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Abstract—MapReduce has been adopted widely in both
academia and industry to run large-scale data parallel applica-
tions. In MapReduce, each worker node hosts a number of task
slots to which tasks can be assigned. So they limit the maximum
number of tasks that can execute concurrently on each node.
When all task slots of a node are not used, the resources
“reserved” for idle slots are wasted. To improve resource
utilization, we propose resource stealing to enable running
tasks to steal resources reserved for idle slots and give them
back proportionally whenever new tasks are assigned. Resource
stealing makes the otherwise wasted resources get fully utilized
without interfering with normal job scheduling. MapReduce
uses speculative execution to improve fault tolerance. Current
Hadoop implementation decides whether to run speculative
tasks based on the progress rates of running tasks, which
does not take into consideration the absolute progress of
each task. We propose Benefit Aware Speculative Execution
which evaluates the potential benefit of speculative tasks and
eliminates the unnecessary runs. We implement our proposed
algorithms in Hadoop and conduct experiments to show that
our algorithms can significantly shorten job execution time and
reduce the number of non-beneficial speculative tasks.

Keywords-MapReduce; scheduling; utilization; speculative
execution

I. INTRODUCTION

Data deluge has been observed in many science areas such
as particle physics, astronomy, and biology. A significant
amount of computation power is demanded to process the
ever-growing quantity of data collected by modern instru-
ments such as Large Hadron Collider and next-generation
gene sequencers. Message Passing Interface (MPI) [1] has
been used widely in High Performance Computing (HPC) as
a programming model. In data-intensive computing, frequent
data movement incurs significant load on network and stor-
age which may dominate the overall application execution.
Data affinity is implicitly integrated into task scheduling
in recently proposed data parallel systems among which
MapReduce is representative. MapReduce [2] has quickly
gained popularity in both academia and industry. It been
used in indexing [2], bioinformatics [3], machine learning
[4], etc. Hadoop is a widely-used implementation of MapRe-
duce and thus our research target. Besides Hadoop, other
data parallel systems including Dryad [5] and Sector/Sphere
[6] have been developed with different features.

In MapReduce, multiple tasks can run concurrently on
each node to exploit the parallel processing capability of
modern multi-core processors. To limit the task concurrency
on each worker node and thus avoid intense resource con-
tention, each worker node hosts a configurable number of
map and reduce slots to which map and reduce tasks are
scheduled for execution respectively. In Hadoop implemen-
tation, each worker node has 2 map slots and 2 reduce slots
by default. A slot gets occupied when a task is assigned
to it, and gets released when the task completes. The hard
partition of physical processing capability into virtual map
and reduce slots has drawbacks. Firstly, it is not trivial to
determine the optimal numbers of map and reduce slots.
Secondly, it results in resource underutilization when there
are not enough tasks to fill all slots, which is mitigated by
our proposed resource stealing.

In distributed systems, failure is the norm rather than the
exception. Speculative execution is adopted by MapReduce
to support fault tolerance. The master node keeps track of
the progresses of all scheduled tasks. When it finds a task
that runs unusually slow compared with other tasks of the
same job, a speculative task is launched to process the same
input data with the hope that it will complete earlier than
the original task. The speculative tasks, which complete
later than original tasks and thus do not speed up the
overall job execution, are termed non-beneficial speculative
tasks (NBST), the number of which should be minimized
to maximize efficiency. In Hadoop, the default mechanism
to trigger speculative execution only considers the progress
rates of running tasks, and incurs the execution of many
non-beneficial speculative tasks. We propose Benefit Aware
Speculative Execution to solve it.

The rest of this paper is organized as follows. Related
literatures are presented in section II. The design and
implementation details of our proposed resource stealing
algorithm and BASE are described in section III. Experi-
mental evaluations are presented in section IV. Finally the
conclusions and future work are summarized in section V.

II. RELATED WORK

The term speculative execution has been used in different
contexts. For example, at instruction level, branch predictors
[7] guess which branch a conditional jump will go to and



speculatively execute the corresponding instructions. For
distributed systems where communication overhead is sub-
stantial, task duplication [8] redundantly executes some tasks
on which other tasks critically depend. So task duplication
mitigates the penalty of data communication by running
the same task on multiple nodes. Speculative execution in
MapReduce employs a similar strategy but is mainly used
for fault tolerance. To improve MapReduce performance in
heterogeneous environments, Longest Approximate Time to
End (LATE) [9] is proposed which aims to robustly perform
speculative execution by prioritizing tasks to speculate,
selecting fast nodes to run on and limiting the number
of speculative tasks. Our BASE algorithm improves upon
LATE to further maximize performance.

