
Building Software Defined Systems on HPC and Clouds

Hyungro Lee
School of Informatics and Computing

Indiana University
Bloomington, IN 47405
lee212@cs.indiana.edu

Abstract

Systems for modern applications require dynamic computing resources for various workload with a
different type of datasets and a collection of software work together to complete tasks on IaaS, PaaS, SaaS
or FaaS. Building a cluster of virtual machines is inevitable to accelerate computation speed for these
applications but there are challenging tasks to deploy, configure and manage systems in a virtualized
environment or high performance computing. DevOps tools provide automated software deployment and
continuous integration yet computing environments and resources for applications need to be prepared
manually by system administrator and application developer because of dependency hell. Template-
based infrastructure provisioning permits an repeatable build of a virtual system but the execution of
applications is separated from the system built which has no trace of workloads. In this dissertation, we
combine these two approaches to fully automate from preparing environments to running workload of
applications in a structured way which results in building software defined systems (SDS) on HPC and
Clouds.

Semantic templates are introduced to complete virtual cluster provisioning with an example of big
data applications and role-based DevOps tools are examined to deploy software stacks. There are several
tools and libraries to be implemented with several container technologies to enable dynamic computing
environments on both HPC and Clouds. In addition, specific application domains i.e. bioinformatics
are explored to demonstrate practical experiences of applying use cases with the philosophy of software
defined systems.

Keywords: software defined systems, big data, template deployment, configuration management,
scientific applications, virtualization

1

1 Introduction

From Infrastructure-as-a-Service to Functions-as-a-Service, many efforts have been made to provide com-
puting resources in virtualized environments but with less complication of building infrastructure and
preparing environments. Lightweight linux containers are widely adopted in supporting interdisciplinary
field of research and collaboration because of its kernel level of an isolated environment. IaaS is a still
best approach to operate fine-grained resource provisioning regarding to CPU, memory, storage and net-
work. This thesis will explore the rapid evolution of virtualization technologies from IaaS to serverless
computing with container technologies to find optimized configuration of systems with a general soft-
ware deployment. The next generation system must utilize DevOps tools for deploying software stacks
on a cluster of virtual machines and infrastructure provisioning for supporting various applications. In
recent years, building big data clusters have become an inevitable task for performing analysis with the
increased computational requirements for large datasets and the anticipated systems will be perfect for
these situations to every dimension of infrastructure provisioning and software deployment.

Supporting big data analytics is more difficult for a few reasons: (1) big data applications run with
large datasets and a collection of software, (2) building and managing big data deployments on clusters
require expertise of infrastructure and (3) Apache Hadoop based big data software stacks are not suitable
for HPC. In an effort to resolve the first two issues, pulic datasets and data warehouse on the cloud have
offered to ensure instant data access with SQL support and enterprise big data solutions have hosted
by cloud providers e.g. Amazon, Google, and Microsoft to save time on deploying multiple software
stacks without facing installation errors. These services, however, are only available to their customers
and make hard to swtich to another when applications and pipelines are built on top of the services.
Pre-developed infrastructure for big data stacks are only suitable for particular use cases and are unable
to customize or re-define by users. There are efforts to simplify a deployment with a specification such
as automated deployment engines using TOSCA (Wettinger, Breitenbücher, and Leymann, 2015), but
they do not integrate multiple clouds with a cluster deployment or a workload execution. The bigdata
deployment on clusters require more than single software to install and configure with different roles i.e.
masters and workers. If it is built on virtualized resources, scailing up or down is necessary to maximize
resource utilization but with exceptional performance.

These issues can be resolved using a template deployments for infrastructure and software which
uses YAML or JSON documents to describe resources and tools to install and configure. For example,
Amazon OpsWorks uses Chef to deploy software stacks and Cloudformation uses YAML document to
deploy Amazon resources. Similarily, Microsoft Resource Manager Templates uses JSON document to
deploy Azure resources and Google Cloud deployment Manager uses python or Jinja2 templating language
to deploy Google Cloud platform resources. OpenStack heat is originated from AWS Cloudformation
to deploy resources but extendedd with the integration among openstack services e.g. Telemetry for
autoscaling. These templates have been used for infrastructure deployment and software installation
with input parameters which enables reproducible deployment on virtual environments. We extend the
use of a template with workload execution recording to track workflow steps and replicate results and also
a role based deployment for building clusters. This will be beneficial to share scientific pipelines which
typically contain complicated and long-running processes. Our approach is to record status and results
of components in the workflow while it is running and store the execution information in templates for
later use. This allow users to re-run the workflow on different systems but start from where the workflow
stopped without executing whole processes again.

This proposal consists of the following sections. First, background introduces basics of a template
deployment with big data software stacks, binary containers for hpc, template use cases for public
clouds and bioinformatics. Next, design section provides a prototype of a template deployment and
checkpoint/restart in user space (CRIU) regards to big data software stacks with clusters. Implementation
section demonstrates plans to apply the big data template deployments towards clouds and HPC, such
as amazon, azure, openstack, google compute and Slurm with integrated specifications. Schedule section
provides todo lists with esitmated timelines to be completed. Last, summary section outlines final
dissertation with brief idea.

2

1.1 Thesis Statement

Software defined systems with DevOps and Template infrastructure provisioning is an effective way of
enabling big data software stacks on the cloud and hpc with container technologies.

3

2 Background

2.1 Software Deployment for dynamic computing environments

Software development has evolved with rich libraries and building a new computing environment requires
set of packages to be successfully installed with minimal efforts. The environment preparation on different
infrastructure and platforms is a challenging task because each preparation have individual instructions
which build a similar environment, not identical environment. Traditional method of software deployment
is using shell scripts to define installation steps with a system package manager command such as apt,
yum, dpkg, dnf and make but it is not suitable to deal with large number of packages actively updated and
added to community in a universal way. Python Package Index (PyPI) has almost 95,490 packages (as of
12/26/2016) with 40+ daily new packages and github.com where most software packages, libraries and
tools are stored has 5,776,767 repositories available with about 20,000 daily added repositories. DevOps
tools i.e. Configuration management software supports automated installation with repeatable executions
and better error handling compared to bash scripts but there is no industry standards for script formats
and executions. Puppet, Ansible, Chef, CFEngine and Salt provide community contributed repositories
to automate software installation, for example, Ansible Galaxy has 9329 roles available, Chef Supermarket
has 3,135 cookbooks available although there are many duplicates. We call this is (automated) software
deployment and building dynamic computing environments on virtual clusters is the main objective of
this dissertation. Software defined systems (or virtual clusters) has discussed (Fox, 2013) to connect
distributed big data and computing resources of Cloud and HPC, which will result in developing a suite
of software deployment tools at scale. Note that this effort is mainly inspired by the previous research
activities (Fox, Qiu, and Jha, 2014; Qiu et al., 2014; Fox and Chang, 2014; Fox et al., 2015; Fox et al.,
2015; Fox et al., 2016).

2.2 Template

A template has been used to describe a deployment of software packages and infrastructure on virtual
environments across multiple cloud providers because of its simple instructions as well as content share-
ability. YAML (superset of JSON) is a popular language to serialize data delivery especially as for
configuration files and object persistence along with the template deployment. As an example of infras-
tructure deployments, Amazon Cloudformation, a template deployment service, uses YAML or JSON
specification to describe a collection of Amazon virtual resources, Google Compute Cloud uses YAML
with Jinja2 or Python languages to define a set of google compute resources whereas Microsoft Azure
Resource Manager uses JSON to deploy Azure resources and Topology and Orchestration Specification
for Cloud Applications (TOSCA) uses XML (Wettinger, Breitenbücher, and Leymann, 2014) to define a
topology and a relationship. Saltstack and Ansible, a software deployment tool written in Python, use
YAML to manage configuration and software installation from instructions defined in YAML text files.

