
Performance Enhancement of the Dynamical

Optimization Framework for Simulating Ions near

Polarizable Nanoparticles

Abstract—Simulating the dynamics of ions near polarizable
nanoparticles gets notoriously difficult due to the need to solve
the Poisson equation at every simulation timestep. Recently, a
dynamical optimization framework was developed that bypassed
this obstacle by representing the polarization charge density as
virtual dynamic variables, and evolving them in parallel with
the physical dynamics of ions. In this paper, the performance
of this framework is enhanced using a judicious combination of
parallel computing and machine learning techniques. We develop
a hybrid OpenMP/MPI implementation scalable for over 1000
cores that generates stable simulation of thousands of ions and
virtual variables for over 10 million timesteps. We use machine
learning to predict the virtual system parameters that optimize
the stability and accuracy of the simulation. The enhanced
framework improves performance by over 175× depending on
system size and configuration. Extraction of ion distributions near
nanoemulsions demonstrate the success of the methodology.

Index Terms—MPI/OpenMP, Hybrid Parallelization, Machine
Learning, Nanoscale Simulations

I. INTRODUCTION AND MOTIVATION

Accurate knowledge of ion distributions and associated

electrostatic interactions is necessary to understand nanoscale

phenomena such as protein conformational changes [1], DNA

precipitation [2], nanoparticle self-assembly [3], stability of

emulsions [4], and charging/discharging processes in superca-

pacitor systems [5]. This information helps guide the synthesis

of materials in biomimetic nanocontainers and extraction of

heavy metal ions from wastewater, and is useful to understand

biological processes such as cell signaling and transport of

ions across cell membrane.

Many of the aforementioned biological and synthetic

nanoparticle (NP) systems get polarized in the presence of

electric fields generated by the ions and/or external charged

objects. Examples include proteins within an aqueous cellular

medium, emulsions where oil and water are partitioned, and

gold NPs dispersed in water. Simulating the dynamics of

ions in the presence of these polarizable NPs using coarse-

grained models is challenging due to the need to compute

polarization (induced) charges in order to propagate the ion

configuration. This computation typically involves solving a

second-order differential equation, the Poisson equation, in 3-

dimensional space at each simulation timestep. This makes the

use of conventional nanoscale simulation methods to extract

ion distributions very time consuming and inefficient. Because

of these computational challenges, the problem of simulating

ions near polarizable NPs continues to be a subject of intense

research [6]–[11]. Resolving these challenges by enhancing

a recently introduced simulation framework [12]–[14] via a

judicious combination of parallel computing and machine

learning methods constitutes the main focus of this paper.

A dynamical optimization framework was developed that

enabled the replacement of the expensive solution of the

Poisson equation at each simulation step with an on-the-

fly computation of polarization effects [12], [13]. In this

simulation framework, inspired by the Car-Parrinello method

for simulating ion-electron systems, the energy functional of

the polarization charge density was dynamically optimized

resulting in the physical dynamics of ions in parallel with the

update of the virtual variables characterizing the polarization

(induced) charge density. The virtual system was evolved in a

manner that kept the induced charges close to the free-energy

minimum (“ground state”) corresponding to each new ionic

configuration visited along the dynamics. The advantages asso-

ciated with the on-the-fly computation of polarization effects in

conjunction with the reduction in computational costs achieved

by solving for the scalar induced density variable enabled the

study of electrolyte ion solutions near polarizable NPs [12],

[14] using this framework.

The effects of nanoconfinement and ion concentrations in

synthetic and biological NP systems typically lead to ion

distributions that reach constant bulk value within a few

nanometers away from the NP. This enables the study of

ion densities near NP surfaces to be performed by including

thousands of ions in the simulation cell. Methods with the

scaling of O(n2) in the number of particles are feasible

for such applications and have been often employed [7]–[9],

[15], [16]. The original dynamical optimization framework

employed a shared memory model (OpenMP) to reduce the

computing time associated with evaluating the forces and

energies necessary to propagate the dynamics of the extended

system involving the ions and virtual variables. In this pa-

per, we outline a hybrid implementation scheme that utilizes

MPI for distributed memory parallelism, OpenMP for shared

memory parallelism, and memory optimization techniques to

enhance the performance of the framework. Using this hybrid

approach, the computational time for simulating 60 ions up

to 10 ns was reduced from 268 hours to 12 hours. For 1454

ions, this time was reduced from 6112 hours to 60.5 hours. The

applicability of the original method was extended to systems

with up to 4362 ions and surface mesh points ranging from

482 to 1692.

The stability, accuracy, and efficiency of the dynamical

optimization framework depends on the correct initialization

of the virtual system. In the original implementation, the

parameters characterizing the virtual system are found by a

tedious process of trial and error that was informed by in-

domain experience. The applicability of the original method

is limited by the absence of a framework that automates the

process of selecting the “good” parameters ab initio. Inspired

by the recent progress in the use of machine learning (ML)

in materials physics and engineering applications [17]–[19],

we describe an approach that employs ML to predict the

initial parameters characterizing the virtual system that keep

the polarization charge density close to the ground state of the

configuration visited by the ions during the entire simulation

run. The Neural Network (NN) based ML procedure was able

to predict the optimal parameters with 95.6% accuracy.

The ab initio parameter selection is seamlessly coupled

with the aforementioned hybrid openMP/MPI parallelization

scheme. The enhanced simulation framework generates stable

dynamics of several thousand ions in the presence of polarized

NPs for over 10 million steps (t > 10 ns) with computational

time reducing from thousands of hours to tens of hours

yielding a maximum speed up of ∼ 179. This combination

of parallel computing and ML in the context of nanoscale

simulation of ions is, to our knowledge, the first of its kind

and paves way for employing the simulation framework for

developing online applications for web-based platforms like

nanoHUB [20] where the user interacts with the simulation

software under limited interaction with the developer and/or

in-domain expert. An application was recently developed

on nanoHUB that employs high-performance computing re-

sources to simulate the ionic structure near unpolarizable NPs

[21]. The unique features of the framework presented in this

paper extend such calculations to polarizable NP systems

and enable the development of associated applications for

nanoHUB.

II. RELATED WORK

A. Nanoscale Simulation of Ions near Polarizable Materials

The problem of evaluating polarization effects in simulation

of charged systems has been extensively explored by sev-

eral research groups using different approaches [6]–[9], [12],

[22]–[25]. Explicit simulation of solvent (environment) and

NP molecules is possible [25] using advanced computational

techniques such as fast multipole methods and local electro-

statics algorithms [26]. However, many phenomena can not be

suitably investigated using fully atomistic models due to the

prohibitively large number of degrees of freedom associated

with such systems. This has led to the study of coarse-grained

models that treat ions explicitly but replace the molecular

structure of the solvent and the NP with continuous dielectric

environments. Systems where the different material parts are

adequately captured by piecewise-uniform dielectric permittiv-

ities (e.g. NP and solvent, protein and cellular medium) have

attracted particular attention [7]–[9], [12], [13], [22], [27],

[28]. For this particular case, solving for the polarization or

the induced charge density reduces the computational costs

because the unknown induced charge density lives only on

the interface (boundary) between the NP and the surrounding

medium, thus reducing the full three-dimensional electrostatic

calculation to a two-dimensional surface computation. Below,

we discuss the techniques in computing ion distributions in

these specific systems inspired from a variety of approaches

[7], [8], [12]–[14], [22], [23]. We focus on methods that are

widely applicable and are not limited by the choice of NP

geometry or dielectric permittivity profile.

