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Abstract

Many scientific applications produce very large amounts of data as advances in hardware fuel 
computing and experimental facilities. Managing and analyzing massive quantities of 
scientific data is challenging as data are often stored in specific formatted files, such as HDF5 
and NetCDF, which do not offer appropriate search capabilities. In this research, we 
investigated a special class of search capability, called membership query, to identify whether 
queried elements of a set are members of an attribute. Attributes that naturally have 
classification values appear frequently in scientific domains such as category and object type 
as well as in daily life such as zip code and occupation. Because classification attribute values 
are discrete and require random data access, performing a membership query on a large 
scientific dataset creates challenges. We applied bitmap indexing and parallelization to 
membership queries to overcome these challenges. Bitmap indexing provides high 
performance not only for low cardinality attributes but also for high cardinality attributes such 
as floating point variables electric charge or momentum in a particle physics dataset, thanks to 
compression algorithms such as Word-aligned Hybrid. We conducted experiments, in a highly 
parallelized environment, on data obtained from a particle accelerator model and a synthetic 
dataset.

Keywords: scientific data, big data, data management, bitmap index, parallel query, 
membership query.

1 INTRODUCTION

The volume of data produced by large-scale scientific experiments and simulations is growing 
massively. For example, experiments at the Large Hadron Collider (LHC)1 at CERN in 
Switzerland, notably ATLAS 2 and CMS 3, produce petabytes of high-energy collision data. 
The Square Kilometre Array (SKA) 4, which is a radio telescope consisting of several 
thousand antennae that operate as a single instrument, is designed to explore the earliest 
stages of the evolution of the universe. It will yield more than an Exabyte of raw data per day 
when it becomes active. These are examples of scientific applications where the size of the 
data is increasingly getting larger and more complex over time. This brings many challenges 
for data analysis.

The volume and variety of data that must be analyzed and understood are the biggest 
challenges. Today, it is becoming commonplace for scientists to analyze multiple terabytes of 
data stored in thousands of files to generate a scientific result. This often involves weeks or 
even months using traditional analysis tools. Many of these tools used by the scientists were 
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implemented decades ago when the volume and variety of data that scientists must now 
struggle with did not exist. Another major challenge today is data movement between 
computer components. Unfortunately, this challenge will become even more severe in the 
future. Performance improvements in data movement will continue to considerably lag the 
performance improvements in computing. Future systems are likely to continue a trend of 
noteworthy enhancements in total floating-point performance while the capability to move 
data both within a computing system and between a computing system and a storage 
subsystem will see much humbler developments.5

To address these challenges, it is necessary to improve query performance over these large 
datasets because the most common operation on scientific data is to select a subset of the data 
that contains valuable information for further analysis. The query improvement becomes more 
crucial for the values that commonly occur as discrete values, require random access and have 
classifying characteristic. Attributes containing these characteristics such as zip code, 
location, occupation, and nationality commonly appear in commercial databases. Such 
attributes also occur frequently in scientific domains such as category of measured or 
calculated values and object types. Identifying whether a given set of values is a subset of 
attribute values, which is discrete in nature and have classification as its characteristics, is 
called a membership query. These queries have been mentioned in the literature for a couple 
of decades. Angluin defines a membership query to be a query that returns one bit of 
information: whether or not the queried element is a member of a known set.6 Chan et al. state 
that a membership query is of the form  , where  is a subset of the attribute 
values . 7 

To improve query performance, indexing and parallelization are two key methods. For many 
years, indexing techniques have been used very effectively in database systems. However, 
indexing did not impact the area of scientific data management largely because scientific data 
are typically stored in formatted files rather than in database management systems 6. 
Nevertheless, bitmap index technologies are very efficient when used on formatted files 
because the queries can be executed by using bitwise logical operations, which are very 
effective at the hardware level.  In addition, since the queries can be performed in disjoint 
blocks of data, parallel execution can be applied successfully.

We experimented with membership queries using bitmap index technologies to analyze 
accelerated particles. Large-scale, high-resolution simulations of beam dynamics in an 
electron linear accelerator (LINAC) by IMPACT-T generated a very large dataset of size 50 
TB.8 In the simulation, one billion particles were accelerated through 720 time steps. Some of 
the accelerated particles reached their final targets although many particles were lost by 
escaping the beam. The scientist was interested in only a fraction of the particles, about 1000, 
that reached a high energy level at the final time step. The paths of these energetic particles 
required to be extracted from the original one billion particles in each of the time steps so that 
the reasons behind the acceleration to high energy were comprehended. Thus, for each time 
step, we searched the 1000 energetic particles out of one billion particles. If this were done in 
a naïve fashion by searching one by one, it would take a very long time. Our approach of 
performing a membership query using bitmap indexes accomplished the task of finding the 
desired particles much faster.

The first contribution of this research is the introduction of bitmap indexing to be used with 
membership queries to improve the query performance. Even though membership queries are 

Page 2 of 25

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience



For Peer Review

not new, applying a membership query using a bitmap index to solve the problem very 
effectively is a novel approach. Our second contribution is to show how to scale indexing and 
querying in a highly parallelized environment. A membership query with bitmap indexing 
scales well to billions of elements by using our approach. Finally, the third contribution is to 
draw a roadmap for tuning membership queries; to the best of our knowledge, membership 
queries have not been evaluated by taking into account the features of data such as cardinality, 
order of data, and skewness.

