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ABSTRACT  
We describe data analytics on large systems using a suite of robust 
parallel algorithms running on both clouds and HPC systems. We apply 
this to cases where the data is defined in a vector space and when only 
pairwise distances between points are defined. We introduce new O(N 
logN) algorithms for pairwise cases, where direct algorithms are O(N2) 
for N points. We show the value of visualization using dimension 
reduction for steering complex analytics and illustrate the value of 
deterministic annealing for relatively fast robust algorithms. We apply 
methods to metagenomics applications. 

Categories and Subject Descriptors  
G.4 MATHEMATICAL SOFTWARE: Algorithm design and analysis; 
Parallel and vector implementations; Reliability and robustness; 
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Algorithms, Experimentation, Performance, Reliability  
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1. DETERMINISTIC ANNEALING 
Deterministic annealing[1] is motivated by the same key concept as the 
more familiar simulated annealing, which is well understood from 
physics. We are considering optimization problems and want to follow 
nature’s approach that finds true minima of energy functions rather than 
local minima with dislocations of some sort. At high temperatures 
systems equilibrate easily as there is no roughness in the energy 
(objective) function. If one lowers the temperature on an equilibrated 
system, then it is a short safe path between minima at current temperature 
and that a higher temperature. Thus systems which are equilibrated 
iteratively at gradually lowered temperature, tend to avoid local minima. 
We cannot put our delicate mathematical equations in a real forge and the 
Monte Carlo approach of simulated annealing is often too slow, so we 
perform integrals analytically using a variety of approximations within 
the well-known mean field approximation. In this sense deterministic 
annealing is related to variational Bayes or variational inference methods 
while Markov chain Monte Carlo (MCMC) methods are roughly single 
temperature simulated annealing. In the basic case we have a 
Hamiltonian H(χ) which is to be minimized. In annealing, we introduce 
the Gibbs Distribution at Temperature T 
          P(χ) = exp( - H(χ)/T) / ∫ dχ exp( - H(χ)/T) (1)  
          or P(χ) = exp( - H(χ)/T + F/T )   (2) 
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and minimize the Free Energy F combining Objective Function 
and Entropy 
      F = < H - T S(P) > = ∫ dχ [P(χ)H + T P(χ) lnP(χ)] (3) 

as a function of χ, which are (a subset of) parameters to be 
minimized. The temperature is lowered slowly – say by a factor 
0.95 to 0.99 at each iteration. For some cases such as vector 
clustering and Mixture Models, one can do integrals analytically 
but usually that will be impossible. So we introduce a new 
Hamiltonian H0(χ, ε) which by choice of ε  can be made similar to 
real Hamiltonian H(χ) and which has tractable integrals. Then we 
use the approximate Gibbs distribution 

P0(χ) = exp( - H0(χ)/T + F0/T ) (4)  
And calculate 

F(P0) = < H - T S0(P0) >|0 = < H – H0> |0 + F0(P0) (5) 
where <…>|0 denotes averaging with Gibbs P0(χ) i.e. ∫ dχ P0(χ). 
Note that the true Free Energy satisfies the Gibb’s inequality 
  F(P) ≤ F(P0)    (6) 
which is also related to Kullback-Leibler divergence. This leads to 
an expectation maximization method where in first expectation 
step E, one finds the values of ε minimizing F(P0) in equation (5) 
and follow with M step of Expectation Maximization setting  

χ = <χ> |0 = ∫ dχ χ P0(χ)   (7) 
Note there are three types of variables in the general case. The set ε 
are used to approximate the real Hamiltonian H(χ) by H0(χ, ε); the 
set χ are subject to annealing while one can follow the 
determination of χ by finding yet other parameters (the third set) 
optimized by traditional methods. Note one iterates over 
temperature decreasing it, but also at fixed temperature until the 
EM step converges. Now we turn to some examples. 
 
2. CLUSTERING 
Here the annealed variables χ are Mi(k) , which is the probability 
that point i belongs to cluster k. In either central clustering (where 
points are in a metric space) or pairwise clustering 

H0 = ∑i=1
N ∑k=1

K Mi(k) εi(k)  (8) 
which is linear in Mi(k) allowing integrals in equations (5) and (7)  
to be done analytically. The metric space central clustering has 
εi(k) = (X(i)- Y(k))2 where points have position X(i) and cluster 
centers are Y(k), so: 

HCentral = H0 = ∑i=1
N ∑k=1

K Mi(k) (X(i)- Y(k))2  (9) 
and the expectation step gives: 
<Mi(k)>  =  exp( -εi(k)/T ) / ∑k=1

K exp( -εi(k)/T )  (10) 
and the cluster centers Y(k) are easily determined in M step.  
 