We first outline the methods based on variational approach

to the problem of evaluating the polarization effects as these

techniques are most closely related to the work presented

here. In this approach, one transforms the original problem of

solving the Poisson differential equation into an optimization

problem. A variety of functionals employing various elec-

trostatic quantities as field variables have been proposed to

formulate the variational optimization problem [8], [26], [29]–

[35]. Allen et al. [8] optimized a functional of the induced

surface charge density ω(s) at each MD step to solve the

Poisson equation and propagate ions. As their functional did

not evaluate to the true energy of the system, they were not

able to take advantage of the dynamical optimization schemes.

Marchi et al. [6] worked with a true energy functional of the

polarization vector and implemented a dynamical optimization

framework to propagate ion dynamics in parallel with the

evaluation of polarization vector fields. They also employed

acceleration strategies to obtain a scaling of O(N logN) in

number of particles. However, the choice of the polarization

vector as the variable field needed a three-dimensional specifi-

cation leading to increased computational costs; see Sec. V-A

for more details.

Another class of methods of computing ω(s) involve trans-

forming the problem into a matrix formulation; examples

include the Induced Charge Computation (ICC) methods [7]

which use matrix inversions to solve for ω(s). Evaluating

matrix inversion involves O(M3) calculations where M is

the number of surface mesh elements. Techniques to improve

upon this scaling have been subsequently developed [22]. Al-

ternatively, iterative methods to solve the matrix equation have

been proposed [28]. In particular, the generalized minimum

residual method solves the matrix equation without explicitly

constructing the inverse matrix and converges to the correct

ω(s) at each simulation timestep within 4 - 5 iterations (for

spherically-shaped NPs) [10].

The evaluation of ω(s) in all the above approaches needs

the ionic configuration to be static and requires considerable

computational effort, whether in the form of matrix inversions

or iteration steps convergence, at each simulation step to

guarantee the overall stability of the simulation. In Sec. III,

we present the details of recently developed dynamical op-

timization framework that enables the simultaneous (on-the-

fly) updates of ω(s) and the ionic configuration in the same

simulation step.

B. Parameter Prediction using Machine Learning

Many recent developments in the use of machine learning in

materials science and engineering and physics [17], [18], [36],

[37] have inspired us to investigate the use of ML to predict

parameters to initialize the virtual system and enable the

simulation of ions near polarizable nanomaterials. Employing

machine learning (ML) abstractions for parameter prediction

and tuning have been extensively employed in performance

enhancement of bigdata or deep learning frameworks. In

addition, ML based approaches have become popular in other

domain areas including protein folding [38], insurance results

prediction [39], brain wave classification [40], and image

classification [41]. Recently, ML was applied to discover inter-

esting areas of parameter space in self assembly of colloidal

materials [19]. With the goal of identifying an appropriate

ML technique for our specific application, we reivew some

of the related work in using ML in the context of parameter

prediction.

Ding et al. [38] have conducted a comprehensive evaluation

of multi-class protein folding recognition using support vector

machines (SVM) and neural networks (NN). They used a

dataset containing 27 SCOP folds to train SVM and NN

classifiers to improve the prediction accuracy by 14-110%.

They investigated a large number of issues associated with

different classes to report overall accuracy of 56% by using a

dataset which had < 25% sequence identity. Balakrishnan et

al. [40] have proposed a fast and simple prediction method for

two class Brain-Computer Interface (BCI) simulations using

multi-layer perceptron. They performed their experiments on

two channel EEG data and used STFT for feature extraction.

Classification accuracy was found to be 100% for training data

and 74% for testing data. They reviewed few variations of NN

that were used to design BCI systems based on EEG data.

Multilayer perceptron was identified as the most widely used

NN for parameter prediction in BCI. Denil et al. [41] have also

used multilayer perceptron and convolutional deep learning

NN to predict the parameters found in image classification

task. The multilayer perceptron was able to obtain an accuracy

of 95%.

A case for machine learning to optimize multi-core per-

formance has been studied by Ganapathi et al. [42] to en-

hance the state of art auto-tuning approaches. Existing auto-

tuning approaches are scalable, automatic, and produce high-

quality code but they suffer from two major drawbacks.

First drawback is the large size of the parameter space to

explore: a single application, a single compiler, a specific

set of compiler flags, and homogeneous cores alone would

have 40 million configurations. Secondly, most existing auto-

tuners only focus to minimize overall running time and not the

efficiency (e.g, energy and power consumption). The proposed

solution utilizes statistical machine learning (SML) approaches

to infer models from large quantities of data. Kernel Canonical

Correlation Analysis (KCCA) is used as the SML algorithm

that effectively identifies the relationship between a set of

optimization parameters and a set of resultant performance

metrics. Using this approach, the six-month long search time

was reduced to two hours on 7-point and 27-point stencil code.

Similarly, Bergstra et al. [43] have employed ML for predictive

auto-tuning of the Filterbank correlation kernel with boosted

regression trees.

Yigitbasi et al. [44] have focused on employing ML-based

auto-tuning for diverse MapReduce applications and cluster

configurations in Hadoop framework. Their work shows that

support vector regression model (SVR) has good accuracy and

is also computationally efficient for performance modeling of

MapReduce applications. They compared the existing Starfish

auto-tuner (a cost-based model) to the SVR based approach

and reported comparable and, in some cases, even better

performance. Liao et al. [45] have also focused on optimizing

MapReduce in Hadoop framework using a search-based ML

called Gunther. Their approach utilizes a genetic algorithm

designed to identify parameter settings that contribute to near-

optimal job execution time.

This literature review identified the multilayer perceptron

approach as a suitable method for enhancing the dynamical

optimization framework presented here; this method has given

comparable, and in many cases, better results than other ML

approaches. In Sec. IV-A, we describe the results of using the

multilayer perceptron ML to identify good initial parameters

for the virtual system in the simulation of ions near polarizable

NPs using the dynamical optimization framework.

C. Code Acceleration via Parallel Computing Techniques

The techniques used for parallelizing simulation frame-

works in different science and engineering domain applications

can be broadly categorized into three approaches: shared

memory model (OpenMP), distributed memory model (MPI)

and hybrid model (OpenMP and MPI). These methods have

been in use on clusters of multi-core symmetric multipro-

cessing (SMP) nodes for many years. Rabenseifner et al.

[46] have provided a comprehensive evaluation of different

performance improvement factors and degradation factors in

high-performance computing (HPC) with respect to a modern

hierarchical hardware design. They employed pure MPI, pure

OpenMP, and hybrid models to analyze the cases where a hy-

brid programming model could be the most effective solution

offering reduced communication and memory consumption, as

well as improved load balance. Their work shows that parallel

programming model should consider combining distributed

memory parallelization (on the node interconnect) with shared

memory parallelization (inside each node).

Parallel programming approach using the hybrid program-

ming model has been applied for an implicit finite-element

methodology in groundwater transport simulations [47], [48].

The original program was decomposed using a domain de-

composition strategy to enable parallelization for distributed

memory model using MPI. Loop-level parallelism was im-

plemented with several loop modifications using OpenMP

directives inside each MPI process to enable shared memory

model. Parallel performance results were compared using four

different architectures and the hybrid approach was shown to

outperform both pure MPI and pure OpenMP performance

when using it with SMP cluster architectures.

The hybrid approach has also been used for groundwater

model calibration using multicore computers [49]. The com-

putational model for groundwater calibration utilizes between

100 – 1000 forward solutions, each entailing many nonlinear

partial differential equations, leading to a computationally

intensive problem to solve. First, the sequential program was

profiled using GPROF and a single parallelizable loop was

identified to account for over 97% of the total computational

time. The OpenMP programming model was adopted for the

identified parallelizable loop and the MPI programming model

was used for parallelizing the Jacobian calculation and lambda

search in the ground water calibration algorithm. Reported

results indicate that the calibration time was reduced from

weeks to a few hours by using this hybrid approach in

100− 200 compute cores.

Mininni et al. [50] focused on performance improvements

of pseudospectral computations for fluid turbulence to achieve

very high Reynolds numbers using MPI for distributed mem-

ory parallelism and OpenMP for shared memory parallelism.