Work stealing [10] enables idle processors to steal com-
putational tasks from other processors and is more com-
munication efficient than its work-sharing counterparts. Our
proposed resource stealing shares similar motivations. But
the execution model of MapReduce is logically independent
of underlying hardware while work stealing is closely cou-
pled with processors. Cycle stealing [11] enables busy nodes
to take control of idle nodes, supply them with work, and
receive results. The motivation is to harness the otherwise
wasted resources of idle nodes. Task splitting yields better
load balancing across nodes by dynamically adjusting task
granularities [12]. Our proposed resource stealing is applied
at a lower level to the resources located on individual nodes.
Iterative MapReduce [13] optimizes the performance of iter-
ative applications by aggressively caching and reusing data
across iterations. Mantri monitors task execution and acts
on outliers early using cause- and resource-aware techniques
including restarting outliers, network-aware task placement
and replicating outputs of valuable tasks [14].

In grid systems, batch scheduling has been used exten-
sively. When a job is scheduled, the requested number of
nodes are reserved for a specific period of time even though
the resource usage may vary across the phases of the job.
Backfilling [15] moves small jobs ahead to leapfrog big
jobs in front to alleviate fragmentation and improve resource
utilization. Backfilling does not delay the first job or any
job waiting in the queue depending on its aggressiveness.
Resources are shared among jobs in MapReduce while
grid systems adopt reservation-based resource allocation
mechanisms. In resource stealing, jobs are not re-ordered or
moved in the queue and stealing is done at task level without
impacting job scheduling at all, so it is a finer-grained and
lower-level optimization of resource usage.

III. OUR APPROACHES

A. Resource Stealing (RS)

How to tune Hadoop parameters automatically has been
studied in [16], [17]. In this paper, we assume the number
of task slots is set optimally so that optimal resource
utilization is achieved when all slots are occupied. Resource

utilization is proportional to the number of occupied slots
approximately. Usually, the utilization of real data centers is
low. For example, according to the real traces of production
clusters, CPU utilization was 5% - 10% in Yahoo’s M45
cluster [18] and below 50% mostly in a Google cluster [19].
The low utilization may be caused by several factors. There
may not be enough jobs, or most of the submitted jobs are
disk- or IO-bound so that CPU is not the bottleneck. In
addition, resource utilization varies across time periods. As a
result, there exist idle slots in large systems mostly. It implies
that the capability of resources can be further exploited to
minimize job run time. The portion of the resources that
sit idle on a slave node is termed residual resources which
can be utilized without incurring severe usage contention
or degrading overall performance. We can consider that
residual resources are reserved for prospective tasks that will
be assigned to currently idle slots. One advantage of resource
reservation is that whenever a new task is assigned resource
availability is guaranteed. However, an obvious drawback is
that residual resources are left unused until new tasks are
assigned.

We propose resource stealing to improve resource utiliza-
tion. The resource usage of running tasks (if any) on each
node is dynamically expanded or shrunk according to the
availability of task slots. When there are idle slots on a slave
node, running tasks temporarily steal resources reserved for
prospective tasks so that residual resources are fully utilized.
If a node is perfectly loaded by using resource stealing, to
assign a new task obviously will overload it and degrade the
performance of currently running tasks. Our solution is to
adjust the resource usage of running tasks by making them
relinquish stolen resources proportionally to new tasks. In
this way, resource stealing does not violate the assumption
made by Hadoop that resources are guaranteed for new
tasks, which is critical to efficient Hadoop scheduling.
To summarize, the overall philosophy is to steal residual
resources if corresponding map/reduce slots are idle, and
hand them back whenever new tasks are launched to fill the
idle slots. Resource stealing is applied on each slave node
locally. From the perspective of the central task scheduler
running on the master node, idle slots on slave nodes are
still idle and new tasks can be assigned to them, so resource
stealing is transparent to the task scheduler and can be used
in combination with any Hadoop scheduler directly such as
fair scheduler and capability scheduler. Resource stealing is
applied periodically with the up-to-date information of task
execution and system status. So it is adaptive in the sense
that it reacts to real-time changes of the system state.

B. Allocation Policies of Residual Resources

Given residual resources and the number of running tasks
on a slave node, the next issue is how to distribute residual
resources among running tasks, e.g. which tasks should get
how much. The policies can range from simple to complex



Table I
ALLOCATION POLICIES OF RESIDUAL RESOURCES

Policy Description
Even Evenly allocate residual resource to tasks.

