
SCALABLE HIGH PERFORMANCE MULTIDIMENSIONAL

SCALING

Seung-Hee Bae

Submitted to the faculty of the Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the School of Informatics and Computing

Indiana University

February 2012

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the require-

ments of the degree of Doctor of Philosophy.

Doctoral
Committee

Geoffrey C. Fox
(Principal Advisor)

Randall Bramley

David B. Leake

January 17, 2012 David J. Wild

ii

Copyright c© 2012

Seung-Hee Bae

ALL RIGHTS RESERVED

iii

I dedicate this dissertation to my wife (Hee-Jung Kim) and mychildren (Seewon and Jian).

iv

Acknowledgements

First of all, I am sincerely grateful to my advisor, Dr. Geoffrey C. Fox, for his insightful guidance and

cheerful encouragement to this dissertation as well as my research projects. On the basis of his guidance and

encouragement, it could be possible to complete Ph.D. degree. While I have been working with him, I could

learn how to research as a scientist.

I would like to thank my research committee members: Dr. Randall Bramley, Dr. David Leake, and Dr.

David Wild for their help, guidance, and invaluable comments to this dissertation. I would like to thank Dr.

Sun Kim, who was my former advisor and had been my research committee member before he left Indiana

University, for his valuable advices and encouragement.

It has been a pleasant time to work with those friendly and brilliant colleagues at Pervasive Technology

Institute (PTI) for five years. I am thankful to Dr. Judy Qiu for her support and discussions for my research.

I am also thankful to SALSA group members: Dr. Jaliya Ekanake, Thilina Gunarathne, Saliya Ekanayake,

Ruan Yang, Hui Li, Tak-Lon Wu, Bingjing Zhang, Yuduo Zhou, Jerome Mitchell, Adam Hughes, and Scott

Beason, for being fantastic lab mates. I am particularly thankful to Dr. Jong Youl Choi for countless valuable

discussions on various research topics as well as non-technical topics during my time at PTI.

I would like to thank administrative staffs of the School of Informatics and Computing and PTI for their

valuable helps to do my study at Indiana University (IU). I amgrateful to Ms. Cathy McGregor Foster for

v

her helpful advice for Ph.D. study completion, and to Ms. Mary Nell Shiflet and Mr. Gary Miksik for their

administrative support at PTI. Because of their supports, Icould focus on my Ph.D. study while I has been at

IU.

Last but not least, I am very much indebted to my family for their generous support and encouragement

throughout my Ph.D. study at IU. My parents and my mother-in-law have been my big supporters during

my Ph.D study, and their encouragement is always cheerful tofinish this degree. I cannot fully explain my

gratitude with any words to my lovely wife, Hee-Jung, for herendurance, encouragement, and support with

love for my life as well as my study. Without her support and cheers, I would not make complete this long

journey. Since I met her at Handong, she is the only perfect companion for my life. I would like to thank to

my daughter (Seewon) and son (Jian) for being wonderful children to me. They are the source of my joy and

happiness even though I was in a difficult time.

I am a debtor of love. Thank you, all!

vi

Abstract

Today is so-calleddata deluge era. A huge amount of data is flooded in many domains of modern society

based on the advancements of technologies and social networks. Dimension reduction is a useful tool for

data visualization of such high-dimensional data and abstract data to make data analysis feasible for such

large-scale high-dimensional or abstract scientific data.Among the known dimension reduction algorithms,

multidimensional scaling (MDS) is investigated in this dissertation due to its theoretical robustness and high

applicability. For the purpose of large-scale multidimensional scaling, we need to figure out two main chal-

lenges. One problem is that large-scale multidimensional scaling requires huge amounts of computation and

memory resources, because it requiresO(N2) memory and computation. Another problem is that multidi-

mensional scaling is known as a non-linear optimization problem so that it is easy to be trapped in local

optima if EM-likehill-climbing approach is used to solve it.

In this dissertation, to tackle two challenges mentioned above, we have applied three methodologies to

multidimensional scaling: i) parallelization, ii) interpolation, and iii) deterministic annealing (DA) optimiza-

tion. Parallelization is applied to provide required huge amounts of computation and memory resources by

utilizing large-scale distributed-memory systems, such as multicore cluster systems. In addition, we have

investigated an interpolation method which utilizes the known mappings of a subset of the given data, named

in-sampledata, to generate mappings of the remainingout-of-sampledata. This approach dramatically re-

duces computational complexity and memory requirement. DAoptimization method has been applied to

vii

multidimensional scaling problem in order to avoid local optima. Experimental results illustrate the proposed

methodologies are effective to scale up the mapping capacity of multidimensional scaling algorithm and to

improve the mapping quality of multidimensional scaling via avoiding local optima.

viii

Contents

Acknowledgements v

Abstract vii

1 Introduction 1

1.1 Introduction 1

1.2 Multidimensional Scaling (MDS) 3

1.3 Motivation 5

1.4 The Research Problem 7

1.5 Contributions 8

1.6 Dissertation Organization 9

2 Backgrounds 11

2.1 Classical Multidimensional Scaling 11

2.2 Scaling by a MAjorizing of a COmplicated Function (SMACOF) 14

ix

2.3 Message Passing Interface (MPI) 16

2.4 Threading 18

2.5 Deterministic Annealing (DA) 19

3 High Performance Multidimensional Scaling 21

3.1 Overview 21

3.2 High Performance Visualization 22

3.2.1 Parallel SMACOF 23

3.3 Performance Analysis of the Parallel SMACOF 30

3.3.1 Performance Analysis of the Block Decomposition 31

3.3.2 Performance Analysis of the Efficiency and Scalability 34

3.4 Summary 38

4 Interpolation Approach for Multidimensional Scaling 47

4.1 Overview 47

4.2 Related Work 48

4.3 Majorizing Interpolation MDS 49

4.3.1 Parallel MI-MDS Algorithm 54

4.3.2 Parallel Pairwise Computation Method with Subset of Data 55

4.4 Analysis of Experimental Results 57

4.4.1 Exploration of optimal number of nearest neighbors 58

x

4.4.2 Comparison between MDS and MI-MDS 66

4.4.2.1 Fixed Full Data Case .. 66

4.4.2.2 Fixed Sample Data Size .. . 68

4.4.3 Parallel Performance Analysis of MI-MDS 72

4.4.4 Large-Scale Data Visualization via MI-MDS 77

4.5 Summary 78

5 Deterministic Annealing SMACOF 80

5.1 Overview 80

5.2 Related Work 81

5.2.1 Avoiding Local Optima in MDS 81

5.3 Deterministic Annealing SMACOF 83

5.3.1 Temperature Cooling Mechanism 87

5.4 Experimental Analysis 88

5.4.1 Iris Data 91

5.4.2 Chemical Compound Data 93

5.4.3 Cancer Data 95

5.4.4 Yeast Data .. . 97

5.4.5 Running Time Comparison 98

5.5 Experiment Analysis of Large Data Sets 99

xi

5.5.1 Metagenomics Data 100

5.5.2 ALU Sequence Data 103

5.5.3 16sRNA 50k Data .. . 104

5.5.4 16sRNA 100k Data 106

5.5.5 Comparison of the STRESS progress 109

5.5.6 Running Time Analysis of Large Data Sets 111

5.6 Summary 117

6 Conclusions and Future Works 119

6.1 Summary of Work 119

6.2 Conclusions 120

6.2.1 High-Performance Distributed Parallel Multidimensional Scaling (MDS) 121

6.2.2 Interpolation approach for MDS 122

6.2.3 Improvement in Mapping Quality 124

6.3 Future Works 126

6.3.1 Hybrid Parallel MDS 126

6.3.2 Hierarchical Interpolation Approach 127

6.3.3 Future Works for DA-SMACOF 127

6.4 Contributions 128

Bibliography 131

xii

List of Tables

3.1 Main matrices used in SMACOF 23

3.2 Cluster systems used for the performance analysis 31

3.3 Runtime Analysis of Parallel Matrix Multiplication part of parallel SMACOF with 50k data

set in Cluster-II 36

4.1 Compute cluster systems used for the performance analysis 59

4.2 Analysis of Maximum Mapping Distance betweenk-NNs with respect to the number of near-

est neighbors (k). 62

4.3 Large-scale MI-MDS running time (seconds) with 100k sample data 70

xiii

List of Figures

1.1 An example of the data visualization of 30,000 biological sequences by an MDS algorithm,

which is colored by a clustering algorithm. 5

3.1 An example of anN×N matrix decomposition of parallel SMACOF with 6 processes and

2×3 block decomposition. Dashed line represents where diagonal elements are. 25

3.2 Parallel matrix multiplication ofN×N matrix andN×L matrix based on the decomposition

of Figure 3.1 27

3.3 Calculation ofB(X[k−1]) matrix with regard to the decomposition of Figure 3.1. 29

3.4 Overall Runtime and partial runtime of parallel SMACOF for 6400 and 12800 PubChem data

with 32 cores in Cluster-I and Cluster-II w.r.t. data decomposition ofN×N matrices. 40

3.5 Overall Runtime and partial runtime of parallel SMACOF for 6400 and 12800 PubChem data

with 64 cores in Cluster-I and Cluster-II w.r.t. data decomposition ofN×N matrices. 41

3.6 Overall Runtime and partial runtime of parallel SMACOF for 6400 and 12800 PubChem data

with 128 cores in Cluster-II w.r.t. data decomposition ofN×N matrices. 42

xiv

3.7 Performance of parallel SMACOF for 50K and 100K PubChem data in Cluster-II w.r.t. the

number of processes, i.e. 64, 128, 192, and 256 processes (cores). (a) shows runtime and

efficiency is shown at (b). We choose balanced decompositionas much as possible, i.e. 8×8

for 64 processes. Note that both x and y axes are log-scaled for (a). 43

3.8 Efficiency oftMatMult and tMM Computing in Table 3.3 with respect to the number of

processes. 44

3.9 MPI Overhead of parallel matrix multiplication (tMM Overhead) in Table 3.3 and the rough

Estimation of the MPI overhead with respect to the number of processes. 45

3.10 Performance of parallel SMACOF for MC 30000 data in Cluster-I and Cluster-II w.r.t. the

number of processes, i.e. 32, 64, 96, and 128 processes for Cluster-I and Cluster-II, and

extended to 160, 192, 224, and 256 processes for Cluster-II.(a) shows runtime and efficiency

is shown at (b). We choose balanced decomposition as much as possible, i.e. 8× 8 for 64

processes. Note that both x and y axes are log-scaled for (a).. 46

4.1 Message passing pattern and parallel symmetric pairwise computation for calculating STRESS

value of whole mapping results. 56

4.2 Quality comparison between interpolated result of 100kwith respect to the number of nearest

neighbors (k) with 50k sample and 50k out-of-sample result. 60

4.3 The illustration of the constrained interpolation space whenk = 2 ork = 3 by initialization at

the center of the mappings of the nearest neighbors. 61

4.4 The mapping results of MI-MDS of 100k Pubchem data with 50k sample data and 50k out-

of-sample data with respect to the number of nearest neighbors (k). The sample points are

shown in red and the interpolated points are shown in blue. 63

xv

4.5 Histogram of the original distance and the pre-mapping distance in the target dimension of

50k sampled data of 100k. The maximum original distance of the 50k sampled data is 10.198

and the maximum mapping distance of the 50k sampled data is 12.960. 64

4.6 Quality comparison between the interpolated result of 100k with respect to the different sam-

ple sizes (INTP) and the 100k MDS result (MDS) 67

4.7 Running time comparison between the Out-of-Sample approach which combines the full

MDS running time with sample data and the MI-MDS running timewith out-of-sample data

whenN = 100k, with respect to the different sample sizes and the full MDS result of the 100k

data. .. 68

4.8 Elapsed time of parallel MI-MDS running time of 100k datawith respect to the sample size

using 16 nodes of the Cluster-II in Table 4.1. Note that the computational time complexity of

MI-MDS is O(Mn) wheren is the sample size andM = N−n. 69

4.9 The STRESS value change of the interpolation larger data, such as 1M, 2M, and 4M data

points, with 100k sample data. The initial STRESS value of MDS result of 100k data is

0.0719. 70

4.10 Running time of the Out-of-Sample approach which combines the full MDS running time

with sample data (M = 100k) and the MI-MDS running time with different out-of-sample

data sizes, i.e. 1M, 2M, and 4M. 71

4.11 Parallel overhead modeled as due to MPI communication in terms of sample data size (m)

using Cluster-I in Table 4.1 and message passing overhead model. 73

4.12 Parallel overhead modeled as due to MPI communication in terms of sample data size (m)

using Cluster-II in Table 4.1 and message passing overhead model. 74

xvi

4.13 Efficiency of the interpolation part (INTP) and the STRESS evaluation part (STR) runtimes

in the parallel MI-MDS application with respect to different sample data sizes using Cluster-I

in Table 4.1. The total data size is 100K. 75

4.14 Efficiency of the interpolation part (INTP) and the STRESS evaluation part (STR) runtimes in

the parallel MI-MDS application with respect to different sample data sizes using Cluster-II

in Table 4.1. The total data size is 100K. 76

4.15 Interpolated MDS results of total 100k PubChem datasettrained by (a) 12.5k and (b) 50k

sampled data. Sampled data are colored in red and interpolated points are in blue. 77

4.16 Interpolated MDS results. Based on 100k samples (a), additional 2M PubChem dataset is

interpolated (b). Sampled data are colored in red and interpolated points are in blue. 78

5.1 The computational temperature movement with respect totwo different cooling temperature

mechanisms (exponentialandlinear). 89

5.2 The normalized STRESS comparison of theiris data mapping results in 2D space. The bar

graph illustrates the average of 50 runs with random initialization, and the corresponding error

bar represents the minimum and maximum of the normalized STRESS values of SMACOF,

MDS-DistSmooth with different smoothing steps (s= 100 ands= 200) (DS-s100and-s200

hereafter for short), and DA-SMACOF with different coolingparameters (α = 0.9, 0.95, and

0.99) (DA-exp90,-exp95, and-exp99hereafter for short). The x-axis is the threshold value

for the stopping condition of iterations (10−5 and 10−6). 90

5.3 The 2D median output mappings of iris data with SMACOF (a), DS-s100 (b), and DA-exp95

(c), whose threshold value for the stopping condition is 10−5. Final normalized STRESS

values of (a), (b), and (c) are 0.00264628, 0.00208246, and 0.00114387, correspondingly. . . 92

xvii

5.4 The normalized STRESS comparison of thechemical compounddata mapping results in

2D space. The bar graph illustrates the average of 50 runs with random initialization, and the

corresponding error bar represents the minimum and maximumof the normalized STRESS

values of SMACOF, DS-s100 and -s200, and DA-exp90, DA-exp95, and DA-exp99. The

x-axis is the threshold value for the stopping condition of iterations (10−5 and 10−6). 94

5.5 The normalized STRESS comparison of thebreast cancerdata mapping results in 2D space.

The bar graph illustrates the average of 50 runs with random initialization, and the corre-

sponding error bar represents the minimum and maximum of thenormalized STRESS values

of SMACOF, DS-s100 and -s200, and DA-exp90,DA-exp95, and DA-exp99. The x-axis is

the threshold value for the stopping condition of iterations (10−5 and 10−6). 96

5.6 The normalized STRESS comparison of theyeastdata mapping results in 2D space. The bar

graph illustrates the average of 50 runs with random initialization, and the corresponding error

bar represents the minimum and maximum of the normalized STRESS values of SMACOF,

DS-s100 and -s200, and DA-exp90,DA-exp95, and DA-exp99. The x-axis is the threshold

value for the stopping condition of iterations (10−5 and 10−6). 97

5.7 The average running time comparison between SMACOF, MDS-DistSmooth (s= 100), and

DA-SMACOF (DA-exp95) for 2D mappings with tested data sets.The error bar repre-

sents the minimum and maximum running time.EM-5/EM-6 represents SMACOF with

10−5/10−6 threshold, andDS-5/DS-6andDA-5/DA-6 represents the runtime results of MDS-

DistSmooth and DA-SMACOF, correspondingly, in the same way. 98

xviii

5.8 The normalized STRESS comparison of themetagenomics sequencedata mapping results in

2D and 3D space. The bar graph illustrates the average of 10 runs with random initialization,

and the corresponding error bar represents the minimum and maximum of the normalized

STRESS values of SMACOF and DA-SMACOF withα = 0.95. The x-axis is the threshold

value for the iteration stopping condition of the SMACOF andDA-SMACOF algorithms

(10−5 and 10−6). 101

5.9 The normalized STRESS comparison of theALU sequencedata mapping results in 2D and

3D space. The bar graph illustrates the average of 10 runs with random initialization, and the

corresponding error bar represents the minimum and maximumof the normalized STRESS

values of SMACOF and DA-SMACOF withα = 0.95. The x-axis is the threshold value for

the iteration stopping condition of the SMACOF and DA-SMACOF algorithms (10−5 and

10−6). 102

5.10 The normalized STRESS comparison of the16s RNA sequencedata with 50000 sequences

for mapping in 2D and 3D space. The bar graph illustrates the average of 10 runs with random

initialization, and the corresponding error bar represents the minimum and maximum of the

normalized STRESS values of SMACOF, DA-SMACOF withα = 0.95 (DA-exp95), and

DA-SMACOF with linear cooling with 100 steps (DA-lin100). The x-axis is the threshold

value for the iteration stopping condition of the SMACOF andDA-SMACOF algorithms

(10−5, 10−6, andhybridapproach). 104

5.11 The mapping progress of DA-SMACOF withRNA50k data set in 2D space with respect to

computational temperature (T) and corresponding normalized STRESS value (σ). 107

xix

5.12 The normalized STRESS comparison of the16s RNA sequencedata with 100000 sequences

for mapping in 2D and 3D space. The bar graph illustrates the average of 10 runs with random

initialization, and the corresponding error bar represents the minimum and maximum of the

normalized STRESS values of SMACOF, DA-SMACOF withα = 0.95 (DA-exp95), and

DA-SMACOF with linear cooling with 100 steps (DA-lin100). The x-axis is the threshold

value for the iteration stopping condition of the SMACOF andDA-SMACOF algorithms

(10−5, 10−6, andhybridapproach). 108

5.13 The normalized STRESS progress comparison ofMC 30k data in 2D and 3D space by SMA-

COF and DA-exp95. The x-axis is the cummulated iteration number of SMACOF and DA-

SMACOF algorithms. 110

5.14 The normalized STRESS progress comparison ofRNA50k data in 2D and 3D space by SMA-

COF and DA-exp95. The x-axis is the cummulated iteration number of SMACOF and DA-

SMACOF algorithms. 112

5.15 The average running time comparison between SMACOF andDA-SMACOF (DA-exp95) for

2D and 3D mappings with MC30000 and ALU50058 data sets. The error bar represents the

minimum and maximum running time.EM-5/EM-6 represents SMACOF with 10−5/10−6

threshold, andDA-5/DA-6 represents the runtime results of DA-SMACOF, correspondingly,

in the same way. 113

5.16 The average running time comparison between SMACOF, DA-SMACOF (DA-exp95), and

DA-SMACOF with linear cooling (DA-lin100) for 2D and 3D mappings with 16s RNA

data sets. The error bar represents the minimum and maximum running time.EM-5/EM-6

represents SMACOF with 10−5/10−6 threshold, andDA-e5/DA-e5,6/DA-6andDA-l5/DA-

l5,6/DA-l6 represents the runtime results of DA-exp95 and DA-lin100, correspondingly, with

10−5/hybrid(10−5 and 10−6)/10−6. 115

xx

1

Introduction

1.1 Introduction

Because of the advancements of technology, a huge amount of data are produced in many domains of

modern society, from digital personal information to scientific observation, and experimental data to medical

records data. The current era could be referred to as the so-calleddata deluge era. In many scientific domains,

the volumes of data are on the tera-scale and even the peta-scale. For the study of large-scale sky surveys

in astronomy, about 20 terabytes of sky image data are collected by the Large Synoptic Survey Telescope1

per night, and this phenomenon has led to about 60 petabytes of raw data over ten years of operations. In

addition to large-scale sky survey data, biological sequence data has been produced in unimaginable volumes.

Although the Human Genome Project2, which was finished in 2003, was completed in 13 years and cost

billions of dollars, now genome sequencing for an organism can be done much faster and more cheaply due

to cost-effective high-throughput sequencing technologies. In fact, innovative sequencing technologies and

the microarray technique have increased the volumes of biological data enormously.

1LSST: Large Synoptic Survey Telescope (http://www.lsst.org/lsst/)
2Human Genome Project (http://www.ornl.gov/sci/techresources/HumanGenome/home.shtml)

1

1. Introduction 2

In 2005, Intel proposed the Recognition, Mining, and Synthesis (RMS) [24] approach as a killer ap-

plication for the next data explosion era. Machine learningand data mining algorithms were suggested as

important algorithms for the data deluge era by [24]. Miningsome meaningful information from these large

volumes of raw data requires a huge amount of computing powerwhich exceeds a single computing machine.

To make matters worse, the asymptotic time complexities of most of the data mining algorithms are larger

than a simpleO(N), in that they require a significant amount of processing capability for analyses over large

volumes of data. Thus, parallel and distributed computing is a critical feature of performing such data analy-

ses. The efficiency and the scalability should be achieved ina parallel implementation of algorithms in order

to maximize the effects of parallel and distributed computing.

One of the innovative inventions that has emerged in the computer hardware community during the last

decade was the invention of multi-core architecture. The classical method of improving the computing power

of computing processing units (CPUs), such as increasing clock speed, has been limited by physical obstacles;

therefore, the CPU companies changed the focus of improvingcomputing power from increasing the clock

speed of a CPU to increasing the number of cores in a CPU chip. Since multicore architecture as invented,

multicore architecture has become important in software development with effects on the client, the server

and supercomputing systems [5,23,24,66]. As mentioned in [66], the parallelism has become a critical issue

for developing software for the purpose of effectively using multicore systems.

From the above statements, the necessary computation will be enormous for data mining algorithms in the

future, and classical sequential programming schemes willnot be suitable for multicore systems any more,

so that implementing in scalable parallelism these algorithms will be one of the most important procedures

for the coming many-core and data explosion era.

Among the many data mining areas which exist, such as clustering, classification, and association rule

mining, and so on, dimension reduction algorithms are used to visualize high-dimensional data or abstract

data into a low-dimensional target space. Dimension reduction algorithms can be used for data visualization

1. Introduction 3

which can be applied to usage to fulfill the following purposes: (1) representing unknown data distribution

structures in human-perceptible space with respect to the pairwise proximity or topology of the given data;

(2) verifying a certain hypothesis or conclusion related tothe given data by showing the distribution of the

data; and (3) investigating relationship among the given data by spatial display.

Among the known dimension reduction algorithms, such as Principal Component Analysis (PCA), Multi-

dimensional Scaling (MDS) [13,45], Generative Topographic Mapping (GTM) [11,12], and Self-Organizing

Maps (SOM) [43], to name a few, multidimensional scaling (MDS) has been extensively studied and used

in various real application areas, such as biology [48, 71],stock market analysis [33], computational chem-

istry [4], and breast cancer diagnosis [46]. This dissertation focuses on the MDS algorithm, and we investigate

two ultimate goals: (1) how to achieve the scalability of theMDS algorithm to deal with large-scale data; and

(2) how to improve the mapping quality of MDS solutions as well as the scalable MDS. This dissertation also

describes some detailed performance analyses and experiments related to the proposed methodologies.

1.2 Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) [13,45,68] is a general term that refers to techniques for constructing a

map of generally high-dimensional data into a target dimension (typically a low dimension) with respect to

the given pairwise proximity information. Mostly, MDS is used to visualize given high dimensional data or

abstract data by generating a configuration of the given datawhich utilizes Euclidean low-dimensional space,

i.e. two-dimension or three-dimension.