They used domain decomposition techniques to achieve nu-

merical discretizations of the problem to implement the hybrid

parallel programming approach on top of the original sequen-

tial program. The hybrid methodology provided good scala-

bility up to 20,000 compute nodes with a maximum efficiency

of 89%, and a mean of 79%. The cost of communication

increased with the number of MPI processes, and the hybrid

scheme reduced the number of MPI processes by utilizing

OpenMP programming model. Further, for a given workload

per MPI task, the hybrid scheme outperformed the pure MPI

version in terms of speed up and computation time.

Finally, software packages such as ESPRESSO [51] and

LAMMPS [52] use MPI techniques to simulate many soft

matter systems including ions and nanoparticles. While these

are versatile simulation platforms, they largely support sim-

ulations of ions near unpolarizable NPs using conventional

molecular dynamics (MD) method. We note that features

have been added recently in these open source packages that

enable the simulation of ions in the presence of polarizable

materials; for example, some methods outlined in Sec. II-A

were implemented in ESPRESSO [22].

III. DYNAMICAL OPTIMIZATION FRAMEWORK:

BACKGROUND AND KEY FEATURES

We employed the Car-Parrinello molecular dynamics

(CPMD) technique to implement the dynamical optimization

of the energy functional to generate the propagation of ionic

degrees of freedom in tandem with an accurate update of

the polarization charges [12], [13] . Here we provide the

details of this methodology; these will help clarify the use

of enhancement strategies outlined in sections IV-A and IV-B.

A. Variational Functional and the Extended Lagrangian

We focus on the case of ions near a polarizable NP in a

solvent environment where the NP and the solvent are modeled

as materials of different, but uniform, permittivities. For this

system, the discretized form for the functional is obtained

by meshing the NP surface into M finite elements. We then

assign an average induced charge density ωk, an area ak, and

a normal vector nk to each element k. The functional takes

the form:

F [{ωk}] =
1

2

N∑

i=1

N∑

j=1

j 6=i

qiK
◦◦

ri,rj
qj +

1

2

N∑

i=1

M∑

k=1

qiK
◦•

ri,sk
ωkak

+
1

2

M∑

k=1

M∑

l=1

ωkK
••

sk,sl
ωlakal, (1)

where sk is the position vector of the kth finite element and

N is the number of ions that are represented with the density

ρ(r) =
∑N

i=1
qiδ(r−ri). Here, qi and ri are, respectively, the

charge and position vector of the ith point charge. The terms

K
◦◦

, K
◦•

, and K
••

in the above equation are, respectively, the

effective potentials of interaction between two ions, between

an ion and an induced charge, and between two induced

charges; explicit expressions can be found in the original

papers [12], [13].

To implement the dynamic (on the fly) optimization of

F [{ωk}] as ions are moved to their new configuration, we

include F [{ωk}] as the potential energy part of a Lagrangian

L that is extended to include a fictitious kinetic energy term

corresponding to the M virtual variables associated with the

surface induced charge density values {ωk}. This extended

Lagrangian L is given by:

L =

N∑

i=1

1

2
miṙ

2

i +

M∑

k=1

1

2
µkω̇

2

k − F [ωk; ri]− H [ri]. (2)

The first term is the kinetic energy of N ions with masses

mi and position ri. The second term is a kinetic energy of

the virtual system, with µk being the mass of the kth virtual

variable. The electrostatic potential energy F [{ωk}] of the

system constitutes the third term. And the final term contains a

set of Lennard-Jones potentials to model the steric interactions

of the ions and the NP surface.

B. CPMD Equations of Motion and Implementation Details

The following Euler-Lagrange equations of motion can be

derived from L:

mir̈i = −∇ri
F [{ωk}; ri] (3)

µkω̈k = −∇ωk
F [{ωk}; ri] (4)

These equations capture the Car-Parrinello idea of on the fly

optimization using MD. In the same timestep as the ions are

moved by the force −∇ri
F [{ωk}; ri], the induced charges are

updated via a force −∇ωk
F [{ωk}; ri] which is obtained from

the same potential energy function F [{ωk}] that generates

the force on the ions. Using these equations, the dynamics

for the extended system – ions and the virtual variables –

is generated using the standard MD technique implemented

via the velocity-Verlet algorithm with the timestep ∆. Ideally,

-400

-300

-200

-100

 0

 100

 0 2e+06 4e+06 6e+06 8e+06 1e+07

E
ne

rg
y

(k
B
 T

)

Simulation Time Steps

Extended

Kinetic (physical)

Potential

Kinetic (virtual)

Fig. 1. Energy profiles for the simulation of 1454 ions and 1082 grid points
for 10 ns. They show the first key feature of our framework.

∆ is similar to the value used in the MD simulation of

the unpolarizable system (∆ = 1 femtoseconds for an MD

simulation of electrolyte ions in water at room temperature).

To simulate the behavior of the ions at temperature T ,

we couple the extended system to a set of Nosé-Hoover

thermostats (this coupling modifies the equations of motion

(3) and (4) similar to a canonical MD routine). This two-

temperature approach is a standard feature of CPMD [53]–

[55]. The ions couple to a thermostat at temperature T , while

the virtual system is coupled to one at Tv . Virtual masses µk

are chosen to be proportional to the areas of the mesh points.

The value of the proportionality constant µ depends on the

particular system under study (NP charge, dielectric profile,

ion valencies, etc.) The parameters Tv and µ are optimized

to ensure the stability and accuracy of the simulation. Further

technical details of the method can be found in Ref. [12].

A system with N ions near an unpolarizable NP surface

effectively translates into a system with M additional degrees

of freedom in the case of polarizable NP. The associated

computational costs scale roughly as O((N + M)2). The

prefactor for this scaling can be significantly reduced using

parallelization. With OpenMP parallelization, the framework

produced simulations with improved scaling for small system

sizes. For example, for a system with N = 60 ions and

M = 484 grid points, the CPU time is τ = 60 milliseconds

per timestep for a simulation performed on a 16 core CPU

node with OpenMP shared memory multiprocessing. For large

systems, e.g. N = 1454 ions and M = 1082 grid points,

τ = 162 milliseconds per timestep. In Sec. IV-B, we provide

the strategies that combine OpenMP and MPI parallelization

models to enhance the performance of this framework.

C. Key Features of the Dynamical Optimization Framework

The dynamics derived from the Lagrangian L has a con-

served quantity associated with it: the extended (total) energy

-390

-380

-370

-360

-350

-340

-330

-320

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

E
ne

rg
y

F
un

ct
io

na
l (

k B
 T

)

Simulation Time Steps

Dynamical Optimization

Explicit (Static) Optimization

Fig. 2. Tracking of the induced density via functional matching feature for
10 million time steps for a system of 1454 ions and 1082 grid points.

of the system. This is given as:

E =

N∑

i=1

1

2
miṙ

2

i +

M∑

k=1

1

2
µkω̇

2

k +F [ωk; ri]+H [ri]+T +Tv.

(5)

Here, T and Tv are the energy terms associated with the

thermostats controlling the temperature of the physical and

virtual systems in the simulation. Two more energies are

important to isolate – the energy R of the real (physical)

system at constant T given by

R =

N∑

i=1

1

2
miṙ

2

i + F [ωk; ri] + T , (6)

and the kinetic energy of the virtual system:

K =

M∑

k=1

1

2
µkω̇

2

k. (7)

In the optimal scenario:

K ∼ 0 (8)

That is, the real system should be unaffected as much as

possible by the presence of virtual system and thus its energy

should be approximately conserved (R ∼ E). The usual

conservation of energy E and the approximate conservation

of R reflected in (8) constitute the first key feature of the

CPMD-based dynamical optimization framework. The energy

profiles of a successful simulation are shown in Fig. 1; the

extended energy E is constant and the virtual kinetic energy

stays stable and close to 0 throughout the entire simulation

run (for 10 ns). In practice, this feature is incorporated in

the simulation by appropriately choosing values of µ and

Tv ≪ T . These parameters are selected to control any rise

in the “momentum” (heating up) associated with the virtual

system as the simulation progresses.