First-Come-
Most

The task that starts earliest is given residual
resource.

Shortest-Time-
Left-Most

The task that will complete soonest is given
residual resource (on a per-node basis).

Longest-Time-
Left-Most

The task that will complete latest is given residual
resources (on a per-node basis).

Speculative-
Tasks-Most

Speculative tasks are given residual resource.

Laggard-Tasks-
Most

Straggler tasks are given residual resources.

in their use of system state information. Complex policies
have the potential to take full advantage of the processing
capability of each node. The disadvantages include high
overhead cost and the risk that a well tuned policy may
behave unpredictably when inaccurate state information is
collected. We come up with several policies summarized in
Table I.

Even: This policy equally divides residual resources
among running tasks. It is inherently stable because of not
relying on the collection or prediction of system state (and
thus not impacted by the information inaccuracy).

First-Come-Most (FCM): This policy orders running
tasks by start time. The task with the earliest start time
is given residual resources. The heuristic is to make tasks
complete in the order of job submission with best efforts.

Shortest-Time-Left-Most (STLM): Firstly, the remaining
execution time of tasks is estimated, where different mecha-
nisms can be plugged in. Here we adopt the same mechanism
used in [9] which assumes each task progresses at a constant
rate across time and predicts the time left based on progress
rate and current progress. The task with the shortest time left
is given residual resources. The heuristic is to make close-to-
completion tasks complete as soon as possible to make way
for long-running tasks. Note this policy is applied locally on
each slave node.

Longest-Time-Left-Most (LTLM): This policy is the
same as STLM except that the task with the longest time
left is given residual resources.

Speculative-Task-Most (STM): Speculative execution in
MapReduce aims to mitigate the impact of slow tasks by
duplicate their processing on multiple nodes. The basic idea
of STM policy is that speculative tasks are given more
resources than regular tasks with the hope that they will not
hurt the job run time. Because speculative tasks are given
more resources, they can run faster and will not be stragglers
any longer with high probability. If there are no speculative
tasks on a node, it falls back to the regular case and other
policies can be applied. If there are multiple speculative tasks
running on a node, residual resources are allocated to them
evenly.

Laggard-Task-Most(LTM): In this approach, we do not
distinguish between regular tasks and speculative tasks. In-
stead, for each job we use the estimated remaining execution
time of all its scheduled tasks (both regular and speculative
tasks) to calculate the fastness of running tasks using (1)
where T is a task, t is a time point, Nl(t, T ) is the number
of tasks that are expected to complete later than T , and Nr(t)
is the number of running tasks. Fastness reflects the expected
order of task completion for each job; and a task with small
fastness will complete after a task with large fastness.

fastness(t, T ) =
Nl(t, T )

Nr(t)
(1)

The fastness of a task cannot be computed locally by a
slave node because it requires the information of all other
tasks belonging to the same job. The master node maintains
the statuses of all tasks so it is the ideal component to
compute fastness. Each slave node reports the statuses (e.g.
progress, failure) of its running tasks to the master node
in heartbeat messages. After collecting the information of
all tasks, the master node calculates the fastness of each
running task and returns it to the corresponding slave node.
Upon receiving fastness information, slave nodes order tasks
by fastness. The tasks whose fastness is smaller than thresh-
old SlowTaskThreshold (a user configurable parameter) are
called laggards and given residual resources. If there are
multiple laggards on a node, residual resources are evenly
allocated to them.

As we discussed, the motivation of speculative execution
is to improve performance by running duplicate processing.
There are several drawbacks. Firstly, if speculative execution
is triggered, the completion of any task renders the work
done by other duplicate tasks to be wasted. Secondly, if the
slowness of tasks is caused by intermittent and temporary
resource contention, it is highly likely that they do not lag
much behind and still complete earlier than their speculative
tasks, which subverts the motivation of speculative execu-
tion. Thirdly, sometimes speculative execution deteriorates
performance rather than improve it [9]. LTM reduces the
invocations of speculative execution by proactively allocat-
ing more resources to laggards whenever possible and thus
accelerating their execution. Fourthly, the tasks of a job may
be heterogeneous intrinsically in that their run time varies
greatly depending upon both data size and the content of the
data. For example, easy and difficult Sudoku puzzles have
similar input sizes (9 x 9 grids) but require substantially
different amounts of computation to solve them. Speculative
execution is not helpful because the efficiency variation is
not mainly caused by extrinsic factors (e.g. faulty nodes)
and the run time will not be reduced significantly no matter
how many speculative tasks are run. In that case, the tasks
demanding the most computation progress slower than other
tasks and thus are the laggards with small fastness. LTM
speeds up their execution by assigning more resources.



