
Real-Time Scheduling in Cyber-Physical Systems

Jai-Hoon Kim

Graduate School of Information and Communications
Ajou University, S. Korea

Pervasive Technology Institute, Indiana University, USA

jaikim@ajou.ac.kr

Geoffrey Fox

Pervasive Technology Institute

Indiana University, USA

gcf@indiana.edu

Abstract

Many researches have been performed for real-time scheduling. However, in CPS (cyber-physical

system) where computers and physical systems are tightly coupled, we need to consider physical

space (location, movement, etc.) as well cyber space (CPU, network, storage systems, etc). In this

paper, we propose a new scheduling algorithm for CPS, where servicing node needs to move to

serviced node for real-time services. Performance measurement by mathematics analysis shows

that our LSTP (Least Slack Time First for CPS) algorithm reduces a deadline miss ration up to 49%

and 37% comparing to FIFO (First In First Out) and LST(Least Slack Time First), respectively.

1. Introduction

Timing issues are critical in real-time systems such as robot control, flight control, on-line

multimedia systems, and real-time stock trading system, etc. Many real-time scheduling

algorithms such as RM(rate monotonic)[6,7], EDF(earliest deadline first)[5,7], and LST(least slack

time first)[5,7] deal with resource (CPU and network bandwidth) scheduling to maximize real-time

performance (e.g., deadline meet ratio)[5]. As CPS(cyber-physical system)[1,2] such as avionics,

transportation, manufacturing processes, energy, healthcare, in which computers and physical

systems are tightly coupled and timing is critical, is fast growing, real-time scheduling for CPS

become new research issues in the real-time systems[3,4].

Many real-time scheduling algorithms have been proposed and widely used[5,6,7]. However, in

CPS (cyber-physical system), we need to consider physical space (location, movement, etc.) as well

cyber space (CPU, network, storage systems, etc). Important real-time scheduling issues in CPS

systems are as follows:

 Spatial issues: effective release time and deadline of real-time tasks may be different

depending on location and physical movement delay of nodes participating in CPS. Real-

time scheduling algorithms have to be modified to include spatial factors.

 Conventional cyber real-time system schedules CPU or network bandwidth. However, in

real-time scheduling for CPS, location is matter. Location of nodes in CPS might affects

on effective release time and deadline.

Table. 1: Real-time Scheduling for CPS

 Conventional Real-Time Scheduling Real-Time Scheduling for CPS

Resource CPU, BW, Memory, I/O CPU, BW, Memory, I/O

Model CPU scheduling in cyber

environment

 Each task has a period(periodic

task), an execution time, a release

time, and deadline

 Scheduling algorithm (RM, EDF, LST,

etc.)

 CPU scheduling in physical environment

 Each task has a physical movement delay

time as well as a period(periodic task), an

execution time, a release time, and deadline

 Scheduling algorithm (RM, EDF, LST, etc.

including physical movement delay)

Spatial

issues

Do not consider spatial issues

(sometime consider communication

delay)

Consider spatial and movement issues

 physical movement delay (computing node

to task, or task to computing node)

 effective release time and deadline

considering physical movement

 other physical factors affect on real-time

performance

In this paper, we propose new scheduling algorithm for CPS, where computing node needs to

move to target node for real-time services. If we assume, for an example, there are many

scattered customers randomly requesting real-time services but only one staff exists in the area,

real-time scheduling is necessary to maximize performance (e.g., deadline meet ratio). In this case,

conventional real-time scheduling algorithm is not proper because the real-time scheduling does

not consider spatial issues. In many kinds of CPS, where acting nodes must move to location to

perform real-time services, time required for moving has to be included in the real-time

scheduling. On the other hand, we can also consider a scenario, where customers move to acting

node. But, in this paper, we consider the case in which acting node moves to customers. Many

cases of CPS, effective release and deadline are changed. For an example, when a shuttle bus

moves to airport through many stops, passengers on different stops have different deadlines to

catch the shuttle.

