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Time-series sensory data is one of the most common types of data used by human. In this thesis

research, we investigate Deep Neural Network (DNN) based machine learning algorithms to advance

temporal prediction from human sensory data, for example speech and vision. In the first half

we focus on supervised learning under multiple time-series sensory inputs. In the second half,

we investigate methods for improving weakly-supervised single time-series model training from

unaligned sequences and task loss.

Combining Multimodal Time-Series

Human senses the world with multiple modalities such as vision, sound, touch, etc. An AI agent,

e.g. a robot, also relies on multiple sensors to collect data to perform tasks such as localization, path

planning, control a robotic arm, etc. Baltrušaitis et al. [2018] refers a sensory modality as one of

our primary channels of communication and sensation, such as vision. A problem is characterized

as multimodal when it includes multiple sensory modalities. Different from classical statistics, in

machine learning we often face very high dimensional input data, and each input modality has

essentially different representation forms; for example, audio and vision. The challenging question in

creating intelligent systems for processing multimodal sensory inputs is how to combine different

input modalities when there are no straight forward physical model to describe them.

Multimodal sensor fusion algorithms can be divided into two big categories [Baltrušaitis et al.,

2018]: model-agnostic and model-based. Model-agnostic sensor fusion does not depend on a specific

machine learning method. It usually combines different sensors in a blind way and the relationship

between sensors are not explicitly exploited. Model-based methods explicitly address fusion in their

construction, e.g. using graphical models to impose a structural prior distribution on signals from

different modalities. In this work, we focus on model-based approach for sensor fusion.
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The most common fusion approach is to concatenate the inputs from different sensors at certain

modeling stage to solve a unimodal learning problem. Ngiam et al. [2011] proposed a multimodal

autoencoder which first use deep Boltzmann machine (DBM) to learn each audio and video features

independently, then concatenate the learned features to an multimodal autoencoder to learn a shared

representation. To reproduce original inputs, the shared representation is mapped back to each

modality. Srivastava and Salakhutdinov [2012] also use DBM to learn a generative model of

multimodal input data. Simonyan and Zisserman [2014] proposed a two-steam convolutional neural

networks for action recognition in video. The two-stream model try to capture the complementary

information from two modalities: still image and motion between frames. In their work, the last

layer concatenates two streams into a final classification layer. Torfi et al. [2017] proposed a coupled

3D-CNN to map multiple modalities into a representation space to evaluate the correspondence

of audio-visual streams. In Ephrat et al. [2018] the audio and visual streams are combined by

concatenating the feature maps of each stream, which are subsequently fed into a BLSTM followed

by three FC layers.

Dynamically combining multiple functions in supervised learning can be traced back to mixture of

experts model [Jacobs et al., 1991]. A mixture of experts model is driven by the assumption that a set

of training cases may be naturally divided into subsets that correspond to distinct tasks. However, the

interference between different subsets of tasks would lead to slow learning and poor generalization.

Such interference can be reduced by using a system composed of several different expert functions

where each one is trained for a subset of tasks. A gating function is trained to decide which of the

experts should be used for each training case. Instead of a hard decision such as decision tree, the

gating function makes probablistics decision by assigning mixing weights to the experts. Neural

networks can be used for both the expert functions and gating function, which is known as mixture

density network (MDN) [Bishop, 1994]. One advantage of MDN is it can approximate a flexible

family of distributions, including distribution of multiple modes.

Motivated by these works, we propose a spatial attention model for sensor fusion. The temporal

attention mechanism [Bahdanau et al., 2014] can dynamically generate a probability distribution

over a time segment. This probability distribution can be interpreted as a measure of the importance

of a past time point to current prediction. From this interpretation, we propose a spatial attention

which dynamically generates a probability distribution over input sensors at each time step. This

spatial attention allows the system to dynamically combine information from different sensors in a

sequential decision making task. To maximize utility of each type of input information each sensor

is bonded with a modular neural network. Another gating modular neural network is dedicated to

dynamically generate the spatial attention which is used as a set of mixing weights for outputs from

sensor networks to balance utility of all sensors’ information. We also experiment with a co-learning
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mechanism to encourage co-adaption and independent learning of each sensor at the same time, and

propose a regularization based co-learning method. We demonstrate the proposed method in an

audio-visual speech activity detection task.

We next propose a probabilistic model which combines multiple sensor signals into separate modality-

dependent and modality-invariant features. The core technique is a variational RNN (VRNN) [Chung

et al., 2015] model where the transition between hidden units are stochastic. The VRNN model is

a non-Markovian model in the sense the conditional independence assumption is broken in both

transition and emission. We discuss this property by comparing VRNN with hidden Markov model

and linear dynamic system. Based on VRNN, we propose a multimodal VRNN (MVRNN) model

which imposes a structural prior on the generative model. As a result, the modality dependent and

modality invariant factors are encouraged to separate into different latent variables. We emphasis that

as oppose to PCA [Bishop et al., 2006] or VAE [Kingma and Welling, 2013, Rezende et al., 2014]

where latent factors are not known a priori without looking at the posterior distribution, our model

explicitly matches latent variables with concepts. This is a result of the explicit graphical model

structure.