Table II
PROBABILITY OF ACHIEVING DATA LOCALITY

RF* regular task speculative task
1 p (1− p) · p
2 1− (1− p)2 (1− p)2 · (1− (1− p)2)

Table III
ENERGY CONSUMPTION OF REGULAR AND SPECULATIVE TASKS

RF* regular task speculative task
1 p · EL + q · ENL (1− p) · p · EL + (1− q · p) · ENL

2 (1− q2) · EL + q2 · ENL (q2 · (1− q2)) · EL + (1− q2 · (1− q2)) · ENL

* RF: Replication factor

By balancing the workload within each job, LTM reduces
both job run time and the number of speculative tasks.
Assignments of new tasks decrease the amount of residual
resources while the completion of running tasks increases
the amount of residual resources. They both trigger the re-
allocation of residual resources.

C. The BASE Scheduler

Speculative execution is not a simple matter of running
redundant tasks for sufficiently slow tasks. To make it
effective, two issues need to be addressed: i) detect slow
tasks; ii) choose the tasks to speculate. Hadoop identifies the
tasks whose progress rates are one standard deviation lower
than the mean of all tasks as slow tasks. Then it chooses the
task with the longest remaining execution time to speculate.
It does not take into consideration whether speculative tasks
will complete before the original tasks. Assume a job has
two tasks A and B; task A is 90% done but progresses
slowly with rate 1; and task B progresses fast with rate 5.
Because task A progresses slow, the master node decides
to start a speculative task A′ which progresses with rate
5. By doing a little math, we can easily figure out that
task A will complete earlier than A′ although A progresses
slowly. The reason is that task A is close to completion
when A′ is launched. This inefficiency was observed in our
tests, where a large portion of speculative tasks were killed
before their completion because the original tasks completed
earlier. Those speculative tasks were not beneficial at all and
their execution resulted in the waste of resources.

One argument is that given idle resources in most clusters
speculative execution should be applied aggressively to
eliminate the impact of straggler tasks and thus accelerate
job execution. From the perspective of pure performance,
aggressive application of speculative execution can poten-
tially reduce overall job run time. However this argument
bears several pitfalls. For regular and speculative tasks,
the probabilities of achieving data locality are different.
Hadoop randomly places data blocks among nodes and
thus eliminates hot spots for most workload in multi-user
environments. For an individual job, let p denote the average
probability that a task can achieve data locality. According
to the trace shown in [20], we vary p between 0.5 and 0.9.
Table II shows how likely a normal task and its speculative
task achieve data locality for different replication factors,
which is visualized in Fig. 1 (a). Obviously speculative tasks
have lower probability to achieve data lower than normal
tasks by up to 90% and 25% for replication factor 1 and 2
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Figure 1. Scheduling with native Hadoop and resource stealing

respectively. The degradation of data locality results in the
increase of both network traffic and energy consumption.
The study [21][22] shows inter-node data movement requires
much more energy than local memory accessing by 10 to
20 times. Table III shows the expected energy consumption
where EL and ENL are the amounts of energy consumed by
the data accessing of data-local and non data-local tasks. We
set the ratio of ENL to EL to 20 and plot the results in Fig.
1 (b) from which we can see speculative tasks are much less
efficient. Adopting a large replication factor can potentially
mitigate the problem but incurs more storage space and data
management overhead. Thus, it is cost prohibitive to blindly
create an excessive number of speculative tasks without
evaluating their potential benefit. What we want to achieve
is to eliminate speculative execution as much as possible
without degrading performance.

To overcome the issue, we propose Benefit Aware Spec-
ulative Execution (BASE) in which speculative tasks are
launched only when they are expected to complete earlier
than the original tasks. The estimation of the remaining
execution time of a running task has been discussed above.
We propose a mechanism to estimate the execution time of
prospective speculative tasks. It depends upon two factors:
1) the progress rates of other tasks of the same job; 2)
the node where the speculative task will run. The key is
to estimate the progress rate which can be directly used to
calculate run time. Slow tasks can be identified using the
mechanism described in [9]. Given a slow task T of job
J and a slave node Ni, the following algorithm solves the
problem whether a speculative task T ′ should be launched
for T on Ni.

1) If some tasks belonging to J are running or have
run on node Ni, the mean of their progress rates is
calculated and used as the progress rate of T ′.