2. Real-Time Scheduling Model in CPS

In this section, we propose a real-time scheduling for CPS and analyze real-time performance

(deadline meet ration) for conventional real-time scheduling and proposed real-time scheduling

for CPS. We assume parameters for real-time systems as follows:

 li : slack (laxity) time of task i (exponential distribution of average 1/λ)

 ei : execution time of task i (evenly distributed[0,E])

 mi : moving time of computing(servicing) node to task i (evenly distributed[0,M])

Deadline meet ratio (DM) of task A without confliction against other tasks is the probability of

slack time lA being greater than moving time mA (computing node moving to task A within slack

time lA). As distribution of lA is
tλλε − , deadline meet ratio of a task A (DMA (λ, m)) is computed

as follow:

DMA (λ, m) = m

m

tdt λλ ελε −
∞

− =∫

As m is assumed to evenly distributed[0,M]), an average deadline meet ratio is:

mean(DMA (λ, m)) =)1(11

0

M
M

m

M
dm

M
λλ ε

λ
ε −− −=∫

For a simple demonstration, we compute a deadline meet ratio when two tasks conflict each other.

(As a future work, we will perform simulation in more realistic scenarios.) We compute deadline

meet ratios for three different scheduling algorithms: FIFO(first in first serve), LST(least slack time

first), LSTP (least slack time first with physical movement delay) scheduling algorithms.

2.1 FIFO

We assume task that task A arrived just before the other task B. A deadline meet ratio of task A is

mean(DMA (λ, m)) as task A is performed without confliction. As task B can be scheduled after

task A, the deadline meet ratio of task B is the probability of the slack time of task B (lB) being

greater than mA + eA + mB. Thus, deadline meet ratio of task B following task A (mean(DMB (λ, mA,

eA, mB)) is computed as follow:

Mean(DMB (λ, mA, eA, mB)) = ∫ ∫ ∫ −
M E M

A
A

0 0 0
BA

)m + + m(dm d dmBA εε ελ =
)1()1(2 EM λλ εε −− −−

λ3M2E

Now, we obtain the deadline meet ratio of FIFO scheduling algorithm when task A and task B are

conflict.

DMfifo= {mean(DMA (λ, m)) + mean(DMB (λ, mA, eA, mB)) }/2= +− −)1(1{ M

M
λε

λ
)1()1(2 EM λλ εε −− −−

λ3M2E
}/2

2.2 LST

When task A and task B conflict, a task with least slack time is scheduled first. When we assume

that the slack time of task A is shorter than that of task B, the slack time of task A is exponential

distribution of average 2/1 λ . On the other hand, the slack of task B (shorter one) is exponential

distribution of average)2/(1 λ . A deadline meet ratio of task A is mean(DMA (2λ, m)) as task A is

performed without confliction. As task B of longer slack time can be scheduled after task A of

shorter slack time, the deadline meet ratio of task B is the probability of the slack time of task B

(lB) being greater than mA + eA + mB. Thus, an average deadline meet ratio of task B following

task A (mean(DMB (
2λ , mA, eA, mB)) is computed as follow:

mean(DMB (
2λ , mA, eA, mB)) = ∫ ∫ ∫ −

M E M

A
A

0 0 0
BA

)m + + m(dm d dmBA
2

εε ελ =
)1()1(

22 2 EM λλ εε −− −−
λ6M2E

Now, we obtain the deadline meet ratio of LST scheduling algorithm when two task A and task B

conflict.

DMlst= (mean(DMA (2λ, m)) + mean(DMB (
2λ , mA, eA, mB)))/2

 = +− −)1(
2

1{ 2 M

M
λε

λ
)1()1(

22 2 EM λλ εε −− −−
λ6M2E

}/2

2.3 LSTP

Preemptive LST is an optimal algorithm in real-time scheduling algorithm. However, in CPS, we

need to consider physical environments. As an example, we have to consider moving time of

computing (acting) node to the location of task serviced. When task A and task B conflict, a task

with least slack time including moving time is scheduled first. Let’s denote leff,i, be an effective

slack time of task i (slack time including moving time), then leff,i, is computed as following:

leff,i, = li, - mi,

Now, we compute the leff,i,. As distribution of li is
tλλε − , leff,i (when leff,i > 0) distribution is

computed as follow:

)1(1

0

)(M
tM

mt

M
dm

M
λ

λ
λ εελε −

−
+− −=∫

leff,i (when –M < leff,i <0) distribution is computed as follow:

)1(11)()(Mt
M

t

mt

M
dm

M
+−

−

+− −=∫ λλ ελε

An average deadline meet ration of task A (without conflict) is the probability of leff,i >0

mean(DMA (λ, m)) =)1(1)1(
0

MM
t

M
dt

M
λλ

λ

ε
λ

εε −
∞

−
−

−=−∫

Deadline meet ratio of task B following task A is:

