework, Swarm. 
The Swarm framework integrates Grid style HPC computing resources and Cloud 
computing clusters to solve a specific scientific computing problem. The Swarm 
service is designed to be extensible and lightweight so that users working on desktops 
or small servers can easily install and host it. Since it is Web service based, clients to 
derivative services based on Swarm can be integrated in Web portals and science 
gateways. In this paper, we have discussed the motivation for this research, the 
architecture of the Swarm framework, and a performance evaluation of the system 
prototype.  

As we discussed in the section 4, Swarm-Hadoop can process small-sized jobs 
(shorter than 1 minute) much more efficiently than Swarm-Grid.  Cloud Computing 
clusters such as Amazon EC2 or Eucalyptus provides immediate access to the 
resources with smaller overhead for each of jobs. Meanwhile, Grid style HPC clusters 
add a few minutes (or an even longer overhead) to each of jobs. Therefore, if the 
user’s application requires processing large number of jobs, it can benefit from access 
to the Cloud Computing clusters. However, Grid style HPC clusters still provide 
stable environment for large-scale parallel jobs. 



As part of our future work, we plan to enhance our service to access to Windows 
based clusters and use Microsoft’s such as Dryad [17] for job management. We also 
plan to investigate the fault tolerance scheme and enhanced job-monitoring 
mechanisms for Cloud Computing environments. Finally, we plan to investigate an 
intelligent job distribution mechanism among various types of computing resources. 
We expect that intelligent job distribution will offer significant performance 
improvements for large-scale biological applications. 
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