Listing 1: AWS CloudFormation Example

Resources :
EC2Instance :

Type: AWS::EC2:: I n s t a n c e
Proper t i e s :

InstanceType :
Ref: I n s t a n c e T y p e

SecurityGroups :
- Ref: I n s t a n c e S e c u r i t y G r o u p
KeyName:

Ref: KeyName

The code example in Listing 1 is a plain text to deploy a Amazon EC2 instance written in a YAML
format which includes a nested data structure by indentations and key value pairs for lists (starts with
dash) and dictionaries.

Listing 2: Ansible Example

4

− hos t s : o p e n c v

t a sk s :
- name: c o m p i l e r p a c k a g e

apt : name=b u i l d − e s s e n t i a l s t a t e = p r e s e n t u p d a t e c a c h e =y e s
. . .

Ansible, automation tool, uses YAML syntax with Jinja2 template to describe instructions of software
installation and the code example in Listing 2 shows a code snippet of Ubuntu’s APT (advanced packaging
tool) installing build-essential Debian package during the OpenCV software installation.

There are several reasons to use a template for a deployment. First, installing software and building
infrastructure typically demand lots of commands to run and additional configurations to setup and a
template is suitable for these tasks with its data structures using key-value pairs, lists and dictionaries to
contain all instructions to reproduce a same environment and to replicate an identical software installation
on different locations at another time. In addition, with the advent of devops, a template deployment
enables cooperation between a template developer and a template operator because a complicated set of
resources and services is simplified by a single template file and delivered to an operator as an automated
means of provisioning a same environment. Moreover, YAML or JSON is a simple text format for storing
data which is easy to share and modify with anyone who interested in a template. There are still plenty
of benefits that we can find when a template deployment is used.

Big Data applications typically require efforts on deploying all of the software prerequisites and
preparing necessary compute resources. A template deployment reduced these efforts by offering an
automated management on both tasks; software deployment and infrastructure provisioning, therefore
we can focus on big data applications to develop.

The concept of serverless computing also applies to deploy applications with templates e.g. Listing 1.
For instance, Amazon serverless compute, AWS Lambda, invokes serverless application code (also called
function) based on the description of the template but uses a specific model e.g. Listing 3 for components
of serverless applications. In detail, there is a main function (Handler), runtime environment (Runtime),
and an actual code in a compressed format (CordUri).

Listing 3: AWS Serverless Application Model (SAM) Example

AWSTemplateFormatVersion: ’ 2010 -09 -09 ’

Transform : ’ AWS :: Serverless -2016 -10 -31 ’

Resources :
MyFunction:

Type: ’ AWS :: S e r v e r l e s s :: F u n c t i o n ’

Proper t i e s :
Handler : h e l l o p y t h o n . h a n d l e r
Runtime: p y t h o n 2 . 7
CodeUri: ’ s3 :// my - b u c k e t / f u n c t i o n . zip ’

2.3 Container technologies

Container technology has brought a lightweight virtualization with a Linux kernel support to enable
a portable and reproducible environment across laptops and HPC systems. Container runtime toolkit
such as Docker (Merkel, 2014), rkt (rkt, 2016) and LXD (lxd, 2016) has been offered since 2014 which
uses an image file to initiate a container including necessary software packages and libraries without an
hypervisor which creates an isolated environment using a virtual instance but with an isolated names-
pace on a same host operating system using the Linux kernel features such as namespaces, cgroups,
seccomp, chroot and apparmor. Recent research (Felter et al., 2015) shows that containers outperform
traditional virtual machine deployments yet running containers on HPC systems is still an undeveloped
area. Shifter (Jacobsen and Canon, 2015) and Singularity (Kurtzer, 2016) have introduced to support
containers on HPC with a portability and MPI support along with docker images. These efforts will
be beneficial to scientific applications to conduct CPU or GPU intensive computations with easy access
of container images. For example, a neuroimaging pipelines, BIDS Apps (Gorgolewski et al., 2016), is
applied to HPCs using Singularity with existing 20 BIDS application images and Apache Spark on HPC

5

Cray systems (Chaimov et al., 2016) is demonstrated by National Energy Research Scientific Computing
Center (NERSC) using shifter with a performance data of big data benchmark. Both researches indi-
cate that scientific and big data workloads are supported by container technologies on HPC systems for
reproducibility and portability.

Listing 4: Dockerfile Example

FROM ubuntu : 1 4 . 0 4

MAINTAINER Hyungro Lee <l ee212@indiana . edu>

RUN apt−get update && apt−get i n s t a l l −y bui ld−e s s e n t i a l
. . .

Dockerfile uses a custom template to describe installation steps of building docker images in a bash like
simple format. There are certain directives to indicate particular objective of the commands, for example,
FROM indicates a base image to use and RUN indicates actual commands to run.

2.4 Supporting scientific applications

With a rapid increase in the size of data sets and complexity of applications, research community considers
accessibility, reproducibility, resource and data sharing (Grillner et al., 2016) on HPC systems and cloud
computing to process large data sets with parallel and distributed frameworks on a set of compute nodes.
Container technologies are now emerged (Hale et al., 2016) to enable large scale analysis with a minimum
hassle on software deployments and infrastructure provisioning yet there are not many tools available
to fully engage scientific application on containers efficiently. A small number of container images for
scientific applications currently exist and most of the images are dedicated for a standalone mode which
is not suitable for processing large data sets with serious computational workloads. Cluster deployments
using containers are needed for big data applications which provide significant speedups with parallel job
executions in either embarrassingly parallel or message passing interface. A number of scientific pipelines
also require the support from the containers to enable reproducibility (Boettiger, 2015; Leipzig, 2016) in
different platforms because most scientific pipelines have dependency issues from multiple software even
in HPC systems with containers. Listing 5 shows a BLAST tool described by the Common Workflow
Language Specification (CWL; https://github.com/common-workflow-language) which is for running
a tool on a shared platform including cloud computing and Docker.

Listing 5: Common Workflow Language Specication (CWL) Example

cwlVers ion : v1 . 0
c l a s s : CommandLineToo l
requirements :
− $import : e n v v a r − g l o b a l . yml
− c l a s s : I n l i n e J a v a s c r i p t R e q u i r e m e n t
− c l a s s : S h e l l C o m m a n d R e q u i r e m e n t
− c l a s s : D o c k e r R e q u i r e m e n t
− $import : b l a s t −d o c k e r . yml

inputs :
db:

type : S t r i n g
inputBinding :

po s i t i o n : 1
doc : BLAST d a t a b a s e name

. . .
outputs :

output :
type : F i l e
outputBinding :

6

glob : $ (i n p u t s . o u t)

baseCommand: b l a s t n

7

3 Template Deployment and Orchestration

Template deployment is a means of installing software and building infrastructure by reading a file
written in a templating language such as YAML, JSON, Jinja2 or Python. The goal of a template
deployment is to offer easy installation, repeatable configuration, shareability of instructions for software
and infrastructure on various platforms and operating systems. A template engine or an invoke tool
is to read a template and run actions defined in a template towards target machines. Actions such
as installing software package and setting configurations are described in a template file using its own
syntax. For example, YAML uses spaces as indentation to describe a depth of a dataset along with a
dash as a list and a key-value pair with a colon as a dictionary and JSON uses a curly bracket to enclose
various data types such as number, string, boolean, list, dictionary and null. In a DevOps environment,
the separation between a template writing and an execution helps Continuous Integration (CI) because a
software developer writes deployment instructions in a template file while a system operations professional
executes the template as a cooperative effort. Ansible, SaltStack, Chef or Puppet is one of popular tools
to install software using its own templating language. Common features for those tools are installing and
configuring software based on definitions but with different strategies and frameworks. One observation
is that the choice of implementation languages for those tools influences the use of a template language.
The tools written by Python such as Ansible and SaltStack use YAML and Jinja which are friendly to
a Python language with its library support whereas the tools written by Ruby such as Chef and Puppet
use Embedded Ruby (ERB) templating language. In scientific community, a template has been used to
describe data and processes of pipelines and workflow because a template contains detailed information of
them in writing and assists sharing and connecting between different layers and tools. Parallel execution
on distributed environments is also supported in many tools yet enabling computations in a scalable
manner needs expertise to prepare and build the environments. We propose a template orchestration to
encourage scientists in using distributed compute resources from HPC and cloud computing systems in
which provisioning infrastructure is documented in a template and complicated pipelines and workflows
are packaged by container technologies for reproducibility.