Summary

In this research we are motivated by the question of how to combine multiple modalities of sensory

data in an explainable and controllable way. In doing so, sensory inputs can complement each other

to gather information in a complicated environment. Such ability is valuable to the development

of an intelligent autonomous system. We propose a spatial attention model that can dynamically

combining sensor inputs in a sequential decision making task, and propose a multimodal variational

RNN model to separate signal from noise. Our experiment results show the recurrent attention filter

method can reduce the misclassification error by 51.3% and 57.8% when the audio is corrupted with

non-human voice noise and human-voice noises respectively, while the video is corrupted, compared

to a video or audio only system. We also find the model can detect when an input signal is corrupted

and reduce its attention weight, while increase attention weights of more reliable inputs. This shows

the improvement of decision accuracy attributes to the attention mechanism. To our knowledge, this

algorithm is the first to use attention mechanism for streaming decision making with multiple inputs

streams.

Learning from Unaligned Input-Output Sequences

We next focus on single time-series sensory data model. One major challenge of time-series sensory

data is that the input and output sequences differ in lengths and both lengths are variable. For example
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in speech recognition, the speech audio input and speech transcription output are of different lengths.

Supervised learning of time-series model usually requires temporally aligned input and output. Taking

speech recognition as an example, supervised learning of RNN based speech recognition algorithm

requires speech transcriptions are given at each time step of speech audio [Graves et al., 2012]. Such

temporally aligned data is often hard to prepare, and it is well recognized that DNN benefits from

training with large dataset; in some situations, hand-prepared alignment data contain human errors, or

there could simply is no single alignment between input and output sequences. Hence it is desirable

to have algorithms that only require input and output sequences are monotonically related but not

temporally aligned.

Many fields are interested in time-series models for unaligned data: DNA sequencing [Teng et al.,

2018], machine translation [Yu et al., 2016], speech recognition and keyword detection [Lengerich

and Hannun, 2016], and action recognition from video [Huang et al., 2016][Assael et al., 2016]. We

are interested in one type of time-series model called transducer model which can learn to transcribe

an input sequence to an output sequence from monotonically indexed unaligned examples. The most

successful pre-deep learning, statistical speech recognition model — Hidden Markov Model (HMM)

is a kind of transducer model which has thrived on the development of Baum-Welch algorithm

[Rabiner, 1989]. Many recent efforts have been made to marry the strength of DNN with transducer

models, including the Connectionist Temporal Classification (CTC) [Graves et al., 2006], RNN

Transducer (RNN-T) [Graves, 2012], neural transducer [Jaitly et al., 2016], and Recurrent Neural

Aligner (RNA) [Sak et al., 2017]. These transducer models generate hard monotonic alignments

between input and output sequences, and use dynamic programming to efficiently summarizes all

possible alignments. When evaluated from multiple criteria, RNN-T has been found to be favored

over the rest in terms of superior prediction accuracy, ease of decoding, and simpler unified structure

[Battenberg et al., 2017][Prabhavalkar et al., 2017][Chen et al., 2020].

The basic building block of RNN-T for modeling temporal relation is RNN. While RNN has been the

long time standard DNN model for temporal data, it is not efficient in memorizing long-time-span

relations [Bengio et al., 1994] and not friendly to parallel computation due to temporal dependency

in hidden states. The recently proposed Attention-based Encoder-Decoder (AED) models have

been shown to successfully overcome these issues for sequence to sequence prediction [Chorowski

et al., 2015] [Bahdanau et al., 2014]. AED models use attention mechanism to compute soft non-

monotonic alignment between each output step and every input step. Attention mechanism allows

direct interaction between any two time steps in a sequence despite their distance in time. Early

AED models were built on top of RNN models. The more recent Transformer model with self-

attention [Vaswani et al., 2017] completely eliminated RNN and only use feed-forward layers,

which allows for parallel computation during training. Self-attention allows neural network to learn
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flexible features with long-contextual-span properties, which are critical to the success of structural

discriminative methods. Transformer model features multiple encoder-decoder attention layers and

multihead self-attention at each layer. Recent works have found Transformer outperform RNN in

many sequence-to-sequence tasks such as machine translation [Vaswani et al., 2017] and speech

recognition [Karita et al., 2019].