Generally, proximity information, which is represented asan N ×N dissimilarity matrix (∆ = [δi j]),

whereN is the number of points (objects) andδi j is the dissimilarity between pointi and j, is given for the

MDS problem, and the dissimilarity matrix (∆) should agree with the following constraints: (1) symmetricity

(δi j = δ ji), (2) nonnegativity (δi j ≥ 0), and (3) zero diagonal elements (δii = 0). The objective of the MDS

1. Introduction 4

technique is to construct a configuration of a given high-dimensional data into low-dimensional Euclidean

space, where each distance between a pair of points in the configuration is approximated to the correspond-

ing dissimilarity value as much as possible. The output of MDS algorithms could be represented as anN×L

configuration matrixX, whose rows represent each data pointxi (i = 1, . . . ,N) in L-dimensional space. It is

quite straightforward to compute the Euclidean distance betweenxi andx j in the configuration matrixX, i.e.

di j (X) = ‖xi −x j‖, and we are able to evaluate how well the given points are configured in theL-dimensional

space by using the suggested objective functions of MDS, called STRESS [44] or SSTRESS [67]. Definitions

of STRESS (1.1) and SSTRESS (1.2) are following:

σ(X) = ∑
i< j≤N

wi j (di j (X)− δi j)
2 (1.1)

σ2(X) = ∑
i< j≤N

wi j [(di j (X))2− (δi j)
2]2 (1.2)

where 1≤ i < j ≤ N andwi j is a weight value, sowi j ≥ 0.

As shown in the STRESS and SSTRESS functions, the MDS problems could be considered to be non-

linear optimization problems, which minimizes the STRESS or the SSTRESS function in the process of

configuring anL-dimensional mapping of the high-dimensional data.

Figure 1.1 is an example of the data visualization of 30,000 biological sequence data, which is related to

a metagenomics study, by an MDS algorithm. The colors of the points in Figure 1.1 represent the clusters

of the data, which is generated by a pairwise clustering algorithm by deterministic annealing [36]. The data

visualization in Figure 1.1 shows the value of the dimensionreduction algorithms which produced lower

dimensional mapping for the given data. We can see clearly the clusters without quantifying the quality of

the clustering methods statistically.

1. Introduction 5

Figure 1.1: An example of the data visualization of 30,000 biological sequences by an MDS algorithm, which
is colored by a clustering algorithm.

1.3 Motivation

The recent explosion of publicly available biological genesequences, chemical compounds, and various

scientific data offers an unprecedented opportunity for data mining. Among the various available data mining

algorithms, dimension reduction is a useful tool for information visualization of high-dimensional data to

make analysis feasible for large volume and high-dimensional scientific data. It facilitates the investigation

of unknown structures of high dimensional data in three (or two) dimensional visualization.

In contrast to other algorithms, like PCA, GTM, and SOM, which generally construct a low dimensional

configuration based on vector representations of the data, MDS aims at constructing a new mapping in a target

1. Introduction 6

dimension on the basis of pairwise proximity (typically dissimilarity or distance) information; as a result, it

does not require feature vector information of the underlying application data to acquire a lower dimensional

mapping of the given data. Hence, MDS is an extremely useful approach for data visualization of a certain

type of data, which would prove impossible or improper to represent by feature vectors but tat has pairwise

dissimilarity, such as a biological sequence data. MDS, of course, is also applicable to data represented by

feature vectors as well. MDS provides more broad applicability than other dimension reduction methods in

terms of the given format of the data.

In the past, the data size given dealt with by machine learning and data mining algorithms was usually

small enough to be executed on a single CPU or node without anyconsideration of parallel computing. On the

other hand, in the modern data-deluged world, we can find manyinteresting data sets with large amounts of

units which are impossible to run as sequential programmingon a single node due, not only to the prohibitive

computing requirements but also, because of the required memory size. Therefore, we have to figure out

how to increase the computational capability of the MDS algorithm in order to manage large-scale high-

dimensional data sets. In addition to the increase of data size, the invention and emergence of multi-core

architectures has also required a change in the programmingparadigm, so as to be able to utilize the maximal

performance of the multi-core chips.

In general, there are two different approaches with which toimprove the computing capability of MDS

algorithm. One is to increase the available computing resources, i.e. CPUs and main memory size, and the

other method is to reduce the computational time complexity.

In addition to the motivation of increasing computational capability because of the large scale of the

data, another motivation of this thesis is based on the fact that the MDS problem is a non-linear optimization

problem, which means it might have many local optima, so the avoidance of non-global local optima is an

essential property needed in order to obtain a better quality of MDS outputs. Also, if we achieve the local

optima avoidance feature, it may result in generating less sensitive parameters and more consistent MDS

1. Introduction 7

output, than the output of the MDS algorithm which suffers from being trap in local optima. Thus, this

dissertation also investigates how to avoid local optima effectively and efficiently.

1.4 The Research Problem

The explosion of data and the invention of multi-core architecture has brought forth interesting reseach

issues in the data mining community as well as other computerscience areas. We reviewed the interesting

research motivations in relation to the MDS algorithm in Section 1.3. As we discussed in Section 1.3, two

main goals of this dissertation are: (1) examining the scalability of the MDS algorithm due to the large-scale

of the given data, i.e. millions of points; and (2) the local optima avoidance issue of MDS, which is a non-

linear optimization problem. These motivations of this dissertation have lead us to the following research

problems:

Parallelization

Applying distributed parallelism to the MDS algorithm is a natural process for achieving an increase in

the computational capability by using distributed computing nodes. This makes it possible to acquire

more computing resources and to utilize the full power of multi-core systems. Several issues should

be covered to implement an algorithm in parallel, such as theload-balance, efficiency, and scalability

issues.

Reduction of Complexity

Since the time complexity and memory requirements of the MDSalgorithm isO(N2) due to the use

of an N by N pairwise dissimilarity matrix, whereN is the number of points, and the distributed paral-

lel implementation of MDS algorithm is still limited to the number of available computing resources,

the development of an innovative MDS method, which reduces the time complexity and the memory

1. Introduction 8

requirement, is required to reach the goal of scalability ofthe MDS algorithm. The parallel implemen-

tation of the proposed MDS approach will be highly encouraged because the size of the data could be

enormous.

Optimization Method

Trapping in a local optima problem is a well-known problem ofthe non-linear optimization methods,

including MDS problem. This is a very important issue for thenon-linear optimization problems to

avoid local optima. However, it is difficult to avoid local optima by using simple heuristics, which

are based on the hill-climbing optimization method. Various non-determinstic optimization methods,

such as the Genetic Algorithms (GA) [37] and Simulated Annealing (SA) [40], were proposed as

solutions of local optima avoidance problems. They have been used for many non-linear optimization

problems. As with other data mining algorithms, various optimization methods have been applied to

the MDS problem for the purpose of avoiding local optima. It is true that the GA and SA algorithms

are very successful for avoiding local optima, which is the goal of these algorithms. These algorithms,

however, are also known to suffer from long running times dueto their non-deterministic random

walking approach. By taking the above statements into consideration, we would like to solve the local

optima issue of the MDS problem by applying a deterministic optimization method, which is not based

on a simple gradient descent approach.

1.5 Contributions

We can summarize the contributions of this dissertation as being the purpose of improving MDS algo-

rithms in relation to computational capability and mappingquality such as the following:

• [Parallelization] Efficient parallel implementation via the Message Passing Interface (MPI) in order to

scale up the computing capability of a well-known MDS algorithm (SMACOF) by utilizing distributed

1. Introduction 9

systems, i.e. cluster systems.

• [Reducing Complexity] Development of an innovative algorithm, which reduces the computational

complexity and memory requirement of MDS algorithms, and which produces acceptable mapping

results; this step will be taken for the purpose of scaling the MDS algorithm’s capacity up to millions

of points, a step which is usually intractable for generating a mapping via normal MDS algorithms.

• [Local Optima Avoidance] Providing an MDS algorithm which could comprehend out the local op-

tima avoidance problem in a deterministic way so that it generates better quality mapping in a reason-

able amount of time.

1.6 Dissertation Organization

This dissertation is composed of several chapters and each chapter describes a unique part of this thesis

as follows:

In Chapter 2, we describe some background methodologies related to this dissertation. First, we discussed

the well-known MDS algorithm which is named Scaling by a MAjorizing of a COmplicated Function (SMA-

COF). This is implemented in distributed parallel fashion in Chapter 3. Also, we summarize the optimization

method, named Deterministic Annealing (DA), which aims at avoiding local optima and which is used in this

dissertation. The Message Passing Interface (MPI) standard is briefly mentioned in this chapter as well.

How to achieve distributed parallel implementation of the SMACOF algorithm is illustrated in detail

in Chapter 3. Since the load balance has a critical impact on the efficiency of the parallel implementations, we

discuss how to decompose and spread out the given data to eachprocess; this approach is directly connected

to the load balance issue. Furthermore, we described the message passing patterns of each components of

the parallelized algorithm, here SMACOF, in Chapter 3. The detailed experimental analysis, which is based

1. Introduction 10

on the testing results on two different cluster systems, follows the explanation of the parallel implementation

in Chapter 3.

Chapter 4 describes the interpolation algorithm of the MDS problem which reduces computational com-

plexity from O(N2) to O(nM), whereN is the full data size,n is thesampleddata size, andM = N− n.

Furthermore, we introduce how to parallelize the proposed interpolation algorithm of MDS due to the huge

amounts of data points. This section is followed by a discussion of a quality comparison between the pro-

posed interpolation algorithm and the full MDS algorithm, as well as parallel performance analysis of the

parallelized implementation of this algorithm.

In contrast to Chapter 3 and Chapter 4, which focus on scalingup the computing capability of MDS

algorithms, we propose the step of applying the deterministic annealing (DA) [62, 63] optimization method

to the MDS problem; this approach will result in an avoidanceof local optima in a deterministic way. This

information is presented in Chapter 5. In Chapter 5, we also compare the DA applied MDS algorithm with

other MDS algorithms, with respect to the mapping quality and running time.

Finally, in Chapter 6, we present the conclusions of this dissertation and future research interests related

to the proposed algorithms discussed in this dissertation.

2

Backgrounds

2.1 Classical Multidimensional Scaling

The classical scaling(Classical MDS) was the first practical technique availablefor MDS, which was

proposed by Torgerson [68, 69] and Gower [31]. The linear algebraic theorems mentioned by Eckart and

Young [25] and Young and Householder [75] are the bases of theclassical MDS. The main idea of the classical

MDS is that, if the dissimilarities are represented by Euclidean distances, then we can find the configurations

which represent the dissimilarities by using some matrix operations. Here, we briefly introduce the classical

MDS algorithm, and the algorithm is explained in detail in Chapter 12 of [13].

The matrix of squared Euclidean distances of the given coordinates (D(2)(X) or simply D(2)) can be

expressed by a simple matrix equation with respect to the coordinate matrix (X), as shown in (2.1) and (2.2):

D(2) = c1t +1ct −2XXt (2.1)

= c1t +1ct −2B, (2.2)

11

2. Backgrounds 12

wherec is the diagonal elements ofXXt , 1 is the one vector whose elements are all ONE, 1t , ct , andXt

are transpose of 1,c, andX, correspondingly, andB = XXt . (2.1) illustrates the relation between the squared

distances and the scalar products of the coordinate matrix (X).

The centering matrix (J) can be defined asJ = I −n−111t , whereI is the identity matrix, which translates

a matrix to a column centered matrix by multiplying them. By multiplying the left and the right sides by the

centering matrixJ, a process called thedouble centeringoperation, we can introduce the following equations:

JD(2)J = J(c1t +1ct −2XXt)J (2.3)

= Jc1tJ+J1ctJ−J(2B)J (2.4)

= Jc0t +0ctJ−2JBJ (2.5)

= −2JBJ (2.6)

= −2B. (2.7)

Since the centering of a vector of ones turns out to be a vectorof zeros (1tJ = J1 = 0), the first two

terms are elliminated. Without a loss of generality, we can assume that the coordinate matrix (X) is a column

centered matrix. Then, the result of the double centering operation on theB matrix is equal toB itself, since

X is a column centered matrix. Therefore, we can define the relation betweenB andD(2) as in (2.8).

B = −1
2

JD(2)J. (2.8)

If we applyeigendecompositionon B, we can haveB = QΛQt . Λ could be represented asΛ1/2Λ1/2, and

if we apply this to the eigendecomposition results of theB matrix:

2. Backgrounds 13

Algorithm 2.1 Classical MDS algorithm

1: Calculate the matrix of squared dissimilarity∆(2).
2: ComputeB∆ by applying double centering:B∆ = − 1

2J∆(2)J.
3: Compute the eigendecomposition ofB∆ = QΛQt .

4: /* Q+ is the firstL eigenvectors ofQ */
5: /* Λ+ is the firstL eigenvalues ofΛ which is greater than ZERO. */

6: CalculateL-dimensional coordinate matrixX by X = Q+Λ1/2
+ .

7: return X.

B = QΛQt (2.9)

= QΛ1/2Λ1/2Qt (2.10)

= QΛ1/2(Λ1/2)tQt (2.11)

= (QΛ1/2)(QΛ1/2)t = XXt . (2.12)

By (2.12), we can find the coordinate matrix from the given squared distance matrix. The classical MDS

is very close to the above method, and the only difference is that it uses the squared dissimilarity matrix (∆(2))

instead of the matrix of squared distances (D(2)).

Algorithm 2.1 describes the classical MDS procedure, and its computational time complexity isO(N3)

due to the eigendecomposition. Note that, if∆ is not a Euclidean distance matrix, some eigenvalues could be

negative. The classical MDS algorithm ignores those negative eigenvalues as errors. Since the classical MDS

is an analytical solution, it does not require iterations toget a solution as shown in Algorithm 2.1. Another

merit of the classical MDS is that it provides nested solutions, in that the two dimensions of a 2D solution

are the same as the first two dimensions of a 3D result. The objective function of the classical MDS is called

STRAIN, and it is defined as follows:

2. Backgrounds 14

Algorithm 2.2 SMACOF algorithm

1: Z ⇐ X[0];
2: k⇐ 0;
3: ε ⇐ small positive number;
4: MAX ⇐ maximum iteration;
5: Computeσ [0] = σ(X[0]);
6: while k = 0 or (∆σ > ε andk≤ MAX) do
7: k⇐ k+1;
8: X[k] = V†B(X[k−1])X[k−1]

9: Computeσ [k] = σ(X[k])
10: Z ⇐ X[k];
11: end while
12: return Z;

S(X) = ||XXt −B∆||2. (2.13)

2.2 Scaling by a MAjorizing of a COmplicated Function (SMACOF)

There are a lot of different algorithms which could be used tosolve the MDS problem, and Scaling by

MAjorizing a COmplicated Function (SMACOF) [20,21] is one of them. SMACOF is an iterative majoriza-

tion algorithm used to solve the MDS problem with the STRESS criterion. The iterative majorization proce-

dure of the SMACOF could be thought of as an Expectation-Maximization (EM) [22] approach. Although

SMACOF has a tendency to find local minima due to its hill-climbing attribute, it is still a powerful method

since the algorithm, theoretically, guarantees a decreasein the STRESS (σ) criterion monotonically. Instead

of a mathematically detail explanation of the SMACOF algorithm, we illustrate the SMACOF procedure in

this section. For the mathematical details of the SMACOF algorithm, please refer to [13].

Algorithm 2.2 illustrates the SMACOF algorithm for the MDS solution. The main procedure of the

SMACOF are its iterative matrix multiplications, called the Guttman transform, as shown in Line 8 in Al-

gorithm 2.2, whereV† is the Moore-Penrose inverse [52, 54] (or pseudo-inverse) of matrix V. TheN×N

matricesV andB(Z) are defined as follows:

2. Backgrounds 15

V = [vi j] (2.14)

vi j =






−wi j if i 6= j

∑i 6= j wi j if i = j

(2.15)

B(Z) = [bi j] (2.16)

bi j =






−wi j δi j /di j (Z) if i 6= j

0 if di j (Z) = 0, i 6= j

−∑i 6= j bi j if i = j

(2.17)

If the weights are equal to one (wi j = 1) for all pairwise dissimilarities, thenV andV† are simplified as

follows:

V = N

(
I − eet

N

)
(2.18)

V† =
1
N

(
I − eet

N

)
(2.19)

wheree= (1, . . . ,1)t is one vector whose length isN. In this thesis, we generate mappings based on the equal

weights weighting scheme and we use (2.19) forV†.

As in Algorithm 2.2, the computational complexity of the SMACOF algorithm isO(N2), since the

Guttman transform performs a multiplication of anN×N matrix and anN×L matrix twice, typicallyN ≫ L

(L = 2 or 3), and the computation of the STRESS value,B(X[k]), andD(X[k]) also takeO(N2). In addition,

the SMACOF algorithm requiresO(N2) memory because it needs severalN×N matrices, as in Table 3.1.

Due to the trends of digitization, data sizes have increasedenormously, so it is critical that we are able to

investigate large data sets. However, it is impossible to run SMACOF for a large data set under a typical

2. Backgrounds 16

single node computer due to the memory requirement increases in O(N2). In order to remedy the shortage

of memory in a single node, we illustrate how to parallelize the SMACOF algorithm via message passing

interface (MPI) for utilizing distributed-memory clustersystems in Chapter 3.

2.3 Message Passing Interface (MPI)

The Message Passing Interface (MPI) [27,73] standard is a language-independent message passing proto-

col, and is the one of the most widely used parallel programming methods in the history of parallel computing.

MPI is a library specification for a message passing system, which aims at utilizing distributed computing

resources, i.e. computer cluster systems, for the purpose of increasing the computing power to deal with the

large scale problem caused by the communication between processes via messages.

MPI specification is composed of the definitions of a set of routines used to illustrate various paral-

lel programming models effectively, such as point-to-point communication, collective communication, the

topologies of communicators, derived data types, and parallel-IO. Since MPI uses language-independent

specifications for calls and language bindings, MPI runtimes are available for many programming languages,

for instance, Fortran, C, C++, Java, C#, Python, and so on.

MPI communication procedures can be categorized by two different mechanisms: (i) a point-to-point

communication procedure in which a communication is operated between two processes; and (ii) a collective

communication procedure, in which all processes within a communication group should invoke the collective

communication procedure.

A point-to-point communication can occur with a pair ofsendand receiveoperations. The MPI send

and receive operations are divided into: (i) a blocking operation and (ii) a nonblocking operation. In [27],

blocking and nonblocking operations are defined as follows:

2. Backgrounds 17

blocking If a return from the procedure indicates the user is allowed to re-use resources specified in the call.

nonblocking If the procedure may return before the operation completes,and before the user is allowed to

re-use resources (such as buffers) specified in the call.

In addition to astandardmode, MPI also proposes three more communication modes: the(i) buffered,

(ii) synchronous, and (iii) readymodes. In thestandard communication mode, MPI decides whether the

outgoing message will be buffered or not, not by users, so that a stardard mode send operation can be started

regardless of posting of the matching receive; this commandmay be complete before a maching receive is

posted, or it will not complete until a maching receive has been posted and the data has been moved to the

receiver. Abuffered mode send operation is defined as alocal procedure so that it depends only on the local

process and can complete without regard to other processes.In fact, MPI must buffer the outgoing message

of a buffered mode send operation so it can complete in the local region. In thesynchronouscommunication

mode, a send operation can be started regardless of posting of the matching receive, similar to the standard

and buffered modes. However, it will not complete successfully until a matching receive operation is posted

and the receive operation has started to receive the messageof the synchronous send. A send in theready

mode may be startedonly if the matching receive operation is already posted, unlike a send operation in

other communication modes. Both blocking and nonblocking send operations can use these four different

communication modes explained above.

Several collective communication procedures are defined inthe MPI standard [27]: barrier synchroniza-

tion, broadcast, scatter, gather, allgather, scatter/gather (which is complete exchange or all-to-all), and reduc-

tion/allreduction operations i.e. sum, min, max, or user defined functions. A collective operation requires

that all processes in the communication group call the communication routine.

MPI is highly used under distributed cluster systems, whichconnected via a high-speed network; it is

used for utilizing large-scale computing and memory resources, provided by these cluster systems, to solve

2. Backgrounds 18

large-scale data-intensive or computing-intensive applications. MPI also supports various communication

topologies, such as 2D or 3D grids and general graphs topologies, as well as dynamic communiation groups.

In addition, new types of functionality, such as dynamic processes, one-sided communication, parallel I/O,

and so on, are added to MPI standard 2 [26]. MPI provides flexible fine-grained parallel programming

environment based on various features of MPI.

2.4 Threading

Emerging multicore processors places a spotlight parallelcomputing, including threading, since it is able

to supply many computing units in a single node and even in a single CPU. Threading is used to investigate

parallelism within shared memory systems, such as graphicsprocessors, multicore systems, and Symmetric

Multiprocessor (SMP) Systems.

Threading supports fine grained task parallelism, which could be effective for various applications with-

out message passing overhead. For the correct use of threading, however, we have to consider the following:

(i) dealing with critical sections, which should be mutually exclusive between threads; and (ii) cache false

sharing overhead and cache line effects. There are a lot of threading libraries, which suppport parallelism

via threads, such as POSIX Threads [15], OpenMP [3], the TaskParallel Library (TPL) [47], Intel Threading

Building Blocks (TBB) [2, 60], and the Boost library [1, 39],to name a few. The Concurrency and Coordi-

nation Runtime (CCR) [18, 61] library supports a more complicated threading parallelism through message

passing via Port, which can be thought of as a way to queue messages. In addition to these libraries, most

programming languages also support threading in various forms.

Since multicore technology has been invented, multicore CPUs have become universal and typical, in that

most cluster systems are multicore cluster systems. Multicore cluster systems are distributed memory systems

which are composed of multiple shared memory system nodes bynetwork connection. Thus, Hybrid parallel

2. Backgrounds 19

programming paradigms, which combine distributed memory parallelism via MPI for inter-node communi-

cations and shared memory parallelism via threading libraries, i.e. OpenMP and TPL, within each node, have

been investigated [56,59]. In this dissertation, I have used the hybrid parallel paradigm in Chapter 4 as well.

2.5 Deterministic Annealing (DA)

Since the simulated annealing (SA) was introduced by Kirkpatrick et al. [40], people widely accepted

SA and other stochastic maximum entropy approaches to solveoptimization problems for the purpose of

finding global optimum instead of hill-climbing deterministic approaches. SA is a Metropolis algorithm [51],

which accepts not only the better proposed solution but eventhe worse proposed solution than the previous

solution, based on a certain probability which is related tothe computational temperature(T). Also, it is

known that the Metropolis algorithm converges to an equilibrium probability distribution known as theGibbs

probability distribution. If we denoteH (X) as the energy (or cost) function andF as afree energy, then

Gibbs distribution density as follows:

PG(X) = exp

(
− 1

T
(H (X)−F)

)
, (2.20)

F = −T log
∫

exp

(
− 1

T
H (X)

)
dX. (2.21)

and thefree energy (F), which is a suggested objective function of SA, is minimizedby the Gibbs probability

densityPG. Also, free energyF can be written as follows:

FP =< H >P −TS (P) (2.22)

≡
∫

P(X)H (X)dX +T
∫

P(X) logP(X)dX (2.23)

2. Backgrounds 20

where< H >P represents theexpected energyandS (P) denotesentropyof the system with probability

densityP. Here,T is used as a Lagrange multiplier to control the expected energy. With a high temperature,

the problem space is dominated by theentropyterm which makes the problem space become smooth so

it is easy to move further. As the temperature is getting cooler, however, the problem space is gradually

revealed as the landscape of the original cost function which limits the movement within the problem space.

To avoid being trapped in local optima, people usually startwith a high temperature and slowly decrease the

temperature in the process of finding a solution.