3.1 Template deployment for Big Data Applications

Software installations and configurations for particular domains have become hard to maintain because
of an increased number of software packages and complexity of configurations between them to con-
nect. Template deployment for installing and provisioning systems across from a single machine to large
number of compute nodes is proposed to achive consistent and reliable software deployment and system
provisioning.

First, we plan to implement a deployment tool with default components for big data software such
as Apache Hadoop, Spark, Storm, Zookeeper, etc. therefore a software deployment can be achieved by
loading existing templates instead of starting from scratch. The software deployment intends to support
various linux distribution with different versions, therefore the software stacks are operational state in
many environments without a failure.

Listing 6: Template Deployment for Big Data

s t a ck s :
- so f tware A
- so f tware B
- . . .

Each item i.e. software indicates a single template file to look up deployment instructions. Depen-
dencies indicates that related items to complete a deployment and the environment variables are shared
while dependencies are deployed. If container image is available on the web, container image deployment
is expected using the URI location to save compile time.

Listing 7: Sample of software template

i n s t r u c t i o n :
- i n s t a l l package A
- download data B

8

l o c a t i o n :
<URI>

dependency :
- so f tware A
- l i b r a r y B

env i ronment var i ab l e s :
- HOME DIR=/opt/ so f tware a

Infrastructure deployment is provisioning of cloud computing which includes virtual machine images,
server types, network groups, etc. in preparation of virtual resources for the software stacks. Infrastruc-
ture deployment for multiple cloud platforms includes Microsoft Azure Resource Manager Templates,
Amazon CloudFormation Templates, and Google Compute Instance Templates. Each cloud provider
owns individual models for their services therefore a template of the deployment is solely executable in
each provider although similar infratructure is necessary for the software stacks.

Listing 8: Support for cloud providers

i n f r a s t r u c t u r e :
- de f au l t : aws
- a v a i l a b l e :

- aws
- gce
- azure
- openstack

aws:
s e r v i c e s :

image :
- image A
- image B
- image B ver s i on 2

se rve r :
- s e rve r type A

network :
- network i n t e r f a c e a
- network ip address a

We plan to integrate container based deployments with popular tools such as Docker therefore im-
age based software deployment is also supported to enhance reproducibility and mobility on different
environments.

Listing 9: Template Deployment with Containers

format :
- de f au l t : d o c k e r
- a v a i l a b l e :

- docker
- an s i b l e
- s h e l l
- rkt

Template has been used to document instructions for particular tasks such as software installation
and configuration or infrastructure provisioning on cloud computing, however, shareability of templates
is not improved which requires for better productivity and reusability. We plan to design a template hub
to collect, share, search and reuse well written templates with a common language e.g. yaml or json,
therefore building software stacks and provisioning infrastructure both are repeatable in any place at any
time.

In addition, provenance data and process state will be reserved.

9

3.2 Infrastructure Provisioning on Clouds

Infrastructure provisioning has supported with templates in many cloud platforms i.e. Amazon Cloudfor-
mation, Microsoft Azure Resource Manager, OpenStack Heat and Google Compute Instance Templates.
Infrastructure described in a template will be created for simple tasks running in a standalone machine
or multiple tasks in clusters.

3.2.1 Simple Azure - Python Library for Template Deployment on Windows Azure

Implementation of infrastructure provisioning is provided with Azure use case. Simple Azure is a Python
library for deploying Microsoft Azure Services using a Template. Your application is deployed on Mi-
crosoft Azure infrastructure by Azure Resource Manager (ARM) Templates which provides a way of
building environments for your software stacks on Microsoft Azure cloud platform. Simple Azure in-
cludes 407 community templates from Azure QuickStart Templates to deploy software and infrastructure
ranging from a simple linux VM deployment (i.e. 101-vm-simple-linux) to Azure Container Service clus-
ter with a DC/OS orchestrator (i.e. 101-acs-dcos). It supports to import, export, search, modify, review
and deploy these templates using the Simple Azure library and retrieve information about deployed
services in resource groups. Initial scripts or automation tools can be triggered after a completion of
deployements therefore your software stacks and applications are installed and configured to run your
jobs or start your services. Starting a single Linux VM with SSH key from Azure QuickStart Template
is described in listing 10:

Listing 10: Simple Azure

>>> from s impleazure import SimpleAzure
>>> saz = SimpleAzure ()

a q s t i s f o r Azure QuickStar t Templates
>>> vm sshkey template = saz . aqst . ge t t emplate (’ 101−vm−sshkey ’)

arm i s f o r Azure Resource Manager
>>> saz . arm . s e t t emp la t e (vm sshkey template)
>>> saz . arm . se t parameter (”sshKeyData” , ” ssh−r sa AAAB. . . h r l e e@qu i ck s ta r t ”)
>>> saz . arm . deploy ()

3.3 Semantics

Advances in big data ecosystem will require to connect scattered data sources, applications and software in
meaningful semantics. It is necessary to develop structured semantics as an effort of support in discovering
big data tools, datasets and applications all connected because semantics is more understandable to both
human and machine with a standard syntax for expressing contents in RDF (Resource Description
Framework) model or JSON-LD (Linked Data using JSON) (Labrinidis and Jagadish, 2012; Bizer et
al., 2012; Simmhan et al., 2013). It also provides a guideline to construct big data software stacks to
community in which preparing development environments is complicated with newly introduced software
and datasets. This is particularly useful given the increasing number of tools, libraries and packages for
further development of big data software stacks. One example in the listing 11 shows two applications,
C++ Parser for MNIST Dataset and a Python package to convert IDX file format provided by Yann
LeCun’s dataset, are available for MNIST database of handwritten digits on github. There are couple of
tasks to implement semantics for template deployment:

1. collect big data software, applications, and datasets

2. produce JSON-LD documents

3. derive Rest API to search, list and register

4. implement a library to explore documents about big data ecosystem

10

Listing 11: Sample of linked data between dataset and software

1 {
2 "@context": "http:// schema.org/",

3 "@type": "Dataset",

4 "distribution": "http://yann.lecun.com/exdb/mnist/",

5 "workExample": [

6 {
7 "@type": "SoftwareSourceCode",

8 "codeRepository": "https:// github.com/ht4n/CPPMNISTParser",

9 "description": "C++ Parser for MNIST Dataset",

10 "dateModified": "Sep 1, 2014",

11 "programmingLanguage": "C++"

12 },
13 {
14 "@type": "SoftwareSourceCode",

15 "codeRepository": "https:// github.com/ivanyu/idx2numpy",

16 "description": "A Python package which provides tools to convert

files to and from IDX format",

17 "dateModified": "Sep 16, 2016",

18 "programmingLanguage": "Python"

19 }
20]

21 }

11

4 Container Technology

With the increased attention of Docker container software and reproducibility, the use of virtualization
has been moved from the hypervisor to a linux container technology which shares kernel features but in
a separated name space on a host machine with a near native performance (Felter et al., 2015). The
recent researches (Benedicic et al., 2016) indicate that the HPC community takes account of container
technologies to engage scientists in solving domain problems with less complication of deploying workflows
or pipelines on multiple nodes as new implementations have been introduced (Kurtzer, 2016; Jacobsen and
Canon, 2015; Priedhorsky and Randles, 2016). Container technology with HPC, however, is focused on
supporting compute-intensive applications i.e. Message Passing Interface (MPI) although many scientific
problems are evaluated with big data software and applications. Investigation on container technology
with big data ecosystem is necessary to nurture the data-intensive software development on HPC with a
rich set of data analysis applications.