A sequence prediction model is capable of streaming prediction if the model can generate outputs

while receiving input signals. A model is non-streaming if it can generate outputs only after receiving

the entire input signal. Because the attention mechanism maps every input step to each output step,

AED models naturally are not capable of streaming prediction. The best configuration of AED

model for streaming prediction is still unknown and has been a hot research area. Some works have

explored monotonic attention variants for time-series data. Hard Monotonic Attention (HMA) [Raffel

et al., 2017] uses hard monotonic sampling over the input sequence to generate a hard monotonic

alignment between input and output sequences. But each output time step can only attend one input

time step due to hard alignment. To relax the strict hard alignment, Monotonic Chunkwise Attention

(MoChA) [Chiu and Raffel, 2017] uses soft attention1 over a small fixed-size chunk of input time

steps for each output time step, where the location of each chunk is selected by hard monotonic

attention. Monotonic Infinite Look-back Attention (MILk) [Arivazhagan et al., 2019] further extends

the fixed-size attention window to a soft attention over all previous input time steps. These monotonic

attention approaches also provide a closed form expression for the expected alignment between

source and target tokens, and avoid unstable reinforcement learning, which trades computation for

stability. However, chunkwise methods ignore the relationship between different chunks.

In contrast to AED model, transducer models are streamable and have low runtime computation cost.

Moritz et al. [2019] tried to combine transducer model with attention in the Triggered Attention (TA)

model for streaming prediction. TA model utilizes the alignment capability of transducer to generate

monotonically growing attention regions. The decoder then oversees each attention region to generate

an output. The trigger network is essentially a CTC decoder, which provides a one-best alignment

between input and output sequences. There are a few weaknesses with TA model. First the encoder is

a compromise for two tasks, i.e. alignment and attention. Second, because of the hybrid loss function

in TA model, the hybrid decoding algorithm is complicated and requires hyper-parameter tuning. It is

more desirable to have a unified loss such as RNN-T. In addition, due to using CTC, TA model does

not model the structure of output sequence.

The integration of Convolutional Neural Network (CNN) and Transformer is another promising

direction. While Transformers are good at modeling long-range global context, they are less capable

of extracting fine-grained local feature patterns. CNN can capture local context progressively via a

1Xu et al. [2015] has an excellent discussion on the difference between soft and hard attention.
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local receptive field layer by layer. Recent works have shown that CNN is also capable of capturing

temporal relations for sequence prediction [Gehring et al., 2017]. Collobert et al. [2016] used

convolutional layer to extract feature from raw audio signals. Mohamed et al. [2019] showed

convolutional layers not only helps Transformer to extract local temporal features, but also provides a

new way for relative positional encoding in addition to the distance-based relative position encoding

in Transformer-XL [Dai et al., 2019].

Summary

In this work, we study the unification of CNN, Transformer and RNN-T into a single streaming

prediction model. We combine the strength of CNN for local feature extraction with Transformer

for capturing long-context-span relation, and RNN-T for streaming prediction. We explore effective

methods to modify self-attention for streaming prediction in a RNN-T framework such as time-

restricted self-attention [Moritz et al., 2020] and use convolutional layers for relative positional

encoding for Transformer. Our experiments have shown encouraging results. Comparing to RNN-T,

the CNN-Transformer based model reduces word-error-rate (WER) from 11.50% to 8.36%. This

suggests CNN-Transformer is a viable replacement to RNN in RNN-T. Interestingly, we find the

performance of CNN-Transformer based model is more sensitive to the model size than RNN based

model. When we reduce model parameter from 53 million to 15 million, WER increases from 8.36%

to 11.79%, about 41% relative increase. Meanwhile, RNN based model increases from 11.50% to

12.11%, about 5.3% relative increase. This suggests self-attention mechanism needs more layers

and attention heads to maximize its potential. Integration of Transformer and RNN-T has drawn

many interests from industry. We notice related works [Zhang et al., 2020] [Tripathi et al., 2020]

[Huang et al., 2020] were concurrently developed with this work. We plan to continue investigate the

properties of CNN-Transformer-Transducer model such as prediction latency.

Minimizing Task Loss

While transducer and AED models have lifted the requirement for alignment between input and

output sequences, they continue to use likelihood based objectives as surrogates to task performance

criteria such as word-error-rate (WER) for speech recognition [Kaiser et al., 2002] or BLEU score

for machine translation [Papineni et al., 2002]. This is due to these evaluation criteria are often

non-decomposable over time and are non-differentiable functions, thus are difficult to optimize by

gradient based methods in batches. In addition, because of the difficulty in learning long-context-span

structure in time series, it has been a standard practice in RNN model to adopt teacher-forcing

[Bengio et al., 1994] to feed previous prediction targets rather than predictions to the model and

update the model parameters in direction towards the next target. However, while teacher-forcing can
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find sequence-level optimal for data in the training set, the model never learn what to do once it has

made an error in an intermediate time step. These compromises impose inherent limit on a model’s

prediction accuracy.