This feature is encoded in two important quantities, R and

Rv , which are used to assess the stability and accuracy of the

simulation. R measures the ratio of the fluctuations in E and

the fluctuations in the kinetic energy of the physical system.

Rv is the ratio of the fluctuations in E and the fluctuations in

the K . For good energy conservation, R < 0.05 as noted in

the literature [6]. For stability, we demand a similar passing

test for the virtual system and enforce Rv < 0.15. The latter

inequality implicitly satisfies the requirement that K is kept

close to the value dictated by the low temperature Tv .

The second important feature relates to the effectiveness

of our scheme to reproduce the correct polarization charge

distribution. At regular intervals during the course of the

simulation, we collect and store the ion coordinates and in-

duced charge densities. Then, we carry out an ordinary (static)

minimization of the functional F to explicitly determine the

(numerically) exact induced density, and compare it to the

distributions obtained via dynamical optimization during the

simulation. This tracking of the induced density distributions

on the NP surface can be assessed by evaluating the matching

of F optimized on the fly with the functional that is optimized

explicitly. This functional matching is the second key feature.

In practice, we compute the functional deviation, fd, which

measures the average difference between the dynamically

optimized functional F and the potential energy functional

obtained via direct (static) minimization. To pass the test of

stability and accuracy, we enforce fd < 1%.

Quantities R, Rv, and fd enter the ML based procedure

described in Sec. IV-A to determine the initial selection of

optimal parameters.

IV. ENHANCED DYNAMICAL OPTIMIZATION FRAMEWORK

Fig. 3. System overview of enhanced dynamical optimization framework.

We now describe the performance enhancement of the

dynamical optimzation framework using a combination of the

state-of-the-art parallelization techniques and the ML-based

scheme for prediction of virtual system parameters. Figure 3

shows the overview of the implemented methodology. First,

the ion and NP attributes characterizing the system input prop-

erties are fed to the ML-based parameter prediction procedure.

The predicted virtual system parameters are used to run the

actual simulation that is parallelized using the MPI/OpenMP

hybrid programming model. The output of the simulations

are the ion densities that characterize the ionic structure

near polarizable NPs. In addition, during the simulation, the

quantities R, Rv, and fd are computed and saved to be used for

retraining the ML procedure after a set number of simulation

runs are executed.

A. Machine Learning Virtual System Parameters

As reviewed in Sec. II-B, many ML techniques are available

for parameter tuning and prediction. We adopt one of these

approaches, the multilayer perceptron neural network, for

automatic ab initio prediction of virtual system parameters

in the dynamical optimization framework for a given set of

physical system parameters. In this section, we describe the

data preparation, data preprocessing techniques, method of

feature extraction and classification techniques as well as their

validation based on Python programs. Figure 4 shows the

suggested framework to predict the desired parameters.

1) Data Preparation and Preprocessing: Inputs to the

CPMD program are classified into two categories; physical

parameters and computational parameters. In our research,

we created a data set using 13600 simulation runs to collect

all input parameters (which includes physical, virtual, and

computational parameters such as mesh size M and simulation

timestep ∆). As identified in Sec. III-C, success of the frame-

work implemented via the CPMD simulation is determined by

three quantities: R, Rv, and fd. Acceptable threshold values

for R, Rv , and fd are 0.05, 0.15, and 1 percent respectively.

So these three parameters are converted to a binary value to

represent the final output. Min max normalization filter was

applied to normalize the input data in the data preprocessing

stage.

2) Feature extraction and classification: As shown in figure

4, the conventional multilayer perceptron algorithm with one

hidden layer was implemented in Python for binary classifica-

tion. Hidden layer outputs were wrapped with tanh function

while softmax function was used in the output layer for the

algorithm. Using a trial and error process, hyper parameters

such as number of hidden layers and learning rate were set

to 6 hidden units and 0.05 respectively. The weights in the

hidden layer and output layer were initialized to be random

values using a seed at the beginning.

B. OpenMP/MPI Hybrid Parallelization

Dynamics of the physical system (ions) and the virtual sys-

tem in CPMD simulation starts with pre-calculated parameters

and associated variables initialized. Following velocity-Verlet

algorithm, at each simulation step, the code first updates the

velocity of all ions and virtual variables for half timestep ∆/2
and then it updates their positions for ∆. Next it calculates the

forces on each ion and virtual variable, and finally it updates

the velocity for the next ∆/2. During this propagation, the

energies and other thermodynamical quantities are monitored

at periodic intervals. Once the system reaches equilibrium, the

positions of the ions are stored periodically to generate ionic

density profiles at the end of the simulation run.

The original dynamical optimization framework imple-

mented via CPMD with built-in OpenMP parallelization takes

approximately 450 hours using 16 cores to run a simulation

of a typical system (1454 ions and 1082 grid points) for 10

million timesteps (that is, 10 ns). This runtime is high and

prohibits the use of the method to simulate dynamics of ions

for longer times in order to extract accurate data for evaluating

Fig. 4. ML procedure for determining the parameters for the virtual system
defined in the dynamical optimization framework.

ionic correlations and understanding associated physics. We

now outline the performance enhancement techniques we

utilized to significantly reduce the computational time for this

simulation framework.

First, the sequential program was evaluated for performance

profiling in order to determine where it is spending most of

the run time. The program was tested in the Indiana university

BIGRed2 cluster, which features a hybrid architecture based

on two Cray Inc., and it runs a proprietary variant of Linux

called Cray Linux Environment. The performance profiling

was done using Performance Counters for Linux (PERF). The

report showed that the program was spending 64.33% of its

total computation time on calculating the forces between the

ions for each time step of the simulation. The report also

revealed that no other major function call takes considerable

computation time compared to force calculation. The second

noticeable computation time was taken by object creation

procedures, whereas the third highest computation time was

consumed by basic vector operations such as addition, subtrac-

tion and scalar multiplication. We expect the time complexities

of the three major components of the MD routine – update

position, update velocity, and force calculation, to be O(n),
O(n), and O(n2) respectively. Performance profiling results

verified these time complexities and accordingly we focused

on optimization and parallelization of the force calculation

subroutine. Performance profiling did not highlight the energy

calculation subroutine as it was not executed as frequently. If

the energy sampling rate is increased, this subroutine will also

increase the runtime as it is also O(n2) in time complexity.

1) Distributed memory parallelization with MPI: The MPI

implementation uses one-dimensional (1D) problem decom-

position considering the forces on each ion (due to other

ions and induced charges), and the virtual forces on induced

density variables (due to the physical and virtual particles

in the system). Figure 5 shows the procedure applied to

enable the distributed memory parallelization with MPI. In this

approach, the simulation propagation happens sequentially in

every process until each instances of the program inside the

MPI processes need to calculate the current forces based on

the position of the ions and other MD parameters. Inside each

of these processes, the (partial) force calculation happens only

for the boundary parameters defined for that particular process.

After the partial force calculation has been completed, as ex-

plained in Fig. 5, the MPI collective operation MPI Allgather

was used to distribute the partial data of the forces among all

processes. Subsequently, each process calculates other required

MD parameters and moves on to perform the next iteration in

the evolution of the system. Similarly MPI collective operation

MPI Allreduce was used to parallelize the energy computation

subroutine.