SA relies on random sampling with the Monte Carlo method to estimate the expected solution, e.g. ex-

pected mapping in target dimension for MDS problem, so that it suffers from a long running time. Deter-

ministic annealing (DA) [62, 63] can be thought of as an approximation algorithm of SA which tries to keep

the merits of SA. The DA [62,63] method actually tries to calculate the expected solution exactly or approx-

imately with respect to the Gibbs distribution as an amendment of SA’s long running time, while it follows

the computational annealing process using Eq. (2.22), in which T decreases from high to low.

3

High Performance Multidimensional Scaling

3.1 Overview

Due to the innovative advancements in science and technology, the amount of data to be processed or

analyzed is rapidly growing and it is already beyond the capacity of most commodity hardware we are using

currently. To keep up with such fast development, study for data-intensive scientific data analyses [28] has

been already emerging in recent years. It is a challenge for various computing research communities, such as

high-performance computing, database, and machine learning and data mining communities, to learn how to

deal with such large and high dimensional data in this data deluged era. Unless developed and implemented

carefully to overcome such limits, techniques will face soon the limits of usability. Parallelism is not an

optional technology any more but an essential factor for various data mining algorithms, including dimension

reduction algorithms, by the result of the enormous size of the data to be dealt by those algorithms (especially

since the data size keeps increasing).

Visualization of high-dimensional data in low-dimensionsis an essential tool for exploratory data anal-

ysis, when people try to discover meaningful information which is concealed by the inherent complexity of

the data, a characteristic which is mainly dependent on the high dimensionality of the data. This task is also

21

3. High Performance Multidimensional Scaling 22

getting more difficult and challenged by the huge amount of the given data. In most data analysis with such

large and high-dimensional dataset, we have observed that such a task is no more CPU bounded but rather

memory bounded, in that any single process or machine cannothold the whole data in its memory any longer.

In this chapter, I tackle this problem for developing a high performance visualization for large and high-

dimensional data analysis by using distributed resources with parallel computation. For this purpose, we will

show how we developed a well-known dimension-reduction-based visualization algorithm, named Multidi-

mensional Scaling (MDS), in the distributed fashion so thatone can utilize distributed memories and be able

to process large and high dimensional datasets.

In this chapter, we introduce the details of our parallelized version of an MDS algorithm, called parallel

SMACOF, in Section 3.2. The brief introduction of SMACOF [20, 21] can be found at Section 2.2 of Chap-

ter 2. In the next, we show our performance results of our parallel version of MDS in various compute cluster

settings, and we present the results of processing up to 100,000 data points in Section 3.3 followed by the

summary of this chapter in Section 3.4.

3.2 High Performance Visualization

We have observed that processing a very large dataset is not only a cpu-boundedbut also amemory-

boundedcomputation, in that memory consumption is beyond the ability of a single process or even a single

machine, and that it will take an unacceptable running time to run a large data set even if the required

memory is available in a single machine. Thus, running machine learning algorithms to process a large

dataset, including MDS discussed in this thesis, in a distributed fashion is crucial so that we can utilize

multiple processes and distributed resources to handle very large data which usually will take a long time and

even not fit in the memory of a single process or a compute node.The memory shortage problem becomes

more obvious if the running OS is 32-bit which can handle at most 4GB virtual memory per process. To

3. High Performance Multidimensional Scaling 23

Table 3.1: Main matrices used in SMACOF
Matrix Size Description

∆ N×N Matrix for the given pairwise dissimilarity[δi j]

D(X) N×N Matrix for the pairwise Euclidean distance of

mapped in target dimension[di j]

V N×N Matrix defined by the valuevi j in (2.14)

V† N×N Matrix for pseudo-inverse ofV

B(Z) N×N Matrix defined by the valuebi j in (2.16)

W N×N Matrix for the weight of the dissimilarity[wi j]

X[k] N×L Matrix for currentL-dimensional configuration

of N data pointsx[k]
i (i = 1, . . . ,N)

X[k−1] N×L Matrix for previousL-dimensional configuration

of N data pointsx[k−1]
i (i = 1, . . . ,N)

process large data with efficiency, we have developed the parallel version of MDS by using a Message Passing

Interface (MPI) fashion. In the following, we will discuss more details on how we decompose data using the

MDS algorithm to fit in the memory limit of a single process or machine. We will also discuss how to

implement an MDS algorithm, called SMACOF, by using MPI primitives to get some computational benefits

of parallel computing.

3.2.1 Parallel SMACOF

Table 3.1 describes frequently used matrices in the SMACOF algorithm. As shown in Table 3.1, the

memory requirement of SMACOF algorithm increases quadratically asN increases. For the small dataset,

memory would not be any problem. However, it turns out to be a critical problem when we deal with a large

data set, such as hundreds of thousands or even millions. Forinstance, ifN = 10,000, then oneN×N matrix

of 8-byte double-precision numbers consumes 800 MB of main memory, and ifN = 100,000, then oneN×N

matrix uses 80 GB of main memory. To make matters worse, the SMACOF algorithm generally needs six

N×N matrices as described in Table 3.1, so at least 480 GB of memory is required to run SMACOF with

100,000 data points without considering twoN× L configuration matrices in Table 3.1 and some required

3. High Performance Multidimensional Scaling 24

temporary buffers.

If the weight is uniform (wi j = 1,∀i, j), we can use only four constants for representingN×N V andV†

matrices in order to saving memory space. We, however, stillneed at least threeN×N matrices, i.e.D(X), ∆,

andB(X), which requires 240 GB memory for the above case, which is still an unfeasible amount of memory

for a typical computer. That is why we have to implement a parallel version of SMACOF with MPI.

To parallelize SMACOF, it is essential to ensure load balanced data decomposition as much as possible.

Load balance is important not only for memory distribution but also for computational distribution, since

parallelization implicitly benefits computation as well asmemory distribution, due to less computing per

process. One simple approach of data decomposition is that we assumep = n2, wherep is the number of

processes andn is an integer. Though it is a relatively less complicated decomposition than others, one major

problem of this approach is that it is a quite strict constraint to utilize available computing processors (or

cores). In order to release that constraint, we decompose anN×N matrix to m×n block decomposition,

wherem is the number of block rows andn is the number of block columns, and the only constraint of the

decomposition ism× n = p, where 1≤ m,n ≤ p. Thus, each process requires only approximately 1/p of

the full memory requirements of SMACOF algorithm. Figure 3.1 illustrates how we decompose eachN×N

matrix with 6 processes andm = 2,n = 3. Without a loss of generality, we assumeN%m = N%n = 0 in

Figure 3.1.

A processPk,0 ≤ k < p (sometimes, we will usePi j for matchingMi j) is assigned to one rectangular

blockMi j with respect to the simple block assignment equation in (3.1):

k = i ×n+ j (3.1)

where 0≤ i < m,0≤ j < n. ForN×N matrices, such as∆,V†,B(X[k]), and so on, each blockMi j is assigned

to the corresponding processPi j , and forX[k] and X[k−1] matrices,N × L matrices whereL is the target

3. High Performance Multidimensional Scaling 25

M00 M01 M02

M10 M11 M12

Figure 3.1: An example of anN×N matrix decomposition of parallel SMACOF with 6 processes and 2×3
block decomposition. Dashed line represents where diagonal elements are.

dimension, each process has a fullN×L matrix because these matrices have a relatively smaller size, and this

results in reducing the number of additional message passing routine calls. By scattering decomposed blocks

throughout the distributed memory, we are now able to run SMACOF with as huge a data set as the distributed

memory will allow concerning the cost of message passing overheads and a complicated implementation.

Although we assumeN%m = N%n = 0 in Figure 3.1, there is always the possibility thatN%m 6= 0 or

N%n 6= 0. In order to achieve a high load balance under theN%m 6= 0 or N%n 6= 0 cases, we use a simple

modular operation to allocate blocks to each process with at most ONErow or column difference between

them. The block assignment algorithm is illustrated in Algorithm 3.1.

At the iterationk in Algorithm 2.2, the application should acquire up-to-date information of the following

matrices:∆, V†, B(X[k−1]), X[k−1], andσ [k], to implement Line 8 and Line 9 in Algorithm 2.2. One good

3. High Performance Multidimensional Scaling 26

Algorithm 3.1 Pseudo-code for block row and column assignment for each process for high load balance.

Input: pNum, N, myRank
1: if N%pNum= 0 then
2: nRows = N / pNum;
3: else
4: if myRank≥ (N%pNum) then
5: nRows = N / pNum;
6: else
7: nRows = N / pNum + 1;
8: end if
9: end if

10: return nRows;

feature of the SMACOF algorithm is that some of matrices are invariable, i.e.∆ andV†, through the iteration.

On the other hand,B(X[k−1]) and STRESS (σ [k]) value keep changing at each iteration, sinceX[k−1] andX[k]

are changed in every iteration. In addition, in order to update B(X[k−1]) and the STRESS (σ [k]) value in

each iteration, we have to take theN×N matrices’ information into account, so that related processes should

communicate via MPI primitives to obtain the necessary information. Therefore, it is necessary to design

message passing schemes to do parallelization for calculating theB(X[k−1]) and STRESS (σ [k]) values as

well as the parallel matrix multiplication in Line 8 in Algorithm 2.2.

Computing the STRESS (Eq. (3.2)) can be implemented simply by a partial error sum ofDi j and∆i j

followed by anMPI_Allreduce:

σ(X) = ∑
i< j≤N

wi j (di j (X)− δi j)
2 (3.2)

where 1≤ i < j ≤ N andwi j is a weight value, sowi j ≥ 0. On the other hand, calculation ofB(X[k−1]), as

shown at Eq. (2.16), and parallel matrix multiplication arenot simple, especially for the case ofm 6= n.

Figure 3.2 depicts how parallel matrix multiplication applies between anN×N matrix M and anN×L

matrix X. Parallel matrix multiplication for SMACOF algorithm is implemented in a three-step process

of message communication via MPI primitives. Block matrix multiplication of Figure 3.2 for acquiringCi

3. High Performance Multidimensional Scaling 27

x =

M

M00 M01 M02

M10 M11 M12

X0

X1

X2

C0

C1

CX
Figure 3.2: Parallel matrix multiplication ofN×N matrix andN×L matrix based on the decomposition of
Figure 3.1

(i = 0,1) can be written as follows:

Ci = ∑
0≤ j<3

Mi j ·Xj . (3.3)

SinceMi j of N×N matrix is accessed only by the corresponding processPi j , computingMi j ·Xj part is done

by Pi j . Each computed sub-matrix byPi j , which is N
2 ×L matrix for Figure 3.2, is sent to the process assigned

Mi0, and the process assignedMi0, sayPi0, sums the received sub-matrices to generateCi by one collective

MPI primitive call, such asMPI_Reduce with theAddition operation. ThenPi0 sendsCi block to P00

by one collective MPI call, namedMPI_Gather, as well. Note that we are able to useMPI_Reduce and

MPI_Gather instead ofMPI_Send andMPI_Receive by establishing row- and column-communicators

for each processPi j . MPI_Reduce is called under an established row-communicator, sayrowCommi which

is constructed byPi j where 0≤ j < n, andMPI_Gather is called under defined column-communicator

3. High Performance Multidimensional Scaling 28

Algorithm 3.2 Pseudo-code for distributed parallel matrix multiplication in parallel SMACOF algorithm

Input: Mi j ,X
1: /* m= Row Blocks, n = Column Blocks */
2: /* i = Rank-In-Row, j = Rank-In-Column */
3: /* rowCommi : Row Communicator of row i, rowCommi ∈ Pi0,Pi1,Pi2, . . . ,Pi(n−1) */
4: /* colComm0: Column Communicator of column 0,colComm0 ∈ Pi0 where 0≤ i < n */
5: T i j = Mi j ·X j

6: if j 6= 0 then
7: /* AssumeMPI Reduce is defined asMPI Reduce(data, operation, root) */
8: SendT i j to Pi0 by callingMPI_Reduce (T i j , Addition, Pi0).
9: else

10: GenerateCi = MPI_Reduce (T i0, Addition, Pi0).
11: end if

12: if i == 0 and j == 0 then
13: /* AssumeMPI Gather is defined asMPI Gather(data, root) */
14: GatherCi wherei = 0, . . . ,m−1 by callingMPI_Gather (C0, P00)
15: CombineC with Ci where 0≤ i < m
16: BroadcastC to all processes
17: else if j == 0 then
18: SendCi to P00 by callingMPI_Gather(Ci, P00)
19: ReceiveC Broadcasted byP00

20: else
21: ReceiveC Broadcasted byP00

22: end if

of Pi0, saycolComm0 whose members arePi0 where 0≤ i < m. Finally, P00 combines the gathered sub-

matrix blocksCi , where 0≤ i < m, to constructN×L matrixC, and broadcasts it to all other processes by

MPI_Broadcast call.

Each arrow in Figure 3.2 represents message passing direction. Thin dashed arrow lines describes mes-

sage passing ofN2 × L sub-matrices by eitherMPI_Reduce or MPI_Gather, and message passing of

matrix C by MPI_Broadcast is represented by thick dashed arrow lines. The pseudo code for parallel

matrix multiplication in SMACOF algorithm is in Algorithm 3.2

For the purpose of computingB(X[k−1]) in parallel, whose elementsbi j is defined in (2.17), the message

passing mechanism in Figure 3.3 should be applied under a 2×3 block decomposition, as in Figure 3.1. Since

bss= −∑s6= j bs j, a processPi j assigned toBi j should communicate a vectorsi j , whose element is the sum of

3. High Performance Multidimensional Scaling 29

B00 B01 B02

B11 B12B10

Figure 3.3: Calculation ofB(X[k−1]) matrix with regard to the decomposition of Figure 3.1.

corresponding rows, with processes assigned sub-matrix ofthe same block-rowPik, wherek = 0, . . . ,n−1,

unless the number of column blocks is 1 (n == 1). In Figure 3.3, the diagonal dashed line indicates the diag-

onal elements, and the green colored blocks are diagonal blocks for each block-row. Note that the definition

of diagonal blocksis a block which contains at least one diagonal element of thematrixB(X[k]). Also, dashed

arrow lines illustrate the message passing direction. The same as in parallel matrix multiplication, we use

a collective call, i.e.MPI_Allreduce of row-communicator withAddition operation, to calculate row

sums for the diagonal values ofB instead of using pairwise communicate routines, such asMPI_Send and

MPI_Receive. Algorithm 3.3 shows the pseudo-code of computing sub-block Bi j in processPi j with MPI

primitives.

3. High Performance Multidimensional Scaling 30

Algorithm 3.3 Pseudo-code for calculating assigned sub-matrixBi j defined in (2.17) for distributed-memory
decomposition in parallel SMACOF algorithm

Input: Mi j ,X
1: /* m= Row Blocks, n = Column Blocks */
2: /* i = Rank-In-Row, j = Rank-In-Column */
3: /* We assume that sub-matrixBi j is assigned to processPi j */
4: Find diagonal blocks in the same row (rowi)
5: if Bi j /∈ diagonal blocksthen
6: compute elementsbst of Bi j

7: Send a vectorsi j , whose element is the sum of corresponding rows, toPik, whereBik ∈ diagonal blocks.
For simple and efficient implementation, we useMPI_Allreduce call for this.

8: else
9: compute elementsbst of Bi j , wheres 6= t

10: Receive a vectorsik, whose element is the sum of corresponding rows, wherek = 1, . . . ,n from other
processes in the same block-row, and sum them to compute a row-sum vector byMPI_Allreduce
call.

11: Computebss elements based on the row sums.
12: end if

3.3 Performance Analysis of the Parallel SMACOF

For the performance analysis of parallel SMACOF discussed in this chapter, we have applied our parallel

SMACOF algorithm for high-dimensional data visualizationin low-dimension to the dataset obtained from

the PubChem database1, which is an NIH-funded repository for over 60 million chemical molecules. It pro-

vides their chemical structure fingerprints and biologicalactivities, for the purpose of chemical information

mining and exploration. Among 60 Million PubChem dataset, in this chapter we have used 100,000 randomly

selected chemical subsets and all of them have a 166-long binary value as a fingerprint, which corresponds to

the maximum input of 100,000 data points having 166 dimensions.

In the following, we will show the performance results of ourparallel SMACOF implementation with

respect to 6,400, 12,800, 50,000 and 100,000 data points having 166 dimensions, represented as 6400, 12800,

50K, and 100K datasets, respectively.

In addition to the PubChem dataset, we also use a biological sequence dataset for our performance test.

1PubChem,http://pubchem.ncbi.nlm.nih.gov/

3. High Performance Multidimensional Scaling 31

Table 3.2: Cluster systems used for the performance analysis

Features Cluster-I Cluster-II

Nodes 8 32

CPU AMD Opteron 8356 2.3GHz Intel Xeon E7450 2.4 GHz

CPU / # Cores per node 4 / 16 4 / 24

Total Cores 128 768

L1 (data) Cache per core 64 KB 32 KB

L2 Cache per core 512 KB 1.5 MB

Memory per node 16 GB 48 GB

Network Giga bit Ethernet 20 Gbps Infiniband

Operating System Windows Server 2008 HPC Edi-
tion (Service Pack 2) - 64 bit

Windows Server 2008 HPC Edi-
tion (Service Pack 2) - 64 bit

The biological sequence dataset contains 30,000 biological sequence data with respect to the metagenomics

study based on pairwise distance matrix. Using these data asinputs, we have performed our experiments on

our two decent compute clusters as summarized in Table 3.2.

Since we focus on analyzing the parallel runtime of the parallel SMACOF implementation but not map-

ping quality in this chapter, every experiment in this chapter is finished after 100 iterations without regard

to the stop condition. In this way, we can measure parallel runtime performance with the same number of

iterations for each data with different experimental environments.

3.3.1 Performance Analysis of the Block Decomposition

Figure 3.4-(a) and (c) show the overall elapsed time comparisons for the 6400 and 12800 PubChem data

sets with respect to how to decompose the givenN×N matrices with 32 cores in Cluster-I and Cluster-II.

Also, Figure 3.4-(b) and (d) illustrate the partial runtimerelated to the calculation ofB(X) and the calculation

of D(X) of 6400 and 12800 PubChem data sets. An interesting characteristic of Figure 3.4-(a) and (c) is that

matrix data decomposition does not much affect the execution runtime for a small data set (here 6400 points,

in Figure 3.4-(a)), but for a large data set (here 12800 points, in Figure 3.4-(c)), row-based decomposition,

3. High Performance Multidimensional Scaling 32

such asp× 1, is severely worse in performance compared to other data decompositions. Figure 3.4-(c)

and (d) describe that the overall performance with respect to data decomposition is highly connected to the

calculation of the distance matrix runtime.

Also, Figure 3.5-(a) and (c) show the overall elapsed time comparisons for the 6400 and 12800 PubChem

data sets with respect to how to decompose the givenN×N matrices with 64 cores in Cluster-I and Cluster-II.

Figure 3.5-(b) and (d) illustrate the partial runtimes related to the calculation ofB(X) and the calculation of

D(X) of 6400 and 12800 PubChem data sets, the same as Figure 3.4. Similar to Figure 3.4, the data decom-

position does not make a substantial difference in the overall runtime of the parallel SMACOF with a small

data set. However, row-based decomposition, in this case a 64×1 block decomposition, takes much longer

for running time than the other decompositions, when we run the parallel SMACOF with the 12800 points

data set. If we compare Figure 3.5-(c) with Figure 3.5-(d), we can easily find that the overall performance

with respect to data decomposition is mostly affected by thecalculation of the distance matrix runtime for

the 64 core experiment.

The performance of overall elapsed time and partial runtimes of the 6400 and 12800 Pubchem data sets

based on different decompositions of the givenN×N matrices with 128 cores are experimented in only the

Cluster-II system in Table 3.2. Those performance plots areshown in Figure 3.6. As shown in Figure 3.4 and

Figure 3.5, the data decomposition does not have a considerable impact on the performance of the parallel

SMACOF with a small data set but it does have a significant influence on that performance with a larger data

set.

The main reason for the above data decomposition experimental results is the cache line effect that af-

fects cache reusability, and generally balanced block decomposition shows better cache reusability so that it

occurs with less cache misses than the skewed decompositions [6, 58]. In the parallel implementation of the

SMACOF algorithm, two main components actually access datamultiple times so that will be affected by

cache reusability. One is the[N×N] · [N×D] matrix multiplication part. Since we implement the matrix

3. High Performance Multidimensional Scaling 33

multiplication part based on the block matrix multiplication method with a 64×64 block for the purpose of

better cache utilization, the runtime of matrix multiplication parts is almost the same without regard to data

decomposition.

However, the distance matrix updating part is a tricky part.Since each entry of the distance matrix

is accessed only once whenever the matrix is updated, it is not easy to think about the entries reusability.

Although each entry of the distance matrix is accessed only once per each update, the new mapping points

are accessed multiple times for calculation of the distancematrix. In addition, we update the distance matrix

row-based direction for better locality. Thus, it is betterfor the number of columns to be small enough so that

the coordinate values of each accessed mapping points for updating the assigned distance sub-matrix remain

in the cache memory as much as is necessary.

Figure 3.4-(b),(d) through Figure 3.6-(b),(d) illustratethe cache reusability effect on 6400 points data

and 12800 points data. For instance, for the row-based decomposition case,p× 1 decomposition, each

process is assigned anN/p×N block, i.e. 100× 6400 data block for the cases ofN = 6400 andp = 64.

WhenN = 6400, the runtime of the distance matrix calculation part does not make much difference with

respect to the data decomposition. We might consider that, if the number of columns of the assigned block

is less than or equal to 6400, then cache utilization is no more harmful for the performance of the distance

matrix calculation part of the parallel SMACOF. On the otherhand, whenN = 12800 which is doubled, the

runtime of the distance matrix calculation part of row-based decomposition (p×1), and which is assigned a

12800/p×12800 data block for each process, is much worse than the other data decomposition cases, as in

sub-figure (d) of Figure 3.4 - Figure 3.6. For the other decomposition cases, such asp/2×2 through 1× p

data decomposition cases, the number of columns of the assigned block is less than or equal to 6400, when

N = 12800, and the runtime performance of distance matrix calculation part of those cases are similar to each

other and much less than the row-based data decomposition.

We have also investigated the runtime of theB(X) calculation, since the message passing mechanism for

3. High Performance Multidimensional Scaling 34

computingB(X) is different based on data decomposition. Since the diagonal elements ofB(X) are the neg-

ative sum of elements in the corresponding rows, it is required to callMPI_Allreduce or MPI_Reduce

MPI APIs for each row-communicator. Thus, the less number ofcolumn blocks means faster (or less MPI

overhead) processes in computingB(X), and even the row-based decomposition case does not need tocall the

MPI API for calculatingB(X). The effect of the different message passing mechanisms ofB(X) in regard to

data decomposition is shown in sub-figure (b) and (d) of Figure 3.4 through Figure 3.6.

In terms of a system comparison between the two test systems in Table 3.2, Cluster-II performs better than

Cluster-I in Figure 3.4 through Figure 3.6, although the clock speeds of the cores are similar to each other.

There are two different factors between Cluster-I and Cluster-II in Table 3.2. We believe that those factors

result in Cluster-II outperforming Cluster-I, i.e. L2 cache size and Networks. The L2 cache size per core

is 3 times bigger in Cluster-II than Cluster-I, and Cluster-II connected by 20Gbps Infiniband but Cluster-I

connected via 1Gbps Ethernet. Since SMACOF with large data is a memory-bound application, it is natural

that the bigger cache size results in the faster running time.

3.3.2 Performance Analysis of the Efficiency and Scalability

In addition to data decomposition experiments, we measuredthe parallel scalability of parallel SMACOF

in terms of the number of processesp. We investigated the scalability of parallel SMACOF by running with

different number of processes, e.g.p = 64, 128, 192, and 256. On the basis of the above data decomposition

experimental results, the balanced decomposition has beenapplied to this process scaling experiments. Asp

increases, the elapsed time should decrease, but linear performance improvement could not be achieved due

to the parallel overhead.