The remainder of this paper is organized as follows. In Section 2, we provide background 
information on bitmap indexing techniques and discuss related work. The methodology of our 
membership query experiments is elaborated in Section 3. We present the experimental results 
in Section 4 and conclude the discussion in Section 5. 

2 BACKGROUND AND RELATED WORK 
Database Management Systems (DBMS) are generally designed for transactions to provide 
quick access for business processes, known as Online Transaction Processing (OLTP). It is 
optimized to maximize the speed and efficiency in an environment in which data are updated 
frequently. Data warehouse systems are often used for reporting and data analysis.9 They store 
large amounts of data that grows continuously but does not change frequently. Data 
warehouse systems enable query evaluation by using techniques referred to as Online 
Analytical Processing (OLAP), optimized to handle complex queries on aggregated large 
historical datasets.  While searching and updating are performed with nearly the same 
frequencies in OLTP, the searching operations in OLAP are typically performed with a much 
higher frequency than that of updating operations.10

Database systems traditionally store data in a row-oriented manner which is well-suited for 
transactions. This method is not suitable for data warehouse applications where queries only 
touch a few columns but typically scan many records. Therefore, a column-oriented approach 
for data warehouses has been proposed as an alternative to the row-oriented approach. In a 
column-oriented database, all instances of a single data attribute are stored together. 
Therefore, column-oriented databases are more efficient for the analytical processing since 
queries must read all instances of a small number of data attributes.11

The column-oriented approach reduces the size of the data processed by a query because only 
the needed columns are retrieved. Moreover, the column-oriented data can often be 
compressed efficiently. Because of these advantages, SQL Server, a general-purpose database 
system, added a column-oriented approach to its system to improve performance for data 
warehouses.12 MonetDB designed primarily for data warehouse applications achieves 
significant speedup compared to more traditional designs by a storage model using a column-
oriented approach.13

In addition to the column-oriented approach, bitmap indexing is recommended to improve 
performance for data warehouse. Stockinger et al. summarized the experience of 
implementing a series of bitmap index schemes on vertically partitioned datasets.14 Vertical 
partitioning enables highly efficient compressed bitmap indexing that produces indexes 
smaller than traditional indexes. For a compressed bitmap index, the I/O cost does not 
dominate the total query processing time. When the number of attributes in a dataset 
increases, the number of possible indexing combinations, often called the curse of 
dimensionality, increases. Bitmap indexing technology was shown to break the curse of 
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dimensionality for data warehousing applications.15 Moreover, the bitmap index has the best 
balance between searching and updating for OLAP operations.

Sorting can be applied to existing bitmap compression schemes based on run-length encoding 
to improve query performance in data storage and decision support systems. Sorting the 
attribute before a bitmap index is created enables reducing the space requirement for the 
bitmap index and the response time for queries. The advantage of this technique is that this 
can be accomplished without any additional workloads for the data warehouse.16

In addition to the column-oriented approach and bitmap indexing, new indexing techniques, 
such as the storage index, have been proposed to handle queries faster. The storage index is an 
in-memory approach that keeps information about the data within the specified regions of the 
physical storage space.17 This index contains information on whether the disk does or does not 
contain the values  for the query attributes of interest so that these attributes are not retrieved 
during the scan. This significantly reduces unnecessary I/O by excluding irrelevant database 
blocks in the storage cells.

Similar to data warehouses, scientific data are usually written once and read several times and 
are often stored in certain file formats such as HDF5 18 and NetCDF.19 In general, these 
specially formatted files do not provide an indexing mechanism. However, it has been shown 
that bitmap indexes can be used effectively to provide support for querying on these file 
formats without any modification to the files.20 

Hardware efficient bitwise logical operations are the key feature that bitmap indexes take 
advantage of. Additionally, the results of bitwise logical operations can be effectively 
combined. A bitmap vector can be defined as:

 , where M is a set of query values and D is the dataset. Since 

the bitwise logical operations on bitmaps create bitmap vectors, the results of the logical 
operations can be processed by applying bitwise logical operations as well.

The main deficiency of the bitmap index is that the size of the index grows linearly with the 
number of distinct values, referred to as the cardinality of the data. The bitmap index is very 
efficient for low cardinality dataset. However, scientific data typically contain floating-point 
values, which may result in very high cardinality. For example, the temperature value from a 
combustion simulation would have very high cardinality because each instance of the value 
could be different from the next. Similarly, particles of a high-energy physics experiment 
contain multiple properties with floating point values resulting in high cardinality. Therefore, 
especially for the high cardinality data, there are procedures that must be used to control the 
size of index. Binning, encoding and compression are the techniques that alleviate the 
growing bitmap index size issue.

2.1 Techniques to create a bitmap index
2.1.1 Binning

Binning produces a set of identifiers for bitmap index construction. In other words, an 
attribute value of data is usually divided into an arbitrary number of bins. The most basic 
binning strategy is no-binning, which has a single distinct value for each bin. However, a 
common binning strategy creates fewer bins than the number of distinct values. The main 
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advantage of binning is that it is the most effective approach to reduce the index size. 
However, the index may not fully resolve all the queries when binning is used. Therefore, all 
values falling into a bin have to be scanned to answer a query correctly. This procedure is 
called a candidate check, which may dominate the total query time.21 Therefore, applying 
binning requires a strategy with a balance between the size of the index and the overhead.