2) Otherwise, progress rates of all scheduled tasks of



job J are gathered and normalized against the ref-
erence baseline. The normalization of progress rates,
computed based on hardware processing power (e.g.
weighted sum of the capabilities of processors, disks
and network interface cards), is needed when nodes are
heterogeneous. Then the mean of normalized progress
rates is calculated. Because the mean is against the
reference baseline, we de-normalize it against the
specification of node Ni to compute the expected
progress rate of T ′ on Ni. We assume the scheduling
order of tasks is stochastic approximately and thus
the mean of scheduled tasks reflects the mathematical
expectation of real progress rate, which is reasonable
given Hadoop scheduling strategy.

3) No matter which of 1) and 2) is applied, the estimated
progress rate of T ′ has been calculated so far. The
execution time is 1/progress rate. If the absolute
difference of the estimated execution time of T and
T ′ is larger than a preset threshold, T ′is launched on
Ni. Otherwise, do not run T ′ on Ni.

To predict the run time of T ′ via the mean of progress
rates actually is equivalent to the harmonic mean of the run
time of scheduled tasks.

D. Implementation

Our implementation in Hadoop is optimized for compute-
intensive applications and thus processors and cores are the
critical resources. Multithreading technique is adopted to
explore the parallel processing capability of modern servers.
In Hadoop, each task is run in a separate process to isolate its
execution environment. Within each task process, one thread
is started to process data. Fig. 2 shows an example. There
are two slave nodes each of which has 5 cores. One core is
used to run Hadoop daemons. Fig. 2 (a) shows an instant
state of a MapReduce system. Each node has 4 slots among
which 2 slots are idle. For node A, Slots A1 and A2 are
busy; and slots A3 and A4 are idle. In Hadoop, each task
process only runs one thread even if there are lightly-utilized
cores. So the cores corresponding to slots A3 and A4 are left
idle. Resource stealing starts multiple threads within a task
process that concurrently process input data. In Fig. 2 (b),
one extra thread is created for both A1 and A2, and each of
the four threads can be scheduled to an individual core. For
each task, task manager periodically adjusts the number of
threads dynamically based on the latest system state.

Resource stealing and BASE are transparent to end users.
Regular MapReduce applications can be run directly without
any modification. Additional configuration parameters are
added to allow administrators to tune various aspects of
our improvements. For example, administrators can en-
able/disable resource stealing and/or BASE, and change the
allocation policy of residual resources.

Although our implementation is based on Hadoop, our
algorithms are not specific to Hadoop and can be applied to
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Figure 2. Scheduling with native Hadoop and resource stealing

other systems as well such as Twister and HaLoop that adopt
resource “partition”/reservation and speculative execution.

IV. EXPERIMENT

Instead of directly measuring resource utilization (e.g.
CPU usage), we measure user-perceivable job execution time
which indirectly reflects the improvement or deterioration
of resource utilization. Many MapReduce applications have
been developed for different purposes. Instead of experi-
menting with an arbitrary number of common applications
one by one, we adopt the trace-based workload used by other
MapReduce papers. Compute-intensive, IO-intensive and
network-intensive workload is used in our tests below. The
results are applicable to not only those tested applications
per se but also other applications of the same types.

We ran experiments on FutureGrid Hotel cluster which
is homogeneous in both hardware and software. A 33-node
Hadoop system was deployed among which 1 node was a
dedicated master node and the other 32 nodes were worker
nodes. Each node has 8 cores, 23 GB memory and 1 disk.
The network is Gigabit Ethernet. According to the best
practice that the number of slots should be between 1x and
2x the number of cores, each node was configured to host 7
map slots and 7 reduce slots. So there were 224 map slots
and 224 reduce slots total. HDFS block size was set to 258
MB because this improved performance.

A. Results for Compute-Intensive Workload

1) Text extraction: Firstly, we ran the text extraction job
included in Hive benchmark [23] which was adopted by
Zaharia et al’s delay scheduling [20] as well. The benchmark
itself is based on Pavlo et al’s benchmark that compares
MapReduce and parallel SQL database management systems
[24]. The text extraction job is IO-intensive and termed
ts. We modified it by applying a compute-intensive User
Defined Function (UDF) to each input record, which made
it run much longer. This strategy was also used by delay
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Figure 3. Results of running ts-map (‡NBST: Non-Beneficial Speculative Tasks)

scheduling [20]. This modified version of ts is termed ts-
map by us. It does not have a reduce phase so that we can
eliminate the impact of shuffling and merging and exactly
measure the effectiveness of resource stealing for map-only
jobs. A large portion of MapReduce jobs (over 71%) are
map-only jobs[18]. In our tests, only 0.01% of input records
contain the pattern. Each map task processed 256 MB text
data and was tuned to run approximately for 5 minutes to
simulate the interactive job types in Google’s MapReduce
[2], which was also adopted by Zaharia et al. to test their
scheduling algorithm LATE [9]. Multiple ts-map jobs were
run with the size of input data varied between 14 GB, 28
GB, 42 GB, and 50.5 GB. The numbers of map tasks were
56, 112, 168, and 202 respectively, which yielded system
utilization 25%, 50%, 75% and 90%.