Modern container software run with container images to create isolated user space based on pre-
configured environments. Authoring container image definition is a first step to prepare custon envi-
ronments via containers and to share with others. Dockerfile is a text file to create a docker container
image with intstructions for package installation, command executions, and environment variable settings.
Definition File of Singularity also contains similar instructions to build container images. Application
Container Image (ACI) of CoreOS rkt is generated by a shell script and acbuild command line tool
but building container images is similar to docker. The main objective of using these container image
definitions (formats?) is to reveal user commands and settings explicitly therefore the development envi-
ronment can be shared easily and conversion between other platforms is doable. The initial goal of using
container technology in this dissertation is building a container-based big data ecosystem by offering a
template-based deployment for container images. It would also enable a concise and descriptive way
to launch complex and sophisticated scientific pipelines using existing container images or deployment
scripts. Performance tests are followed to demonstrate efficiency of the deployments with big data ap-
plications on modern container technologies. We desire to measure overhead introduced by container
software i.e. shifter, singularity on HPC environments with comparison of CPU, memory, filesystem, and
network usages.

Template based deployment is adopted in container technologies, for example, Singularity uses a
custom syntax, SpecFile to describe the creation of a container image with directives which are similar to
Dockerfile. Listing 12 shows an example of Caffe Deep Learning Framework Singularity image creation.

Listing 12: Singularity Example

DistType ” debian ”
MirrorURL ” http :// us . a r ch ive . ubuntu . com/ubuntu/”
OSVersion ” t ru s ty ”

Setup
Bootstrap

. . . (suppressed) . . .
RunCmd g i t c l one −b master −−depth 1 https : // github . com/BVLC/ c a f f e . g i t
RunCmd sh −c ”cd c a f f e && mkdir bu i ld && cd bu i ld && cmake −DCPU ONLY=1 . . ”
RunCmd sh −c ”cd c a f f e / bu i ld && make −j 1 ”

RunCmd ln −s / c a f f e /opt / c a f f e
RunScript python

4.1 Common Installed Packages

One of the benefits of using template deployment is that a list of installed software packages is included
in the instruction, therefore common packages are revealed for particular collections. Table 1 is an
example of debian packages described in Dockerfiles related to NIST collection and dpkg, debian package
command, has been used to collect package information.

12

Name Description Dependencies Size (Kb) Priority

build-
essential

Informational list of build-
essential packages

dpkg-dev, libc6-dev,
gcc, g++, make

20 (14464) optional

python-dev header files and a static li-
brary for Python (default)

python, python2.7-
dev, libpython-dev

45 (1024) optional

autoconf automatic configure script
builder

m4, debianutils, perl 1890 (17956) optional

software-
properties-
common

manage the repositories that
you install software from
(common)

python3-dbus,
python-apt-common,
python3-software-
properties, gir1.2-glib-
2.0, ca-certificates,
python3:any, python3-
gi, python3

184 (3125) optional

python interactive high-level object-
oriented language (default
version)

libpython-stdlib,
python2.7

680 (384) standard

automake Tool for generating GNU
Standards-compliant Make-
files

autoconf, autotools-
dev

1484 (2074) optional

zlib1g-dev compression library - devel-
opment

libc6-dev, zlib1g 416 (12516) optional

apt-utils package management related
utility programs

libgcc1, libapt-inst1.7,
libstdc++6, apt,
libdb5.3, libc6, libapt-
pkg4.16

688 (21070) important

g++ GNU C++ compiler cpp, gcc, g++-5, gcc-5 16 (51922) optional
binutils GNU assembler, linker and

binary utilities
zlib1g, libc6 12728 (10924) optional

gcc GNU C compiler cpp, gcc-5 44 (22199) optional
python-
numpy

Numerical Python adds a fast
array facility to the Python
language

python, python2.7:any,
libblas3, liblapack3,
libc6

8667 (17873) optional

nodejs evented I/O for V8 javascript libssl1.0.0, libc6, lib-
stdc++6, zlib1g, libv8-
3.14.5, libc-ares2

3043 (20625) extra

pkg-config manage compile and link flags
for libraries

libglib2.0-0, dpkg-dev,
libc6

140 (17322) optional

python-
imaging

Python Imaging Library com-
patibility layer

python-pil, python:any 45 (1248) optional

Table 1: Top 15 Debian-based Packages used in Dockerfiles for the NIST collection on Github, size with
parenthesis indicates total size including dependency packages

13

Figure 1: Accelerated Common Package Installation using Software Package Proxy

Type Hits Misses Total

Requests 104993 (95.26%) 5220 (4.74%) 110213
Data 12627.32 MiB (99.78%) 27.95 MiB(0.22%) 12655.27 MiB

Table 2: Cache Efficiency for Software Package Installation measured by apt-cacher-ng

4.2 Evaluation

As a part of dissertation, performance tests of container technologies with big data applications from
NIST Collection. There are six applications in the collection: Fingerprint Matching, Human and Face
Detection, Twitter Live Analysis, Data Warehousing, Healthcare Information, and Geospatial informa-
tion. Performance data on CPU, memory, storage and netowrk will be measured on HPC and cloud
computing with container software i.e. docker, rkt, singularity and shifter.

Preloading common packages shows possible optimization for the template deployment according to
the figure 1. With a considerable reduce on network traffic for downloading packages, 10x speedup is
approximately observed over multiple access to Debian software package mirror sites. Statistics for the
cache reuse (Table 2) indicates that the most benefit of the speedup is gained from the cached packages.
In addition, standard deviation for download speed is higher in using remote mirrors than cached proxy
server in which network consistency and reliability are ensured with low standard deviation for download
speed.

14

5 Bioinformatics

Bioinformatics pipeline frameworks have used templating languages to describe workflow processes with
input and output parameters, for example, Common Workflow Language Specification (CWL)(cwl, 2016)
uses YAML syntax and JSON format parameter files to define workflow logics with its required tools and
parameters from command line interface (CLI). There are several implementations supporting the CWL
such as Rabix(Kaushik et al., 2016), Arvados(arv, 2016), Galaxy, Taverna and Kronos(Taghiyar et al.,
2016) to use templating languages in their workflow engines with ease accomodation of tool dependencies.
In our case, we have a plan to use templating language to enable parallel processing on the cloud and
HPC per independent component of workflows with expectation of better performance on computation
and higher resource utilization on shared resource pool.

A few efforts have been made (Lee et al., 2012; Chae et al., 2013; Lee et al., 2016) to apply bioin-
formatics systems to cloud computing and HPC. Template deployment for bioinformatics frameworks
would be developed with these work to extend existing tools with new technologies.

15

6 Case Studies: NIST Big Data Projects

NIST Big Data Public Working Group (NBD-PWG) (Technology. et al., 2015; Fox and Chang, 2014)
reported 51 use cases across nine application domains including Government Operation, commercial,
Defense, Healthcare and Life Sciences, Deep Learning and Social Media, The Echosystem for Research,
Astronomy and Physics, Earth, Envionmental and Polar Science and Energy to understand Big Data
requirements and advance the development of big data framework. We ought to keep up the same effort
to support scientific community in regard to analyzing data with modern technologies and the part of
this dissertation is gathering more use cases and requirements by reviewing publicly available big data
applications.