2.1.2 Encoding

Bitmap encoding techniques create bitmaps in a way that reduces either the total number of 
bitmaps or the number of bitmaps needed to answer a query. That is to say, an encoding may 
target to control the size of an index or it may aim to reduce the necessary number of accesses 
to the bitmap index. There are three types of basic bitmap encoding methods: equality 
encoding, range encoding, and interval encoding.

Equality encoding is the most fundamental bitmap encoding. Usually, a bit for an attribute 
value is appended to a bitmap vector, which contains as many bits as the number of rows. 
Equality encoding is known as a very efficient method for equality queries because the query 
needs to look at only one bitmap. The second well-known encoding technique is range 
encoding, optimized for a one-sided query such as “A ≤ 1”. The size of the bitmap index with 
range encoding for an attribute is  which is less than equality encoding. A range 
query takes at most 1 bitmap processing for a range query. The third most common technique 
is interval encoding, developed to process efficiently two-sided queries.7 This encoding 
scheme is based on range encoding and is well suited for two-sided range queries such as “2 ≤ 
A ≤ 5”. Interval encoding guaranties performing any interval queries by accessing at most 2 
bitmaps. Interval encoding is the most space efficient among the three basic schemes, which 
requires almost only half the number of bitmaps of the other two schemes. Chan and Ioannidis 
discuss the optimality of the encoding schemes.7

Each bitmap index is basically a representation of an attribute using some number of bits in a 
way that it is specific for an encoding scheme. This observation has resulted in new encoding 
schemes to reduce the index size and/or to improve the query performance. Almost all 
encoding methods proposed in the last decade can be classified as either multi-component 
encoding or multi-level encoding. In multi-component encoding, the attribute values are 
partitioned into several components. Each component is encoded by using one of the basic 
encoding schemes. In an earlier study by Chan and Ioannidis 22, the optimal number of 
components is claimed to be two. However, the optimal number may be different when the 
indexes are compressed.23 The multi-level encoding is an encoding that progressively 
generates bins in a hierarchical manner.24,25 Each level can be encoded by using one of the 
three basic encoding schemes. The finest level can have a distinct value for each bin. A higher 
level spans multiple values per bin and therefore has fewer bins. In contrast to the 
conventional binning, the multi-level encoding requires candidates check when the query does 
not fall on the higher level bin boundaries. Although the finest level can always answer any 
query, the coarse levels can be used to answer a query without accessing the finer levels when 
the query spans entire bins of the higher levels. This strategy results in reducing the amount of 
work for a query.

2.1.3 Compression

The equality bitmap encoding scheme generates one bitmap for each distinct value of an 
attribute. This may generate a bitmap index whose size is larger than the size of the data itself.  
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In other words, the size of the index may even surpass the data space in cases of high 
cardinality data. This would make searching of the index too expensive. This challenge is 
especially true for the scientific data because the cardinality of scientific attributes is usually 
very high. However, the bitmaps, which mostly contain zero bits, are very sparse and are 
therefore suitable for compression.

A number of algorithms have been proposed for bitmap compression. Johnson compares the 
well-known LZ text compression algorithm with variable bit-length codes and variable byte-
length codes.26 The text compression algorithms are effective to reduce the text size.  
Similarly, bitmap compression reduces the index size.  However, performing logical 
operations on compressed bitmaps is usually slower than on uncompressed bitmaps because 
the compressed bitmaps have to be uncompressed before applying any operation on them. The 
logical operations using the specialized schemes, developed specifically for bitmap index 
compression, are usually faster than those using the text compression algorithms. One of the 
specialized algorithms for bitmap index compression is the Byte-aligned Bitmap Code 
(BBC).27 BBC is known to be efficient and used in several commercial database systems. 
However, the logical operations on the compressed data can be still slower than the operations 
on the uncompressed data, especially for high cardinality attributes. To address this issue, 
Word-aligned Hybrid (WAH) compression was proposed to improve the speed of logical 
operations at a cost of small increase in space.28,29 It is designed to perform logical operations 
directly on the compressed bitmaps without decompressing them first. WAH compression 
supports faster logical operations and makes the bitmap index applicable to the data with high 
cardinality.30 Contrary to the common perception, a smaller compressed bitmap index is not 
necessarily more efficient. WAH compressed bitmaps are about 30% larger than BBC 
compressed bitmaps in size, but logical operations on WAH compressed bitmaps are 
significantly faster than on BBC compressed bitmaps, as demonstrated in 14. The reason is 
that WAH operates on words rather than bytes or bits and it can perform logical operations 
directly on the compressed bitmaps. In addition to BBC and WAH, new compression schemes 
are proposed such as the Position List Word Aligned Hybrid (PLWAH) 31, the Enhanced 
Word-Aligned Hybrid (EWAH) 32, the Partitioned Word-Aligned Hybrid (PWAH) 
compression.33 The common feature of these schemes is being a variant of WAH.34