ts-map without BASE: We ran ts-map without BASE and
show job run time in Fig. 3 (a). Run time is not significantly
influenced by workload for native Hadoop, which means
that processing 4.375GB, 8.75GB, 13.125GB, and 15.75GB
data takes similar amounts of time. The reason is resource
usage is proportional to the number of tasks and residual
resources are not utilized at all. Resource stealing shortens
run time by 64%, 32%, 13%, and 6% respectively for
policy Even. The lower the workload is, the more resource
stealing outperforms native Hadoop. So the performance
benefit of resource stealing is negatively related to system
workload, which matches our expectation well. We also
calculated the average processing time per GB data by
dividing job run time by data size. Increasing workload
can drastically improve the efficiency for native Hadoop,
while it approximately keeps invariant for resource stealing.
Different allocation policies exhibit different performance.
Overall, STLM and LTLM perform the worst and LTM
performs well for all tests. It implies that it is inefficient to
blindly allocate residual resources evenly or simply enforce
FIFO order. When the workload gets relative high (e.g.
90%), the performance difference becomes smaller.

In our setup, data blocks in HDFS were randomly placed
on nodes with the default block placement strategy. Data
locality aware scheduling in Hadoop co-locates compute and
data with best efforts. As a result, map tasks were evenly
distributed among all slave nodes approximately so that each
node ran a similar number of tasks. This is beneficial to
resource stealing because its gain is not substantial if the

resources of a node are fully loaded already.
ts-map with BASE: We ran the same tests as above

except BASE was enabled and present results in Fig. 3
(b). The plot has similar characteristics to Fig. 3 (a) in
that native Hadoop performs the worst and the performance
superiority of resource stealing decreases with increasing
sytem workload. By comparing 3 (b) and 3 (a), we observe
that BASE slightly shortens run time and the improvement
is increased as system workload is also increased.

For the cases where BASE is disabled and enabled, we
counted the number of non-beneficial speculative tasks and
computed the difference shown in Fig. 3 (c). BASE dras-
tically eliminates the launches of non-beneficial speculative
tasks. For workload 75% and 90%, almost all of them are
removed. LTM policy performs the best.

2) Pairwise Sequence Alignment(PSA) with Smith-
Waterman-Gotoh Algorithm (SWG): SWG is a well known
algorithm for performing local sequence alignment [25]. We
ran our PSA-SWG implementation, which aligns all pairs
of sequences, in Hadoop with 16S rRNA sequences from
the NCBI database. The number of processed sequences
was set to 4676, 6608, 8064, and 8888. Input sequences
were partitioned in a way that balances load and makes
each job run for between 20 and 25 minutes with native
Hadoop scheduling. Job run time is shown in Fig. 4 (a), from
which similar observations as above can be made. Resource
stealing speeds up job execution by 2.45, 1.53, 1.15, and
1.03 times respectively. The impact of BASE on job run time
is negligible. Fig. 4 (b) shows the percent of non-beneficial
speculative tasks eliminated by BASE compared to native
Hadoop without BASE. Applying BASE alone achieves
10%–20% improvement while applying BASE and resource
stealing simultaneously eliminates all non-beneficial specu-
lative tasks. With dynamic concurrency adjustment, resource
stealing can smooth out the intermittent fluctuation of task
execution and thus make BASE able to predict run time
more accurately.

We conclude that BASE reduces the number of non-
beneficial speculative tasks significantly without sacrificing
run time. Because a fewer number of speculative tasks are
launched, the saved resources can be allocated to regular
tasks for better efficiency. It also implies that the estimation
of run time is approximately accurate so that BASE rarely
removes the runs of beneficial speculative tasks.
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Figure 5. Run ts-map with straggler nodes. There are two straggler nodes for (a) and (b), and four straggler nodes for (c) and (d)
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Figure 4. Results of running PSA-SWG

B. Results for Compute-Intensive Workload with Straggler
Nodes

In this experiment, background load is generated to slow
down some nodes and simulate straggler nodes. We de-
veloped a load generator that can generate user-specified
load of computation, network and disk IO. We ran multiple
CPU-hogging threads yielding high core utilization, and IO-
intensive threads reading/writing data continuously from/to
local disks. The background load significantly slowed down
the nodes without rendering them thoroughly unresponsive.
We ran ts-map jobs that utilize 75% of all map slots and
thus 42GB data was processed total in each run.