6.1 Fingerprint Recognition

Fingerprint matching software (Flanagan, 2010; Flanagan, 2014) has been developed by National Institute
of Standards and Technology (NIST) with special databases to identify patterns of fingerprint. NIST
Biometric Image Software (NBIS) includes MINDTCT, a fingerprint minutiae detector and BOZORTH3,
a minutiae based fingerprint matching program to process biometric analysis. MINDTCT program
extracts the features of fingerprint such as ridge ending, bifurcation, and short ridge from the FBI’s
Wavelet Scalar Quantization (WSQ) images and BOZORTH3 runs fingerprint matching algorithm with
the images generated by MINDTCT as part of fingerprint identification processing (Wegstein, 1982). In
this use case, Apache Spark runs fingerprint matching on the Hadoop cluster with NIST Fingerprint
Special Database 4 (Watson and Wilson, 1992) and stores results in HBase with the support of NoSQL
database, Apache Drill. Addtional dataset from FVC2004 can be used as well with 1440 fingerprint
impressions (Maio et al., 2004). Individual software represents a stack or a role in the context in which
a set of tasks to complete a software deployment is included. Suggested software stacks (roles) for
Fingerprint matching are:

• Apache Hadoop

• Apache Spark

• Apache HBase

• Apache Drill

• Scala

6.2 Human and Face Detection with OpenCV

Human and face detection have been studied during the last several years and models for them have
improved along with Histograms of Oriented Gradients (HOG) for Human Detection (Dalal and Triggs,
2005a). OpenCV is a Computer Vision library including the SVM classifier and the HOG object detector
for pedestrian detection and INRIA Person Dataset (Dalal and Triggs, 2005b) is one of popular samples
for both training and testing purposes. In this use case, Apache Spark on Mesos clusters are deployed
to train and apply detection models from OpenCV using Python API. Individual software represents a
stack or a role in this context in which a set of tasks to complete a software deployment is included.
Suggested software stacks (Roles) for human and face detection with OpenCV are:

• Apache Mesos

• Apache Spark

• OpenCV

• Zookeeper

• INRIA Person Dataset

• Python Analytics with HOG and Haar Cascades

16

6.3 Twitter Live Analysis

Social messages generated by Twitter have been used with various applications such as opinion mining,
sentiment analysis (Pak and Paroubek, 2010), stock market prediction (Bollen, Mao, and Zeng, 2011),
and public opinion polling (Cody et al., 2016) with the support of natual language toolkits e.g. nltk (Bird,
2006), coreNLP (Manning et al., 2014) and deep learning systems (Kim, 2014). Services for streaming
data processing are important in this category. Apache Storm is widely used with the example of twitter
sentiment analysis, and Twitter Heron, Google Millwheel, LindkedIn Samza, and Facebook Puma, Swift,
and Stylus are available as well (Chen et al., 2016). Suggested software stacks (roles) for Twitter Live
Analysis are:

• Apache Hadoop

• Twitter Heron

• Apache Storm

• Apache Flume

• Natural Language Toolkit (NLTK)

6.4 Big Data Analytics for Healthcare Data and Health Informatics

Several attempts have been made to apply Big Data framework and analytics in health care with various
use cases. Medical image processing, signal analytics and genome wide analysis are addressed to provide
efficient diagnostic tools and reduce healthcare costs (Belle et al., 2015) with big data software such as
Hadoop, GPUs, and MongoDB. Open source big data ecosystem in healthcare is introduced (Raghupathi
and Raghupathi, 2014) with examples and challenges to satisfy big data characteristics; volume, velocity,
and variety (Zikopoulos, Eaton, and others, 2011). Cloud computing framework in healthcare for security
is also discussed with concerns about privacy (Stantchev, Colomo-Palacios, and Niedermayer, 2014).
Suggested software stacks (roles) for Big Data Analytics for Healthcare Data and Health Informatics are:

• Apache Hadoop

• Apache Spark

• Apache Mahout

• Apache Lucene/Solr

• MLlib

6.5 Spatial Big Data, Spatial Statistics and Geographic Information
Systems

The broad use of geographic information system (GIS) has been increased over commercial and scientific
communities with the support of computing resources and data storages. For example, Hadoop-GIS (Aji
et al., 2013), a high performance spatial data warehousing system with Apache Hive and Hadoop, offers
spatial query processing in parallel with MapReduce, and HadoopViz (Eldawy, Mokbel, and Jonathan,
2016), a MapReduce framework for visualizing big spatial data, supports various visualization types of
data from satellite data to countries borders. Suggested software stacks (roles) for Spatial Big Data,
Spatial Statistics and Geographic Information Systems are:

• Apache Hadoop

• Apache Spark

• GIS-tools

• Apache Mahout

• MLlib

17

6.6 Data Warehousing and Data Mining

Researches in data warehousing, data mining and OLAP have investigated current challenges and future
directions over big data software and applications (Cuzzocrea, Bellatreche, and Song, 2013) due to the
rapid increase of data size and complexity of data models. Apache Hive, a warehousing solution over
a hadoop (Thusoo et al., 2009), has introduced to deal with large volume of data processing with the
other research studies (Chen, 2010; He et al., 2011) and NoSQL platforms (Chevalier et al., 2015) have
discussed with data warehouse ETL pipeline (Goodhope et al., 2012). Suggested software stacks (roles)
for Data Warehousing and Data Mining are:

• Apache Hadoop

• Apache Spark

• MongoDB

• Hive

• Pig

• Apache Mahout

• Apache Lucene/Solr

• MLlib

6.6.1 Big Data Statistics from GitHub Repositories

Github.com has been used to provide version control and manage source code development along with
diverse collaborators across countries. The popularity of github as a collaboration tool has been sig-
nificantly increased and 4,995,050 repositories exist as of 12/27/2016 with 20-30 thousands daily added
repositories. Therefore we report a repository statistics to understand software development related to
big data applications and tools and to create a list of most common tools regarding to big data deploy-
ments. A development language distribution, most common libraries and packages, observations over
a certain period and detection on recently added projects and tools are main part of the queries using
github search API. We defined a set of keywords for projects to retrieve related github repositories, for
example, fingerprint matching, fingerprint recognition, fingerprint verification, and biometric fingerprint
are used to search github projects related to fingerprint recognition. Python and Java are most common
languages among the six NIST projects (Table 3), although matlab is dominant in the fingerprint project.
We also noticed that scientific python packages are commonly used to enable numerical computation,
data analysis and visualization for these big data applications (Figure 2), whereas there are dependent
packages for each project (Table 4). Tweepy, twitter API, is used in the twitter live analysis cases with
NLTK, the natural language processing toolkit to complete sentiment analysis with tweets. Similarly,
GIS projects use particular libraries for spatial analysis such as geopy and shapely. We observe that deep
learning python packages e.g. caffe have recently added to github repositories. Statistics (tables 5 to 10)
show that popular github repository examples related to the six nist projects started in 2016. Each
github project has different language preferences with various libraries and packages therefore recent
activities can be observed, for example, deep learning software such as Keras, Theano, mxnet and Caffe
is adopted among multiple projects.

6.7 Datasets

Finding relevant datasets for particular applications is another challenge for the big data ecosystem be-
cause of its difficulty of collecting data from different sources (Kim, Trimi, and Chung, 2014), complexity
and diversity (Hashem et al., 2015). Community contributed lists of public datasets (Cohen and Lo,
2014) provide structured information with a specific location to access data and a category to describe
itself. We intend to generate linked json data for datasets and applications in big data ecosystem based on
these lists because it connects scattered data and software in an organized way. Table 11 shows the data
source from different sectors, academia(.edu or .ac.), government(.gov), organization(.org), industry(.com
or .net), and international(country suffix), among the seven categories of the lists. Entire categories are
available online: https://github.com/lee212/bd_datasets. Listing 11 also shows a example of the
linked data between MNIST dataset and two software available on github.com.

18

Topic C++ Python Java Matlab JS C# C R Ruby Scala Count*

Fingerprint (6.1) 15% 11% 13% 20% 3% 16% 8% 0% 1% 5% 43
Face (6.2) 26% 21% 12% 9% 7% 5% 2% 2% 1% .02% 538
Twitter (6.3) 2% 35% 15% .6% 9% 2% 1% 10% 3% 1% 1429
Warehousing (6.6) 3% 27% 18% 2% 10% 3% 1% 10% 4% 1% 3435
Geographic (6.5) 5% 15% 27% 4% 15% 3% 5% 7% 3% 16% 6487
Healthcare (6.4) 2% 13% 19% 2% 14% 5% 1% 10% 6% 2% 132

Table 3: Language Distribution of Topics related to those in the NIST collection on Github
* Count: average number of github.com repositories.

