Reproducibility and Scalability in Experimentation through Cloud Computing Technologies Jonathan Klinginsmith Indiana University jklingin@indiana.edu

Common Research Scenarios

Reproducibility and scalability

That research is related to mine. How do I reproduce that experiment?

How do I benchmark their algorithm (or application) against mine?

Objects for reproducible, scalable applications

Reproduce experiments with persistent objects

Use configuration scripts to setup and run experiment

Experimental reproduction needs

Use of persistent objects for scalability Example demonstrating creation an 100 node Condor pool

Infrastructure, Data, and Storage

Object Storage

Use of persistent objects for reproducibility

Machine Images

Block Storage

laaS cloud artifacts can be referenced:

machine image: ami-00001234
block storage: vol-00002468
object storage: http://object.url

Specific instance types can be selected to meet needs: instance types: m1.large, cc2.8xlarge, ...

Provide APIs:

Create an instance: run-instances Create and attach storage: create-volume; attach-volume

Virtual Appliances can store:

Example data set(s)

Any additional items to reproduce the experiment

A single virtual appliances cannot provide scalability

S. Anders. A detailed use case: TSS plots – HTSeq v0.5.3p6 documentation.

http://www.huber.embl.de/users/anders/HTSeq/doc/tss.html

B. Howe. Virtual appliances, cloud computing, and reproducible research. Computing in Science and Engineering, 14:36–41, 2012.

J. Klinginsmith, et al. Towards reproducible escience in the cloud. In Cloud Computing Technology and Science (CloudCom), pages 582–586, 2011.

D. Nurmi, et al. The eucalyptus open-source cloud-computing system. In Proc. of the 2009 9th IEEE/ ACM Int. Symp. on Cluster Computing and the Grid, pages 124–131, 2009.

T. Tannenbaum, et al. Condor – a distributed job scheduler. In Beowulf Cluster Computing with Linux. MIT Press, 2001.

Futuregrid: An experimental, high-performance grid test-bed. https://portal.futuregrid.org/

INDIANA UNIVERSITY