2) Shared memory parallelization with OpenMP: The

shared memory parallelization approach with OpenMP is

based on a state-of-the-art loop level parallelism. Some mod-

ifications were made to the computationally intensive loops

inside the force calculation procedure so as to improve the

shared memory parallelization. The straightforward loop level

parallelism was achieved by implementing OpenMP compiler

directives on all nested loops. The OpenMP parallelization was

applied at the outermost loops to reduce OpenMP overheads,

such as thread generation and data copy. The dynamical distri-

bution and the ordering of the loop index from a large task to a

small task were applied to obtain better load balancing. Several

memory optimization techniques such as using C-language

arrays instead of C++ vectors (as it favors data locality) were

used to improve the efficiency of the program [56]. Repetitive

Fig. 5. Distributed memory parallelization approach with MPI. Hybrid
parallelization is implemented inside the Force Calculation block.

memory allocations inside the force calculation procedure

were moved to the outside of the routine. A force matrix

calculation approach was also tried in order to reduce the time

complexity to O(n2/2). Instead of accumulating all the force

elements for one outer loop iteration, the force matrix was

calculated only for the upper diagonal element of the matrix.

3) Hybrid MPI/OpenMP parallelization: The hybrid mas-

teronly model was tested by combining the distributed memory

MPI approach and the shared memory OpenMP approach [46].

The hybrid masteronly model uses one MPI process per node

and OpenMP on the cores of the node, with no MPI calls inside

the parallel regions. This hybrid model enables the domain

decomposition under a two-level mechanism. This approach

is applied for the force calculation and energy calculation

subroutines in the dynamical optimization framework. On

the MPI level, a coarse-grained domain decomposition is

performed using boundary conditions as explained in figure 5.

The second level of domain decomposition is achieved through

OpenMP loop level parallelization inside each MPI process.

This multilevel domain decomposition has advantages over

pure MPI or pure OpenMP, when cache performance is taken

into consideration. This strategy also provides the maximum

access locality, a minimum of cache misses, non-uniform

memory access (NUMA) traffic and inter-node communication

[46].

V. RESULTS AND DISCUSSION

A. Parameter Prediction using ML

Multilayer perceptron-based parameter prediction algorithm

was tested with 1500 sets of input parameters. The ML

algorithm predicted the virtual system parameters correctly

with 95.6% accuracy. Table I shows the predicted virtual

system parameters (µ and Tv) for some systems along with the

quantities R, Rv , and fd that characterize the two key features

identified in our framework. As evidenced by the values R,

Rv , and fd within allowable ranges (R < 0.05, Rv < 0.15,

|fd| < 1%), the predicted virtual system parameters produced

stable dynamics of the system.

TABLE I
PREDICTED PARAMETERS AND SIMULATION STABILITY

Inputs Prediction Results

eo , ew Q, v g µ Tv R Rv fd
2, 30 -30, 1 132 1 0.002 0.002 0.12 -0.1

2, 78.5 -30, 3 1692 100 0.002 0.003 0.13 -0.6

70, 78.5 -60, 2 752 18 0.001 0.002 0.08 -0.6

80, 160 -90, 3 1272 30 0.002 0.002 0.09 -0.7

100, 120 30, 2 482 36 0.005 0.002 0.1 -0.1

2, 30 -30, 3 1692 30 0.001 0.006 0.1 -0.6

When our ML model was trained utilizing only R and

fd factors, we noticed that there is a tendency to get a

prediction with higher µ and lower Tv for any given input

parameter pattern. Even though simulations did not fail within

the timescales tested for the dynamics of ions, these virtual

parameter choices are not always desirable and will not be

picked by the experienced, in-domain expert. However, when

we included Rv as an additional factor for training our model,

the NN started to predict the virtual system parameters (see

Table I) that were likely to be selected by in-domain expert

and yield a stable simulation for longer times.

B. Benchmarking

The dynamical optimization framework for the simulation

of ions near polarizable NPs implemented via CPMD was

benchmarked using BigRed2 cluster nodes. These nodes have

maximal achieved performance of 596.4 teraFLOPS, and

feature a hybrid architecture based on two Cray, Inc., 344

XE6 (CPU-only) compute nodes, providing a total of 1,020

compute nodes, 21,824 processor cores, and 43,648 GB of

RAM. Each XE6 node has two AMD Opteron 16-core Abu

Dhabi x86 64 CPUs and 64 GB of RAM; each XK7 node

has one AMD Opteron 16-core Interlagos x86 64 CPU, and

32 GB of RAM.

The inset in Fig. 6 shows the strong scaling plot of

the performance of pure OpenMP O(n2) for simulating 60

ions and 1082 virtual variables (mesh points) for 10 million

time steps. The pure OpenMP approach yielded a maximum

speedup of 5.27 with 16 OpenMP threads. The sequential

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500

S
pe

ed
up

Number of processes / threads

Pure MPI
Hybrid

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 10 20 30 40 50

Number of OpenMP threads

Pure OpenMP

Fig. 6. Strong scaling plot of the performance of MPI vs. MPI/OpenMP
hybrid for 60 ions and 1082 grid points. (Inset) Same plot in the case of the
pure OpenMP O(n2) approach for the same system.

program runtime was reduced from 268 hours to 51 hours.

The speedup increased only up to 16 threads because BigRed

II 676 XK7 compute nodes have 16 internal cores per node.

The performance slowdown for higher number of threads

can be attributed to oversubscription of the CPU node when

more than 16 threads are used. Using the OpenMP O(n2/2)
approach outlined before, the maximum speed up was 6.3 with

the sequential program runtime reducing from 268 hours to

42.3 hours. The speedup improvement was not significant in

comparison to the O(n2) approach due to the fact that the force

matrix procedure used in the O(n2/2) approach contained

many 2D array accesses and writes compared to the 1D array

force vector associated with the O(n2) approach.

Figure 6 compares the strong scaling plot of the perfor-

mance of pure MPI and the MPI/OpenMP hybrid model for 60

ions and 1082 grid points with propagation up to 10 million

simulation steps. The pure MPI model yielded a maximum

speed up of 9.78. Even though the ideal strong scaling should

increase the speedup as the number of processes increases

in pure MPI parallelization, our simulation framework for

the above system strong scale well up to 16 processes. This

discrepancy may be because the overhead of running multiple

processes on 60 ions (10 million time steps) is higher than the

parallelization achieved through the MPI model. In contrast,

the hybrid model produced the maximum speedup of 22.16

with 256 processes (16 MPI nodes and 16 OpenMP threads

inside each MPI node). This maximum speedup was calculated

without considering the execution time reduction gained from

the memory optimization techniques. For the hybrid model,

we found that the optimal configuration of OpenMP threads

is socket bound as noted by other researchers [46]. As a result,

the number of optimal OpenMP threads in our experiment was

16 for any number of MPI processes.

Using the hybrid methodology, the runtime for above small

system was reduced from 268 hours to 12 hours. When

implemented to a large system with 1454 ions and 1082 virtual

variables (for 1 million steps), the hybrid model reduced the

TABLE II
STRONG SCALING DATA (SPEEDUP) OF HYBRID PERFORMANCE MODEL

Processes/Threads Number of Ions

60 1454 2908

1 1 1 1

16 5.2 11.5 12.9

32 8.72 24.44 28.5

64 13.64 38.18 49.4

128 18.22 48.88 63.1

256 22.35 83.69 95.4

512 21.43 95.46 122.48

1024 19.24 84.86 179.25

execution time from 611 hours to 6.0 hours with a speedup of

95.46. Table II shows the strong scaling performance compar-

ison data for the hybrid performance model with systems of

different sizes simulated for 10 million time steps. It is clear

that optimum number of MPI processes are proportional to

the problem size when OpenMP thread affinity is set to the

socket resulting a well weak scaling system. The maximum

speedup of 179.25 was obtained for 1024 processes/threads

when program is executed with 2908 ions and 1082 grid

points.