Figure 2: Scientific Python Packages used in NIST Projects (collected from Github)

19

Python Package Description F
in

ge
rp

ri
n
t

F
ac

e

T
w

it
te

r

W
a
re

h
o
u

si
n

g

G
eo

gr
a
p

h
ic

H
ea

lt
h

ca
re

cv2 OpenCV 3 3

skimage Image Processing 3

PIL Python Imaging Library 3

caffe Deep Learning 3

nltk Natural Language Toolkit 3

tweepy Twitter for Python 3

BeautifulSoup Screen-scraping library 3 3

gensim Topic Modelling 3 3

geopy Geocoding library 3

shapely Geometric Analysis 3

django Web framework 3 3

Table 4: Additional Python packages found in NIST Collection

Title Description Language Start Date Popularity Dependency

OpenFace an open source facial behavior
analysis toolkit

c++ March, 2016 725 (305) OpenCV, dlib,
boost, TBB

Picasso face
detection
transforma-
tion

An Android image transforma-
tion library providing cropping
above Face Detection (Face Cen-
tering) for Picasso

Java July, 2016 528(56) Square Picasso

MTCNN
face de-
tection
alignment

Joint Face Detection and Align-
ment using Multi-task Cascaded
Convolutional Neural Networks

Matlab September, 2016 226(162) Caffe, Pdollar tool-
box

facematch Facebook Face Recognition
wrapper

JavaScript January, 2016 132 (41) fbgraph, request,
body-parser, ex-
press

mxnet
mtcnn face
detection

MTCNN face detection Python October, 2016 99 (47) OpenCV, mxnet

Table 5: Example Projects Recently Created Regarding to Face Detection

Title Description Language Start Date Popularity Dependency

CNN finger-
print

fingerprint verification using con-
volution neural networks

Python December, 2016 0 (1) Keras, Theano

fingerprint
recognizer

Web app for human finger-
print recognition with math on
Node.JS 7

JavaScript December, 2016 0 (1) jimp

neurodactyl C++ software tool for finger-
print recognition based on neural
networks

C++ November, 2016 0 (0) OpenCV, Bo-
zorth3, FANN

Table 6: Example Projects Recently Created Regarding to Fingerprint Matching

20

Title Description Language Start Date Popularity Dependency

tidytext Text mining using dplyr, gg-
plot2, and other tidy tools

R March, 2016, 310 (42) dplyr, ggplot2,
tidyr, broom

Bayesian
sentiment
analysis

Pragmatic & Practical Bayesian
Sentiment Classifier

Kotlin August, 2016 213 (19) Apache Lucene

Hotel review
analysis

Sentiment analysis and aspect
classification for hotel reviews
using machine learning models
with MonkeyLearn

Python April, 2016 154 (34) Scrapy, Elastic-
Search, Kibana,
nltk, pandas

Sentiments Sentiments is an iOS app writ-
ten in Swift that analyzes text
for positive or negative sentiment

Swift February, 2016 146 (8) Alamofire, SwiftyJ-
SON, HPE Haven
OnDemand

Sentiment
Analysis
Twitter

We use different feature sets and
machine learning classifiers to
determine the best combination
for sentiment analysis of twitter

Python October, 2016 139 (42) twitter, mdp

Table 7: Example Projects Recently Created Regarding to Twitter Analysis

Title Description Language Start Date Popularity Dependency

gpq A collection of tools for mining
government data

Jupyter
Notebook

June, 2016 128 (10) Google BigQuery

reair a collection of easy-to-use tools
for replicating tables and parti-
tions between Hive data ware-
houses

Java March, 2016 91 (42) Hadoop, Hive

SpawnTracker Probably the most efficient large
area long duration tracker for
pokemon go data mining

Protocol
Buffer,
Python

July, 2016 34 (9) s2sphere, GeoJ-
SON, protobuf,
pgoapi

idbr An R interface to the US Census
Bureau International Data Base
API

R January, 2016 23 (12) dplyr, ggplot2,
ggthemes

get-tiger Make workflow for downloading
Census geodata and joining it to
survey data

Makefile February, 2016 20 (0) GDAL

Table 8: Example Projects Recently Created Regarding to Data Warehousing

21

Title Description Language Start Date Popularity Dependency

Pokemon Go
Move

Pokemon GO GPS Emu-
lator with Built-In Poke-
mon/Pokestop/Gym Map

Python July, 2016 401 (74) geopy, s2sphere

d3-geo Geographic projections, spher-
ical shapes and spherical
trigonometry

Javascript March, 2016 112 (35) d3-array

Geospatial
messenger

Geospatial messenger applica-
tion written with Spring Boot +
Kotlin + PostgreSQL

Kotlin March, 2016 105 (22) Spring Boot, Post-
greSQL

DotSpatial Geographic information system
library written for .NET

C# April, 2016 94 (52)

geo.lua A helper library for Redis
geospatial indices

Lua February, 2016 74 (7)

Table 9: Example Projects Recently Created Regarding to Geographic Information Systems

Title Description Language Start Date Popularity Dependency

Temperate a healthcare application that
aims to make healthcare more
accessible to everyone, every-
where

JavaScript,
PHP

January, 2016 91 (7) MySQL

Computational
Healthcare

Analyze large healthcare
datasets & build machine
learning models using Tensor-
Flow

Python December, 2016 41 (15)

healthcareai R tools for healthcare machine
learning

R June, 2016 24 (10) SQL Server

datasus An Interface for the Brazilian
Public Healthcare Data Reposi-
tory (DATASUS) for the R Lan-
guage

R June, 2016 11 (6)

RETAIN Interpretable Predictive Model
in Healthcare using Reverse
Time Attention Mechanism

Python August, 2016 6 (2) Theano, CUDA

Table 10: Example Projects Recently Created Regarding to Healthcare Data

Category Academia Government Organization Industry International Total

GIS 1 3 5 9 5 23
Healthcare 0 6 3 1 1 11
Image Processing 11 0 4 2 5 18
Natural Language 7 0 8 7 6 26
Social Networks 8 0 7 5 5 24
Climate/Weather 2 6 3 2 4 16
Energy 2 2 5 1 5 15

Table 11: Public Dataset sectors of acamedia, government, organization, industry and international

22

Task Completion
Deployment
Proposal February, 2017
Serverless Computing
- IEEE Cloud February 2017
Big Data Deployment by DevOps and SDS
- IEEE Big Data Congress March 2017
Software Defined Systems April 2017
Case Study: NIST Project December 2016
Scientific Applications
Bioinformatics Integration May 2017
Case Study May 2017
Dissertation
Writing June 2017
Defense July 2017

Table 12: Timeline for completion of this thesis

7 Research Plan

Table 12 provides a summary of the remaining tasks and their expected completion date. Some comments
and risk assessments follow.

IEEE Cloud, IEEE Big Data Congress The target venues are addressed

8 Dissertation Chapters

1. Introduction

2. Background

3. Template-based Infrastructure Provisioning

4. DevOps Software Deployment

5. Event-driven Computing with CRIU

6. NIST Use Cases

7. Curated Package Recommender for Dynamic Computing Environment

8. Integration with Bioinformatics

9. Software Defined Systems with Serverless Paradigm

10. Conclusions

23

9 Summary

Software defined systems presents manageable, dynamic and flexible computing resources with the server-
less paradigm to ensure simplicity of data processing but guaranteed performance of computation through
infrastructure provisioning. The combination of DevOps tools and Templates removes a barrier of using
systems from complicated software stacks and the shareability and elasticity are inherited to the software
defined systems on both HPC and Clouds.

24

10 Related Work

10.1 Template deployment

Several infrastructure provisioning tools have emerged to offer transparent and simple management of
cloud computing resources over the last few years. Templates which are structured documents in a YAML
or JSON format define infrastructure with required resources to build and ensure identical systems to
create over time. A collection of Amazon cloud services are provisioned through Cloudformation (clo,
2010) templates which is an Amazon infrastructure deployment service. OpenStack Heat (osh, 2012)
was started with similar template models to Amazon but has extended with other OpenStack services
e.g. Telemetry, monitoring and autoscaling service to build multiple resources aa a single unit. The
Topology and Orchestration Specification for Cloud Applications (TOSCA) (Wettinger, Breitenbücher,
and Leymann, 2014; Binz et al., 2014) proposes standardization over different cloud platforms with XML-
based language and several studies have been made with TOSCA (Kopp et al., 2013; Breiter et al., 2014;
Qasha, Cala, and Watson, 2015). These tools have been addressed with issues in a few studies (Yamato
et al., 2014; Fox et al., 2015) and one of identified issues is that individual specification of supported
resources, functions, type names, and parameters prevents building and sharing infrastructure blueprints
across cloud platforms.