Firstly, two slave nodes were slowed down and job run
time is shown in Fig. 5 (a). Again resource stealing improves
performance over native Hadoop significantly no matter
which resource allocation policy is used. LTM performs well
stably for the cases with and without BASE. Fig. 5(b) shows
BASE can save runs of nearly all unnecessary speculative
tasks, which implies the estimation of run time is accurate
when only a small number of slave nodes are stragglers.

Secondly, four slave nodes were slowed down. Fig. 5 (c)
shows job run time. The jobs ran longer compared with
the previous test because more map tasks were impacted.
Resource stealing is still effective to speed up job execution.
Policies LTM, Even, and LTLM yield the best performance.
Fig. 5 (d) shows BASE can eliminate 20% - 50% of non-
beneficial speculative tasks. Compared with the previous
case, BASE becomes less effective. It indicates our estima-
tion of run time gets inaccurate as more straggler nodes incur
larger variation of task execution. To make the estimation of
run time adapt to the change of system state is part of our
future work.

C. Results for Reduce-Mostly Jobs

The trace analyzed in [18] shows 9% jobs are reduce-
mostly. In this test, we experimented with two reduce-mostly
applications.

Firstly, we modified the original text extraction application
by implementing a compute-intensive UDF in reduce opera-
tion. The new application is called ts-reduce. The numbers of
map and reduce tasks were set according to the fact that most
MapReduce jobs tend to have significantly lesser reduce
tasks than map tasks. For resource stealing, only policy LTM
was evaluated because it performs among the best based
on the results above. Each job had 101 map tasks and the
number of reduce tasks was varied between 32 and 64. Each
job ran for 5-10 minutes approximately. Job run time is
shown in Fig. 6 (a). Resource stealing substantially shortens
job run time by 71% and 44% respectively. Resource steal-
ing thoroughly eliminated non-beneficial speculative tasks.
When each job contained 32 reduce tasks, they were well
spread out so that each node ran one reduce task at most
on average. For each reduce task, resource stealing created
6 new reduce tasks (note the number of reduce slots is 7 on
each node) to run in parallel, which should yield 7x optimal
speedup. In reality, we only got 4x speedup approximately
because of additional overhead. Reduce threads contend for
the same input stream and only one thread can read at any
time. To alleviate the issue, in our implementation each
thread locks the input stream, copies next key/values tuple to
its local buffer, unlocks the input stream and processes the
data in local buffer without interfering with other threads.
But this approach incurs extra memory copies. In addition,
reduce threads belonging to the same task contend for
the same output stream as well. To investigate advanced
mechanisms to mitigate contention further is among future
work. We also measured the number of speculative tasks.
The results are not shown because of space limit. BASE
shortens job execution marginally, but reduces the number
of non-beneficial speculative tasks by 90% compared to
native Hadoop. Because of the drastic reduction of resource
waste, more useful tasks can be run concurrently and thus
the efficiency of resource usage is improved. This indicates
the effectiveness of BASE.

Matrix multiplication was used to evaluate Dryad in [26].
We implemented it in Hadoop using the simple three-
loop approach and call it mm. Input matrices were stored



in HDFS. Map tasks only split the input matrices into
smaller blocks and thus do not run real computation. Each
reduce task calculates a number of final output blocks. Most
of the work is done by reduce tasks, which makes mm
reduce-mostly. The distribution of real matrix multiplication
operations among reduce tasks is controlled by a partitioner.
Our initial tests showed the default hash partitioner yielded
substantial workload skew and resulted in severe load im-
balancing. So a custom partitioner has been implemented
by us to make total work distributed more evenly. We ran
two tests in which the size of each block was 750 x 750. In
the first test, the number of reduce tasks was set to 10 and
the size of each input matrix was 11.25k x 11.25k, so each
matrix was split into 225 blocks ((11.25k/750)2 = 225)
and each mm run read 20 GB data total from HDFS. In
the second test, each job ran 112 reduce tasks and the size
of each input matrix was 24.75k x 24.75k, so each matrix
comprised 1089 blocks((24.75k/750)2 = 1089) and each
mm run read 210 GB data total. The total number of reduce
slots was 224 in the system, so those two tests approximately
achieved utilization 5% and 50% respectively. Fig. 6 (b)
shows the average job run time. Resource stealing yielded
5.4x and 2x speedup respectively, which results from the
opportunistic exploitation of the processor cores “reserved”
for non-occupied reduce slots.
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Figure 6. Results for reduce-mostly applications

D. Results for Other Workload

Besides compute-intensive applications. We also ran jobs
of other types to comprehensively evaluate our approaches.