DMB (λ , mA, eA, mB) =)()1()1(AA

AA

em
M

t

em

M
t

M
dt

M
+−

−
−

∞

+

−
− −

=−∫ λ
λ

λλ
λ

ε
λ
εεεε

As we assume Am and Ae are evenly distributed on [0,M] and [0,E], respectively, mean(DMB (λ ,

mA, eA, mB)) is computed as:

mean(DMB (λ , mA, eA, mB) =)1()1()1(1
23

2

0

)(

0

E
MM

em
ME

EM
dmde

MME
AA λ

λ
λ

λ

ε
λ
εε

λ
ε −

−
+−

−

−
−

=
−

∫∫

We can find that mean(DMA (λ, m)) and mean(DMB (λ , mA, eA, mB) are same as those obtained in

subsection 2.1. As parameters using in two analyses are the same but leff,i, = li, - mi, two deadline

meet ratios computed in 2.1 and 2.3 must be the same. (One uses li > mi while the other leff,i (= li,-
mi) > 0, which is basically same, to compute deadline meet ratio.) Let p be probability of meeting

deadline of firstly scheduled task.

p = mean(DMA (λ, m)) =)1(1)1(
0

MM
t

M
dt

M
λλ

λ

ε
λ

εε −
∞

−
−

−=−∫

Let q be probability of meeting deadline of the secondly scheduled task.

q = mean(DMB (λ , mA, eA, mB) =)1()1()1(1
23

2

0

)(

0

E
MM

em
ME

EM
dmde

MME
AA λ

λ
λ

λ

ε
λ
εε

λ
ε −

−
+−

−

−
−

=
−

∫∫

We use somewhat different approach from LST scheduling to compute deadline meet ratio for

LSTP scheduling. LSTP scheduling considers moving time as well as slack time to improve deadline

meet ratio. When task A and task B conflict, LSTP schedules tasks (A followed by B or B followed

by A), which maximize a deadline meet ratio. On a schedule of A followed by B, there are four

cases:

 Both A and B meet the deadline (probability of pq): In this case, LSTP does not change

schedule (choose schedule of A followed by B)

 A only meets the deadline(probability of p(1-q)): In this case, LSTP changes schedule (B

followed by A) if both A and B meet the deadline. Probability of meeting deadline for both A

and B by changing schedule is (p-q)/(1-q)*q/p. ((probability of B meeting the deadline at

scheduling of B followed by A on the condition of missing the deadline at scheduling of A

followed by B)*(probability of A meeting the deadline also even at scheduling of B followed

by A on the condition of meeting the deadline at scheduling of A followed by B))

 B only meets the deadline (probability of (1-p)q). In this case, A cannot meet deadline at any

scheduling.

 Neither A nor B meets deadline (probability of (1-p)(1-q)): In this case, LSTP changes schedule

(B followed by A) if B meets the deadline. Probability of meeting deadline for B by changing

schedule is (p-q)/(1-q) (probability of B meeting the deadline at scheduling of B followed by

A on the condition of missing the deadline at scheduling of A followed by B). In this case, A

cannot meet deadline at any scheduling.

The other schedule, B followed by A, has also four cases. LSTP choose the schedule which

maximize deadline meet ratio by considering moving time as well as slack time.

Deadline
meet/miss

on schedule AB
(A followed by B)

probability LSTP schedule
probability of LSTP

choosing this schedule

no. of
task

meeting
deadline

meet A, meet B pq AB pq 2

meet A, miss B p(1-q)

change schedule BA
if meet both A and B

p(1-q)*(p-q)/(1-q)*q/p 2

AB
If BA is not better

p(1-q)*{1-(p-q)/(1-q)*q/p} 1

miss A, meet B (1-p)q AB (BA) (1-p)q 1

miss A, miss B (1-p)(1-q)

schedule BA if meet B (1-p)(1-q)*(p-q)/(1-q) 1

AB
(if If BA is not better)

(1-p)(1-q)*{1-(p-q))/(1-q)} 0

From the above table, we can obtain the deadline meet ratio of LSTP scheduling algorithm when

task A and task B conflict. We can compute expected number of tasks meeting the deadline by

summation of products of columns “probability of LSTP choosing this schedule” and “no. of task

meeting deadline”. After that, deadline meet ratio is the half of expected number of tasks meeting

the deadline as there are two tasks.