2.2 Related Work
There are publications investigating parallel index and query operations. Byna et al. presented 
parallel I/O, analysis, and visualization for the VPIC data, which were generated by a state-of-
the-art plasma physics code that simulated trillion of particles running on 120,000 cores.35 
Hybrid parallel query using multi-core CPUs on distributed memory hardware was applied to 
index and query the trillion-particle dataset. In this study, range queries were explored by 
applying them to VPIC data. Chou et al. also investigated range queries and range encoding 
schemes.36 The queries were performed on a single attribute by utilizing 48 MPI processes. 
Kim et al. explored parallel in-situ indexing for the intensive computing.37 The in-situ data 
processing approach is intended to bypass disk accesses whenever possible. The basic idea is 
to perform a series of predetermined operations while the data are in memory. In-situ 
processing was adapted to generate the index in a parallel manner so that the necessity of 
reading data from disks was avoided. Consequently, it was shown that the generated index 
can improve the data access for 3 to 200 times depending on the fraction of the data selected. 
Su et al. proposed another parallel approach for indexing and querying.38 In addition to 
queries over multiple dimensions, the study explored queries over coordinate variables by 
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using and optimizing multi-level bitmap indexing. Additionally, a parallel indexing 
architecture and an intelligent index partitioning strategy were proposed to improve the query 
performance. Workflow is one of the key features for better performance.39-41 

In addition to parallel strategies, sorting has been investigated in several studies to improve 
efficiency. Lemire et al. explored sorting for the bitmap index using WAH compression.32  
Pinar et al. 42, Sharma and Goyal 43 used row sorting to improve Run Length Encoding (RLE) 
and WAH compression. Although these studies showed an improvement for the bitmap 
compression, the largest bitmap index used in these research fits in a personal computer 
memory. The basic idea is that reordering rows of a compressed bitmap index can reduce the 
index size. The primary attribute is selected and an uncompressed index is created. The rows 
are then rearranged so that the values are consecutive. This creates longer sequences of 1’s 
and 0’s. When the compression is applied, the index size becomes smaller.44 This may not be 
feasible for a large number of attributes and rows. A more practical approach is to reorder the 
base data, then construct the compressed index directly. 

For equality and membership queries, Vanichayobon et al. proposed Scatter Bitmap Index 
that used less space than the other indexes while maintaining a competitive query processing 
time.45 In this indexing method, each attribute value was represented by using only two 
bitmap vectors, but each bitmap vector symbolized many attribute values. Weahama 
presented an improvement for membership queries of the Virtual Classroom System by using 
Dual Bitmap Index, also called Scatter Bitmap Index, and applying data clustering.46 The 
method was based on clustering the data before indexing by using some defined distance 
measure, which determined the similarity or proximity of the data elements. In these studies, 
the datasets were small enough to fit into a single desktop computer memory. Therefore, the 
proposed methods may not be appropriate for the high volume data. Moreover, the data 
features are not easily adaptable to speed the query up such as cardinality, skewness, and 
order of the data. In addition to these studies that use an index, solutions using bloom filter 
have been proposed for the membership queries, where false positive matches are possible, 
but false negatives are not.47,48  A query returns either possibly in a set or definitely not in the 
set. In other words, the bloom filter approach provides an approximate answer for a 
membership query with a reasonable performance.

3 EXPERIMENTAL METHODOLOGY
In the experiments, we compared predicate queries with membership queries using bitmap 
index. Additionally, we investigated how to get the best outcome from the features of data 
such as cardinality, order of data, and skewness. Moreover, scalability was studied by using 
massive datasets and utilizing a large number of MPI processes.

3.1 Testbed
We conducted our experiments on the NERSCi Cray XE6 supercomputing system, named 
Hopper. Hopper is a Petaflop system, with a peak performance of 1.28 Petaflops/sec, 153,216 
compute cores, 212 Terabytes of memory, and 2 Petabytes of the disk. The system has 6,500 
compute nodes, with 24 cores per node and 32GB memory per node.

The file system used by Hopper is the Lustre parallel file system which consists of 13 LSI 
7900 disk controllers. Each disk controller has two I/O servers, called Object Storage Servers 
(OSS), and each OSS hosts six Object Storage Targets (OST). Hence, there is a total of 156 
OSTs, which can be considered as a software abstraction of physical disks. Lustre provides 
I/O parallelism by striping data across the multiple disks (OSTs). A striping is organized by 
parameters such as strip count and stripe size. Stripe count is the number of OSTs to use to 
store a file, and strip size is the number of bytes written on an OST. The larger number of 
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stripe count offers a better parallelism because the data can be read/written from more disks at 
the same time. However, when the larger number of stripe count is used, the likelihood of I/O 
contention increases with other applications.

Hopper uses the Cray Message Passing Toolkit (currently MPT/3.3), which has a Lustre-
aware implementation of the MPI-IO collective buffering algorithm. It enables data to be 
buffered on aggregator nodes and to be stripped into Lustre stripe-sized chunks to reduce the 
number of I/O writers or readers. Hence, all reads and writes to the Lustre are automatically 
stripe size aligned. Because of the way that Lustre is designed, alignment is a vital element in 
ensuring good I/O performance.

3.2 Datasets
In our experiments, we used a dataset generated by large-scale, high-resolution simulations of 
beam dynamics in an electron LINAC by IMPACT-T 8. The dataset had 720 time steps with 1 
billion particles per time step. Each time step was stored in a single HDF5 file containing the 
properties of each particle in 9 variables. Each variable was kept in a one-dimensional array. 
The properties were the identification number (ID), charge-to-mass ratio of each particle 
(qom), the ratio of the total charge (in Coulomb) of a type of particle to the total number of 
macroparticles (chgpt), and the coordinates of the particles. The size of each file was ~68GB, 
and the total size of the whole dataset was ~50TB. 