We make use of the parallel efficiency value with respect to the number of parallel units for the purpose

of measuriing scalability. Eq. (3.4) and Eq. (3.5) are the equations of overhead and efficiency calculations:

3. High Performance Multidimensional Scaling 35

f =
pT(p)−T(1)

T(1)
(3.4)

ε =
1

1+ f
=

T(1)

pT(p)
(3.5)

where p is the number of parallel units,T(p) is the running time withp parallel units, andT(1) is the

sequential running time. In practice, Eq. (3.4) and Eq. (3.5) can be replaced with Eq. (3.6) and Eq. (3.7) as

follows:

f =
αT(p1)−T(p2)

T(p2)
(3.6)

ε =
1

1+ f
=

T(p2)

αT(p1)
(3.7)

whereα = p1/p2 andp2 is the smallest number of used cores for the experiment, soα ≥ 1. We use Eq. (3.6)

and Eq. (3.7) in order to calculate the overhead and corresponding efficiency, since it is impossible to run

in a single machine for 50k and 100k data sets. Note that we used 16 computing nodes in Cluster-II (total

memory size in 16 computing nodes is 768 GB) to perform the scaling experiment with a large data set, i.e.

50k and 100k PubChem data, since the SMACOF algorithm requires 480 GB memory for dealing with 100k

data points, as we disscussed in Section 3.2.1, and Cluster-II can only perform that with more than 10 nodes.

The elapsed time of the parallel SMACOF with two large data sets, 50k and 100k, is shown in Figure 3.7-

(a), and the corresponding relative efficiency of Figure 3.7-(a) is shown in Figure 3.7-(b). Note that both

coordinates are log-scaled, in Figure 3.7-(a). As shown in Figure 3.7-(a), the parallel SMACOF achieved per-

formance improvement as the number of parallel units (p) increases. However, the performance enhancement

ratio (a.k.a. efficiency) is reduced asp increases, which is demonstrated in Figure 3.7-(b). The reason for

3. High Performance Multidimensional Scaling 36

Table 3.3: Runtime Analysis of Parallel Matrix Multiplication part of parallel SMACOF with 50k data set in
Cluster-II

#Procs tMatMult tMM Computing tMM Overhead

64 668.8939 552.5348 115.9847

128 420.828 276.1851 144.2233

192 366.1 186.815 179.0401

256 328.2386 140.1671 187.8749

reducing efficiency is that the ratio of the message passing overhead over the assigned computation per each

process is increased due to more message overhead and less computing portion per process asp increases, as

shown in Table 3.3.

Table 3.3 is the result of the runtime analysis of the parallel matrix multiplication part of the proposed

parallel SMACOF implementation which detached the time of the pure block matrix multiplication compu-

tation part and the time of the MPI message passing overhead part for parallel matrix multiplication, from

the overall runtime of the parallel matrix multiplication part of the parallel SMACOF implementation. Note

that #Procs, tMatMult , tMM Computing, andtMM Overhead represent the number of processes (par-

allel units), the overall runtime of the parallel matrix multiplication part, the time of the pure block matrix

multiplication computation part, and the time of the MPI message passing overhead part for parallel matrix

multiplication, respectively.

Theoretically, thetMM Computing portion should be negatively linear with respect to the number of

parallel units, if the number of points is the same and the load balance is achieved. Also, thetMM Overhead

portion should be increased as the number of parallel units is increased, if the number of points is the same.

More specifically, ifMPI_Bcast is implemented as one of the classical algorithms, such as a binomial tree

or a binary tree algorithm [55], in MPI.NET library, then thetMM Overheadportion will follow somewhat

O(⌈lg p⌉) with respect to the number of parallel units (p), since theMPI_Bcast routine in Algorithm 3.2

could be the most time consuming MPI method among the MPI routines of parallel matrix multiplication due

in part to the large message size and the maximum number of communication participants.

3. High Performance Multidimensional Scaling 37

Figure 3.8 illustrates the efficiency (calculated by Eq. (3.7)) of tMatMult andtMM Computing in Ta-

ble 3.3 with respect to the number of processes. As shown in Figure 3.8, the pure block matrix multiplication

part shows very high efficiency, which is almost ONE. In otherwords, the pure block matrix multiplica-

tion part of the parallel SMACOF implementation achieves linear speed-up as we expected. Based on the

efficiency measurement oftMM Computing in Figure 3.8, we could conclude that the proposed parallel

SMACOF implementation achieved good enough load balance and the major component of the decrease of

the efficiency is the compulsary MPI overhead for implementing parallelism. By contrast, the efficiency of

the overall runtime of the parallel matrix multiplication part is decreased to around 0.5, as we expected based

on Table 3.3.

We also compare the measured MPI overhead of the parallel matrix multiplication (tMM Overhead)

in Table 3.3 with the estimation of the MPI overhead with respect to the number of processes. The MPI

overhead is estimated based on the assumption thatMPI_Bcast is implemented by a binomial tree or a

binary tree algorithm, so that the runtime ofMPI_Bcast is in O(⌈lg(p)⌉) with respect to the number of

parallel units (p). The result is described in Figure 3.9. In Figure 3.9, it is shown that the measured MPI

overhead of the parallel matrix multiplication part has a similar shape with estimation overhead. We could

conclude that the measured MPI overhead of the parallel matrix multiplication part takes the expected amount

of time.

In addition to the experiment with pubChem data, which is represented by a vector format, we also

experimented on the proposed algorithm with other real datasets, which contains 30,000 biological sequence

data with respect to the metagenomics study (hereafter MC30000 data set). Although it is hard to present a

biological sequence in a feature vector, researchers can calculate a dissimilarity value between two different

sequences by using some pairwise sequence alignment algorithms, like Smith Waterman - Gotoh (SW-G)

algorithm [30,65] which we used here.

Figure 3.10 shows: (a) the runtime; and (b) the efficiency of the parallel SMACOF for the MC30000

3. High Performance Multidimensional Scaling 38

data in Cluster-I and Cluster-II in terms of the number of processes. We tested it with 32, 64, 96, and 128

processes for Cluster-I, and experimented on it with more processes, i.e. 160, 192, 224, and 256 processes,

for Cluster-II. Both (a) and (b) sub-figure of Figure 3.10 show similar tendencies to the corresponding sub-

figure of Figure 3.7. If we compare Figure 3.10 to Figure 3.7, we can see that the efficiency of the parallel

SMACOF for MC30000 data is generally lower than that of the parallel SMACOF for the 50k and 100k

pubChem data sets.

3.4 Summary

In this chapter, I have described a well-known dimension reduction algorithm, called MDS (SMACOF),

and I have discussed how to utilize the algorithm for a huge data set. The main issues involved in dealing

with a large amount of data points are not only lots of computations but also huge memory requirements. As

we described in Section 3.2.1, it takes 480 GB of memory to runthe SMACOF algorithm with 100,000 data

points. Parallelization via the traditional MPI approach in order to utilize the distributed memory computing

system, which can support much more computing power and extend the accessible memory size, is proposed

as a solution for the amendment of the computation and memoryshortage so as to be able to treat large data

with SMACOF.

As we discussed in the performance analysis, the data decomposition structure is important to maximize

the performance of the parallelized algorithm since it affects message passing routines and the message

passing overhead as well as the cache-line effect. We look atoverall elapsed time of the parallel SMACOF

based on data decomposition as well as sub-routine runtimes, such as calculation of BofZ matrix (B(X)) and

distance matrix (D(X)). The cache reusability affects the performance of updating the distance matrix of the

newly generated mappings with respect to the data decomposition if we run a large data set. For a larger data

set, row-based decomposition shows much longer runtime than others for the distance matrix calculation, and

3. High Performance Multidimensional Scaling 39

it influences the overall runtime as well. For the calculation of the BofZ matrix, the less column blocks case

shows the better performance due to required row-based communication. From the above analysis, balanced

data decomposition (m×n) is generally better than skewed decomposition (p×1 or 1× p) for the parallel

MDS algorithm.

In addition to data decomposition analysis, we also analyzed the efficiency and the scalability of the

parallel SMACOF. Although the efficiency of the parallel SMACOF is decreased by increasing the number

of processes due to the increase of overhead and the decreaseof pure parallel computing time, the efficiency

is still good enough for a certain degree of parallelism. Forinstance, the efficiency is still over 70% with the

100k data set with 256 parallelism. Based on the fact that thetMM Computing in Table 3.3 achieved almost

linear speedup as in Figure 3.8, it is shown that the parallelSMACOF implementation deals with the load

balance issue very well and the inevitable message passing overhead for parallelism is the main factor of the

reduction of the efficiency.

There are important problems for which the data set sizes aretoo large for even our parallel algorithms to

be practical. Because of this, I developed interpolation approaches for the MDS algorithm, which could be

synergied by the proposed parallel SMACOF implementation.Here we run normal MDS (or parallel MDS)

with a (random) subset of the dataset (calledsample data), and the dimension reduction of the remaining

points are interpolated based on the pre-mapped mapping position of the sample data. The detail of the

interpolation approach [7] is reported in Chapter 4.

3. High Performance Multidimensional Scaling 40

Decomposition

E
la

ps
ed

 T
im

e
(s

ec
)

60

80

100

120

32x1 16x2 8x4 4x8 2x16 1x32

Node

Cluster−I

Cluster−II

(a) 6400 with 32 cores

Decomposition

R
un

tim
e

(s
ec

)

10

20

30

40

50

32x1 16x2 8x4 4x8 2x16 1x32

Type

BofZ_C−I

BofZ_C−II

Dist_C−I

Dist_C−II

(b) partial run of 6400 with 32 cores

Decomposition

E
la

ps
ed

 T
im

e
(s

ec
)

350

400

450

500

32x1 16x2 8x4 4x8 2x16 1x32

Node

Cluster−I

Cluster−II

(c) 12800 with 32 cores

Decomposition

R
un

tim
e

(s
ec

)

50

100

150

200

250

32x1 16x2 8x4 4x8 2x16 1x32

Type

BofZ_C−I

BofZ_C−II

Dist_C−I

Dist_C−II

(d) partial run of 12800 with 32 cores

Figure 3.4: Overall Runtime and partial runtime of parallelSMACOF for 6400 and 12800 PubChem data
with 32 cores in Cluster-I and Cluster-II w.r.t. data decomposition ofN×N matrices.

3. High Performance Multidimensional Scaling 41

Decomposition

E
la

ps
ed

 T
im

e
(s

ec
)

50

60

70

80

90

100

64x1 32x2 16x4 8x8 4x16 2x32 1x64

Node

Cluster−I

Cluster−II

(a) 6400 with 64 cores

Decomposition

R
un

tim
e

(s
ec

)

5

10

15

20

25

30

35

64x1 32x2 16x4 8x8 4x16 2x32 1x64

Type

BofZ_C−I

BofZ_C−II

Dist_C−I

Dist_C−II

(b) partial run of 6400 with 64 cores

Decomposition

E
la

ps
ed

 T
im

e
(s

ec
)

220

240

260

280

64x1 32x2 16x4 8x8 4x16 2x32 1x64

Node

Cluster−I

Cluster−II

(c) 12800 with 64 cores

Decomposition

R
un

tim
e

(s
ec

)

20

40

60

80

100

120

64x1 32x2 16x4 8x8 4x16 2x32 1x64

Type

BofZ_C−I

BofZ_C−II

Dist_C−I

Dist_C−II

(d) partial run of 12800 with 64 cores

Figure 3.5: Overall Runtime and partial runtime of parallelSMACOF for 6400 and 12800 PubChem data
with 64 cores in Cluster-I and Cluster-II w.r.t. data decomposition ofN×N matrices.

3. High Performance Multidimensional Scaling 42

Decomposition

E
la

ps
ed

 T
im

e
(m

in
)

0

10

20

30

40

50

60

128x1 64x2 32x4 16x8 8x16 4x32 2x64 1x128

Node

Cluster−II

(a) 6400 with 128 cores

Decomposition

R
un

tim
e

(s
ec

)
5

10

15

128x1 64x2 32x4 16x8 8x16 4x32 2x64 1x128

Type

BofZ_C−II

Dist_C−II

(b) partial run of 6400 with 128 cores

Decomposition

E
la

ps
ed

 T
im

e
(m

in
)

100

110

120

130

140

150

160

128x1 64x2 32x4 16x8 8x16 4x32 2x64 1x128

Node

Cluster−II

(c) 12800 with 128 cores

Decomposition

R
un

tim
e

(s
ec

)

10

20

30

40

50

60

128x1 64x2 32x4 16x8 8x16 4x32 2x64 1x128

Type

BofZ_C−II

Dist_C−II

(d) partial run of 12800 with 128 cores

Figure 3.6: Overall Runtime and partial runtime of parallelSMACOF for 6400 and 12800 PubChem data
with 128 cores in Cluster-II w.r.t. data decomposition ofN×N matrices.

3. High Performance Multidimensional Scaling 43

number of processes

E
la

ps
ed

 T
im

e
(s

ec
)

210

210.5

211

211.5

212

212.5

213

26 26.5 27 27.5 28

Size

100k

50k

(a) large data runtime

number of processes

E
ffi

ci
en

cy

0.0

0.2

0.4

0.6

0.8

1.0

100 150 200 250

Size

100k

50k

(b) large data efficiency

Figure 3.7: Performance of parallel SMACOF for 50K and 100K PubChem data in Cluster-II w.r.t. the
number of processes, i.e. 64, 128, 192, and 256 processes (cores). (a) shows runtime and efficiency is shown
at (b). We choose balanced decomposition as much as possible, i.e. 8×8 for 64 processes. Note that both x
and y axes are log-scaled for (a).

3. High Performance Multidimensional Scaling 44

number of processes

E
ffi

ci
en

cy

0.0

0.2

0.4

0.6

0.8

1.0

100 150 200 250

Portion

MM_Computing

tMatMult

Figure 3.8: Efficiency oftMatMult andtMM Computing in Table 3.3 with respect to the number of pro-
cesses.

3. High Performance Multidimensional Scaling 45

number of processes

O
ve

rh
ea

d
(s

ec
.)

0

50

100

150

200

100 150 200 250

Model

Estimation

tMM_Overhead

Figure 3.9: MPI Overhead of parallel matrix multiplication(tMM Overhead) in Table 3.3 and the rough
Estimation of the MPI overhead with respect to the number of processes.

3. High Performance Multidimensional Scaling 46

number of processes

E
la

ps
ed

 T
im

e
(s

ec
)

28.5

29

29.5

210

210.5

211

25 25.5 26 26.5 27 27.5 28

System

Cluster−I

Cluster−II

(a) MC30000 runtime

number of processes

E
ffi

ci
en

cy

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250

System

Cluster−I

Cluster−II

(b) MC30000 efficiency

Figure 3.10: Performance of parallel SMACOF for MC 30000 data in Cluster-I and Cluster-II w.r.t. the
number of processes, i.e. 32, 64, 96, and 128 processes for Cluster-I and Cluster-II, and extended to 160,
192, 224, and 256 processes for Cluster-II. (a) shows runtime and efficiency is shown at (b). We choose
balanced decomposition as much as possible, i.e. 8× 8 for 64 processes. Note that both x and y axes are
log-scaled for (a).

4

Interpolation Approach for Multidimensional

Scaling

4.1 Overview

Due to the advancements in science and technology over the last several decades, every scientific and

technical field has generated a huge amount of data as time haspassed in the world. We are really in the

era of data deluge. In reflecting on the data deluge era, data-intensive scientific computing [28] has emerged

in the scientific computing fields and it has been attracting more by many people. To analyze those incred-

ible amount of data, many data mining and machine learning algorithms have been developed. Among the

many data mining and machine learning algorithms that have been invented, we focus on dimension reduc-

tion algorithms, which reduce data dimensionality from original high dimension to target dimension, in this

chapter.

Among the many dimension reduction algorithms which exist,such as principle component analysis

(PCA), generative topographic mapping (GTM) [11,12], self-organizing map (SOM) [43], multidimensional

47

4. Interpolation Approach for Multidimensional Scaling 48

scaling (MDS) [13, 45], I have worked on MDS for this thesis. Previously, we parallelize the MDS algo-

rithm to utilize multicore clusters and to increase the computational capability with minimal overhead for the

purpose of investigating large data, such as 100k data [16].However, parallelization of an MDS algorithm,

whose computational complexity and memory requirement is uptoO(N2) whereN is the number of points, is

still limited by the memory requirement for huge data, e.g. millions of points, although it utilizes distributed

memory environments, such as clusters, for acquiring more memory and computational resources. In this

chapter, we try to solve the memory-bound problem by interpolation based on pre-configured mappings of

the sample data for the MDS algorithm, so that we can provide configuration of millions of points in the

target space.

This chapter is organized as follows. First we will briefly discuss existing methods ofout-of-sampleprob-

lem in various dimension reduction algorithms in Section 4.2. Then, the proposed interpolation method and

how to parallelize it are described in Section 4.3. The quality comparison between interpolated results and the

full MDS running results and parallel performance evaluation of those algorithms are shown in Section 4.4,

followed by the summary of this chapter in Section 4.5.

4.2 Related Work

Theout-of-samplemethod, which embeds new points with respect to previously configured points, has

been actively researched for recent years, and it aims at improving the capability of dimension reduction

algorithms by reducing the computational and memory-wide requirement with the trade-off of slightly ap-

proximated mapping results.

In a sensor network localization field, when there are only a subset of pairwise distances between sensors

and a subset of anchor locations are available, people try tofind out the locations of the remaining sensors.

4. Interpolation Approach for Multidimensional Scaling 49

For instance, the semi-definite programming relaxation approaches and its extended approaches has been pro-

posed to solve this issue [74]. [10] and [70] proposed out-of-sample extension for the classical multidimen-

sional scaling (CMDS) [68], which is based on spectral decomposition of a symmetric positive semidefinite

matrix (or the approximation of positive semidefinite matrix), and the embeddings in the configured space are

represented in terms of eigenvalues and eigenvectors of it.[10] projected the new pointx onto the principal

components, and [70] extends the CMDS algorithm itself to the out-of-sample problem. In [70], the authors

describe how to embed one point between the embeddings of theoriginal n objects through modification of

the original CMDS equations, which preserves the mappings of the originaln objects, with(n+1)× (n+1)

matrixA2 instead ofn×n matrix ∆2, and extends to embedding a number of points simultaneouslyby using

matrix operations. Recently, a multilevel force-based MDSalgorithm was proposed as well [38].

In contrast to applying the out-of-sample problem to CMDS, Iextend the out-of-sample problem to gen-

eral MDS results with the STRESS criteria of Eq. (1.1) in Chapter 2, which finds embeddings of approxi-

mating to the distance (or dissimilarity) rather than the inner product as in CMDS, with an gradient descent

optimization method, called iterative majorizing. The proposed iterative majorizing interpolation approach

for the MDS problem will be explained in Section 4.3.

4.3 Majorizing Interpolation MDS

One of the main limitation of most MDS applications is that they requireO(N2) memory as well asO(N2)

computation. Thus, though it is possible to run them with a small data size without any trouble, it is impos-

sible to execute them with a large number of data due to memorylimitation; therefore, this challenge could

be considered as being a memory-bound problem. For instance, Scaling by MAjorizing of COmplicated

Function (SMACOF) [20, 21], a well-known MDS application via Expectation-Maximization (EM) [22] ap-

proach, uses sixN×N matrices. IfN = 100,000, then oneN×N matrix of 8-byte double-precision numbers

4. Interpolation Approach for Multidimensional Scaling 50

requires 80 GB of main memory, so the algorithm needs to acquire at least 480 GB of memory to store these

six N×N matrices. It is possible to run a parallel version of SMACOF with MPI in Cluster-II in Table 4.1

with N = 100,000. If the data size is increased only twice, however, then the SMACOF algorithm should

have 1.92 TB of memory, which is bigger than the total memory of Cluster-II in Table 4.1 (1.536 TB), so it

is impossible to run it within the cluster. Increasing memory size will not be a solution, even though it could

increase the runnable number of points. It will encounter the same problem as the data size increases.

To solve this obstacle, we develop a simple interpolation approach based on pre-mapped MDS result

of the sample of the given data. Our interpolation algorithmis similar to thek nearest neighbor (k-NN)

classification [19], but we approximate to a new mapping position of the new point based on the positions of

k-NN, among pre-mapped subset data, instead of classifying it. For the purpose of deciding a new mapping

position in relation to thek-NN positions, the iterative majorization method is applied as in the SMACOF [20,

21] algorithm. The details of mathematical majorization equations for the proposed out-of-sample MDS

algorithm is shown below. The algorithm proposed in this chapter is called Majorizing Interpolation MDS

(hereafterMI-MDS).

The proposed algorithm is implemented as follows. We are givenN data in a high-dimensional space,

say D-dimension, and proximity information (∆ = [δi j]) of those data as in Section 1.2. AmongN data,

the configuration of then sample points inL-dimensional space,x1, . . . ,xn ∈ R
L, calledX, are already con-

structed by an MDS algorithm; here we use the SMACOF algorithm. Then, we selectk nearest neighbors

(p1, . . . , pk ∈ P) of the given new point, amongn pre-mapped points with respect to correspondingδix, where

x represents the new point. I use a linear search to find thek-nearest neighbors amongn-sampled data, so

that the complexity of finding thek-nearest neighbors isO(n) per one interpolated point (herex). Finally, the

new mapping of the given new pointx ∈ R
L is calculated based on the pre-mapped position of the selected

k-NN and the corresponding proximity informationδix. The finding new mapping position is considered as a

minimization problem of STRESS (4.1) as similar as normal MDS problem withm points, wherem= k+1.

4. Interpolation Approach for Multidimensional Scaling 51

However, only one pointx is movable amongm points, so we can simplify the STRESS equation (4.1) as

follows (Eq. (4.2)), and we setwi j = 1, for∀i, j in order to simplify.

σ(X) = ∑
i< j≤m

(di j (X)− δi j)
2 (4.1)

= C +
k

∑
i=1

d2
ix −2

k

∑
i=1

δixdix (4.2)

whereδix is the original dissimilarity value betweenpi andx, dix is the Euclidean distance inL-dimension

betweenpi andx, andC is constant part. The second term of Eq. (4.2) can be deployedas following:

k

∑
i=1

d2
ix = ‖x− p1‖2 + · · ·+‖x− pk‖2 (4.3)

= k‖x‖2 +
k

∑
i=1

‖pi‖2−2xtq (4.4)

whereqt = (∑k
i=1 pi1, . . . ,∑k

i=1 piL) and pi j representsj-th element ofpi . In order to establish majorizing

inequality, we applyCauchy-Schwarzinequality to−dix of the third term of Eq. (4.2). Please, refer to chapter

8 in [13] for details of how to apply theCauchy-Schwarzinequality to−dix. Sincedix = ‖pi −x‖, −dix could

have following inequality based onCauchy-Schwarzinequality:

−dix ≤ ∑L
a=1(pia −xa)(pia −za)

diz
(4.5)

=
(pi −x)t(pi −z)

diz
(4.6)

wherezt = (zi , . . . ,zL) anddiz = ‖pi − z‖. The equality in Eq. (4.5) occurs ifx andz are equal. If we apply

4. Interpolation Approach for Multidimensional Scaling 52

Eq. (4.6) to the third term of Eq. (4.2), then we obtain

−
k

∑
i=1

δixdix ≤ −
k

∑
i=1

δix

diz
(pi −x)t(pi −z) (4.7)

= −xt
k

∑
i=1

δix

diz
(z− pi)+Cρ (4.8)

whereCρ is a constant. If Eq. (4.4) and Eq. (4.8) are applied to Eq. (4.2), then it could be like following:

σ(X) = C +
k

∑
i=1

d2
ix −2

k

∑
i=1

δixdix (4.9)

≤ C +k‖x‖2−2xtq+
k

∑
i=1

‖pi‖2

−2xt
k

∑
i=1

δix

diz
(z− pi)+Cρ (4.10)

= τ(x,z) (4.11)

where bothC andCρ are constants. In the Eq. (4.11),τ(x,z), a quadratic function ofx, is a majorization

function of the STRESS. Through setting the derivative ofτ(x,z) equal to zero, we can obtain a minimum of

it; that is

∇τ(x,z) = 2kx−2q−2
k

∑
i=1

δix

diz
(z− pi) = 0 (4.12)

x =
q+ ∑k

i=1
δix
diz

(z− pi)

k
(4.13)

whereqt = (∑k
i=1 pi1, . . . ,∑k

i=1 piL), pi j representsj-th element ofpi , andk is the number of the nearest

4. Interpolation Approach for Multidimensional Scaling 53

neighbors that we selected.