C. Application: Ions near an oil-water nanoemulsion

The enhanced framework was applied to compute the distri-

bution of monovalent electrolyte (Sodium Chloride, NaCl) ions

of different concentration c outside an oil-water nanoemulsion

droplet [57], [58] at room temperature T = 298 K. Ions

were modeled as Lennard-Jones (LJ) spheres of diameter

σ = 0.357 nm, and the nanoemulsion (NP) droplet was

treated as a charged oil droplet in water forming a spherical

dielectric interface with surface charge of 60e and radius

a = 7.5σ ∼ 2.7 nm. The dielectric permittivity of oil is taken

to be ǫo = 2, while that of water is ǫw = 80. The difference

in the polarizable properties of oil and water lead to surface

polarization charges. We show results for c = 0.1, 0.2, 0.3 M

which together with the 60 counterions (associated with the

charged nanoemulsion) lead to a total of 1454, 2908, 4362 ions

respectively. The NP surface was discretized with M = 1082
points. The whole system of ions and NP is taken to be in a

large spherical simulation cell of diameter b = 40σ ∼ 14 nm.

The nanoemulsion surface and the simulation cell boundary

are modeled as hard LJ walls.

The aforementioned attributes of the physical system supply

the input parameters for the enhanced dynamical optimization

framework. Following the process elucidated in Fig. 3, we

first pass these as inputs to the ML-based procedure that gen-

erates the required virtual system parameters. The combined

set of physical and virtual system parameters kickstart the

parallelized simulation program that produces the dynamics

of ions near the polarizable NP with a simulation timestep of

1 femtoseconds.

The dynamics of ions near the polarized nanoemulsion was

simulated for over 10 million time steps (& 10 ns) with

good energy conservation. The inset in Fig. 7 shows that the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2 3 4 5 6 7 8

D
en

si
ty

 o
f p

os
iti

ve
 io

ns
 (

M
)

Distance from nanoemulsion droplet surface (nm)

0.1 M

0.2 M

0.3 M

-880

-870

-860

-850

-840

-830

-820

-810

-800
 0 5e+06 1e+07 1.5e+07 2e+07

F
un

ct
io

na
l (

k B
 T

)

Simulation Steps

Dynamical Optimization
Explicit (Static) Optimization

Fig. 7. Density distribution of positive ions at cn = 0.1, 0.2, 0.3 M produced
by the dynamical optimization framework. (Inset) Tracking of the induced
density via functional matching feature for the cn = 0.1 M system.

induced charges were accurately tracked at all times for up

to 20 million time steps (functional matching feature). The

stability and accuracy evident from this plot demonstrates the

success of the ML-based parameter selection process. The

hybrid parallelization scheme yielded converged results for the

ion distributions associated with these large systems. For all

concentrations, the densities reach a constant value in the bulk

(away from the NP surface) but show accumulation near the

NP surface. Fig. 7 shows how the preference of positive ions

to accumulate near the emulsion droplet changes with c.

D. Potential Issues and Comparison

We showed that the hybrid model increased the performance

of a given system in the regime where MPI has started to

decrease the speedup. However, a hybrid implementation is

not expected to outperform pure MPI in the regime where

the scaling of the MPI is still good. We will use roofline

model analysis to further identify effects and bottlenecks due

to memory traffic. Using this model, we will evaluate the

optimization for the peak performance and memory bandwidth

as they are available as upper bounds.

We will experiment with other MPI collective approaches

such as pipeline for replacing allgather collective operation

in hybrid implementation as the performance of different

approaches depends on how they are implemented. We also

plan to run larger system sizes for a shorter number of steps to

better understand the overheads of the parallel implementation.

To support periodic boundary conditions, we will integrate

the current parallelization features of the framework with

acceleration strategies such as fast particle-mesh Ewald solvers

that reduce the O(n2) scaling in particle system size to

O(n log n) [6], [23]. This process will extend the application

of the framework to investigate phenomena involving larger

NPs and dense ionic systems.

For very long simulations (over 100 million steps, O(1)
microseconds), the virtual system parameters may need to be

re-tuned. In this scenario, we will need to adapt our ML

procedure to provide dynamical auto-tuning of parameters,

which will extend the applicability of the framework to study

phenomena involving long ion relaxation times.

We compare this framework with another dynamical op-

timization framework based on solving for the polarization

vector variable with O(N logN) scaling [6]. They reported

simulations for time t ≤ 40 picoseconds with the compu-

tational time per step for single processor of O(1) seconds

for a system of O(100) particles. For similar system size, the

compute time per step per processor for our framework is τ ∼
O(0.1) seconds despite scaling in particle size as O(N2). With

OpenMP parallelization, we obtain τ ∼ O(0.01) seconds. And

with MPI/OpenMP hybrid implementation, τ ∼ O(0.001)
seconds. Further, we were able to simulate the system for

> 10 nanoseconds (∼ 3 orders of magnitude longer). These

results support our choice of 2-dimensional induced surface

charge density as the variable to optimize for compared to

the 3-dimensional vector polarization. Further they validate

the acceleration obtained by employing the hybrid parallel

computing model to enhance the framework.

VI. CONCLUSION AND OUTLOOK

We enhanced the stability and efficiency of the dynamical

simulation framework using a judicious combination of paral-

lel computing and machine learning techniques. The hybrid

openMP/MPI parallelization scheme reduced the computa-

tional time from thousands of hours to tens of hours yielding

a maximum speed up of over 175, and enabled the extraction

of ionic distributions for systems with thousands of ions

and surface mesh points. Machine learning based parameter

prediction procedure predicted the virtual system parameters

that provide the desired stability at 95.6% accuracy. This

enhanced simulation framework has many applications and

we demonstrated its utility by generating stable, accurate

dynamics of ions in the presence of a polarized nanoemulsion

droplet for over 10 million simulation steps (t > 10 ns) that

resulted in converged ion density profiles. This framework

paves way for investigating phenomena involving ions near

polarizable NPs of complex shapes and enable the study of

long-time ion dynamics.

The unique combination of parallel computing and machine

learning to enhance the simulation framework enables users

across the globe, with a diversity of in-domain experience, to

simulate ions near polarizable NPs via the use of web-based

applications hosted on services like nanoHUB. A tool powered

by this enhanced framework is currently being developed for

deployment on nanoHUB, and we expect to publish it this

year. We will extend our framework to enable the process

of using the data generated by this nanoHUB application for

continuous training (self-learning) of the ML-based parameter

prediction procedure. We also note that this ML method can

be extended to other domains where problems can be framed

as optimization problem of similar nature.

REFERENCES

[1] B. Honig and A. Nicholls, “Classical electrostatics in biology and
chemistry,” Science, vol. 268, no. 5214, pp. 1144–1149, 1995.

[2] E. Raspaud, M. Olvera de la Cruz, J. Sikorav, and F. Livolant, “Pre-
cipitation of dna by polyamines: a polyelectrolyte behavior.” Biophys J,
vol. 74, no. 1, pp. 381–93, 1998.

[3] Y. Levin, “Strange electrostatics in physics, chemistry, and biology,”
Physica A: Statistical Mechanics and its Applications, vol. 352, no. 1,
pp. 43 – 52, 2005.

[4] S. Sacanna, W. K. Kegel, and A. P. Philipse, “Thermodynamically stable
pickering emulsions,” Phys. Rev. Lett., vol. 98, p. 158301, Apr 2007.

[5] H. D. Abrua, Y. Kiya, and J. C. Henderson, “Batteries and electrochem-
ical capacitors.” Physics Today, vol. 61, no. 12, p. 43, 2008. [Online].
Available: http://search.ebscohost.com.turing.library.northwestern.edu/
login.aspx?direct=true&db=ulh&AN=35655115&site=ehost-live

[6] M. Marchi, D. Borgis, N. Levy, and P. Ballone, “A dielectric continuum
molecular dynamics method,” The Journal of Chemical Physics, vol.
114, no. 10, pp. 4377–4385, 2001.

