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Many areas of computer science, such as machine learning and computer vision, are being revolutionized by the incredible volume of data available on the Internet. Unfortunately, scaling up algorithms in these fields is difficult because they require iterative computation at unprecedented scale. Many such kinds of applications are implemented in the MapReduce [1] model for big data processing [2]. However, these MapReduce implementations suffer from repeated input data loading from the distributed file system and slow disk–based intermediate data communication (shuffling) through iterations. But later computers have gained more and more memory capacity therefore many new iterative MapReduce tools [3, 4] are designed to utilize memory for data caching and communication instead of using disk-based operations to improve the performance of iterative algorithms.
However, even using in-memory communication, the performance of iterative applications still suffered the overhead from repeated large intermediate data transferring. In my initial research, I proposed a collective communication model as a generalization of the earlier Twister system that is interoperable between HPC and cloud environments. I studied the problem of large-scale clustering, applying it to cluster features from large collections of 7 million social images, with each feature represented as a point in a high dimensional vector space, into 1 million clusters. The clustering application was split to 5 stages in each iteration: Broadcast, Map, Shuffle, Reduce and Combine. I presented new approaches optimized for large data transfers in Broadcast and Shuffle through integrating capabilities developed by the MPI [5] and MapReduce communities. I demonstrated that a topology-aware and pipeline-based broadcasting method gives similar performance as MPI systems and even has better performance than other (Iterative) MapReduce systems [6, 7, 8]. 
Now big data tools have become a big family with different computation models: not only MapReduce and iterative MapReduce frameworks process data as key-value pairs but also Pregel [9], Giraph [10] and GraphLab [11, 12, 13] abstract data as a graph and process it in iterations. At the same time, to support different tools, big data systems are split to layers in the architecture. A typical layered architecture is seen in Apache Big data Stack [14] in which a system is split into a resource management layer, a file system layer and a big data processing runtime engine layer and so on.
My previous research has proven collective communication is important for efficient big data processing. But in the runtime engine layer, all tools are designed with fixed data abstraction and have limitations in communication support. Therefore I introduce a separate collective communication layer which provides optimized communication operations on several important data abstractions such as arrays, key-values and graphs, and define an improved general Map-Collective model which serves the diverse communication demands in different parallel applications. These enhancements are designed as plug-ins to Hadoop [15] so they can be used with the rich Apache Big Data Stack. Then for example, Hadoop can do in-memory communication between Map tasks without writing intermediate data to HDFS. With improved expressiveness and excellent performance on collective communication, we can simultaneously support various applications from HPC to Cloud systems together with a high performance Apache Big Data Stack. The product of this research work is Harp project [16]. The related paper is still under review in IC2E conference [17]. All these novelties make Harp different from other research work which try to integrate MPI collective communication operations into Hadoop platform [18, 19, 20].
Harp can be improved in several aspects in my future research work. Currently Harp is designed as a plug-in in Hadoop. But the final goal is to let Harp be a separate communication layer which can be easily integrated to different big data tools. So the design and implementation may still need improving. Besides that, there are three potential research directions: 
1) Provide proper abstractions and models for different computation and communication patterns
Harp has provided hierarchical data abstraction. With this abstraction, any communication operation is described as data moving on a set of tables and partitions. Currently the operations implemented are abstracted from the data transferring operations in MPI, MapReduce and Pregel. It is still uncertain if this kind of abstraction can cover all types of data transfers in big data applications. Besides, the current execution model in Map-Collective model follows the classic BSP [21] model where there is no overlap between computation and communication. But both MapReduce and Pregel allow part of output data sent out first before all the output data being generated. Such kind of asynchronous execution pattern bring efficiency to the computation. So merging it to Map-Collective model is interesting in research. Furthermore, different from batch processing, real-time big data processing is event-driven. Therefore another potential research is to combine event-driven model with Map-Collective model. Events can be distributed through collective communication operations and they can also be used to trigger new collective communication operations.
2) Introduce a fault-tolerant model for Map-Collective model
Current Harp only provides job/iteration level fault tolerance. An iterative application is split to several jobs and each job contains several iterations. Once a job fails, the client restarts the job then only the iterations in that job are required to be re-executed. This kind of failure recovery mechanism has huge overhead. A task-level failure recovery mechanism could have much lower overhead but it is more complicated because re-launched tasks have to synchronize with current running tasks. Additionally, proper interfaces have to be provided to guide users to write fault tolerant Map-Collective applications. 
3) Support a set of real big data applications
[bookmark: _GoBack]Harp has provided implementations of 3 applications: k-means clustering [22, 23], graph layout algorithm [24], and WDAMDS [25, 26, 27, 28].  All these applications have very good performance results. However, these are only a few examples. An end to end solution to a set of real applications has not been presented yet. This could be one possible research direction to apply Harp to big data applications in domains such as computer vision.
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