10.2 DevOps Tools

In the DevOps phase, configuration management tools automates software deployment to provide fast
delivery process between development and operations (Ebert et al., 2016). Instructions to manage sys-
tems and deploy software are written in scripts although different formats i.e. YAML, JSON, and
Ruby DSL and various terminologies i.e. recipes, manifests, and playbooks are used. There are notable
tools available to achieve automated software deployment. Puppet and Chef are identified configuration
management tools written in Ruby and these tools manage software on target machines regarding to
installation, execution in a different state e.g. running, stopping or restarting, and configuration through
the client/server mode (also called master/agent). Ansible is also recognized as a configuration man-
agement tool but more focusing on software deployment using SSH and no necessity of agents on target
machines. With the experience from class projects and NIST use cases, a few challenging tasks are
identified in DevOps tools, a) offering standard specification of scripts to ease script development with
different tools, and b) integrating container technologies towards microservices.

10.3 Container technology

While existing container software, e.g. docker, rkt, lxd, offers various features with outstanding perfor-
mance there are number of new tools recently developed with the support on HPC. Shifter from NERSC
on Cray XC30 with GPU (Benedicic et al., 2016) has introduced and singularity from LBNL (Kurtzer,
2016) as well. These new implementations are typically for heavy workloads which requires check-
point/restart for long running applications and easy deployment of required software stacks in a user
space.

25

References

2010. Amazon CloudFormation. https://aws.amazon.com/cloudformation/. [Online; accessed 17-
February-2017].

2012. OpenStack Heat. https://wiki.openstack.org/wiki/Heat. [Online; accessed 17-February-2017].

2016. Common Workflow Language Specification. https://github.com/common-workflow-language/

common-workflow-language. [Online; accessed 09-November-2016].

2016. Coreos/rkt: a container engine for linux designed to be composable, secure, and built on standard.
https://github.com/coreos/rkt. [Online; accessed 09-November-2016].

2016. Distributed computing platform for data analysis on massive data sets. https://arvados.org.
[Online; accessed 09-November-2016].

2016. Ubuntu lxd: a pure-container hypervisor. https://github.com/lxc/lxd. [Online; accessed 09-
November-2016].

Aji, Ablimit, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang, and Joel Saltz. 2013.
Hadoop gis: a high performance spatial data warehousing system over mapreduce. Proceedings of the
VLDB Endowment, 6(11):1009–1020.

Belle, Ashwin, Raghuram Thiagarajan, SM Soroushmehr, Fatemeh Navidi, Daniel A Beard, and Kayvan
Najarian. 2015. Big data analytics in healthcare. BioMed research international, 2015.

Benedicic, Lucas, Miguel Gila, Sadaf Alam, and Thomas C Schulthess. 2016. Opportunities for container
environments on cray xc30 with gpu devices.

Binz, Tobias, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. 2014. Tosca: portable automated
deployment and management of cloud applications. In Advanced Web Services. Springer, pages 527–
549.

Bird, Steven. 2006. Nltk: the natural language toolkit. In Proceedings of the COLING/ACL on Inter-
active presentation sessions, pages 69–72. Association for Computational Linguistics.

Bizer, Christian, Peter Boncz, Michael L Brodie, and Orri Erling. 2012. The meaningful use of big data:
four perspectives–four challenges. ACM SIGMOD Record, 40(4):56–60.

Boettiger, Carl. 2015. An introduction to docker for reproducible research. ACM SIGOPS Operating
Systems Review, 49(1):71–79.

Bollen, Johan, Huina Mao, and Xiaojun Zeng. 2011. Twitter mood predicts the stock market. Journal
of Computational Science, 2(1):1–8.

Breiter, Gerd, Michael Behrendt, M Gupta, Simon Daniel Moser, R Schulze, I Sippli, and Thomas
Spatzier. 2014. Software defined environments based on tosca in ibm cloud implementations. IBM
Journal of Research and Development, 58(2/3):9–1.

Chae, Heejoon, Inuk Jung, Hyungro Lee, Suresh Marru, Seong-Whan Lee, and Sun Kim. 2013. Bio and
health informatics meets cloud: Biovlab as an example. Health Information Science and Systems,
1(1):6.

Chaimov, Nicholas, Allen Malony, Shane Canon, Costin Iancu, Khaled Z Ibrahim, and Jay Srinivasan.
2016. Scaling spark on hpc systems. In Proceedings of the 25th ACM International Symposium on
High-Performance Parallel and Distributed Computing, pages 97–110. ACM.

Chen, Guoqiang Jerry, Janet L Wiener, Shridhar Iyer, Anshul Jaiswal, Ran Lei, Nikhil Simha, Wei Wang,
Kevin Wilfong, Tim Williamson, and Serhat Yilmaz. 2016. Realtime data processing at facebook. In
Proceedings of the 2016 International Conference on Management of Data, pages 1087–1098. ACM.

Chen, Songting. 2010. Cheetah: a high performance, custom data warehouse on top of mapreduce.
Proceedings of the VLDB Endowment, 3(1-2):1459–1468.

Chevalier, Max, Mohammed El Malki, Arlind Kopliku, Olivier Teste, and Ronan Tournier. 2015. Imple-
menting multidimensional data warehouses into nosql. In 17th International Conference on Enterprise
Information Systems (ICEIS15), Spain.

Cody, Emily M, Andrew J Reagan, Peter Sheridan Dodds, and Christopher M Danforth. 2016. Public
opinion polling with twitter. arXiv preprint arXiv:1608.02024.

26

Cohen, Joseph Paul and Henry Z Lo. 2014. Academic torrents: A community-maintained distributed
repository. In Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Dis-
covery Environment, page 2. ACM.

Cuzzocrea, Alfredo, Ladjel Bellatreche, and Il-Yeol Song. 2013. Data warehousing and olap over big
data: current challenges and future research directions. In Proceedings of the sixteenth international
workshop on Data warehousing and OLAP, pages 67–70. ACM.

Dalal, Navneet and Bill Triggs. 2005a. Histograms of oriented gradients for human detection. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),
volume 1, pages 886–893. IEEE.

Dalal, Navneet and Bill Triggs. 2005b. Inria person dataset.

Ebert, Christof, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. 2016. Devops. IEEE Software,
33(3):94–100.

Eldawy, Ahmed, M Mokbel, and Christopher Jonathan. 2016. Hadoopviz: A mapreduce framework for
extensible visualization of big spatial data. In IEEE Intl. Conf. on Data Engineering (ICDE).

Felter, Wes, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2015. An updated performance com-
parison of virtual machines and linux containers. In Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE International Symposium On, pages 171–172. IEEE.

Flanagan, Patricia. 2010. Nist biometric image software (nbis).

Flanagan, Patricia. 2014. Fingerprint minutiae viewer (fpmv).

Fox, Geoffrey. 2013. Distributed data and software defined systems.

Fox, Geoffrey and Wo Chang. 2014. Big data use cases and requirements. In 1st Big Data Interoperability
Framework Workshop: Building Robust Big Data Ecosystem ISO/IEC JTC 1 Study Group on Big
Data, pages 18–21. Citeseer.

Fox, Geoffrey, Judy Qiu, and Shantenu Jha. 2014. High performance high functionality big data software
stack.

Fox, Geoffrey, Judy Qiu, Shantenu Jha, Saliya Ekanayake, and Supun Kamburugamuve. 2015. Big data,
simulations and hpc convergence. In Workshop on Big Data Benchmarks, pages 3–17. Springer.

Fox, Geoffrey, Judy Qiu, Shantenu Jha, Saliya Ekanayake, and Supun Kamburugamuve. 2016. White
paper: Big data, simulations and hpc convergence. In BDEC Frankfurt workshop. June, volume 16.