To look at the behavior of membership queries in more detail, we also experimented on 
synthetic data, which were created to fill the gap of the missing features in the LINAC 
dataset. The synthetic data with different cardinalities were formed to investigate the effect of 
the proportion of distinct values in a dataset to the index size and the query performance.  We 
also performed our experiments for highly skewed data, which is typical for many 
quantitative attributes in scientific applications. We also used a huge dataset containing 10 
billion rows to investigate the scalability of parallel membership queries.

3.3 Software components
The datasets were stored in HDF5 files. We used FastQuery to create the bitmap indexes and 
accelerate membership queries.  We describe both next.

3.3.2 HDF5 data format

The Hierarchical Data Format v5 (HDF5) 18 implements a model to manage and store data. It 
includes an abstract data model, an abstract storage model, and a library to implement the 
abstract model. The HDF5 library stores data in machine-independent and self-describing 
binary files organized for high-performance access. The HDF5 library generates portable files 
by using encapsulation so that the data and metadata are combined together in a container. 
With the HDF5 model, the layout of bytes in a file is not a concern for users; instead, the 
users can deal with the high-level concepts of relationships between the data objects. 

In the experiments, we utilized a parallel HDF5 library, which is designed to work on 
supercomputers. The parallel implementation of HDF5 relies on Message Passing Interface 
(MPI) implementation for I/O, called MPI-IO. HDF5 especially relies on communication, 
synchronization, and collective I/O operations of MPI. HDF5 can either use the MPI-IO 
routines for collective or independent I/O operations or can use a mixture of POSIX file I/O 
operations and MPI communications.
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3.3.3 FastQuery

FastQuery is a parallel querying library that uses FastBit bitmap indexing and supports 
querying on multiple scientific data formats such as NetCDF and HDF5.20,49 FastBit, 
developed at Lawrence Berkeley National Laboratory (LBNL), is an open-source software 
that implements many of the encoding scheme, binning and compression strategies.  Basic 
encoding schemes like equality, range and interval encoding are supported. It also uses multi-
level encoding methods that improve the query efficiency while maintaining theoretical 
space-time optimality. FastBit uses the WAH compression method that makes it possible for 
bitmap indexes to answer queries in optimal computational complexity.  Moreover, a set of 
binning strategies that can suit diverse needs is also used to enhance the efficiency of query 
processing.50 Its successful use in several scientific applications was presented in 51.

Figure_1_link

FastQuery benefits from parallelism for both computation and I/O. As illustrated in Figure 1, 
it divides a dataset into various fixed size subarrays in order to use the distributed memory 
nodes and multiple cores of a computing system. The indexes are iteratively built from the 
subarrays by assigning each subarray to an MPI process running on a CPU core. The 
generated indexes for each subarray are collected together and stored into a single index file. 
Similarly, the queries are performed in a parallel manner. An index file is evaluated chunk by 
chunk. Each chunk is handled by an individual MPI process.

FastQuery performs I/O operations by using the HDF5 library that handles the logical view of 
a file. FastQuery’s parallel I/O relies on the parallel HDF5 framework. The HDF5 library 
delivers I/O requests through the MPI-IO layer that enables multiple MPI processes to run on 
a single file in a parallel manner. At the lowest level, Lustre parallel file system controls the 
I/O requests and performs the actual data read/write operations in parallel. 

3.4 Membership queries and measurements
We applied membership queries to find specific energetic particles in the IMPACT-T 
simulation dataset and synthetic datasets. 1000 particles were queried for each time step. The 
number of particles is reasonable to come to a conclusion for the behavior of the particles that 
reach the final target. A sample script executing 48 MPI processes to query the accelerated 
particles is shown in the snippet below. This script format was used for all queries on the 
IMPACT-T simulation dataset and the synthetic dataset. The executable batch file requires the 
path of a base data file, the path of an index file and the query containing a thousand values as 
parameters. An index file path is optional while the remaining two parameters are necessary 
for a query execution. 

#PBS -q regular
#PBS -l mppwidth=96
#PBS -l walltime=00:30:00
#PBS -N my_job
#PBS -e my_job.$PBS_JOBID.err
#PBS -o my_job.$PBS_JOBID.out
cd $PBS_O_WORKDIR
aprun -n 48 -N 12 -S 3 ./QueryIndex -f ./basedata.h5  -i ./index.h5 -n ID -q "ID IN  
(490027,3368690,2520059,7513926,5180540,4089172,3455736,5005211,1595368,
8413784,6898537,4575198,3594324 ,8664370,9566413,1759956, ..........................)"

The execution of a query starts with reading the index file in chunks, called subarrays. Each 
subarray is assigned to an MPI process employing its own CPU core. A query using the index 
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returns the coordinates of matched values. Instead of scanning the whole data, these 
coordinates are used to retrieve the values from the base data. In other words, only the 
matched values in the base data are accessed. The base data are not scanned except for the 
queries which use an index created with a binning strategy. A query may require scanning 
part of the base data in case that the query does not fall on a bin boundary. When the queried 
values are not found within the bin boundaries, each value in the base data needs to be 
compared with the queried values to check whether there is a match. In contrast, the file 
containing the base data has to be scanned if an index is not present. The values are read from 
the base data in subarrays.  Each row in a subarray is scanned to check whether there is a 
match. The results from each MPI process are gathered to provide the final collective output.