The advantage of the iterative majorization algorithm is that it produces a series of mappings with non-

increasing STRESS values as proceeds, which results in local minima. It is good enough to find local minima,

since the proposed MI algorithm simplifies the complicated non-linear optimization problem as a small non-

linear optimization problem, such ask+1 points non-linear optimization problem, wherek ≪ N. Finally, if

we substitutezwith x[t−1] in Eq. (4.13), then we generate an iterative majorizing equation like the following:

x[t] =
q+ ∑k

i=1
δix
diz

(x[t−1] − pi)

k
(4.14)

x[t] = p+
1
k

k

∑
i=1

δix

diz
(x[t−1] − pi) (4.15)

wherediz = ‖pi −x[t−1]‖ andp is the average ofk-NN’s mapping results. Eq. (4.15) is an iterative equation

used to embed newly added point into target-dimensional space, based on pre-mapped positions ofk-NN.

The iteration stop condition is essentially the same as thatof the SMACOF algorithm, which is

∆σ(S[t]) = σ(S[t−1])−σ(S[t]) < ε, (4.16)

whereS= P∪{x} andε is the given threshold value.

The time complexity of the proposed MI-MDS algorithm to find the mapping of one interpolated point

is O(k) on the basis of Eq. (4.15), if we assume that the number of iterations of finding one interpolated

mapping is very small. Since finding nearest neighbors takesO(n) and mapping via MI-MDS requiresO(k)

for one interpolated point, the overall time complexity to find mappings of overall out-of-sample points (N-n

points) via the proposed MI-MDS algorithm isO(kn(N−n))≈ O(n(N−n)), due to the fact thatk is usually

negligible compared ton or N.

4. Interpolation Approach for Multidimensional Scaling 54

Algorithm 4.1 Majorizing Interpolation (MI) algorithm

1: Find k-NN: find k nearest neighbors ofx, pi ∈ P i = 1, . . . ,k of the given new data based on original
dissimilarityδix.

2: Gather mapping results in target dimension of thek-NN.
3: Calculatep, the average of pre-mapped results ofpi ∈ P.
4: Generate initial mapping ofx, calledx[0], eitherp or a random variation fromp point.
5: Computeσ(S[0]), whereS[0] = P∪{x[0]}.

6: while t = 0 or (∆σ(S[t]) > ε andt ≤ MAX ITER) do
7: increaset by one.
8: Computex[t] by Eq. (4.15).
9: Computeσ(S[t]).

10: end while

11: return x[t];

The process of the overall out-of-sample MDS with a large dataset could be summarized by the following

steps: (1) Sampling; (2) Running MDS with sample data; and (3) Interpolating the remain data points based

on the mapping results of the sample data.

The summary of the proposed MI algorithm for interpolation of a new data, sayx, in relation to pre-

mapping result of the sample data is described in Algorithm 4.1. Note that the algorithm usesp as an initial

mapping of the new pointx[0] unless initialization withp makesdix = 0, since the mapping is based on the

k-NN. p makesdix = 0, if and only if all the mapping positions of thek-NNs are on the same position. Ifp

makesdix = 0 (i = 1, . . . ,k), then we generate a random variation from thep point with the average distance

of δix as an initial position ofx[0].

4.3.1 Parallel MI-MDS Algorithm

Suppose that, amongN points, the mapping results ofn sample points in the target dimension, sayL-

dimension, are given so that we could use those pre-mapped results ofn points via MI-MDS algorithm which

is described above to embed the remaining points (M = N−n). Though interpolation approach is much faster

than full running MDS algorithm, i.e.O(Mn+n2) vs. O(N2), implementing parallel MI-MDS algorithm is

4. Interpolation Approach for Multidimensional Scaling 55

essential, sinceM can be still huge, like millions. In addition, most of clusters are now in forms of multicore-

clusters after the invention of the multicore-chip, so we are using hybrid-model parallelism, which combine

processes and threads together as used in [28,57].

In contrast to the original MDS algorithm in which the mapping of a point is influenced by the other points,

interpolated points are totally independent one another, except selectedk-NN in the MI-MDS algorithm, and

the independency of among interpolated points makes the MI-MDS algorithm to be pleasingly-parallel. In

other words, there must be minimum communication overhead.Also, load-balance can be achieved by using

modular calculation to assign interpolated points to each parallel unit, either between processes or between

threads, as the number of assigned points are different at most one.

4.3.2 Parallel Pairwise Computation Method with Subset of Data

Although interpolation approach itself is inO(Mn), if we want to evaluate the quality of the interpolated

results by STRESS criteria of Eq. (1.1) of overallN points, it requiresO(N2) computation. Note that we im-

plement our hybrid-parallel MI-MDS algorithm as each process has access to only a subset ofM interpolated

points, without loss of generalityM/p points, as well as the information of all pre-mappedn points. It is

natural way of using a distributed-memory system, such as cluster systems, to access only a subset of huge

data which spread to over the clusters, so that each process needs to communicate each other for the purpose

of accessing all the necessary data to compute STRESS.

In this section, we illustrate how to calculate symmetric pairwise computation efficiently in parallel with

the case that only a subset of data is available for each process. In fact, general MDS algorithms utilize

pairwise dissimilarity information, but suppose we are givenN original vectors inD-dimension,yi , . . . ,yN ∈Y

and yi ∈ R
D, instead of a given dissimilarity matrix, as PubChem finger print data that we used for our

experiments. Thus, in order to calculate the distance in original D-dimensionδi j = ‖yi − y j‖ in Eq. (1.1),

it is necessary to communicate messages between each process to get the required original vector, sayyi

4. Interpolation Approach for Multidimensional Scaling 56

p1

p5

p4

p3

p2

p5p4p3p2p1

p1

p2

p3

p4

p5p1

p2

p3

p4

p5

Figure 4.1: Message passing pattern and parallel symmetricpairwise computation for calculating STRESS
value of whole mapping results.

andy j . Here, we used the proposed pairwise computation method to measure the STRESS criteria of MDS

problem in Eq. (1.1), but the proposed parallel pairwise computation method will be used efficiently for

general parallel pairwise computation whose computing components are independent, such as generating a

distance (or dissimilarity) matrix of all data, under the condition that each process can access only a subset

of the required data.

Figure 4.1 describes the proposed scheme when the number of processes (p) is 5, odd numbers. The

proposed scheme is an iterative two-step approach, (1) rolling and (2) computing, and the iteration number is

⌈(1+ · · ·+ p−1)/p⌉= ⌈(p−1)/2⌉. Note that iteration ZERO is calculating the upper triangular part of the

corresponding diagonal block, which does not requires message passing. After iteration ZERO is done, each

processpi sends the originally assigned data block to the previous processpi−1 and receives a data block

4. Interpolation Approach for Multidimensional Scaling 57

from the next processpi+1 in cyclic way. For instance, processp0 sends its own block to processpp−1, and

receives a block from processp1. This rolling message passing can be done using one single MPI primitive

per process,MPI_SENDRECV(), which is efficient. After sending and receiving messages, each process

performs currently available pairwise computing block with respect to receiving data and originally assigned

block. In Figure 4.1, black solid arrows represent each message passings at iteration 1, and orange blocks

with process ID are the calculated blocks by the corresponding named process at iteration 1. From iteration

2 to iteration⌈(p− 1)/2⌉, the above two-steps are done repeatedly and the only difference is nothing but

sending a received data block instead of the originally assigned data block. The green blocks and dotted blue

arrows show iteration 2 which is the last iteration for the case ofp = 5.

Also, for the case that the number of processes is even, the above two-step scheme works in high effi-

ciency. The only difference between the odd number case and the even number case is that two processes

are assigned to one block at the last iteration of even numbercase, but not in an odd number case. Though

two processes are assigned to a single block, it is easy to achieve load balance by dividing two sections of

the block and assigning them to each process. Therefore, both odd number process and even number pro-

cess cases are parallelized well using the above rolling-computing scheme, with minimal message passing

overhead. The summary of the above parallel pairwise computation is shown in Algorithm 4.2.

4.4 Analysis of Experimental Results

To measure the quality and parallel performance of the proposed MDS interpolation (MI-MDS) approach

discussed in this chapter, we have used 166-dimensional chemical dataset obtained from the PubChem project

database1, which is an NIH-funded repository for over 60 million chemical molecules and provides their

chemical structures and biological activities, for the purpose of chemical information mining and exploration.

1PubChem,http://pubchem.ncbi.nlm.nih.gov/

4. Interpolation Approach for Multidimensional Scaling 58

Algorithm 4.2 Parallel Pairwise Computation

1: input: Y = a subset of data;
2: input: p = the number of process;
3: rank⇐ the rank of process;
4: sendTo⇐ (rank−1) mod p
5: recvFrom⇐ (rank+1) mod p
6: k⇐ 0;
7: Compute upper triangle in the diagonal blocks in Figure 4.1;
8: MAX ITER⇐ ⌈(p−1)/2⌉
9: while k < MAX ITERdo

10: k⇐ k+1;
11: if k = 1 then
12: MPI_SENDRECV(Y,sendTo,Yr , recvFrom);
13: else
14: Ys ⇐Yr ;
15: MPI_SENDRECV(Ys,sendTo,Yr , recvFrom);
16: end if

17: Do Computation();
18: end while

In this chapter we have used observations which consist of randomly selected up to 4 million chemical subsets

for our testing. The computing cluster systems we have used in our experiments are summarized in Table 4.1.

In the following, we will mainly show: i) exploration of the optimal number of nearest neighbors; ii)

the quality of the proposed MI-MDS interpolation approach in performing MDS algorithms, with respect to

various sample sizes – 12.5k, 25k, and 50k randomly selectedfrom 100k dataset as a basis – as well as the

mapping results of large-scale data, i.e. up to 4 million points; and iii) parallel performance measurements of

our parallelized interpolation algorithms on our clustering systems as listed in Table 4.1; and finally, iv) our

results on processing up to 4 million MDS maps based on the trained result from 100K dataset.

4.4.1 Exploration of optimal number of nearest neighbors

Generally, the quality ofk-NN (k-nearest neighbor) classification (or regression) is related to the number

of neighbors. For instance, if we choose a larger number for thek, then the algorithm shows a higher bias but

lower variance. On the other hands, thek-NN algorithm shows a lower bias but a higher variance based on a

4. Interpolation Approach for Multidimensional Scaling 59

Table 4.1: Compute cluster systems used for the performanceanalysis

Features Cluster-I Cluster-II

Nodes 8 32

CPU AMD Opteron 8356 2.3GHz Intel Xeon E7450 2.4 GHz

CPU / # Cores per node 4 / 16 4 / 24

Total Cores 128 768

Memory per node 16 GB 48 GB

Network Giga bit Ethernet 20 Gbps Infiniband

Operating System Windows Server 2008 HPC Edition
(Service Pack 2) - 64 bit

Windows Server 2008 HPC Edition
(Service Pack 2) - 64 bit

smaller number of neighbors. For the case ofk-NN classification, the optimal number of nearest neighbors

(k) can be determined by theN-fold cross validation method[42] or leave-one-out cross validation method,

and usually the value that minimizes the cross validation error is picked.

Although we cannot use the N-fold cross validation method todecide the optimalk value of the proposed

MI-MDS algorithm, we can compare the mapping results with respect tok value based on STRESS value.

In order to explore the optimal number of nearest neighbors,we experimented with the MI-MDS algorithm

with differentk values, i.e. 2≤ k≤ 20 with 100k pubchem data.

Figure 4.2 shows the comparison of mapping quality between the MI-MDS results of 100K data with 50k

sample data size in terms of differentk values. The y-axis of the plot is thenormalized STRESSvalue which

is divided by∑i< j δ 2
i j . The normalized STRESS value is equal to ONE when all the mapping is at the same

position, in that the normalized STRESS value denotes the relative portion of the squared distance error rates

of the given data set without regard to various scales ofδi j due to data difference. The equation of normalized

STRESS is shown in Eq. (4.17) below.

σ(X) = ∑
i< j≤N

1

∑i< j δ 2
i j

(di j (X)− δi j)
2 (4.17)

Figure 4.2 shows an interesting result that the optimal number of nearest neighbors is ‘two’ rather than

4. Interpolation Approach for Multidimensional Scaling 60

The number of nearest neighbors (k)

S
T

R
E

S
S

0.06

0.08

0.10

0.12

0.14

0.16

5 10 15 20

Algorithm

INTP

Figure 4.2: Quality comparison between interpolated result of 100k with respect to the number of nearest
neighbors (k) with 50k sample and 50k out-of-sample result.

larger values. Also, the normalized STRESS value is statically increased ask is increased, whenk = 5 and

larger, and the normalized STRESS value of MI-MDS results with 20-NN is almost double of that with 2-NN.

Before we analyze the optimal number of nearest neighbors for the proposed MI-MDS method with the

given Pubchem dataset, I would like to mention how the proposed MI-MDS solves the mapping ambiguity

problem whenk = 2,3 for three dimensional target space. When the target dimension is 3D space, logically,

the optimal position of the interpolated points can be in a circle if k = 2, and the optimal position of the

interpolated points can be at two symmetric positions with respect to the face contains all three nearest

neighbors, in the case ofk = 3. The derivative MI-MDS equation in Eq. (4.15), however, constrains the

interpolation space corresponding to the number of nearestneighbors, by setting the initial position as the

average of the mappings of nearest neighbors. In the case ofk = 2, the interpolation space is constructed

4. Interpolation Approach for Multidimensional Scaling 61

O

v1

v2

l

p1

p2

x0

(a) k = 2

O

v1

v2

F

p1

p2

xo

p3

v3

(b) k = 3

Figure 4.3: The illustration of the constrained interpolation space whenk = 2 ork = 3 by initialization at the
center of the mappings of the nearest neighbors.

as a line (l) which includes the mapping positions of the two nearest neighbors, when the initial mapping

of the interpolation is the center of nearest neighbors (p). Similarly, the possible mapping position of the

interpolated point is constrained within the Face (F) when it contains the three nearest neighbors whenk = 3.

Figure 4.3-(a) and (b) illustrate the constrained interpolation space in case ofk= 2 and 3, correspondingly.

In Figure 4.3,x0 represents the initial mapping position of the interpolated point which is the same asp and

vi (i = 1,2 or 3) is the vector representation ofxc − pi , wherexc is the current mapping position of the

interpolated point andpi is the mapping position in target dimension of nearest neighbors. Note thatx0 (= p)

is on the linel whenk = 2 and on the faceF whenk = 3. If v1 andv2 are on the same linel , αv1+βv2 is also

on the same linel . Similarly, if v1, v2, andv3 are on the same FaceF, αv1 + βv2 + γv3 is also on the same

faceF. Thus, the final mapping position of the interpolated point with k = 2 or 3 is constrained in the linel

or faceF , as shown in Figure 4.3. This results in removing the ambiguity of the optimal mapping position of

the small nearest neighbor cases, for examplek = 2,3 when the target dimension is 3.

We can think of two MI-MDS specific properties as possible reasons for the results of the experiment

of the optimal number of nearest neighbors which is shown in Figure 4.2. A distinct feature of MI-MDS

algorithm compared to otherk-NN approaches is that the increase of the number of nearest neighbors results

4. Interpolation Approach for Multidimensional Scaling 62

Table 4.2: Analysis of Maximum Mapping Distance betweenk-NNs with respect to the number of nearest
neighbors (k).

#k-NNs < 3.0 > 6.0 > 7.0 > 8.0 % of (< 3.0) % of (> 6.0)

2 45890 409 164 53 91.780 0.818

3 41772 916 387 139 83.544 1.832

5 34503 1945 867 334 69.006 3.890

10 22004 4230 2005 826 44.008 8.460

20 10304 8134 4124 1797 20.608 16.268

in generating more a complicated problem space to find the mapping position of the newly interpolated point.

Note that the interpolation approach allows only the interpolated point to be moved and the selected nearest

neighbors are fixed in the target dimension. This algorithmic property effects more severe constraints to find

optimal mapping position with respect to Eq. (4.2). Also, note that finding the optimal interpolated position

does not guarantee that it makes better mapping in terms of full data mapping, but it means that MI-MDS

algorithm works as the algorithm designed.

Another specific property of MI-MDS is that the purpose of theMI-MDS algorithm is to find appropriate

embeddings for the new points based on the given mappings of the sample data. Thus, it could be better

to be sensitive to the mappings of closely-located nearest neighbors of the new point than to be biased to

the distribution of the mappings of whole sample points. Figure 4.4 illustrates the mapping difference with

respect to the number of nearest neighbors used for MI-MDS algorithm with 50k sample and 50k out-of-

sample data. The 50k sample data is selected randomly from the given 100k data set, so it is reasonable

that the sampled 50k data and out-of-sample 50k show similardistributions. As shown in Figure 4.4-(a),

the interpolated points are distributed similar to the sampled data as we expected. Also, Figure 4.4-(a) are

much more similar to the configuration of the full MDS runningwith 100k data, which is shown later in this

chapter, than other results in Figure 4.4. On the other hand,Figure 4.4-(b) through Figure 4.4-(f) are shown

in center-biased mapping, and the degree of bias of those mappings increases ask increases.

In order to understand more about why biased mappings are generated by larger nearest neighbors cases

4. Interpolation Approach for Multidimensional Scaling 63

(a) k = 2 (b) k = 3

(c) k = 5 (d) k = 10

(e) k = 15 (f) k = 20

Figure 4.4: The mapping results of MI-MDS of 100k Pubchem data with 50k sample data and 50k out-of-
sample data with respect to the number of nearest neighbors (k). The sample points are shown in red and the
interpolated points are shown in blue.

4. Interpolation Approach for Multidimensional Scaling 64

Distance

O
cc

ur
re

nc
e

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

3.0e+08

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.51010.51111.51212.513

 Mapping_Distance

Original_Distance

Figure 4.5: Histogram of the original distance and the pre-mapping distance in the target dimension of 50k
sampled data of 100k. The maximum original distance of the 50k sampled data is 10.198 and the maximum
mapping distance of the 50k sampled data is 12.960.

4. Interpolation Approach for Multidimensional Scaling 65

with the test dataset, we have investigated the given original distance distribution of the 50k sampled data

set and the trained mapping distance distribution of the sampled data. Also, we have analyzed the training

mapping distance betweenk-NNs with respect tok. Figure 4.5 is the histogram of the original distance distri-

bution and the trained mapping distance distribution of 50ksampled data used in Figure 4.2 and Figure 4.4.

As shown in Figure 4.5, most of the original distances are in between 5 and 7, but the trained mapping dis-

tances reside in a more broad interval. Table 4.2 demonstrates the distribution of the maximum mapping

distance between selectedk-NNs with respect to the number of nearest neighbors. The maximum original

distance is 10.198 and the maximum mapping distance of the 50k sampled data is 12.960.

As shown in Figure 4.16-(a), the mapping of Pubchem data forms a spherical shape. Thus, the maximum

mapping distance of the 50k sampled data could be similar to the diameter of the spherical mapping. The

distance 3.0 is close to the half of radius of the sphere and the distance 6.0 is close to the radius of the sphere.

Therefore, in Table 4.2, the column of “< 3.0” represents the cases that nearest neighbors are closely mapped

together, and the columns of “> 6.0” and others illustrate the cases that some nearest neighbors are far from

other nearest neighbors. Note that the entries of “> 6.0” column include that of “> 7.0” and “> 8.0” as well.

The analysis of mapping distance betweenk-NNs with the tested Pubchem dataset shows interesting

results. Initially, we expected thatk = 5 or k = 10 could be small enough numbers of the nearest neighbors,

which would make nearest neighbors be positioned near each other in the training mapping results. Contrary

to our expectation, as shown in Table 4.2, even in the case ofk = 2, nearest neighbors are not near each other

for some interpolated data. The cases of two nearest neighbors positioned more than a 6.0 distance occurred

more than 400 times. As we increasek to be equal to 3, the occurrence of the cases of at least two nearest

neighbors distanced more than 6.0 increases more than twiceof what it was whenk = 2. On the other hand,

the number of the cases of all of the selected nearest neighbors closely mapped is decreased in Table 4.2. The

percentage of the cases of all of the selected neareset neighbors closely mapped is also shown in Table 4.2.

Between the cases ofk = 2 andk = 3, the difference of the allk-NNs closely mapped cases is about 8.2% of

4. Interpolation Approach for Multidimensional Scaling 66

a 50k out-of-sample points. For the case ofk = 20, the occurrence of closely mapped cases is dropped down

from 91.8% to 20.6%.

From the above investigation of the mapping distance distribution between selected nearest neighbors, it

is found that, even with a small number of nearest neighbors,the neighbors can be mapped relatively far from

each other, and the number of those cases is increased ask is increased. The long distance mappings between

nearest neighbors could result in generating center-biased mappings by interpolation. We can think of this as

a reason for why the 2-NN case shows better results than othercases, which use the larger number of nearest

neighbors, with the Pubchem dataset.

In short, as we explored the optimal number of nearest neighbors with Pubchem data set,k = 2 is the

optimal case as shown in Figure 4.2 with the Pubchem dataset,and the larger nearest neighbor cases show

biased mapping results, as shown in Figure 4.4. Therefore, we use 2-NN for the forthcoming MI-MDS

experiments analyzed in this section.

4.4.2 Comparison between MDS and MI-MDS

4.4.2.1 Fixed Full Data CaseFigure 4.6 shows the comparison of quality between MI-MDS results of

100K data with different sample data sizes by using 2-NN and MDS (SMACOF) as the only results with the

100k Pubchem data. The y-axis of the plot is the normalized STRESS value which is shown in Eq. (4.17).

The normalized STRESS difference between the MDS only results and interpolated with 50k is only around

0.0038. Even with a small portion of sample data (12.5k data is only 1/8 of 100k), the proposed MI-MDS

algorithm produces good enough mapping in the target dimension using a much smaller amount of time than

when we ran MDS with a full 100k of data. In Figure 4.7, we compare the commulated running time of the

out-of-sampleapproach, which combines the full MDS running time of sampledata and MI-MDS running

time of the out-of-sample data with respect to different sample size, to the running time of the full MDS run

with the 100k data. As shown in Figure 4.7, the overall running time of the out-of-sample approach is much

4. Interpolation Approach for Multidimensional Scaling 67

Sample size

S
T

R
E

S
S

0.00

0.02

0.04

0.06

0.08

0.10

2e+04 4e+04 6e+04 8e+04 1e+05

Algorithm

MDS

INTP

Figure 4.6: Quality comparison between the interpolated result of 100k with respect to the different sample
sizes (INTP) and the 100k MDS result (MDS)

smaller than the full MDS approach. To be more specific, the out-of-sample approach for 100k dataset takes

around 25.1, 9.3, and 3.3 times faster than the full MDS approach with respect to different sample sizes,

12.5k, 25k, and 50k, correspondingly.