Fox, Geoffrey C, Judy Qiu, Supun Kamburugamuve, Shantenu Jha, and Andre Luckow. 2015. Hpc-abds
high performance computing enhanced apache big data stack. In Cluster, Cloud and Grid Computing
(CCGrid), 2015 15th IEEE/ACM International Symposium on, pages 1057–1066. IEEE.

Goodhope, Ken, Joel Koshy, Jay Kreps, Neha Narkhede, Richard Park, Jun Rao, and Victor Yang Ye.
2012. Building linkedin’s real-time activity data pipeline. IEEE Data Eng. Bull., 35(2):33–45.

Gorgolewski, Krzysztof J, Fidel Alfaro-Almagro, Tibor Auer, Pierre Bellec, Mihai Capota, M Mallar
Chakravarty, Nathan W Churchill, R Cameron Craddock, Gabriel A Devenyi, Anders Eklund, et al.
2016. Bids apps: Improving ease of use, accessibility and reproducibility of neuroimaging data analysis
methods. bioRxiv, page 079145.

Grillner, Sten, Nancy Ip, Christof Koch, Walter Koroshetz, Hideyuki Okano, Miri Polachek, Mu-ming
Poo, and Terrence J Sejnowski. 2016. Worldwide initiatives to advance brain research. Nature
neuroscience, 19(9):1118–1122.

Hale, Jack S, Lizao Li, Chris N Richardson, and Garth N Wells. 2016. Containers for portable, productive
and performant scientific computing. arXiv preprint arXiv:1608.07573.

Hashem, Ibrahim Abaker Targio, Ibrar Yaqoob, Nor Badrul Anuar, Salimah Mokhtar, Abdullah Gani,
and Samee Ullah Khan. 2015. The rise of big data on cloud computing: Review and open research
issues. Information Systems, 47:98–115.

He, Yongqiang, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong Zhang, and Zhiwei Xu. 2011.
Rcfile: A fast and space-efficient data placement structure in mapreduce-based warehouse systems.
In 2011 IEEE 27th International Conference on Data Engineering, pages 1199–1208. IEEE.

27

Jacobsen, Douglas M and Richard Shane Canon. 2015. Contain this, unleashing docker for hpc. Pro-
ceedings of the Cray User Group.

Kaushik, Gaurav, Sinisa Ivkovic, Janko Simonovic, Nebojsa Tijanic, Brandi Davis-Dusenbery, and Deniz
Kural. 2016. Graph theory approaches for optimizing biomedical data analysis using reproducible
workflows. bioRxiv, page 074708.

Kim, Gang-Hoon, Silvana Trimi, and Ji-Hyong Chung. 2014. Big-data applications in the government
sector. Communications of the ACM, 57(3):78–85.

Kim, Yoon. 2014. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882.

Kopp, Oliver, Tobias Binz, Uwe Breitenbücher, and Frank Leymann. 2013. Winery–a modeling tool for
tosca-based cloud applications. In International Conference on Service-Oriented Computing, pages
700–704. Springer.

Kurtzer, Gregory M. 2016. Singularity 2.1.2 - Linux application and environment containers for science,
August.

Labrinidis, Alexandros and Hosagrahar V Jagadish. 2012. Challenges and opportunities with big data.
Proceedings of the VLDB Endowment, 5(12):2032–2033.

Lee, Hyungro, Minsu Lee, Wazim Mohammed Ismail, Mina Rho, Geoffrey Fox, Sangyoon Oh, and
Haixu Tang. 2016. Mgescan: a galaxy based system for identifying retrotransposons in genomes.
Bioinformatics, page btw157.

Lee, Hyungro, Youngik Yang, Heejoon Chae, Seungyoon Nam, Donghoon Choi, Patanachai Tangchaisin,
Chathura Herath, Suresh Marru, Kenneth P Nephew, and Sun Kim. 2012. Biovlab-mmia: a cloud
environment for microrna and mrna integrated analysis (mmia) on amazon ec2. IEEE transactions
on nanobioscience, 11(3):266–272.

Leipzig, Jeremy. 2016. A review of bioinformatic pipeline frameworks. Briefings in bioinformatics, page
bbw020.

Maio, Dario, Davide Maltoni, Raffaele Cappelli, Jim L Wayman, and Anil K Jain. 2004. Fvc2004: third
fingerprint verification competition. In Biometric Authentication. Springer, pages 1–7.

Manning, Christopher D, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Bethard, and David
McClosky. 2014. The stanford corenlp natural language processing toolkit. In ACL (System Demon-
strations), pages 55–60.

Merkel, Dirk. 2014. Docker: lightweight linux containers for consistent development and deployment.
Linux Journal, 2014(239):2.

Pak, Alexander and Patrick Paroubek. 2010. Twitter as a corpus for sentiment analysis and opinion
mining. In LREc, volume 10, pages 1320–1326.

Priedhorsky, Reid and Tim Randles. 2016. Charliecloud: Unprivileged containers for user-defined soft-
ware stacks in hpc. Technical report, Los Alamos National Laboratory (LANL).

Qasha, Rawaa, Jacek Cala, and Paul Watson. 2015. Towards automated workflow deployment in the
cloud using tosca. In Cloud Computing (CLOUD), 2015 IEEE 8th International Conference on, pages
1037–1040. IEEE.

Qiu, Judy, Shantenu Jha, Andre Luckow, and Geoffrey C Fox. 2014. Towards hpc-abds: an initial
high-performance big data stack. Building Robust Big Data Ecosystem ISO/IEC JTC 1 Study Group
on Big Data, pages 18–21.

Raghupathi, Wullianallur and Viju Raghupathi. 2014. Big data analytics in healthcare: promise and
potential. Health Information Science and Systems, 2(1):1.

Simmhan, Yogesh, Saima Aman, Alok Kumbhare, Rongyang Liu, Sam Stevens, Qunzhi Zhou, and Viktor
Prasanna. 2013. Cloud-based software platform for big data analytics in smart grids. Computing in
Science & Engineering, 15(4):38–47.

Stantchev, Vladimir, Ricardo Colomo-Palacios, and Michael Niedermayer. 2014. Cloud computing based
systems for healthcare. The Scientific World Journal, 2014.

28

Taghiyar, M Jafar, Jamie Rosner, Diljot Grewal, Bruno Grande, Radhouane Aniba, Jasleen Grewal,
Paul C Boutros, Ryan D Morin, Ali Bashashati, and Sohrab P Shah. 2016. Kronos: a workflow
assembler for genome analytics and informatics. bioRxiv, page 040352.

Technology., National Institute of Standards, , Information Technology Laboratory., NIST Big Data
Public Working Group (NBD-PWG), National Institute of Standards (U.S.), and Technology. 2015.
Nist big data interoperability framework : volume 3, use cases and general requirements.

Thusoo, Ashish, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao
Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: a warehousing solution over a map-reduce
framework. Proceedings of the VLDB Endowment, 2(2):1626–1629.

Watson, CI and CL Wilson. 1992. Nist special database 4. Fingerprint Database, National Institute of
Standards and Technology, 17.

Wegstein, Joseph H. 1982. An automated fingerprint identification system. US Department of Commerce,
National Bureau of Standards.

Wettinger, Johannes, Uwe Breitenbücher, and Frank Leymann. 2014. Standards-based devops automa-
tion and integration using tosca. In Proceedings of the 2014 IEEE/ACM 7th International Conference
on Utility and Cloud Computing, pages 59–68. IEEE Computer Society.

Wettinger, Johannes, Uwe Breitenbücher, and Frank Leymann. 2015. Dyn tail-dynamically tailored
deployment engines for cloud applications. In 2015 IEEE 8th International Conference on Cloud
Computing, pages 421–428. IEEE.

Yamato, Yoji, Masahito Muroi, Kentaro Tanaka, and Mitsutomo Uchimura. 2014. Development of
template management technology for easy deployment of virtual resources on openstack. Journal of
Cloud Computing, 3(1):1.

Zikopoulos, Paul, Chris Eaton, et al. 2011. Understanding big data: Analytics for enterprise class hadoop
and streaming data. McGraw-Hill Osborne Media.

29