Network-Intensive Workload: We wrote a distributed
web crawler mr-wc, whose input is a set of URLs of the
webpages to download. Mr-wc does not have reduce phase;
and its map tasks download web pages and save them into
HDFS. Network is the most critical resource for mr-wc.
Lemur project published a data set containing approximately
500 million unique URLs [27]. We selected a portion of it
randomly as the input of mr-wc. If most pages downloaded
by each task are hosted by the same website, the variation
of server response time can result in the severe skew of
task execution time. To mitigate the issue, we shuffled the
input URLs so that each task fetches pages from different
domains and workload is better balanced. The same testbed
as above was used. In our tests, each map task downloaded
2000 web pages and the total number of download pages
was 112k, 224k, 336k and 404k, which means the number

of map tasks was 56, 112, 168 and 202 respectively. So the
system workload was 25%, 50%, 75% and 90% respectively.
Fig. 7 shows job run time. For native Hadoop, the run time
of mr-wc is not significantly impacted by the workload,
which implies spare resources cannot be utilized. In contrast,
resource stealing expands the usable resources of running
tasks by creating more threads to concurrently download
webpages. Run time is shortened drastically by 66%, 37%,
24% and 15% respectively.

For above tests, speculative execution was disabled be-
cause our additional tests showed it deteriorates performance
mostly. The efficiency of webpage crawling depends heavily
on the response time of the servers where webpages are
hosted, which ranges from milliseconds to seconds. Under
this circumstance, running speculative tasks is not helpful
because the efficiency variation of tasks is not caused by
the system itself.
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Figure 7. Experiment with network-intensive workload mr-wc

IO-Intensive Workload: In this test, applications word-
count and ts are used. Application ts has been described
above. Wordcount counts the number of word occurrences
in input text. Again each map task processed 256MB text
and the number of map tasks was varied. Fig. 8 shows the
result. For both jobs, as the number of map tasks increases,
job run time increases as well which is caused by the
slight resource contention. With more data processed, the
processing throughput (the amount of processed data per unit
of time) is improved significantly, which results from higher
task-level concurrency. Both native Hadoop scheduling and
resource stealing perform comparably, although resource
stealing achieves better concurrency within each task. That is
caused by a limitation of Hadoop implementation. In map
tasks, each map operation processes one line of text and
is invoked repeatedly. Although resource stealing enables
Hadoop to start multiple threads to run map operations
in parallel, these threads share the same underlying input
reader and output writer (to comply with Hadoop design).
This incurs substantial contention among threads because
the computation time of each map operation is short and
synchronization is the performance barrier. As a result, the
overhead is comprable to the benefit of higher concurrency
brought by resource stealing. This inefficiency is not intrinsic
to our approach and mainly pertains to Hadoop design.
Theoretically moderate increase of I/O parallelism can ex-
ploit the interleaving of computation and data I/O and thus
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Figure 8. Experiment with IO-intensive workload

improve overall throughput.

V. CONCLUSION

The goal of our work is to improve resource utilization
in MapReduce. We present resource stealing to dynamically
re-allocate idle resources to running tasks with the promise
that they will be handed back whenever they are required by
newly assigned tasks. It can be applied in conjunction with
existing job schedulers smoothly because of its transparency
to central Hadoop scheduling. In addition, we have analyzed
the mechanism adopted by Hadoop to trigger speculative
execution, discussed its inefficiency and proposed Benefit
Aware Speculative Execution which starts speculative tasks
based on the estimated benefit. Our conducted experiments
demonstrate their effectiveness. Resource stealing yields
substantial performance improvement for compute-intensive
and network-intensive applications and BASE effectively
eliminates a large portion of unnecessary runs of speculative
tasks. For IO-intensive applications, performance improve-
ment is not substantial, which is caused by resource con-
tention in Hadoop framework. In future, we will investigate
lock-free data structures and algorithms to mitigate the issue.
Currently we assume all jobs have the same priority and thus
treat all tasks equally. We plan to integrate job prioritization
to make our algorithms comply with the fair sharing policies.
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