Figure 4.8 shows the MI-MDS interpolation running time onlywith respect to the sample data using 16

nodes of the Cluster-II in Table 4.1. The MI-MDS algorithm takes around 8.55, 14.35, and 18.98 seconds

with different sample sizes, i.e. 12.5k, 25k, and 50k, to findnew mappings of 87500, 75000, and 50000

points based on the pre-mapping results of the corresponding sample data. Note that the full MDS running

time with 100k using 16 nodes of the Cluster-II in Table 4.1 isaround 27006 sec. In Figure 4.8, we can find

the interesting feature that it takes much less time to find new mappings of 87,500 points (8.55 seconds) than

to find new mappings of 50,000 points (18.98 seconds). The reason is the computational time complexity

4. Interpolation Approach for Multidimensional Scaling 68

Sample size

E
la

ps
ed

 ti
m

e
(s

ec
)

0

5000

10000

15000

20000

25000

12.5k 25k 50k 100k

MDS

INTP

Figure 4.7: Running time comparison between the Out-of-Sample approach which combines the full MDS
running time with sample data and the MI-MDS running time with out-of-sample data whenN = 100k, with
respect to the different sample sizes and the full MDS resultof the 100k data.

of MI-MDS is O(Mn) wheren is the sample size andM = N−n. Thus, the running time of MI-MDS is

proportional to the number of new mapping points if the sample size (n) is the same, as in the larger data set

case shown below in this chapter. However, the above case is the opposite case. The full data size (N) is fixed,

so that both the sample data size (n) and the out-of-sample data size (M) are variable and correlated. We can

illustrateO(Mn) as a simple quadratic equation of variablen as following:O(n∗ (N−n)) = O(N∗n−n2),

which has maximum whenn = N/2. The above experiment caseN = 100k andn = 50k is the maximum

case, so that the case of 50k sample data of MI-MDS took longerthan the case of the 12.5k sample data.

4.4.2.2 Fixed Sample Data SizeAbove we discussed the MI-MDS quality of the fixed total number (100k)

with respect to the different sample data sizes, compared tothe MDS running results with total number of

4. Interpolation Approach for Multidimensional Scaling 69

Sample size

E
la

ps
ed

 ti
m

e
(s

ec
)

0

5

10

15

20

12.5k 25k 50k

Algorithm

INTP

Figure 4.8: Elapsed time of parallel MI-MDS running time of 100k data with respect to the sample size using
16 nodes of the Cluster-II in Table 4.1. Note that the computational time complexity of MI-MDS isO(Mn)
wheren is the sample size andM = N−n.

data (100k). Now, the opposite direction of the test, which tests the scalability of the proposed interpolation

algorithm, is performed as follows: we fix the sample data size to 100k, and the interpolated data size is

increased from one million (1M) to two million (2M) to four million (4M). Then, the STRESS value is

measured for each running result of total data, i.e. 1M + 100k, 2M + 100k, and 4M + 100k. The measured

STRESS value is shown in Figure 4.9. There is some quality lost between the full MDS running results with

100k data and the 1M interpolated results based on that 100k mapping; they have about a 0.007 difference

in the normalized STRESS criteria. However, there is not much difference between the normalized STRESS

values of the 1M, 2M, and 4M interpolated results, although the sample size is quite a small portion of the

total data and the out-of-sample data size increases as quadruple the numbers. From the above results, we

could consider that the proposed MI-MDS algorithm works well and is scalable if we are given a good enough

4. Interpolation Approach for Multidimensional Scaling 70

Table 4.3: Large-scale MI-MDS running time (seconds) with 100k sample data

1 Million 2 Million 4 Million

731.1567 1449.1683 2895.3414

pre-configured result which represents well the structure of the given data. Note that it is not possible to run

the SMACOF algorithm with only 200k data points due to memorybounds, within the systems in Table 4.1.

Total size

S
T

R
E

S
S

0.00

0.02

0.04

0.06

0.08

0.10

1e+06 2e+06 3e+06 4e+06

Figure 4.9: The STRESS value change of the interpolation larger data, such as 1M, 2M, and 4M data points,
with 100k sample data. The initial STRESS value of MDS resultof 100k data is 0.0719.

We also measure the runtime of the MI-MDS algorithm with a large-scale data set up to 4 million points.

Figure 4.10 shows the running time of the out-of-sample approach in a commulated bar graph, which rep-

resents the full MDS running time of sample data (M = 100k) in the red bar and the MI-MDS interpolation

time of out-of-sample data (n = 1M, 2M, and 4M) in the blue bar on top of the red bar. As we expected,

the running time of MI-MDS is much faster than the full MDS running time in Figure 4.10. Although the

4. Interpolation Approach for Multidimensional Scaling 71

Total size

E
la

ps
ed

 ti
m

e
(s

ec
)

0

5000

10000

15000

20000

25000

100k 100k+1M 100k+2M 100k+4M

MDS

INTP

Figure 4.10: Running time of the Out-of-Sample approach which combines the full MDS running time with
sample data (M = 100k) and the MI-MDS running time with different out-of-sample data sizes, i.e. 1M, 2M,
and 4M.

MI-MDS interpolation running time in Table 4.3 is much smaller than the full MDS running time (27006

seconds), the MI-MDS deals with a much larger amount of points, i.e. 10, 20, and 40 times larger number of

points. Note that we cannot run the parallel SMACOF algorithm [16] with even 200,000 points on our current

sytsems in Table 4.1. Even though we assume that we are able torun the parallel SMACOF algorithm with

millions of points onCluster-II in Table 4.1, the parallel SMACOF will take 100, 400, and 1600times longer

with 1M, 2M, and 4M data than the running time of parallel SMACOF with 100k data, due to theO(N2)

computational complexity. As opposed to the approximated full MDS running time, the proposed MI-MDS

interpolation takes much less time to deal with millions of points than parallel SMACOF algorithm. In nu-

meric, MI-MDS interpolation is faster than approximated full parallel MDS running time in 3693.5, 7454.2,

and 14923.8 times with 1M, 2M, and 4M data, correspondingly.

4. Interpolation Approach for Multidimensional Scaling 72

If we extract the MI-MDS running time only with respect to theout-of-sample data size from Figure 4.10,

the running time should be proportional to the number of out-of-sample data since the sample data size is

fixed. Table 4.3 shows the exact running time of the MI-MDS interpolation method with respect to the

number of the out-of-sample data size (n), based on the same sample data (M = 100k). The running time is

almost exactly proportional to the out-of-sample data size(n), as it should be.

4.4.3 Parallel Performance Analysis of MI-MDS

In the above section, we discussed the quality of the constructed configuration of the MI-MDS approach

based on the STRESS value of the interpolated configuration,and the running time benefits of the proposed

MI-MDS interpolation approach. Here, we would like to investigate the MPI communication overhead and

parallel performance of the proposed parallel MI-MDS implementation in Section 4.3.1 in terms of efficiency

with respect to the running results within Cluster-I and Cluster-II in Table 4.1.

First of all, we prefer to investigate the parallel overhead, especially the MPI communication overhead,

which could be major parallel overhead for the parallel MI-MDS in Section 4.3.1. Parallel MI-MDS consists

of two different computations, the MI part and the STRESS calculation part. The MI part is pleasingly

parallel and its computational complexity isO(M), whereM = N−n, if the sample sizen is considered as

a constant. The MI part uses only two MPI primitives,MPI_GATHER andMPI_BROADCAST, at the end of

interpolation to gather all the interpolated mapping results and spread out the combined interpolated mapping

results to all the processes for further computation. Thus,the communicated message amount through MPI

primitives isO(M), so it is not dependent on the number of processes but the number of whole out-of-sample

points.

For the STRESS calculation part, that were applied to the proposed symmetric pairwise computation

in Section 4.3.2, each process usesMPI_SENDRECV k times to send an assigned block or rolled block,

whose size isM/p, wherek = ⌈(p− 1)/2⌉ for communicating required data andMPI_REDUCE twice for

4. Interpolation Approach for Multidimensional Scaling 73

calculating∑i< j(di j − δi j)
2 and∑i< j δ 2

i j . Thus, the MPI communicated data size isO(M/p× p) = O(M)

without regard to the number of processes.

The MPI overhead during the MI part and the STRESS calculating part at Cluster-I and Cluster-II in Ta-

ble 4.1 are shown in Figure 4.11 and Figure 4.12, correspondingly. Note that the x-axis of both figures is the

sample size (n) but notM = N−n. In the figures, the model is generated asO(M) starting with the small-

est sample size, here 12.5k. Both Figure 4.11 and Figure 4.12show that the actual overhead measurement

follows the MPI communication overhead model.

Sample size

M
P

I o
ve

rh
ea

d
tim

e
(s

ec
)

0.5

1.0

1.5

2.0

2.5

15000 20000 25000 30000 35000 40000 45000 50000

Type

INTP_model

INTP_Ovhd

STR_model

STR_Ovhd

Figure 4.11: Parallel overhead modeled as due to MPI communication in terms of sample data size (m) using
Cluster-I in Table 4.1 and message passing overhead model.

Figure 4.13 and Figure 4.14 illustrate the efficiency of the interpolation part and the STRESS calculation

part of the parallel MI-MDS running results with different sample size - 12.5k, 25k, and 50k - with respect

to the number of parallel units using Cluster-I and Cluster-II, correspondingly. Equations for the efficiency is

4. Interpolation Approach for Multidimensional Scaling 74

Sample size

M
P

I o
ve

rh
ea

d
tim

e
(s

ec
)

0.4

0.6

0.8

1.0

15000 20000 25000 30000 35000 40000 45000 50000

Type

INTP_model

INTP_Ovhd

STR_model

STR_Ovhd

Figure 4.12: Parallel overhead modeled as due to MPI communication in terms of sample data size (m) using
Cluster-II in Table 4.1 and message passing overhead model.

follows:

f =
pT(p)−T(1)

T(1)
(4.18)

ε =
1

1+ f
(4.19)

where p is the number of parallel units,T(p) is the running time withp parallel units, andT(1) is the

sequential running time. In practice, Eq. (4.18) can be replaced with following:

f =
αT(p1)−T(p2)

T(p2)
(4.20)

4. Interpolation Approach for Multidimensional Scaling 75

whereα = p1/p2 and p2 is the smallest number of used cores for the experiment, soalpha≥ 1. We use

Eq. (4.20) for the overhead calculation.

Number of cores

E
ffi

ci
en

cy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

24 24.5 25 25.5 26 26.5 27

Type

INTP_12.5k

INTP_25k

INTP_50k

STR_12.5k

STR_25k

STR_50k

Figure 4.13: Efficiency of the interpolation part (INTP) andthe STRESS evaluation part (STR) runtimes in
the parallel MI-MDS application with respect to different sample data sizes using Cluster-I in Table 4.1. The
total data size is 100K.

In Figure 4.13, 16 to 128 cores are used to measure parallel performance with 8 processes, and 32 to

384 cores are used to evaluate the parallel performance of the proposed parallel MI-MDS with 16 processes

in Figure 4.14. Processes communicate via MPI primitives and each process is also parallelized at the thread

level. Both Figure 4.13 and Figure 4.14 show very good efficiency with an appropriate degree of parallelism.

Since both the MI part and the STRESS calcualtion part are pleasingly parallel within a process, the major

overhead portion is the MPI message communicating overheadunless load balance is not achieved in the

thread-level parallelization within each process. In the previous paragraphs, the MPI communicating over-

head is investigated and the MPI communicating overhead showsO(M) relation. Thus, the MPI overhead is

4. Interpolation Approach for Multidimensional Scaling 76

Number of cores

E
ffi

ci
en

cy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

25 25.5 26 26.5 27 27.5 28 28.5

Type

INTP_12.5k

INTP_25k

INTP_50k

STR_12.5k

STR_25k

STR_50k

Figure 4.14: Efficiency of the interpolation part (INTP) andthe STRESS evaluation part (STR) runtimes in
the parallel MI-MDS application with respect to different sample data sizes using Cluster-II in Table 4.1. The
total data size is 100K.

constant if we examine it with the same number of processes and the same out-of-sample data sizes. Since

the parallel computation time decreases as more cores are used, but the overhead time remains constant, this

dynamic lowers the efficiency as the number of cores is increased, as we expected. Note that the number

of processes which lowers the efficiency dramatically is different between the Cluster-I and Cluster-II. The

reason is that the MPI overhead time of Cluster-I is bigger than that of Cluster-II due to different network

environments, i.e. Giga bit ethernet and 20Gbps Infiniband.The difference is easily found by comparing

Figure 4.11 and Figure 4.12.

4. Interpolation Approach for Multidimensional Scaling 77

(a) MDS 12.5k (b) MDS 50k

Figure 4.15: Interpolated MDS results of total 100k PubChemdataset trained by (a) 12.5k and (b) 50k
sampled data. Sampled data are colored in red and interpolated points are in blue.

4.4.4 Large-Scale Data Visualization via MI-MDS

Figure 4.15 shows the proposed MI-MDS results of a 100k PubChem dataset with respect to the different

sample sizes, such as (a) 12.5k and (b) 50k. Sampled data and interpolated points are colored in red and blue,

correspondingly. With our parallel interpolation algorithms for MDS, we have also processed a large volume

of PubChem data by using our Cluster-II, and the results are shown in Figure 4.16. We performed parallel

MI-MDS to process datasets of hundreds of thousand and up to 4million by using the 100k PubChem data

set as a training set. In Figure 4.16, we show the MI-MDS result of 2 million dataset based on 100k training

set, compared to the mapping of 100k training set data. The interpolated points are colored in blue, while the

training points are in red. As one can see, our interpolationalgorithms have produced a map closed to the

training dataset.

4. Interpolation Approach for Multidimensional Scaling 78

(a) MDS 100k (trained set) (b) MDS 2M + 100k

Figure 4.16: Interpolated MDS results. Based on 100k samples (a), additional 2M PubChem dataset is
interpolated (b). Sampled data are colored in red and interpolated points are in blue.

4.5 Summary

In this chapter, we have proposed interpolation algorithmsfor extending the MDS dimension reduction

approaches to very large datasets, i.e up to the millions. The proposed interpolation approach consists of

two-phases: (1) the full MDS running with sampled data (n); and (2) the interpolation of out-of-sample

data (N−n) based on mapped position of sampled data. The proposed interpolation algorithm reduces the

computational complexity of the MDS algorithm fromO(N2) to O(n× (N−n)). The iterative majorization

method is used as an optimization method for finding mapping positions of the interpolated point. We have

also proposed in this chapter the usage of parallelized interpolation algorithms for MDS which can utilize

multicore/multiprocess technologies. In particular, we utilized a simple but highly efficient mechanism for

computing the symmetric all-pairwise distances to provideimproved performance.

Before starting a comparative experimental analysis between MI-MDS and the full MDS algorithm, we

explored the optimal number ofk-NN. 2-NN is the best case for the Pubchem data which we used inthis

4. Interpolation Approach for Multidimensional Scaling 79

chapter. We have shown that our interpolation approach gives results of good quality with high parallel

performance. In a quality comparison, the experimental results shows that the interpolation approach output

is comparable to the normal MDS output, which takes much morerunning time than interpolation. The

proposed interpolation algorithm is easy to parallelize since each interpolated points is independent of other

out-of-sample points, so many points can be interpolated concurrently without communication. The parallel

performance is analyzed in Section 4.4.3, and it shows very high efficiency as we expected.

Consequently, the interpolation approach enables us to configure 4 millions Pubchem data points in this

chapter with an acceptable normalized STRESS value, compared to the normalized STRESS value of 100k

sampled data in less than ONE hour, and the size can be extended further with a moderate running time.

Note that if we use parallel MDS only, we cannot even run with only 200,000 points on the Cluster-II system

in Table 4.1 due to the out of memory exception, and if it were possible to run parallel MDS with 4 million

data points on the Cluster-II system, it would take around 15,000 times longer than the interpolation approach

as mentioned in Section 4.4.2. Future research includes application of these ideas to different areas including

metagenomics and other DNA sequence visualization.

5

Deterministic Annealing SMACOF

5.1 Overview

Multidimensional scaling (MDS) [13,45] is a well-known dimension reduction algorithm which is a non-

linear optimization problem constructing a lower dimensional configuration of high dimensional data with

respect to the given pairwise proximity information based on an objective function, namely STRESS [44] or

SSTRESS [67]. Below equations are the definition of STRESS (5.1) and SSTRESS (5.2):

σ(X) = ∑
i< j≤N

wi j (di j (X)− δi j)
2 (5.1)

σ2(X) = ∑
i< j≤N

wi j [(di j (X))2− (δi j)
2]2 (5.2)

where 1≤ i < j ≤N, wi j is a weight value (wi j ≥0),di j (X) is a Euclidean distance between mapping results of

xi andx j , andδi j is the given original pairwise dissimilarity value betweenxi andx j . SSTRESS is adopted by

ALSCAL algorithm (Alternating Least Squares Scaling) [67], and usessquaredEuclidean distances results

in simple computations. A more natural choice could be STRESS which is used by SMACOF [20] and

Sammon’s mapping [64].

80

5. Deterministic Annealing SMACOF 81

Due to the non-linear optimization properties of the MDS problem, many heuristic optimization methods

have been applied to solve the MDS problem. An optimization method called iterative majorization is used to

solve the MDS problem by a well-known MDS algorithm called SMACOF [20,21]. The iterative majorization

method is a type of Expectation-Maximization (EM) approach[22], and it is well understood that EM method

suffers from local minima problem although EM method is widely applied to many optimization problems.

From the motivation of local-optima avoidance, I have proposed an MDS algoirthm which applies a robust

optimization method called Deterministic Annealing (DA) [62, 63] to the MDS problem, in this chapter. A

key feature of the DA algorithm is to endeavour to find global optimum in adeterministic way[63] without

trapping local optima, instead of using a stochastic randomapproach, which results in a long running time, as

in Simulated Annealing (SA) [40]. DA usesmean field approximation, which is calculated in a deterministic

way, by using the statistical physics integrals.

In Section 5.2, I briefly discuss various optimization methods which have been applied to the MDS

problem to avoid local optima. Then, the proposed DA MDS algorithm based on iterative majorization

method is explained in Section 5.3. Section 5.4 and Section 5.5 illustrate performance of the proposed

DA MDS algorithm compared to other MDS algorithms with variable data sets followed by the conclusion

in Section 5.6.

5.2 Related Work

5.2.1 Avoiding Local Optima in MDS

As I mentioned above, many heuristic optimization methods are applied to solve the MDS problem, which

is a non-linear optimization problem. In this section, I would like to summarize those various optimization

approaches which have been applied to MDS problem.

5. Deterministic Annealing SMACOF 82

SMACOF is a quite useful algorithm, since it monotonically decreases the STRESS criterion [20] by

each iteration. However, the well-known problem of the gradient descent approach is to be trapped in a

local minima due to its hill-climbing approach, and it is applied to SMACOF as well. In order to avoid the

local optima problem, stochastic optimization approaches, such as simulated annealing (SA) [40] and genetic

algorithms (GA) [29, 37], have been used for solving the MDS problem [14, 49, 50, 72, 76], but stochastic

algorithms are well-known to suffer from a long running timedue to their Monte Carlo approach. In addition

to stochastic algorithms, the distance smoothing [35] and the tunneling method [34] for MDS problem were

proposed to avoid local optima in a deterministic way.

Recently, Ingram et al. introduced a multilevel algorithm called Glimmer [38] which is based on a force-

based MDS algorithm with restriction, relaxation, and interpolation operators. Glimmer shows less sensitivity

to initial configurations than the GPU-SF subsystem, which is used in Glimmer [38], due to the multilevel

nature. In Glimmer’s paper [38], however, the SMACOF algorithm shows better mapping quality than Glim-

mer. Also, the main purpose of Glimmer is to achieve a speededup running time with less cost of quality

degradation rather than it being explicitly focused on improving mapping quality. By contrast, this chapter

focuses on an optimization method which improves mapping quality in a deterministic approach. Therefore,

we will compare the proposed algorithm to other optimization algorithms, i.e. the SMACOF [20] and the

Distance Smoothing method [35], in Section 5.4 and Section 5.5.

In addition to many optimization methods mentioned above, deterministic annealing (DA) [62, 63] is

also a well-known optimization method. DA method is used formany optimization problems, including

clustering [62,63], pairwise clustering [36], and MDS [41], to name a few. Since it is intractable to calculate

F in Eq. (2.21) exactly, an approximation technique calledmean field approximationis used to solve the

MDS problem by DA in [41], in that Gibbs distributionPG(X) is approximated by a factorized distribution

with density

5. Deterministic Annealing SMACOF 83

P0(X|Θ) =
N

∏
i=1

qi(xi |Θi). (5.3)

whereΘi is a vector of mean field parameter ofxi andqi(xi |Θi) is a factor serves as a marginal distribution

model of the coordinates ofxi . To optimize parametersΘi , Klock and Buhmann [41] minimized Kullback-

Leibler (KL) divergence between the approximated densityP0(X) and the Gibbs densityPG(X) through EM

algorithm [22].

5.3 Deterministic Annealing SMACOF

Although DA-MDS [41] shows the general approach of applyingDA to the MDS problem through mean

field approximation, it is not clearly explained how it can solve MDS in the paper [41]. While the authors

mentioned that the Gibbs density is approximated by a factorized distribution with density (Eq. (5.3)) in [41],

they did not clearly pose which model densities are practically applicable to proceeding the mean field ap-

proximation in order to solve the MDS problem in their paper [41]. Therefore, I developed an alternative

way to solve the MDS problem by using a DA optimization method, and will introduce the alternative way

to utilize the DA method to the MDS problem in this section.

Klock and Buhmann applied deterministic annealing to the MDS problem by defining an approximation

of Gibbs distribution (P0(X)) via factorized distribution as shown in Eq. (5.3). Then, they developed the so-

lution for the MDS problem for the given data by minimizing the Kullback-Leibler (KL) divergence between

the factorial distribution (P0(X)) and the Gibbs distribution (PG(X)).

On the other hand, the alternative DA method for the MDS problem was initiated by defining a tractable

expected energy function of MDS problem, which is based on a simple Gaussian distribution, as shown in

Eq. (5.5) below. Then, the Gibbs distribution is approximated by exchanging the newly defined expected

energy function (H0) into H (X) of Eq. (2.20) as shown in Eq. (5.6). Finally, the proposed algorithm finds

5. Deterministic Annealing SMACOF 84

an MDS solution for a given data set by minimizingFMDS(P0).

Based on the experimental results with various data sets, shown in Section 5.4 and Section 5.5, the pro-

posed DA MDS algorithm can be considered as the best algorithm which finds better quality mapping in a

deterministic way than other deterministic MDS solutions with respect to the quality and the consistency of

the outputs. Also, it even shows some efficiency with larger experimental data sets compared to the EM-like

algorithm.

From now on, I would like to introduce the details of the proposed DA approach for the MDS problem

in this chapter. If we use the STRESS (5.1) objective function as an expected energy (cost) function in

Eq. (2.22), then we can defineHMDS andH0 as following:

HMDS =
N

∑
i< j≤N

wi j (di j (X)− δi j)
2 (5.4)

H0 =
N

∑
i=1

(xi − µ i)
2

2
(5.5)

whereH0 corresponds to an energy function based on a simple multivariate Gaussian distribution andµ i

represents the average of the multivariate Gaussian distribution ofi-th point (i = 1, . . . ,N) in target dimension

(L-dimension). Also, we defineP0 andF0 as following:

P0(X) = exp

(
− 1

T
(H0−F0)

)
, (5.6)

F0 = −T log
∫

exp

(
− 1

T
H0

)
dX = −T log(2πT)L/2 (5.7)

We need to minimizeFMDS(P0) =< HMDS−H0 > +F0(P0) with respect toµ i . Since−< H0 > +F0(P0)

is independent toµ i , only < HMDS > part is necessary to be minimized with regard toµ i . If we apply

5. Deterministic Annealing SMACOF 85

< xixi >= µ i µ i +TL to < HMDS >, then< HMDS > can be deployed as following:

< HMDS > =
N

∑
i< j≤N

wi j (< ‖xi −xj‖ > −δi j)
2 (5.8)

=
N

∑
i< j≤N

wi j (
√
‖µ i − µ j‖2 +2TL− δi j)

2 (5.9)

≈
N

∑
i< j≤N

wi j (‖µ i − µ j‖+
√

2TL− δi j)
2 (5.10)

where‖a‖ is Norm2 of a vectora. Eq. (5.9) can be approximated to Eq. (5.10), since the bigger T, the smaller

‖µ i − µ j‖ and the smallerT, the bigger‖µ i − µ j‖.