Task loss minimization has been of great interest to speech recognition. Previous works have relied

on a second stage optimization over an objective that is more closely correlated with task loss to fine

tune a pre-trained model [Gibson, 2008]. The second objective is an expected task loss that measures

the difference between the target output sequence and the predicted output sequence weighted by its

probability. This expected task loss does not have a closed form solution and is expensive to compute

by enumerating the sampling space, thus is approximated in different ways such as beam search. It

also has been found that learning a classification function by direct minimization of the classification

loss, e.g. empirical risk minimization (ERM) gives lower prediction error than learning a posterior

probability based Bayes classifier [Gibson, 2008]. Early works in this area have adopted Extended

Baum-Welch (EBW) algorithm to compute gradient of expected loss and fine tune a pre-trained

HMM [Kaiser et al., 2002] or shallow neural network models [Veselỳ et al., 2013] for task loss. These

practices were restricted to small dataset of short sequences according to today’s standard for DNN

models. Graves and Jaitly [2014] has shown that the CTC transducer model can be directly optimized

towards expected task loss, using an efficient sampling and variance reduction strategy. However, this

strategy is tied to CTC model structure and cannot be extended to other transducer models such as

RNN-T. Recent works have shifted towards more general Monte Carlo sampling-based approaches

which can be applied to any kinds of model structure and task loss [Shannon, 2017] [Prabhavalkar

et al., 2018].

Time-series prediction as sequence transduction can be considered as a kind of Markov Decision

Process (MDP). A close examination reveals methods in [Prabhavalkar et al., 2018] has the same

formulation as a kind of Reinforcement Learning (RL) model i.e. Policy Gradient (PG) method.

In RL, an agent uses a policy to interact with an environment to sequentially generate a path that

maximizes expected reward. Hence each policy induces a probability distribution over the path

space. The policy is gradually improved by a Monte Carlo gradient estimate from sampling from this

induced probability distribution. This motivates us to approach sequence task loss minimization from

a reinforcement learning perspective.

In this part of work, we investigate Monte Carlo gradient estimation method to directly optimize a

time-series task performance criterion in the context of speech recognition. There are two major

types of Monte Carlo stochastic gradient estimators: score function method and pathwise method [Fu,

2006][Mohamed et al., 2020]. Recent works have investigated RL methods for sequence prediction

in many areas [Gu et al., 2016] [Li et al., 2016] [Bahdanau et al., 2017] [Zhou et al., 2018][Bello

et al., 2016], but most are limited to the PG algorithm which uses the score function method to
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estimate the gradient of the expected reward with respect to model parameters. Because score function

method has to marginalize an unknown stochastic path by sampling, its gradient estimate is extremely

variable. Hence it is critical to employ variance reduction techniques in score function method. We

investigate several variance reduction methods for score function gradient estimator, including action-

independent baseline, self-critic baseline, and action-dependent baseline. The pathwise gradient

estimator is closely related to the Variational Autoencoder (VAE) model [Kingma and Welling,

2013, Rezende et al., 2014]. When a latent variable is continuous, pathwise method can utilize the

reparameterization trick to sample from a constant distribution instead of the sampling distribution

generated by the policy. This has been found to significantly reduce the variance of gradient estimate

and accelerates convergence. When output space is discrete, reparameterization trick cannot be

used [Kingma and Welling, 2013]. The Gumbel distribution [Gumbel, 1948] provides a smooth

controllable approximation to a categorical distribution. We can hence approximate the discrete

random variable with a continuous random variable of Gumbel-softmax distribution [Maddison et al.,

2016, Jang et al., 2016]. This allows us to choose action in forward pass with argmax and train the

model using fully differentiable backpropogation with reparameterization trick in backward pass.

The price we pay is the bias introduced by continuous relaxation of discrete random variable in the

gradient estimate.

Summary

To summarize, we investigated sampling-based methods for direct optimization of arbitrary task loss,

e.g. WER minimization for speech recognition, and proposed a new pathwise gradient estimator

for discrete variable. With aforementioned theoretical analysis, we find it is challenging to have

expected performance of these models in experiments. We find both score function and pathwise

gradient estimation methods are unstable and their convergences require huge amount of computation

beyond we could afford. Training reinforcement learning model is known to be difficult [Henderson

et al., 2018]. Our observations echo the questions shared by many recent researches. We discuss our

limitations and lessons learned.

Remark

The task loss training can be performed parallel to or after transducer model training. Besides, there

is a common theme among the methods we studied in this thesis: we use latent variables to describe

the temporal structure within time-series data. We assume the observed data are represented by

some underlying latent variables which usually lives on a much lower dimension space. Hence the

variational RNN and reinforcement learning methods both use Monte Carlo sampling to approximate
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the integration over latent variables, while the transducer model can use dynamic programming to

compute the exact integration over the latent variables.
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