[7] D. Boda, D. Gillespie, W. Nonner, D. Henderson, and B. Eisenberg,
“Computing induced charges in inhomogeneous dielectric media: Ap-
plication in a monte carlo simulation of complex ionic systems,” Phys.

Rev. E, vol. 69, no. 4, p. 046702, Apr 2004.

[8] R. Allen, J.-P. Hansen, and S. Melchionna, “Electrostatic potential inside
ionic solutions confined by dielectrics: a variational approach,” Phys.

Chem. Chem. Phys., vol. 3, pp. 4177–4186, 2001.

[9] A. P. dos Santos, A. Bakhshandeh, and Y. Levin, “Effects of the
dielectric discontinuity on the counterion distribution in a colloidal
suspension,” The Journal of Chemical Physics, vol. 135, no. 4, p.
044124, 2011.

[10] Z. Gan, H. Wu, K. Barros, Z. Xu, and E. Luijten, “Comparison
of efficient techniques for the simulation of dielectric objects in
electrolytes,” Journal of Computational Physics, vol. 291, pp. 317 –
333, 2015. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0021999115001667

[11] K. Grass and C. Holm, “Polyelectrolytes in electric fields: measuring the
dynamical effective charge and effective friction,” Soft Matter, vol. 5,
pp. 2079–2092, 2009.

[12] V. Jadhao, F. J. Solis, and M. Olvera de la Cruz, “Simulation of
charged systems in heterogeneous dielectric media via a true energy
functional,” Phys. Rev. Lett., vol. 109, p. 223905, Nov 2012. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevLett.109.223905

[13] ——, “A variational formulation of electrostatics in a medium with
spatially varying dielectric permittivity,” The Journal of Chemical

Physics, vol. 138, no. 5, p. 054119, 2013. [Online]. Available:
http://link.aip.org/link/?JCP/138/054119/1

[14] Y. Jing, V. Jadhao, J. W. Zwanikken, and M. O. de la Cruz, “Ionic
structure in liquids confined by dielectric interfaces,” The Journal of

Chemical Physics, vol. 143, no. 19, p. 194508, 2015.

[15] R. Messina, “Image charges in spherical geometry: Application to
colloidal systems,” The Journal of Chemical Physics, vol. 117, no. 24,
pp. 11 062–11 074, 2002.

[16] M. M. Hatlo and L. Lue, “The role of image charges in the interactions
between colloidal particles,” Soft Matter, vol. 4, pp. 1582–1596, 2008.

[17] K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami, “Machine
learning phases of strongly correlated fermions,” Phys. Rev. X, vol. 7,
p. 031038, Aug 2017. [Online]. Available: https://link.aps.org/doi/10.
1103/PhysRevX.7.031038

[18] J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, “Self-learning monte carlo
method,” Phys. Rev. B, vol. 95, p. 041101, Jan 2017. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevB.95.041101

[19] M. Spellings and S. C. Glotzer, “Machine learning for crystal identifi-
cation and discovery,” ArXiv e-prints, Oct. 2017.

[20] G. Klimeck, M. McLennan, S. P. Brophy, G. B. A. III, and M. S.
Lundstrom, “nanohub.org: Advancing education and research in nan-
otechnology,” Computing in Science Engineering, vol. 10, no. 5, pp.
17–23, Sept 2008.

[21] K. Kadupitiya, S. Marru, G. C. Fox, and V. Jadhao, “Ions in
nanoconfinement,” https://nanohub.org/resources/nanoconfinement, Dec
2017, online on nanoHUB. [Online]. Available: https://nanohub.org/
resources/nanoconfinement

[22] S. Tyagi, M. Suzen, M. Sega, M. Barbosa, S. S. Kantorovich, and
C. Holm, “An iterative, fast, linear-scaling method for computing
induced charges on arbitrary dielectric boundaries,” The Journal of

Chemical Physics, vol. 132, no. 15, p. 154112, 2010.

[23] K. Barros, D. Sinkovits, and E. Luijten, “Efficient and accurate
simulation of dynamic dielectric objects,” The Journal of Chemical

Physics, vol. 140, no. 6, p. 064903, 2014. [Online]. Available:
https://doi.org/10.1063/1.4863451

[24] Z. Gan and Z. Xu, “Multiple-image treatment of induced charges
in monte carlo simulations of electrolytes near a spherical dielectric
interface,” Phys. Rev. E, vol. 84, p. 016705, Jul 2011.

[25] A. Wynveen and F. Bresme, “Interactions of polarizable media in
water: A molecular dynamics approach,” The Journal of Chemical

Physics, vol. 124, no. 10, p. 104502, 2006. [Online]. Available:
https://doi.org/10.1063/1.2177244

[26] J. Rottler and A. C. Maggs, “Local molecular dynamics with coulombic
interactions,” Phys. Rev. Lett., vol. 93, no. 17, p. 170201, Oct 2004.

[27] Z. Xu, “Electrostatic interaction in the presence of dielectric
interfaces and polarization-induced like-charge attraction,” Phys. Rev.

E, vol. 87, p. 013307, Jan 2013. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevE.87.013307

[28] K. Barros and E. Luijten, “Dielectric effects in the self-assembly of
binary colloidal aggregates,” Phys. Rev. Lett., vol. 113, p. 017801, Jul
2014. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.
113.017801

[29] J. D. Jackson, Classical Electrodynamics, 3rd ed. Wiley, New York,
1999.

[30] R. A. Marcus, “On the theory of oxidation-reduction reactions involving
electron transfer. i,” The Journal of Chemical Physics, vol. 24, no. 5,
pp. 966–978, 1956.

[31] B. U. Felderhof, “Fluctuations of polarization and magnetization in
dielectric and magnetic media,” The Journal of Chemical Physics,
vol. 67, no. 2, pp. 493–500, 1977.

[32] E. S. Reiner and C. J. Radke, “Variational approach to the electrostatic
free energy in charged colloidal suspensions: general theory for open
systems,” J. Chem. Soc., Faraday Trans., vol. 86, pp. 3901–3912, 1990.

[33] D. M. York and M. Karplus, “A smooth solvation potential based on the
conductor-like screening model,” The Journal of Physical Chemistry A,
vol. 103, no. 50, pp. 11 060–11 079, 1999.

[34] P. Attard, “Variational formulation for the electrostatic potential in
dielectric continua,” The Journal of Chemical Physics, vol. 119, no. 3,
pp. 1365–1372, 2003.

[35] F. Lipparini, G. Scalmani, B. Mennucci, E. Cances, M. Caricato, and
M. J. Frisch, “A variational formulation of the polarizable continuum
model,” The Journal of Chemical Physics, vol. 133, no. 1, 2010.

[36] A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R. Kermode, G. Csányi,
and M. Ceriotti, “Machine learning unifies the modeling of materials and
molecules,” Science Advances, vol. 3, no. 12, 2017.

[37] S. S. Schoenholz, “Combining Machine Learning and Physics to Un-
derstand Glassy Systems,” ArXiv e-prints, Sep. 2017.

[38] C. H. Ding and I. Dubchak, “Multi-class protein fold recognition using
support vector machines and neural networks,” Bioinformatics, vol. 17,
no. 4, pp. 349–358, 2001.

[39] J. Kunce and S. Chatterjee, “A machine-learning approach to parameter
estimation.”

[40] D. Balakrishnan and S. Puthusserypady, “Multilayer perceptrons for
the classification of brain computer interface data,” in Bioengineering

Conference, 2005. Proceedings of the IEEE 31st Annual Northeast.
IEEE, 2005, pp. 118–119.

[41] M. Denil, B. Shakibi, L. Dinh, N. De Freitas et al., “Predicting param-
eters in deep learning,” in Advances in neural information processing

systems, 2013, pp. 2148–2156.