We preferred equality encoding to create indexes. It is the optimal encoding for membership 
queries, as discussed in 7. As mentioned previously equality encoding contains many zeros 
that can be effectively compressed with the WAH compression method.28

To efficiently answer queries involving multiple attributes, one option is to select a 
combination of attributes to generate a multidimensional index tailored for a specific query. 
For additional queries, other combinations may be necessary. Thus, this approach is only 
practical if we are only interested in a specific query. Another option is to create a separate 
index for each attribute. To answer a query that includes conditions with multiple attributes, 
we first resolve the conditions on each attribute, and we get a solution as a bitmap for each 
condition. Then, we combine these bitmaps and get the answer to the overall query.15 For 
instance, to handle the query “A = 3 and B =10”, a bitmap index of attribute A and a bitmap 
index of attribute B are used separately to create two bitmaps that satisfy the conditions. The 
final answer is the result of the bitwise logical AND operation on these two bitmaps. The 
logical operations on bitmaps are well supported by computer hardware, so bitmaps can be 
combined easily and efficiently. The total query response time scales linearly with the number 
of attributes involved in the query, not with the number of attributes of the dataset. Moreover, 
the selectivity and attribute access order make no difference for multidimensional queries 
when using bitmap indexes.

Sorting does not complicate multidimensional queries while providing a performance gain. 
Sorting is applied to the bitmap indexes to reduce the index size and to improve query 
performance. There are several approaches for sorting. The first approach is to reorder the 
compressed bitmap itself. However, this requires very intensive computation. The second 
approach is to rearrange the rows of an uncompressed index so that longer sequences of 1's 
and 0's are created. Then, compression is applied to create a smaller index.42,43 This may not 
be suitable for a large number of dimensions. The practical approach we apply is to reorder 
the base data, then create the compressed index.  Only the attributes for which bitmaps will be 
created are sorted. These extra sorting tasks on attributes can be easily done before indexing. 

To ensure that the query response time contained the full disk I/O cost and that our 
measurements were not affected by previous caching, we executed each experiment using a 
new copy of a file. Consequently, the operating system had no information about the specific 
directory containing the files or any information about the files. Otherwise, the operating 
system would have cached the directory information about the files and the IO time might 
have been significantly reduced if the files had been accessed previously.
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Tuning several parameters for the underlying parallel file system provides better I/O 
performance 52. Therefore, we used 1MB stripe size in the Lustre Parallel File System and set 
the stripe count to be 48.  In other words, the file was distributed on 48 OSTs in 1 MB size 
chunks. For the processing of queries, we used 48 MPI processes to handle 1 billion-row 
dataset from the LINAC simulations and the synthetic data.  To investigate scalability, the 
number of MPI processes was increased step by step from 24 to 3072 for the 10 billion row 
dataset. In each step, the number of MPI processes was doubled to collect the scalability 
measure. We used 24 for the scaling factor because each Hopper computing node has 24 CPU 
cores.

4 EXPERIMENTAL RESULTS

4.1 Naïve query processing versus queries with bitmap indexes 
The Naïve query processing we used is the conventional way of searching values from a 
dataset without using an index. The whole IMPACT-T simulation dataset was scanned for 
each energetic particle that reached the final target. Even though the data were loaded once, 
the performance result of the naïve query processing was not a good strategy because it 
required sequentially scanning the whole dataset as many times as the number of the energetic 
particles. This was the motivation to apply membership queries using bitmap indexes to 
overcome the problem. Figure 2 shows the log scale performance result comparing the naïve 
query processing with parallel queries using bitmap indexes in a single time step.  Using a 
bitmap index expedites the query by more than 300 times. When the data are sorted, the 
improvement becomes even better. While sorting expedites the query execution for 
membership queries using bitmap index, the naïve query processing does not benefit from 
sorting because of the necessity of repeatedly scanning the whole data. Hence, we show a 
single bar for the naïve fashion queries of the sorted and unsorted data.

Figure_2_link

The execution of the naïve query processing took more than 2 weeks in order to discover the 
behavior of 1000 particles for 720 time steps. Moreover, increasing the number of particles 
that reach the final target causes a linear increase in the execution time. This is an important 
deficiency comparing with the queries using the bitmap indexes. In contrast, the number of 
queried particles does not have a real impact on the execution time when a bitmap index is 
used for the membership query.

4.2 Optimizing indexed query via data features
We investigated the data features such as cardinality, the order of the data and skewness to 
determine their effect on query processing and to use them for performance improvement. 
First, because of the I/O cost, we looked at the index size for varying data features, shown in 
Figure 3. The top three plots show the index size for unsorted data while the bottom three 
plots show the index size for sorted data. The figure shows how the index size changes for 
varying values of binning and subarray size as well as for various data cardinalities.

We notice that sorting reduces the index size except in the case of unique values. Also, one 
can see that the index size significantly shrinks while the cardinality of the sorted data is 
getting smaller. Conversely, the cardinality has no effect on the index size when the data are 
not sorted. This is reasonable because the values in unsorted data may not be sufficiently 
clustered to affect the index size when the bitmap compression is applied. Binning has one of 
the greatest impacts on the index size. On the contrary, the subarray size has a relatively small 
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effect on the index size. The index size is larger for the same binning option if the subarray 
size is smaller. 