In [41], Klock and Buhmann tried to find an approximation ofPG(X) with a mean field factorization

method by minimizing the Kullback-Leibler (KL) divergenceusing an EM approach. The found parameters

obtained by minimizing the KL-divergence betweenPG(X) andP0(X) using the EM approach are essentially

the expected mapping in the target dimension under the current problem space with computational tempera-

ture (T).

In contrast, we try to find expected mapping, which minimizesFMDS(P0), directly with a new objective

function (σ̂); this which is then applied using a DA approach to the MDS problem space with a computational

temperature (T) by well-known EM-like MDS solution, called SMACOF [20]. Therefore, asT varies, the

problem space also varies, and the SMACOF algorithm is used to find expected mapping under each problem

space at a correspondingT. In order to apply SMACOF algorithm to DA method, we substitute the original

STRESS equation (5.1) with Eq. (5.10). Note thatµ i andµ j are the expected mappings we are looking for,

so we can consider‖µ i − µ j‖ asdi j (XT), whereXT represents the embedding results inL-dimension atT

anddi j means the Euclidean distance between mappings of pointi and j. Thus, the new STRESS (σ̂) is as

follows:

5. Deterministic Annealing SMACOF 86

σ̂ =
N

∑
i< j≤N

wi j (di j (XT)+
√

2TL− δi j)
2 (5.11)

=
N

∑
i< j≤N

wi j (di j (XT)− δ̂i j)
2 (5.12)

with δ̂i j defined as following:

δ̂i j =






δi j −
√

2TL if δi j >
√

2TL

0 otherwise

(5.13)

In addition,T is a lagrange multiplier so it can be thought of asT = T̂2, then
√

2TL = T̂
√

2L and we will

useT instead ofT̂ for the simple notation. Thus, Eq. (5.13) can be written as follows:

δ̂i j =






δi j −T
√

2L if δi j > T
√

2L

0 otherwise.

(5.14)

Now, we can apply SMACOF to find expected mapping with respectto the new STRESS (5.12) which

is based on computational temperatureT. The MDS problem space could be smoother with higherT than

with lower T, sinceT represents the portion of entropy to the free energyF as in Eq. (2.22). Generally,

the DA approach starts with a highT and gets cooled downT as time goes on, like the physical annealing

process. However, if the starting computational temperature (T0) is very high, a condition which results in all

δ̂i j becoming ZERO, then all points will be mapped at origin (O). Once all mappings are at the origin, then

the Guttman transform is unable to construct other mappingsexcept the mapping of all at the origin, since

the Guttman transform does multiplication iteratively with previous mapping to calculate current mapping.

Thus, we need to calculateT0 which makes at least onêδi j bigger than ZERO, so that at least one of the points

is not located atO.

With computedT0, the ∆̂0 = [δ̂i j] can be calculated, and we are able to run SMACOF algorithm with

5. Deterministic Annealing SMACOF 87

Algorithm 5.1 DA-SMACOF algorithm

Input: ∆ andα /* 0 < α < 1 */
1: ComputeT0

2: Computê∆0 = [δ̂i j] based on Eq. (5.14).
3: Generate random initial mappingX0.
4: k⇐ 0;
5: while Tk ≥ Tmin do
6: Xk+1 = output of SMACOF with∆̂k andXk. Xk is used for initial mapping of the current SMACOF

running.
7: Cool down computational TemperatureTk+1 = αTk

8: Update∆̂k+1 w.r.t. Tk+1.
9: k⇐ k+1;

10: end while

/* Finally, we will run SMACOF with original dissimilarity matrix (∆) by usingXk as the initial mapping.
*/

11: X = output of SMACOF based on∆ andXk.
12: return: X;

respect to Eq. (5.12). After a new mapping is generated withT0 by the SMACOF algorithm, sayX0, then

we will cool down the temperature in an exponential way, likeTk+1 = αTk, and keep completing the above

steps untilT becomes too small. Finally, we setT = 0 and then run SMACOF by using the latest mapping

as an initial mapping with respect to original STRESS (5.1).We will assume a uniform weight∀wi j = 1

where 0< i < j ≤ N. The proposed deterministic annealing SMACOF algorithm, called DA-SMACOF, is

illustrated in Algorithm 5.1.

5.3.1 Temperature Cooling Mechanism

Although we introduced the DA-SMACOF algorithm with anexponentialcooling mechanism for cooling

computational temperature (Tk+1 = αTk) where 0< α < 1, we can also extend DA-SMACOF with alinear

cooling mechanism for decreasing the computational temperature, which is illustrated as follows:Tk+1 =

Tk − β whereβ is a small constant value. In contrast to those fixed cooling mechanisms (exponential and

linear mechanism) which are not cooling adaptively based onthe current status of the solution, Choi et

al. [17] recently proposed an adaptive cooling method related to the DA approach for Generative Topographic

5. Deterministic Annealing SMACOF 88

Mapping (GTM) [11,12].

Since DA methods are highly dependent on the movement of the computational temperature, it is worth-

while to investigate different cooling mechanism, such as exponential and linear cooling scheme. For imple-

mentation of both cooling mechanism, we calculateTmax based on the given original dissimilarity matrix (∆)

and setTmin asTmaxmultiplied by a small number, i.e. 0.01 or 0.001. For the exponential cooling mechanism,

we can simply multiplyα on T until T ≤ Tmin. On the other hand, we need to calculateβ , for the linear

cooling scheme, based on user definedstep number(s) as well asTmax andTmin as in Eq. (5.15):

β =
Tmax−Tmin

s
. (5.15)

Figure 5.1 depicts computational temperature movement examples of exponential cooling mechanism and

linear cooling mechanism with real data used in Section 5.5.3. In Figure 5.1, we used parameters for the

cooling method as follows:Tmin = 0.01×Tmaxands= 100 for a linear cooling scheme.

5.4 Experimental Analysis

For the performance analysis of the proposed deterministicannealing MDS algorithm, calledDA-SMACOF ,

we would like to examine DA-SMACOF’s capability of avoidinglocal optima in terms of its objective func-

tion value (normalized STRESS in (5.16)) and the sensitivity of the initial configuration by comparing it with

the original EM-like SMACOF algorithm and MDS by Distance Smoothing [35] (MDS-DistSmoothhere-

after for short) which tries to find global optimum mapping. We have tested the above algorithms with many

different data sets, including well-known benchmarking data sets from the UCI machine learning repository1

as well as some real application data, such as the chemical compound data and biological sequence data, in

order to evaluate the proposed DA-SMACOF.

1UCI Machine Learning Repository,http://archive.ics.uci.edu/ml/

5. Deterministic Annealing SMACOF 89

Cooling Steps

Te
m

pe
ra

tu
re

 (
T

)

0.1

0.2

0.3

0 20 40 60 80

Scheme

exp95

lin100

Figure 5.1: The computational temperature movement with respect to two different cooling temperature
mechanisms (exponentialandlinear).

Since the MDS-DistSmooth requires a number of smoothing steps which affects the degree of smooth-

ness, and the cooling parameter (α) of computational temperature (T) affects the annealing procedure in

DA-SMACOF, we examine two different numbers of smoothing step numbers (s= 100 ands= 200) for the

MDS-DistSmooth and three different cooling parameters (α = 0.9, 0.95, and 0.99) for the DA-SMACOF

algorithm, as well. (Hereafter, MDS-DistSmooth with smoothing stepss= 100 ands= 200 are described

by DS-s100andDS-s200respectively, and the DA-SMACOF with temperature cooling parametersα = 0.9,

0.95, and 0.99 are represented byDA-exp90, DA-exp95, andDA-exp99, correspondingly.) We also examine

two different thresholds for the stopping condition, i.e.ε = 10−5 andε = 10−6, for tested algorithms.

To compare the mapping quality of the proposed DA-SMACOF with SMACOF and MDS-DistSmooth,

5. Deterministic Annealing SMACOF 90

Threshold

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.000

0.001

0.002

0.003

0.004

E(−5) E(−6)

DA−exp90

DA−exp95

DA−exp99

DS−s100

DS−s200

SMACOF

Figure 5.2: The normalized STRESS comparison of theiris data mapping results in 2D space. The bar graph
illustrates the average of 50 runs with random initialization, and the corresponding error bar represents the
minimum and maximum of the normalized STRESS values of SMACOF, MDS-DistSmooth with different
smoothing steps (s = 100 ands = 200) (DS-s100and -s200hereafter for short), and DA-SMACOF with
different cooling parameters (α = 0.9, 0.95, and 0.99) (DA-exp90,-exp95, and-exp99hereafter for short).
The x-axis is the threshold value for the stopping conditionof iterations (10−5 and 10−6).

we measure the normalized STRESS which substituteswi j in (5.1) for 1/∑i< j δ 2
i j like in the following:

σ(X) = ∑
i< j≤N

1

∑i< j δ 2
i j

(di j (X)− δi j)
2 (5.16)

in that the normalized STRESS value denotes the relative portion of the squared distance error rates of the

given data set without regard to the scale ofδi j .

5. Deterministic Annealing SMACOF 91

5.4.1 Iris Data

The iris data2 set is a very well-known benchmarking data set for the data mining and pattern recognition

communities. Each data item consists of four different realvalues (a.k.a.4D real-valued vector) and each

value represents an attribute of each instance, such as length or width of sepal (or petal). There are three

different classes (Iris Setosa, Iris Versicolour, and Iris Virginica) in the iris data set and each class contains

50 instances, so there are total 150 instances in the iris data set. It is known that one class is linearly separable

from the other two, but the remaining two are not linearly seperable from each other.

In Figure 5.2, The mapping quality of the constructed configurations of the iris data by SMACOF, MDS-

DistSmooth, and DA-SMACOF is compared by the average, the minimun, and the maximum of the normal-

ized STRESS values among 50 random-initial runnings. The proposed DA-SMACOF with all tested cooling

parameters, including quite fast cooling parameter (α = 0.9), outperforms SMACOF and MDS-DistSmooth

in Figure 5.2 except DS-s200 case withε = 10−6. Although DS-s200 withε = 10−6 is comparable to the

DA-SMACOF results, DS-s200 takes almost 3 times longer thanDA-exp95 withε = 10−6 which shows more

consistent results than DS-s200.

Numerically, DA-exp95 improves the mapping quality of 57.1% and 45.8% of the SMACOF results in

terms of the average of the STRESS values withε = 10−5 andε = 10−6, correspondingly. DA-exp95 shows

better mapping quality – about 43.6% and 13.2% – than even DS-s100, which is the algorithm to find the

global optimum, withε = 10−5 andε = 10−6.

In terms of sensitivity to the initial configuration, the SMACOF shows very divergent STRESS value

distributions for bothε = 10−5 andε = 10−6 cases in Figure 5.2. This illustrates that SMACOF is quite

sensitive to the initial configuration (a.k.a. easy to be trapped inlocal optima). In addition, MDS-DistSmooth

also shows a relatively high sensitivity to the initial configuration with the iris data set although the degree

2Iris Data set,http://archive.ics.uci.edu/mi/datasets/Iris

5. Deterministic Annealing SMACOF 92

x_axis

y_
ax

is

−2

−1

0

1

2

3

−2 −1 0 1 2

class

0

1

2

(a) Iris by EM Median

x_axis
y_

ax
is

−2

−1

0

1

2

3

4

−2 −1 0 1

class

0

1

2

(b) Iris by DS Median

x_axis

y_
ax

is

−2

−1

0

1

2

3

−2 −1 0 1 2

class

0

1

2

(c) Iris by DA Median

Figure 5.3: The 2D median output mappings of iris data with SMACOF (a), DS-s100 (b), and DA-exp95 (c),
whose threshold value for the stopping condition is 10−5. Final normalized STRESS values of (a), (b), and
(c) are 0.00264628, 0.00208246, and 0.00114387, correspondingly.

5. Deterministic Annealing SMACOF 93

of divergence is less than SMACOF algorithm. In contrast to other algorithms, the proposed DA-SMACOF

shows high consistency without regard to initial setting which we could interprete as it being likely to avoid

local optima. Since it is well-known that a slow cooling temperature is necessary to avoid local optima, we

expected that the DA-exp90 might be trapped in local optima as shown in Figure 5.2. Although the DA-exp90

cases show some variations, the DA-exp90 cases still show much better results than the SMACOF and the

MDS-DistSmooth except for the DS-s200 with aε = 10−6 case. In fact, the standard deviation of DA-exp95

with theε = 10−5 result is 1.08×10−6 and DA-exp99 withε = 10−5 and DA-exp95/exp99 withε = 10−6

shows a ZERO standard deviation in terms of the STRESS valuesof 50 random-initial runs. We can also

note that the difference of the DA-SMACOF results betweenε = 10−5 andε = 10−6 is negligible with the

iris data, whereas the average of SMACOF and MDS-DistSmooth(DS-s100) withε = 10−5 is about 35.5%

and 81.6% worse than correspondingε = 10−6 results.

Figure 5.3 illustrates the difference of actual mapping SMACOF, MDS-DistSmooth, and DA-SMACOF.

All of the mappings are the median results of a stopping condition with 10−5 threshold value. The mapping

in Figure 5.3a is the 2D mapping result of the median valued SMACOF, and Figure 5.3b represents the median

result of the MDS-DistSmooth. Three mappings in Figure 5.3 are a little bit different from one another, and

clearer structure differentiation between class 1 and class 2 is shown in Figure 5.3c which is the median

STRESS valued result of DA-SMACOF.

5.4.2 Chemical Compound Data

The second data set consists of chemical compound data with 333 instances represented by 155 dimen-

sional real-valued vectors. For the given original dissimilarity (∆), we measure the Euclidean distance of each

instance of pairs based on feature vectors as well as the irisdata set.

Figure 5.4 depicts the average mapping quality of 50 runs of 333 chemical compounds mapping re-

sults with regard to different experimental setups as in theabove description. For the chemical compound

5. Deterministic Annealing SMACOF 94

Threshold

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

E(−5) E(−6)

DA−exp90

DA−exp95

DA−exp99

DS−s100

DS−s200

SMACOF

Figure 5.4: The normalized STRESS comparison of thechemical compounddata mapping results in 2D
space. The bar graph illustrates the average of 50 runs with random initialization, and the corresponding
error bar represents the minimum and maximum of the normalized STRESS values of SMACOF, DS-s100
and -s200, and DA-exp90, DA-exp95, and DA-exp99. The x-axisis the threshold value for the stopping
condition of iterations (10−5 and 10−6).

data set, all the experimental results of the proposed DA-SMACOF (DA-exp90, DA-exp95, and DA-exp99)

show superior performance to the SMACOF and the MDS-DistSmooth with bothε = 10−5 andε = 10−6

stopping conditions. In detail, the average STRESS of the SMACOF is 2.50 and 1.88 times larger than cor-

responding DA-SMACOF results withε = 10−5 andε = 10−6 threshold, and the average STRESS of the

MDS-DistSmooth shows 2.66 and 1.57 times larger than the DA-SMACOF algorithm withε = 10−5 and

ε = 10−6. Furthermore, the minimum STRESS values of SMACOF and MDS-DistSmooth experiments are

larger than the average of all DA-SMACOF results. One interesting phenomena in Figure 5.4 is that the

MDS-DistSmooth shows worse performance on average withε = 10−5 stopping condition than SMACOF

and DS-s100 shows better than DS-s200.

5. Deterministic Annealing SMACOF 95

Similar to Figure 5.2, all the SMACOF and the MDS-DistSmoothexperimental results show a higher

divergence in terms of the STRESS values in Figure 5.4 than the proposed DA-SMACOF. On the other hand,

DA-SMACOF shows much less divergence with respect to the STRESS values, especially in the DA-exp99

case.

For the comparison between different cooling parameters, as we expected, the DA-exp90 shows some

divergence and a little bit higher average than the DA-exp95and DA-exp99, but much less of an average than

the SMACOF. Interestingly, DA-exp95 shows relatively larger divergence than DA-exp90 due to outliers.

However, those outliers of DA-exp95 happened rarely among 50 runs and most of DA-exp95 running results

are similar to the minimum value of the corresponding test.

5.4.3 Cancer Data

The cancer data3 set is a well-known data set found in the UCI Machine LearningRepository. Each

data item consists of 11 columns and the first and the last column represent theid-numberand theclass

correspondingly. The remaining 9 columns are attribute values described in integers ranging from 1 to 10.

There are two different classes (benign and malignant) in the cancer data set. Originally, it contained 699

data item; however, we used only 683 data points which have every attribute value included, since 16 items

have some missing information.

Figure 5.5 depicts the average mapping quality of 50 runs for683 cancer data mapping results with re-

gard to different experimental setups as in the above. For the cancer data set, all experimental results of the

proposed DA-SMACOF (DA-exp90, DA-exp95, and DA-exp99) show superior performance to SMACOF

and MDS-DistSmooth withε = 10−5, and better than SMACOF and comparable to MDS-DistSmooth with

ε = 10−6 stopping conditions. Interestingly, the DA-exp99 case shows worse results than the DA-exp95

3Breast Cancer Data set, http://archive.ics.uci.edu/mi/datasets/Breast+Cancer+Wisconsin+
(Original)

5. Deterministic Annealing SMACOF 96

Threshold

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.000

0.005

0.010

0.015

0.020

E(−5) E(−6)

DA−exp90

DA−exp95

DA−exp99

DS−s100

DS−s200

SMACOF

Figure 5.5: The normalized STRESS comparison of thebreast cancerdata mapping results in 2D space.
The bar graph illustrates the average of 50 runs with random initialization, and the corresponding error bar
represents the minimum and maximum of the normalized STRESSvalues of SMACOF, DS-s100 and -s200,
and DA-exp90,DA-exp95, and DA-exp99. The x-axis is the threshold value for the stopping condition of
iterations (10−5 and 10−6).

and the DA-exp90 results, although the DA-exp99 case find themost minimum mapping in terms of nor-

malized STRESS value. In detail, the average STRESS of SMACOF is 18.6% and 11.3% worse than the

corresponding DA-SMACOF results withε = 10−5 andε = 10−6 threshold, and the average STRESS of

the MDS-DistSmooth shows a performance which is 8.3% worse than the DA-SMACOF withε = 10−5 and

comparable to the DA-SMACOF withε = 10−6.

Although the DA-SMACOF experimental results show some divergence in terms of the STRESS values

in Figure 5.5, in contrast to Figure 5.2 and Figure 5.4, the DA-SMACOF experimental results show less

divergence of the STRESS values than the SMACOF and the MDS-DistSmooth in Figure 5.5.

5. Deterministic Annealing SMACOF 97

Threshold

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.00

0.01

0.02

0.03

0.04

0.05

E(−5) E(−6)

DA−exp90

DA−exp95

DA−exp99

DS−s100

DS−s200

SMACOF

Figure 5.6: The normalized STRESS comparison of theyeastdata mapping results in 2D space. The bar
graph illustrates the average of 50 runs with random initialization, and the corresponding error bar represents
the minimum and maximum of the normalized STRESS values of SMACOF, DS-s100 and -s200, and DA-
exp90,DA-exp95, and DA-exp99. The x-axis is the threshold value for the stopping condition of iterations
(10−5 and 10−6).

5.4.4 Yeast Data

The yeast data4 set is composed of 1484 entities, and each entity is represented by 8 real-value attributes

in addition to the sequence name and class labels.

The normalized STRESS comparison of the yeast mapping results by different algorithms is illustrated

in Figure 5.6 in terms of the average mapping quality of 50 runs for 1484 points mapping. DA-SMACOF

shows better performance than the other two algorithms in this experiments similar to the above experiments.

The SMACOF keeps showing a much higher divergence rather than the DA-SMACOF with both stopping

4Yeast Data set,http://archive.ics.uci.edu/mi/datasets/Yeast

5. Deterministic Annealing SMACOF 98

Test

ru
n

tim
e

(s
ec

)

0

50

100

150

200

compound iris

DA−5

DA−6

DS−5

DS−6

EM−5

EM−6

(a) Small Data Runtime

Test
ru

n
tim

e
(s

ec
)

0

1000

2000

3000

4000

5000

6000

7000

cancer yeast

DA−5

DA−6

DS−5

DS−6

EM−5

EM−6

(b) Large Data Runtime

Figure 5.7: The average running time comparison between SMACOF, MDS-DistSmooth (s= 100), and DA-
SMACOF (DA-exp95) for 2D mappings with tested data sets. Theerror bar represents the minimum and
maximum running time.EM-5/EM-6 represents SMACOF with 10−5/10−6 threshold, andDS-5/DS-6and
DA-5/DA-6 represents the runtime results of MDS-DistSmooth and DA-SMACOF, correspondingly, in the
same way.

condition cases. Also, the MDS-DistSmooth shows divergentSTRESS distribution with theε = 10−5 stop-

ping condition, but not with theε = 10−6 stopping condition. The DA-SMACOF shows quite stable results

except for the DA-exp90 case with aε = 10−5 stopping condition, as well as a better solution. In terms of

the best mapping (a.k.a. minimum normalized STRESS value),all DA-SMACOF experiments obtain a better

solution than the SMACOF and MDS-DistSmooth, and even best result of the SMACOF is worse than the

average of the proposed DA approach.

5.4.5 Running Time Comparison

From Section 5.4.1 to Section 5.4.4, we have been analyzing the mapping quality by comparing DA-

SMACOF with SMACOF and MDS-DistSmooth. DA-SMACOF outperforms SMACOF in all test cases, and

5. Deterministic Annealing SMACOF 99

outperforms or is comparable to MDS-DistSmooth. In this section, we would like to compare the running

time among those algorithms. Figure 5.7 describes the average running time of each test case for SMACOF,

MDS-DistSmooth, and DA-exp95 with 50 runs for the tested data. In order to make a distinct landscape

in Figure 5.7, we plot the quadrupled runtime results of theiris andcancerdata.

In Figure 5.7, all runnings are performed in sequential computing with AMD Opteron 8356 2.3GHz CPU

and 16GB memory. As shown in Figure 5.7, DA-SMACOF is a few times slower than SMACOF but faster

than MDS-DistSmooth in all test cases. In detail, DA-SMACOFtakes 2.8 to 4.2 times longer than SMACOF

but 1.3 to 4.6 times shorter than the MDS-DistSmooth with theiris andcompounddata set in Figure 5.7a.

Also, DA-SMACOF takes 1.3 to 2.8 times longer than the SMACOFbut 3.7 to 9.1 times shorter than the

MDS-DistSmooth with thecancerandyeastdata set in Figure 5.7b. Interestingly, less deviation is shown by

DA-SMACOF than other compared algorithms in all cases, withrespect to running time as well as STRESS

values.

5.5 Experiment Analysis of Large Data Sets

So far, the experimental data sets are of a relatively small size, i.e. 150, 333, 683 and 1484 instances,

in Section 5.4. In contrast to smaller data sizes as in the above tests, I present an experimental analysis

for larger data sets containing anywhere from 30,000 points(sequences) to 100,000 points. Since MDS

algorithms requiresO(N2) of main memory, we have to use much larger amounts of memory than main

memory in a single node for running analyseswith 30,000 or more points. Thus, we use the distributed

memory version of the SMACOF (and DA-SMACOF) algorithms [16] to run these large data sets. Also, we

experiment dimension reduction in three dimensional space(3D) as well as 2D space, since the configuration

of 2D mapping might involve high constraints for a larger data set.