[42] A. Ganapathi, K. Datta, A. Fox, and D. Patterson, “A case for machine
learning to optimize multicore performance,” in First USENIX Workshop

on Hot Topics in Parallelism (HotPar09), 2009.

[43] J. Bergstra, N. Pinto, and D. Cox, “Machine learning for predictive auto-
tuning with boosted regression trees,” in Innovative Parallel Computing

(InPar), 2012. IEEE, 2012, pp. 1–9.

[44] N. Yigitbasi, T. L. Willke, G. Liao, and D. Epema, “Towards machine
learning-based auto-tuning of mapreduce,” in Modeling, Analysis &

Simulation of Computer and Telecommunication Systems (MASCOTS),

2013 IEEE 21st International Symposium on. IEEE, 2013, pp. 11–20.

[45] G. Liao, K. Datta, and T. L. Willke, “Gunther: Search-based auto-
tuning of mapreduce,” in European Conference on Parallel Processing.
Springer, 2013, pp. 406–419.

[46] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid mpi/openmp parallel
programming on clusters of multi-core smp nodes,” in Parallel, Dis-

tributed and Network-based Processing, 2009 17th Euromicro Interna-

tional Conference on. IEEE, 2009, pp. 427–436.

[47] G. Mahinthakumar and F. Saied, “A hybrid mpi-openmp implementation
of an implicit finite-element code on parallel architectures,” the Inter-

national Journal of High Performance Computing Applications, vol. 16,
no. 4, pp. 371–393, 2002.

[48] G. Mahinthakumar and M. Sayeed, “Hybrid genetic algorithmlocal
search methods for solving groundwater source identification inverse
problems,” Journal of water resources planning and management, vol.
131, no. 1, pp. 45–57, 2005.

[49] G. Tang, E. F. DAzevedo, F. Zhang, J. C. Parker, D. B. Watson, and
P. M. Jardine, “Application of a hybrid mpi/openmp approach for parallel
groundwater model calibration using multi-core computers,” Computers

& Geosciences, vol. 36, no. 11, pp. 1451–1460, 2010.
[50] P. D. Mininni, D. Rosenberg, R. Reddy, and A. Pouquet, “A hybrid

mpi–openmp scheme for scalable parallel pseudospectral computations
for fluid turbulence,” Parallel Computing, vol. 37, no. 6-7, pp. 316–326,
2011.

[51] H. J. Limbach, A. Arnold, B. A. Mann, and C. Holm, “ESPResSo –
an extensible simulation package for research on soft matter systems,”
Comp. Phys. Comm., vol. 174, no. 9, pp. 704–727, May 2006.

[52] S. Plimpton, “Fast parallel algorithms for short-range molecular
dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1
– 19, 1995. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S002199918571039X

[53] M. Sprik, “Computer simulation of the dynamics of induced polarization
fluctuations in water,” The Journal of Physical Chemistry, vol. 95, no. 6,
pp. 2283–2291, 1991.

[54] P. E. Blöchl and M. Parrinello, “Adiabaticity in first-principles molecular
dynamics,” Phys. Rev. B, vol. 45, pp. 9413–9416, Apr 1992.

[55] E. S. Fois, J. I. Penman, and P. A. Madden, “Control of the adiabatic
electronic state in ab initio molecular dynamics,” The Journal of Chem-

ical Physics, vol. 98, no. 8, pp. 6361–6368, 1993.
[56] E. Acklam, A. Jacobsen, and H. P. Langtangen, “Optimizing c++

code for explicit finite difference schemes,” Oslo Scientific Computing

Archive, Report, vol. 4, 1998.
[57] J. de Graaf, J. Zwanikken, M. Bier, A. Baarsma, Y. Oloumi, M. Spelt,

and R. van Roij, “Spontaneous charging and crystallization of water
droplets in oil,” The Journal of Chemical Physics, vol. 129, no. 19, p.
194701, 2008.

[58] M. Bier, J. Zwanikken, and R. van Roij, “Liquid-liquid interfacial tension
of electrolyte solutions,” Phys. Rev. Lett., vol. 101, p. 046104, Jul 2008.

APPENDIX: ARTIFACT DESCRIPTION

A. Overview

In this appendix, the relevant information needed to

launch/use the dynamical optimization framework is provided.

Details for the parallelization approach and the parameter

prediction procedure are outlined. The library dependencies

for the compilation of simulation program are provided. The

installation and the execution of the underlying parallelized

code on a supercomputer or in a local computer is explained.

This is followed by a brief discussion on the trustworthiness

of our results. Our framework is open source and can be

downloaded from

• git@github.com:softmaterialslab/np-electrostatics-lab.git

The basic computational framework and the MPI/OpenMP

hybrid enhancement is written in C++. The machine learning

procedure to evaluate optimal virtual system parameters is

written in Python. As envisioned in the paper, this framework

will enable the development of a simulation tool on nanoHUB

that provides the ionic structure near polarizable NPs. A

similar application for simulation the dynamics of ions near

unpolarizable nanoparticles was deployed here:

• http://nanohub.org/tools/nanoconfinement/.

Additional documentation and source code for this particular

application can be found here:

• https://github.com/softmaterialslab/nanoconfinement-md

B. Library Dependencies

Our parallelized simulations are based on MPI/OpenMP

hybrid methodology and use the following libraries to compile

and run.

• GNU programming environment

• boost/1.65.0

• gsl

At the beginning of the simulation, the input parameters are

fed into a machine learning procedure that requires Python

3.6 programming environment. It uses the following Python

libraries:

• numpy 1.14.2

• pandas 0.22.0

• scikit-learn 0.19.1

For all the aforementioned libraries, the environment variables

should be set by the user according to their system configu-

ration.

C. Installation Instructions

• Download or git clone np-electrostatics-lab project into a

directory.

• ”make install” to build and install the project. This will

create the executable and install the executable into root

directory.

D. Evaluation Workflow

There are two ways to execute the application:

1) Run on a computing cluster using the provided jobscript:

here all the input parameters are embedded in the

jobscript. The jobscript can be edited to change the input

parameters.

2) Run on a local computer using python: here the input

parameters are supplied as command line arguments.

An example command highlighting key inputs is noted

below:

• python np-electrostatics -n 1 -d 4 -a 2.6775 -b 14.28 -e 2

-E 78.5 -V -60 -v 1 -C 0.1 -g 1082 -T 0.001 -S 10000000

-B 0.025

Before running the program, the ”OMP NUM THREADS”

variable needs to be set to the available number of cores in the

user computer. The help menu can be accessed via ”python

np-electrostatics –help” to get more information about the

program inputs and outputs. The user can select the number

of MPI processes and OpenMP threads per MPI process by

changing the -n and -d flags.

In the above command, “a” is the nanoparticle radius, “b”

is the simulation box radius, “e” is the permittivity of the

NP “E” is the permittivity of the environment “V” is the

NP charge, “v” is the counterion valency, “C” is the salt ion

concentration, “g” is the mesh size, “T” is the timestep, “S”

is the simulation steps, and “B” is the bin width to compute

the density distribution.

E. Results Analysis and Discussion

The simulation framework generates information about the

ion dynamics including energy profiles, temperature profiles,

ion trajectories, density profiles etc. These data files will be

stored under outfiles and datafiles folders after the simulation

is completed. You can confirm the success of the simulation

by checking energy conservation factors: R < 0.05 and Rv <
0.15 and stability and accuracy factor: fd < 1%.

To test and replicate the benchmark results we provided

in the paper, the MPI processes and OpenMP threads can be

changed. We have bechmarked our application in BigRed II

computing cluster (which is in the TOP500 list) using CPU

nodes which has 16-core per node. It is expected that following

the procedure outlined here will replicate the results in the

paper.