Figure_3_link

Figure_4_link

Figure 4 illustrates the effect of data skewness on the index size while keeping varying the 
other data features. The dataset has 1billion rows and 100 million unique values. The left-
hand side plots have uniformly distributed data values while the right-hand side plots have 
skewed data values. The uniformly distributed data display the same pattern as the plots 
shown in Figure 3. The skewed data show a better space performance than the uniformly 
distributed data. We realize that the index size shrinks well when the data are skewed even if 
the data are not sorted. However, sorting skewed data is still more appealing because the 
index size either with binning or without binning decreases dramatically.

Additional attribute values almost double the size of the bitmap index when introducing 
parallel indexing. To keep track the values in different subarrays, the attribute values such as 
bitmap offsets and bitmap keys need to be stored in the index file. This is an acceptable space 
and time trade-off in order to introduce parallelism. Otherwise, we would not have exploited 
the performance improvement by using parallel execution on the disjoint data blocks 
(subarrays).

After collecting the results for the index size, we explored how to optimize the query 
processing by tuning the data features such as the order of data, cardinality, and skewness. 
The index size is relevant to the I/O operation since it dominates the overall processing time 
in many cases. Hence, the index files in the figures above were utilized to examine the effect 
of the I/O cost. Figure 5 shows the query performance result while using bitmap indexes. 

Figure_5_link

We realize that, on the one hand, choosing a small value for the subarray size does not 
contribute to an efficient parallel execution. On the other hand, the performance degrades 
when the subarray size exceeds a threshold value. The optimal subarray size is 1 million for 
our experimental settings. Using the subarray size of 10 million causes inefficient memory 
usage and I/O utilization.  

Sorting base data reduces the query time more than three folds comparing with unsorted data. 
The gain is even higher for smaller cardinality. A smaller cardinality degrades the query 
performance for unsorted data because the number of the retrieved values increases; fetching 
more values, actually more subarrays, from base data takes more time. On the other hand, we 
do not see this behavior in the sorted data because the retrieved values are stored within a 
smaller number of subarrays. Either for a single value or multiple values, the necessary 
subarrays are retrieved once.  Therefore, with smaller cardinality, the query takes less time for 
sorted data. 

Figure_6_link

We finally measured the effect of skewness on query performance because many datasets are 
naturally skewed in scientific applications. Figure 6 demonstrates the impact of data skewness 
on the performance. The queries using an index with various binning options perform closely 
to each other. Hence, binning does not contribute to the performance of skewed data. 
Furthermore, we see almost two-fold gain when using an unbinned index for the skewed data. 
The gain originates from the clustering of the queried attribute values. The best query 
performance among the 1 billion row dataset is observed when data are skewed, sorted and 
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have low cardinality; the execution is completed in less than a second. Skewed sorted data 
perform better because each subarray is optimally aligned with the queried attribute values. 
The index size is also smaller because the skewed and sorted data are well compressed.

The experimental results clearly illustrate that a membership query does not benefit from 
binning. Indexes without binning perform better and using a binned index does not improve 
the query performance even though it reduces the space requirement. This observation reveals 
that the cost of candidate check is high for a membership query. For different queries and 
settings, there are a number of approaches to reduce the time required for the candidate check. 
Rotem et al. discussed the challenges of finding the optimal binning for range queries.21 
Koudas explored the optimal binning for a given set of equality queries and introduced a 
space-efficient indexing for the equality query by jointly encoding the attribute values using 
the frequency of access and occurrence of the attribute values.53 Stockinger et al. investigated 
the optimization of multi-dimensional range queries for relatively small sets of known queries 
by using additional operations on bitmaps to reduce the number of checks for the candidates.54 
We did not benefit from these approaches because the data in our study had comparatively 
high cardinality.

The conventional wisdom regarding the index size appears to be wrong for compressed 
bitmap indexes; the smaller index may not necessarily perform better. We observe that the 
index size for 1 million subarray size without binning is larger than the 10 million subarray 
size without binning. However, the query using the index with 1 million subarray size 
performs better. Hence, the index size is not the main contributor to the query processing 
time. Additionally, the largest index file, which is slightly less than 35 GB, can be 
theoretically retrieved in a second because the data transfer rate of the underlying Lustre 
Parallel File System is 35 GB/s. Consequently, we clearly have to take into account CPU 
efficiency as well as I/O efficiency.

4.3 Scalability
We conducted experiments to increase further scalability for membership queries by using a 
very large dataset, which had 10 billion rows. The same membership queries containing 1000 
values as the queries of the previous experiments were applied. Only 1 million and 10 million 
subarray sizes were used to generate the indexes because 100,000 subarray size had shown its 
inefficiency in previous experiments.

Figure 7 shows the index file sizes for the data containing 10 billion unique values and 10 
billion values with 2.43 billion cardinality. For the data containing only unique values, sorting 
the base data doesn’t have a real impact on the index size when binning is not applied. 
However, sorting reduces the index size when binning is used. For fewer distinct values in the 
dataset, the index file becomes smaller. The index size reduces further when the data are 
sorted and has a smaller cardinality. 