DMlstp= 2pq + 2p(1-q)*(p-q)/(1-q)*q/p + p(1-q)*{1-(p-q)/(1-q)*q/p} + (1-p)q + (1-p)(1-q)*(p-q)/(1-q)

= (2𝑝 − 𝑝2 + 2𝑝𝑝 − 𝑝2)/2,

 where p = (mean(DMA (λ, m)) =)1(1 M

M
λε

λ
−−

 and q = (mean(DMB (λ , mA, eA, mB))) =
)1()1(2 EM λλ εε −− −−

λ3M2E
 .

2.4 Performance Comparisons for Real-Time CPS

We measure performance by varying parameters, λ and M. (we assume that M=E.) We compare

performance among FIFO, LST, and LSTP. Fig. 1 shows deadline meet ratios for FIFO, LST, and LSTP

scheduling algorithms. Fig. 2 shows relative views of Figure 1 (relative deadline miss ratios of LSTP

to FIFO and LSTP to LST) LSTP algorithm can reduce deadline meet ratios up to 49% and 37%

comparing to FIFO and LST algorithms, respectively.

Fig.1 (a) Deadline meet ratio (FIFO)

Fig.1 (b) Deadline meet ratio (LST)

0.2
0.4

0.6 0.8
1 1.2 1.4

0.5

0.7

0.9

0.1

0.4

M

d
ea

d
lin

e
m

ee
t

ra
ti
o
n

λ

0.9-1

0.7-0.9

0.5-0.7

0.2
0.4 0.6 0.8

1 1.2 1.4

0.5

0.7

0.9

0.1

0.4

M

d
ea

d
lin

e
m

ee
t

ra
ti
o

λ

0.9-1

0.7-0.9

0.5-0.7

Fig.1 (c) Deadline meet ratio (LSTP)

Figiure 2 (a) Relative deadline miss ratio (LSTP to FIFO)

0.2
0.4 0.6 0.8

1 1.2 1.4

0.5

0.7

0.9

0.1

0.4

M

d
ea

d
lin

e
m

ee
t

ra
ti
o

λ

0.9-1

0.7-0.9

0.5-0.7

0.1

0.3

0.5

0.5

0.6

0.7

0.8

0.2 0.4 0.6 0.8 1 1.2 1.4
λ

re
la

ti
ve

 d
ea

d
lin

e
m

is
s

ra
ti
o

M

0.7-0.8

0.6-0.7

0.5-0.6

Figiure 2 (b) Relative deadline miss ratio (LSTP to LST)

3. Conclusion and Future Works

As conventional real-time scheduling algorithm considers system resources in cyber space such

CPU, network bandwidth, and memory, it does not proper in physical space. We propose real-time

scheduling algorithm for CPS, where physical factors (e.g., location, movement delay, etc.) affect

on real-time performance. To demonstrate real-time scheduling algorithm for CPS, we assume a

simple CPS environment in which computing node moves around physically distributed tasks to

perform real-time services. Performance measurement by mathematics analysis shows that our

LSTP (Least Slack Time First for CPS) algorithm reduces a deadline miss ration up to 49% and 37%

comparing to FIFO (First In First Out) and LST(Least Slack Time First), respectively. We plan to

perform extensive simulations to verify performance of LSTP in more realistic environment.

References

[1] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic, “Cyber-Physical Systems: The

Next Computing Revolusion,” Design Automation Conference 2010, pp. 731-736, 2010.

[2] Edward A. Lee, “CPS Fouldations,” Design Automation Conference 2010, pp. 737-742, 2010.

[3] John Eidson, Edward A. Lee, Slobodan Matic, Sanjit A. Seshia, Jia Zou. "Distributed Real-Time

Software for Cyber-Physical Systems". IEEE Proceedings, December 2011; To appear.

0.1

0.3

0.5

0.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.8 1 1.2 1.4
λ

re
la

ti
ve

 d
ea

d
lin

e
m

is
s

ra
ti
o

M

0.9-1

0.8-0.9

0.7-0.8

0.6-0.7

0.5-0.6

[4] Edward A. Lee. "Computing Needs Time". Communications of the ACM, 52(5):70-79, May 2009.

[5] Jane W. S. Liu, Real-Time Systems, Prentice Hall, 2000.

[6] C. L. Liu and J. Layland (1973), "Scheduling algorithms for multiprogramming in a hard

real-time environment", Journal of the ACM 20 (1): 46–61, 1973.

[7] A. Burns, “Scheduling Hard Real-Time Systems: a review,”, Software Engineering

Journal, pp. 116-128, May 1991.

http://www.amazon.com/Jane-W.-S.-Liu/e/B001KD1SB6/ref=ntt_athr_dp_pel_1