In the non-metric space pairwise clustering case[2] the 
Hamiltonian is given by a form nonlinear in Mi(k), 
HPWC = 0.5 ∑i=1

N ∑j=1
N δ(i, j) ∑k=1

K Mi(k) Mj(k) / C(k)  (11) 



where δ(i, j)  is pairwise distance between points i and j and 
C(k) = ∑i=1

N Mi(k) is the number of points in Cluster k. One takes the 
same form H0 = ∑i=1

N ∑k=1
K Mi(k) εi(k) as for central clustering so the 

linear (in Mi(k)) H0 and quadratic HPWC are different. The parameters 
εi(k) are determined to minimize  

FPWC (P0) = < HPWC - T S0(P0) >|0  (12) 
where integrals can be easily done to find εi(k) and one gets at M step that 
<Mi(k)> is given by equation (10) again. 
 

In many problems, decreasing 
temperature is a classic multiscale 
step with finer resolution being used 
as temperature T decreases. Note 
from equations (9) and (10) that we 
have factors like (X(i)- Y(k))2 / T and 
√T acts as a distance scale. In 
clustering there is just one cluster at 
infinite temperature (the starting 
point) at the mean position over all 
points. One can start with just one 
cluster and decrease temperature. 
The system becomes unstable and 
additional clusters “pop” out in what 
is a phase transition in the physics 

interpretation of the system. 
The transition can be detected 
by either examining second 
derivative matrix or by placing 
multiple centers at each cluster 
and perturbing them. At phase 
transitions, the perturbed points 
will separate. This is illustrated 
in figures 1 and 2 showing a 
pairwise Metagenomics 
clustering visualized using 
dimension reduction with two 
early phase transitions 
revealing structure at finer 
scales. This sample has around 

125 clusters in all so the structure is only starting to be revealed! 

3. DIMENSION REDUCTION 
We have investigated deterministic annealing for two well-known 
dimension reduction algorithms, whose use  is illustrated by figs 1 and 2 
which map sequences in a high dimensional space (they are up to 600 
base pairs in length in the figs) to 2 dimensions for visualization. There is 
GTM Generative Topographic Mapping applicable for points in a metric 
space and Multidimensional Scaling MDS, which only needs pairwise 
distances. DA-GTM is an example of the application of annealing to 
mixture models, which can also be applied to Gaussian mixture models 
and topic classification of documents. Here we just discuss DA-MDS[3] 
where the objection function called STRESS or HMDS 

HMDS = Σi< j=1
N weight(i,j) (δ(i, j) - d(X(i) , X(j) ))2     (13) 

Where δ(i, j) are observed dissimilarities, weight(i,j) is an arbitrary 
weight function and each point i is to be mapped to a point X(i) in a 
Euclidean space with metric d(X(i) , X(j) ). HMDS is quartic or involves 
square roots, so we cannot use HMDS in the DA Gibbs function but need 
the idea of an approximate Hamiltonian H0. Previously we used linear 
Hamiltonians in equation (8) but here H0 is a factorized quadratic form. 

H0 = Σi=1
N (X(i) - µ(i))2 / 2  (14) 

where µ(i) are the parameters ε of the general formula and the 
mapped vectors X(i) are the χ. In this case one will find the simple 
M step   X(i) = µ(i)   (15) 

While the E step minimizes 
 Σi< j=1

N weight(i,j) (δ(i, j) – constant.T - (µ(i) - µ(j))2 )2  (16) 

Here the solution has µ(i) = 0 at large temperature and the points 
emerge from the origin as temperature is lowered 

 
Fig 3. Comparison of MDS with (red, blue) and without (green, 
SMACOF) deterministic annealing 

Fig 3 illustrates that deterministic annealing improves the quality 
of the fit both in terms lowered STRSS and lowered variation in 
value between different starting points. Dimension reduction and 
clustering can be combined[4] to give a robust approach that 
clusters and visualizes allowing user steering. For large systems 
the O(N2) computational complexity can be addressed[5] by using 
similar ideas to those used to reduce the O(N2)  particle dynamics 
algorithms to O(N) or O(NlogN).  One uses MDS on a sample of 
the data to map points to 3D and then an oct-tree decomposition 
provides a rigorous way to implement a hierarchical version of the 
algorithms. We have implemented this approach on clouds and 
HPC infrastructure. 
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Fig 1. First Phase Transition in 
Metagenomics Clustering.      
2 Clusters appear at T=0.0475 

Fig 2. Third Phase Transition in 
Metagenomics Clustering.                  
4 Clusters appear at T=0.0388 