Figure_7_link

We encountered a sparse file problem while creating the indexes for this very large dataset. 
The index file without binning for the unsorted data became huge, especially, for 1 million 
subarray size. The problem occurred because the subarray size was not ideal for the 
underlying chunking method of the HDF5 file creation framework. The size was almost 
reduced to half after repacking the HDF5 files by using the h5repack command, provided by 
the HDF5 library. For example, the size of the index file of 10 billion values with 2.43 billion 
cardinality for 1 million subarray was 635GB and the size of the index file for 10 million 
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subarray was 262GB. After applying the repacking, the sizes were reduced to 262 GB and 240 
GB respectively. This problem seemed more common for the smaller subarray and the larger 
dataset.

Figure_8_link

We conducted a series of experiments to show how our system was scaled up in a highly 
parallelized environment. The results were gathered by using the index files for varying 
subarray sizes and binning options. Figure 8 shows the query performance when we introduce 
an increasing number of MPI processes. The number of MPI processes ranges between 24 and 
3072. For unsorted data, 1536 MPI processes generally perform the best. Using more MPI 
processes does not contribute to the query performance. Messaging between the high numbers 
of MPI processes hinders the gain from parallel execution. The index of 10 billion subarray 
size without binning provides the best timing results while the index of 1 billion subarray size 
without binning performs the worst. Although we are expecting the best performance from 1 
billion subarray size, the impact of the sparse file problem seems to affect the performance. 
Reducing the size of the sparse index file by applying the repacking does not improve the 
performance even though the file size reduces almost by half.

For sorted data, the performance of the query becomes much better. As we increase the 
number of MPI processes the query time improves till we reach 1536 processes. Even 768 
MPI processes offer enough computing power for most cases. However, the query 
performance does not improve much for more MPI processes than 1536. We attribute the 
communication cost between the MPI processes beyond 768 MPI processes as causing the 
slowdown. The query results using binned indexes are not impressive because of the 
additional cost required for candidates check. 

Membership query performance using a bitmap index scales very well for up to billions of 
elements in a highly parallel environment. A very significant increase in query performance is 
achieved so that the query on the sorted data having 10 billion rows with 2.43 billion 
cardinality is accomplished in 2 seconds. This noteworthy performance is repeated when the 
bitmap index with 1 million subarray size is used. 

5 CONCLUSION
Membership queries on very large datasets have presented serious challenges because of the 
need for repeated random access to the data. We have applied a bitmap index to membership 
queries and showed high-performance improvement over the queries using naïve query 
processing. Hence, the main contribution of this study is showing that using bitmap indexing 
for membership queries is very effective. While the concept of membership query is not new, 
using bitmap indexes to solve the performance problem of membership queries very 
effectively is novel. 

Our second contribution is to show scalable indexing and querying in a highly parallelized 
environment. Showing that performing a parallel membership query using bitmap index 
scales well to billions of elements is an important result. The indexing and querying become 
“pleasingly parallel” because the data can be arranged in disjoint blocks. The parallelism 
happens at several levels. The performance of membership queries benefits from using a 
parallel file system in addition to many CPU cores. The scientific file format API such as 
HDF5 also helps in easily specifying the desired level of parallelism.
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Lastly, the third contribution is to tune membership queries; to the best of our knowledge, 
membership queries were not evaluated by taking into account the features of the data such as 
cardinality, order of data, and skewness. We explored the row ordering over large datasets. 
Sorting contributes greatly to improve query performance. For low cardinality, the 
performance becomes even better. The query processing becomes more efficient when the 
data are skewed. We observed excellent performance results for skewed data, especially when 
the data were sorted and had low cardinality. Tuning cardinality, order of data, and skewness 
contributes to reducing the index size as well. Furthermore, we observed that I/O cost does 
not necessarily dominate the query processing time when using a compressed bitmap index. 
The conventional wisdom is that the smaller the index size, the lesser the query processing 
time. However, it was observed that the query using a larger index occasionally outperformed 
the query using a smaller index. 
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Figure 1: Parallel indexing and querying using FastQuery 
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Figure 2: Query performance result comparing the naïve query processing with membership queries using 
bitmap indexes. 1000 particles that reached the final target are searched in 1 billion row dataset of IMPACT-

T simulation. 
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Figure 3: The size of index files for varying subarray size, bin size and cardinality. The colored values are for 
the subarray sizes (green circles for 10 Million, red triangles for 1 million, and blue stars for 100K). 
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Figure 4: The size of index files when data are skewed for low cardinality. The colored values are for the 
subarray sizes (green circles for 10 Million, red triangles for 1 million, and blue stars for 100K). 
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Figure 5: Query performance by using bitmap indexes created with varying subarray size, binning option, 
and cardinality. The colored values are for the subarray sizes (blue circles for 10 Million, red triangles for 1 

million, and green square for 100K). 
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Figure 6: Query performance for skewed data and low cardinality. The colored values are for the subarray 
sizes (blue circles for 10 Million, red triangles for 1 million, and green square for 100K). 
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Figure 7: The size of index files for 10 billion-row dataset. The colored values are for the subarray sizes 
(green circles for 10 Million subarray size and unsorted data, red triangles for 1 million subarray size and 

unsorted data, blue diamonds for 10 Million subarray size and sorted data, cyan stars for 1 million subarray 
size and sorted data). 
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Figure 8: Query performance for varying number of MPI processes 
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