Since the running time of the SMACOF (and DA-SMACOF) for larger data sets is much longer than that

5. Deterministic Annealing SMACOF 100

for smaller data sets, we would compare the SMACOF result with those of the DA-SMACOF withα = 0.95

for the exponential cooling scheme (DA-exp95) based on previous experimental comparisons among DA-

exp90, DA-exp95, DA-exp99 in Section 5.4. Instead of comparing three different exponential cooling pa-

rameters (α), we would like to explore other DA parameters, such as alinear cooling schemefor computa-

tional temperature (T) cooling scheme and ahybrid stop conditionwhich uses two different stop condition

parameters (ε1,ε2) for the annealing period (whereT > 0) and after the annealing period (whereT = 0). For

instance, we useε1 = 10−5 whenT > 0 and setε2 = 10−6 whenT = 0 for both exponential and linear cooling

schemes in this section.

The rationale of using the hybrid stop condition is highly related to our previous experimental results in

which the DA-SMACOF results withε = 10−5 were highly similar to those withε = 10−6. Based on the

similarity of the DA-SMACOF results with different stop condition parameters, it is a logical deduction that

the DA-SMACOF is able to avoid local optima if the iteration stop condition parameter (ε) is small enough to

reach an approximated average mappings at each computationtemperature (T) but is not necessarily too small

to avoid local optima. The small difference in the STRESS values between DA-SMACOF withε = 10−5 and

with ε = 10−6 might result from the nature of different stop conditions whenT = 0. In terms of running time,

however, the iteration stop condition parameter (ε) makes a significant difference between whenε = 10−5

andε = 10−6. Thus, if we could make up the small difference of the STRESS values betweenε = 10−5 and

ε = 10−6 by using the hybrid stop condition approach, it would provide a considerable gain with respect to

running time.

5.5.1 Metagenomics Data

One of the large data sets we used for evaluation of the DA-SMACOF algorithm is a biological sequence

data with respect to the metagenomics study. Although it is hard to present a biological sequence in a feature

vector, people can calculate a dissimilarity value betweentwo different sequences by using pairwise sequence

5. Deterministic Annealing SMACOF 101

Threshold

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.00

0.02

0.04

0.06

0.08

E(−5) E(−6)

DA−exp95

SMACOF

(a) MC30000 2D STRESS

Threshold

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.00

0.01

0.02

0.03

0.04

E(−5) E(−6)

DA−exp95

SMACOF

(b) MC30000 3D STRESS

Figure 5.8: The normalized STRESS comparison of themetagenomics sequencedata mapping results in
2D and 3D space. The bar graph illustrates the average of 10 runs with random initialization, and the corre-
sponding error bar represents the minimum and maximum of thenormalized STRESS values of SMACOF
and DA-SMACOF withα = 0.95. The x-axis is the threshold value for the iteration stopping condition of
the SMACOF and DA-SMACOF algorithms (10−5 and 10−6).

alignment algorithms, like the Smith Waterman - Gotoh (SW-G) algorithm [30, 65] which we used for this

metagenomics data set.

Figure 5.8 is the comparison between the average of 10 randominitial runs of DA-SMACOF (DA-exp95)

and SMACOF with the metagenomics data set, which contains 30000 points. Similar to previous results, the

SMACOF shows a tendency to be trapped in local optima by depicting some variation and larger STRESS

values, and even the minimum STRESS values are bigger than any results of DA-exp95 in 2D mapping case.

For 2D mapping, the DA-exp95 results actually demonstrate a12.6% and 10.4% improvement compared to

the SMACOF on average, withε = 10−5 andε = 10−6, correspondingly. The DA-exp95 results in 3D space

are 6.3% and 5.0% better than the SMACOF in average, withε = 10−5 andε = 10−6, correspondingly, as

well. Note that the STRESS values of the mappings in 3D space are much less than those of the mappings in

2D space, regardless of algorithms.

5. Deterministic Annealing SMACOF 102

Threshold

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E(−5) E(−6)

DA−exp95

SMACOF

(a) ALU50058 2D STRESS

Threshold

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.00

0.02

0.04

0.06

0.08

0.10

E(−5) E(−6)

DA−exp95

SMACOF

(b) ALU50058 3D STRESS

Figure 5.9: The normalized STRESS comparison of theALU sequencedata mapping results in 2D and
3D space. The bar graph illustrates the average of 10 runs with random initialization, and the correspond-
ing error bar represents the minimum and maximum of the normalized STRESS values of SMACOF and
DA-SMACOF with α = 0.95. The x-axis is the threshold value for the iteration stopping condition of the
SMACOF and DA-SMACOF algorithms (10−5 and 10−6).

As shown in Figure 5.8, all of the DA-exp95 results are very similar to each other, especially when the

stopping condition isε = 10−6. Although DA-exp95 withε = 10−5 in 3D shows some variation in Fig-

ure 5.8-(b), in fact, all the mappings except the maximum STRESS case show very similar STRESS values

as depicted, in that the minimum STRESS value is close to the average. Furthermore, all the generated map-

pings by DA-exp95 withε = 10−6 in 3D case shows the same STRESS value up to the 10−7 scale. In contrast

to the DA-SMACOF, the SMACOF shows a larger variation in bothstopping conditions in Figure 5.8, and

all the mappings generated by the SMACOF are worse than all the DA-exp95 results except the outlier (the

maximum STRESS case with 10−5 stop condition).

5. Deterministic Annealing SMACOF 103

5.5.2 ALU Sequence Data

We also used another type of biological sequence data, whichconsisted of 50058 samples of Alu re-

peats [9] coming from the Human and Chimpanzee genomes, for the purpose of comparison between the

proposed DA-SMACOF and SMACOF. The required all-pairwise dissimilarity matrix for MDS problem is

also computed based on pairwise sequence alignment resultsas in Section 5.5.1.

In Figure 5.9, the comparison between the average of 10 random initial runs of DA-SMACOF (DA-exp95)

and SMACOF with 50058 ALU sequence data in 2D and 3D with two different iteration stop condition is

illustrated. Similar to other results, in every experiment, the DA-exp95 shows better quality of mappings in

terms of the average normalized STRESS values than do the SMACOF results. As shown in Figure 5.9, the

maximum normalized STRESS values of all DA-exp95 experiments are less than the minimum normalized

STRESS value of corresponding SMACOF experiments. In detail, the DA-exp95 results in the 2D mapping

show 16.3% and 4.6% improvement, compared to the SMACOF, on average withε = 10−5 andε = 10−6,

respectively. For 3D mapping, the DA-exp95 results are 25.8% and 1.6% better than the corresponding

SMACOF results in average with the same stopping conditions. DA-exp95 also shows a high consistency

of mappings with respect to the normalized STRESS values as shown in other examples, and the standard

deviation of the normalized STRESS values of DA-exp95 withε = 10−6 in 3D space is 4.42×10−5.

One interesting feature of the SMACOF result in Figure 5.9 isthat both the 2D and 3D SMACOF map-

pings with theε = 10−5 stop condition show high consistent normalized STRESS values although these are

much worse than the corresponding DA-exp95 results. The main reason for the high consistency of SMA-

COF withε = 10−5 is that SMACOF has stopped prematurely due to the relativelylarge stop condition for

the data. As illustrated in Figure 5.15-(b), the runtime of SMACOF with ALU sequences data withε = 10−5

stop condition is unbelievably faster than the other test with the same data. If we compare the average itera-

tion number, it is extremely clear that the SMACOF results ofthe ALU data with theε = 10−5 stop condition

have been stopped pre-maturely. The average iteration numbers of the SMACOF with ALU sequence data

5. Deterministic Annealing SMACOF 104

Threshold

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.00

0.02

0.04

0.06

0.08

E(−5) E(−5, −6) E(−6)

DA−exp95

DA−lin100

SMACOF

(a) 16sRNA 50k 2D STRESS

Threshold

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.000

0.005

0.010

0.015

0.020

0.025

0.030

E(−5) E(−5, −6) E(−6)

DA−exp95

DA−lin100

SMACOF

(b) 16sRNA 50k 3D STRESS

Figure 5.10: The normalized STRESS comparison of the16s RNA sequencedata with 50000 sequences for
mapping in 2D and 3D space. The bar graph illustrates the average of 10 runs with random initialization,
and the corresponding error bar represents the minimum and maximum of the normalized STRESS values
of SMACOF, DA-SMACOF withα = 0.95 (DA-exp95), and DA-SMACOF with linear cooling with 100
steps (DA-lin100). The x-axis is the threshold value for the iteration stopping condition of the SMACOF and
DA-SMACOF algorithms (10−5, 10−6, andhybridapproach).

with ε = 10−5 case are 24.6 (either 24 or 25) and 20.2 (either 20 or 21) iterations for 2D and 3D mapping,

correspondingly. These numbers of the SMACOF with the ALU sequence data withε = 10−6 case, however,

are 954.70 and 974.56 iterations with high variations for 2Dand 3D mapping, respectively.

5.5.3 16sRNA 50k Data

The third and fourth test data sets are 16s RNA biological sequence data sets with different sizes, such as

50,000 (hereafterRNA50k) and 100,000 (hereafterRNA100k). Since they are biological sequence data sets,

it is hard to represent them with feature vectors but it is possible to generate a pairwise dissimilarity matrix.

Instead of theSW-Glocal sequence alignment algorithm [30, 65] which we used togenerate a pairwise

dissimilarity matrix for the Metagenomics data set, we usedthe Needleman-Wunsch (NW) algorithm [53],

5. Deterministic Annealing SMACOF 105

which is a global sequence alignment algorithm, for creating a pairwise dissimilarity matrix of 16sRNA

sequence data sets (both 50k and 100k) for the MDS input. In this section, we also tested alinear cooling

scheme with 100 steps (hereafterDA-lin100) and ahybrid stop conditionthreshold approach as well as a

DA-exp95 experimental setting. We experimented mapping innot only 2D space but also 3D space.

Figure 5.10 describes the mapping quality comparison in terms of the average normalized STRESS values

based on 10 random runs of each experimental setup with RNA50k data set. In Figure 5.10, DA-SMACOF

shows a better quality of mappings in terms of the average STRESS values than the SMACOF results in every

experiment, as well. As shown in Figure 5.10-(a), all DA-SMACOF experiments significantly outperform

the SMACOF results in 2D space. Numerically, the 2D mapping results of DA-exp95 are 29.1% and 28.0%

better than the SMACOF on average withε = 10−5 andε = 10−6 stop conditions, correspondingly. For 3D

mapping case, the SMACOF shows 5.1% worse than DA-exp95 whenε = 10−5, and 2.1% worse than DA-

exp95 whenε = 10−6. As usual, the DA-SMACOF shows consistent mapping quality with little variation of

STRESS values for all test cases, especially the mappings in3D space.

One interesting attribute of the experimental results in Figure 5.10 is that the DA-SMACOF shows a

higher consistency in 3D mappings, but SMACOF also shows a higher consistency in 2D mappings (com-

pared to other SMACOF results) with much worse mapping quality compared to DA-SMACOF. However, it

is not a result from the premature convergence due to the larger stopping condition as mentioned in Sec-

tion 5.5.2, since SMACOF with both stopping conditions (ε = 10−5,10−6) show similarly much higher

STRESS values, regardless of stopping conditions. Based onthe fact that 2D mapping is much more con-

strained than 3D mapping, we may interpret the high consistency in 2D mappings of SMACOF with RNA50k

data as a result of a deep local optima under the 2D MDS mappingof the RNA50k data problem space.

The additional experimental features in Figure 5.10 are a linear cooling scheme and a hybrid stop condi-

tion approach. In Figure 5.10, the linear cooling scheme shows slightly better performance in 2D mapping in

terms of STRESS values than exponential cooling scheme, andcomparable to exponential cooling scheme in

5. Deterministic Annealing SMACOF 106

3D mapping results. For the hybrid stop condition approach experiments, the mapping quality of the hybrid

stop condition approach is similar to that of theε = 10−5 case in 2D mappings for both the exponential and

linear cooling schemes. The mapping quality of the hybrid approach is similar to that ofε = 10−6 case in the

3D mappings for both the exponential and linear cooling schemes, as opposed to the 2D mappings results.

Based on the mapping quality results of the hybrid stop condtion scheme, we infer that the hybrid stop con-

dition scheme works more effectively in less constrained environments. (Here, 3D mapping represents much

less constrained environments than 2D mapping.)

Figure 5.11 depicts an example of how the DA-SMACOF forms themapping in 2D space from the high

temperature (T0 = α ×Tmax) to the final mapping result, and corresponding normalized STRESS value (σ).

As illustrated in Figure 5.11-(a), the DA-SMACOF starts from a mapping in which all the points are close to

one points whose normalized STRESS value is 0.999995 which is very close to 1.0, as shown in Figure 5.14-

(a). AsT decreases, the DA-SMACOF algorithm gradually forms a structured mapping from the initial one-

point centered mapping. AsT is decreased, the corresponding normalized STRESS value (σ) also decreases

gradually as in Figure 5.11-(b), and DA-SMACOF forms a little mapping structure as shown in that figure.

As the DA-SMACOF algorithm gradually configures a structured mapping as in Figure 5.11-(c),(d), and

(e), σ decreases rapidly as small as 0.202537 whenT = 0.103781, almost five times smaller than whenT0.

Finally, the DA-SMACOF algorithm provides the final mappingin 2D space after setT = 0 in Figure 5.11-(f).

Interestingly, Figure 5.11-(e) and -(f) are configured in very similar shapes with different scales.

5.5.4 16sRNA 100k Data

The mapping quality comparison in terms of the average normalized STRESS values based on 10 random

runs of each experimental setup withRNA100k data set is shown in Figure 5.12. Like other experimental

results in this chapter, the DA-SMACOF shows a better quality of mappings in terms of the average STRESS

values than do the SMACOF results in every experiment. In overall experimental setup, Figure 5.12 shows

5. Deterministic Annealing SMACOF 107

(a) T = 0.374134,σ = 0.999995 (b) T = 0.275023,σ = 0.926254

(c) T = 0.202167,σ = 0.562188 (d) T = 0.156433,σ = 0.375549

(e) T = 0.103781,σ = 0.202537 (f) T = 0.0,σ = 0.0579866

Figure 5.11: The mapping progress of DA-SMACOF withRNA50k data set in 2D space with respect to
computational temperature (T) and corresponding normalized STRESS value (σ).

5. Deterministic Annealing SMACOF 108

Threshold

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.00

0.02

0.04

0.06

0.08

E(−5) E(−5, −6) E(−6)

DA−exp95

DA−lin100

SMACOF

(a) 16sRNA 100k 2D STRESS

Threshold

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.00

0.01

0.02

0.03

0.04

0.05

0.06

E(−5) E(−5, −6) E(−6)

DA−exp95

DA−lin100

SMACOF

(b) 16sRNA 100k 3D STRESS

Figure 5.12: The normalized STRESS comparison of the16s RNA sequencedata with 100000 sequences
for mapping in 2D and 3D space. The bar graph illustrates the average of 10 runs with random initialization,
and the corresponding error bar represents the minimum and maximum of the normalized STRESS values
of SMACOF, DA-SMACOF withα = 0.95 (DA-exp95), and DA-SMACOF with linear cooling with 100
steps (DA-lin100). The x-axis is the threshold value for the iteration stopping condition of the SMACOF and
DA-SMACOF algorithms (10−5, 10−6, andhybridapproach).

a very similar mapping quality graph to Figure 5.10. Numerically, the 2D mapping results of DA-exp95

are 30.2% and 28.3% better than the SMACOF on average withε = 10−5 andε = 10−6 stop conditions,

correspondingly. For the 3D mapping case, SMACOF shows 19.7% worse than DA-exp95 whenε = 10−5,

and 2.6% worse than DA-exp95 whenε = 10−6. As usual, DA-SMACOF shows consistent mapping quality

by a little variation of the STRESS values for all test cases.The standard deviation of STRESS values of 3D

mappings by DA-SMACOF is as small as about 10−5 or 10−6.

In terms of the linear cooling scheme and the hybrid stop condition approach experiments, Figure 5.12

shows the same tendency to Figure 5.10. Also, there are some unique features of Figure 5.12. The one

thing is that the best mapping of all experimental runnings in 2D space is generated by the DA-exp95 with

ε = 10−5 stop condition, and the difference with other mappings is perceptible in Figure 5.12-(a). This result

5. Deterministic Annealing SMACOF 109

proves that it is possible to find a better mapping by the DA-SMACOF algorithm with a less constrained

stop condition (here,ε = 10−5, instead ofε = 10−6). Another unique feature in Figure 5.12, compared to

Figure 5.10, is that one of the SMACOF runs in 3D space with theε = 10−5 stop condition quite prematurely

stopped and resulted in generating a poor configuration as shown in Figure 5.12-(b).

5.5.5 Comparison of the STRESS progress

In addition to the normalized STRESS value comparison between the proposed DA-SMACOF and SMA-

COF, in order to investigate how to avoid local optima by DA-SMACOF, we would like to look into the

STRESS value progress of SMACOF and DA-exp95 with theε = 10−6 stop condition in the 2D and 3D

mapping results. Figure 5.13 and Figure 5.14 illustrate thetransition of the STRESS values of each exper-

iment of SMACOF and DA-exp95 algorithms withMC30000 andRNA50k, correspondingly. As shown

in Figure 5.13 and Figure 5.14, the DA-SMACOF algorithm starts from a high STRESS value (almost 1.0)

and tends to decrease its STRESS value slowly at first, and then experience a faster decrease in the interme-

diate stage, and converge to a solution with a less STRESS value than the SMACOF, in a reversed ’S’ shaped

transition for both (a) and (b) subfigures of Figure 5.13 and Figure 5.14. On the other hand, the SMACOF

algorithm starts with a smaller initial STRESS value (smaller than 0.5) than the DA-SMACOF but shows a

steep descent of the STRESS value progress in the beginning and long tails after the short steep decrease in

both 2D and 3D mapping cases in Figure 5.13 and Figure 5.14.

(c) and (d) subgraphs of Figure 5.13 and Figure 5.14 took log-scale on the axis of the normalized STRESS

value from (a) and (b) subfigures of Figure 5.13 and Figure 5.14, correspondingly. By log-scaling on the

y-axis, we can look into the details of the almost flat regionsat high iterations in (a) and (b) subfigures

of Figure 5.13 and Figure 5.14. Interestingly, the log-scaling helps to differentiate the DA-SMACOF results

in both the 2D and 3D mappings, while the results of the SMACOFalgorithm still show some flat regions by

even log-scaled graphs, as shown in Figure 5.13 and Figure 5.14.

5. Deterministic Annealing SMACOF 110

Iteration

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.2

0.4

0.6

0.8

0 100 200 300 400 500

Alg

DA−exp95

SMACOF

(a) MC30000 2D STRESS Movement

Iteration

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.2

0.4

0.6

0.8

0 100 200 300 400 500

Alg

DA−exp95

SMACOF

(b) MC30000 3D STRESS Movement

Iteration

N
or

m
al

iz
ed

 S
T

R
E

S
S

10−1

10−0.8

10−0.6

10−0.4

10−0.2

0 100 200 300 400 500

Alg

DA−exp95

SMACOF

(c) MC30000 2D STRESS Movement - logscale

Iteration

N
or

m
al

iz
ed

 S
T

R
E

S
S

10−1.4

10−1.2

10−1

10−0.8

10−0.6

10−0.4

10−0.2

0 100 200 300 400 500

Alg

DA−exp95

SMACOF

(d) MC30000 3D STRESS Movement - logscale

Figure 5.13: The normalized STRESS progress comparison ofMC 30k data in 2D and 3D space by SMACOF
and DA-exp95. The x-axis is the cummulated iteration numberof SMACOF and DA-SMACOF algorithms.

5. Deterministic Annealing SMACOF 111

Note that the DA-exp95 stops at a lesser number of iterationsfor both the 2D and 3D mappings than the

SMACOF algorithm, and it affects the running time as shown inFigure 5.15-(a) and Figure 5.16. We can

interpret the steep improvement of mapping quality by SMACOF in the beginning as being powerful but it

results in being trapped in local optima easily, and the gradual improvement by DA-SMACOF based on the

change of computational temperature gives an effect in which it can avoid local optima and be efficient for

large data sets.

5.5.6 Running Time Analysis of Large Data Sets

I described the runtime analysis of the DA-SMACOF compared to other algorithms (SMACOF and MDS-

DistSmooth) with relatively small data sets in Section 5.4.5. In Section 5.4.5, the DA-SMACOF takes awhile

longer than the SMACOF but also demonstrates a shorter time than the MDS-DistSmooth algorithm. How-

ever, the DA-SMACOF takes a comparable and even shorter timethan does the SMACOF with larger data

sets in the 2D and 3D mappings, interestingly enough. Since the DA-SMACOF and SMACOF algorithms

require too much computing power and main memory, parallelization is essential for testing with large data

points. Therefore, we tested DA-SMACOF and SMACOF with the MPI version of these algorithms [16] for

testing with larger data sets. The details of the runtime analysis for each large data set will be represented in

this section. In Figure 5.15 and Figure 5.16, the bar graph shows the average runtime of 10 runs of each ex-

perimental set up, and the error-bar on top of each bar graph represents the minimum and maximum running

time of the corresponding experiments.

First, for themetagenomicsdata set with 30,000 points, I tested this set with 128 way parallelism by using

the MPI version of the SMACOF and DA-SMACOF [16]. The runningtime results of DA-SMACOF and

SMACOF algorithms with the metagenomics data is shown in Figure 5.15-(a). In detail, the DA-SMACOF

takes only 1.36 and 1.12 times longer than the SMACOF in average for the 2D mapping results, and several

SMACOF runs actually take longer than the DA-SMACOF runningtimes. In contrast to the running time

5. Deterministic Annealing SMACOF 112

Iteration

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.2

0.4

0.6

0.8

0 100 200 300 400 500

Alg

DA−exp95

SMACOF

(a) 16sRNA 50k 2D STRESS Movement

Iteration

N
or

m
al

iz
ed

 S
T

R
E

S
S

0.2

0.4

0.6

0.8

0 100 200 300 400 500 600

Alg

DA−exp95

SMACOF

(b) 16sRNA 50k 3D STRESS Movement

Iteration

N
or

m
al

iz
ed

 S
T

R
E

S
S

10−1.2

10−1

10−0.8

10−0.6

10−0.4

10−0.2

0 100 200 300 400 500

Alg

DA−exp95

SMACOF

(c) 16sRNA 50k 2D STRESS Movement - logscale

Iteration

N
or

m
al

iz
ed

 S
T

R
E

S
S

10−1.4

10−1.2

10−1

10−0.8

10−0.6

10−0.4

10−0.2

0 100 200 300 400 500 600

Alg

DA−exp95

SMACOF

(d) 16sRNA 50k 3D STRESS Movement - logscale

Figure 5.14: The normalized STRESS progress comparison ofRNA50k data in 2D and 3D space by SMA-
COF and DA-exp95. The x-axis is the cummulated iteration number of SMACOF and DA-SMACOF algo-
rithms.

5. Deterministic Annealing SMACOF 113

Test

ru
n

tim
e

(s
ec

)

0

1000

2000

3000

4000

5000

MC30K_2D MC30K_3D

DA−5

DA−6

EM−5

EM−6

(a) MC30000 Data Runtime

Test

ru
n

tim
e

(s
ec

)

0

2000

4000

6000

8000

10000

12000

ALU50K_2D ALU50K_3D

DA−5

DA−6

EM−5

EM−6

(b) ALU50058 Data Runtime

Figure 5.15: The average running time comparison between SMACOF and DA-SMACOF (DA-exp95) for
2D and 3D mappings with MC30000 and ALU50058 data sets. The error bar represents the minimum and
maximum running time.EM-5/EM-6 represents SMACOF with 10−5/10−6 threshold, andDA-5/DA-6 rep-
resents the runtime results of DA-SMACOF, correspondingly, in the same way.

results of smaller data sets in Section 5.4.5, the DA-SMACOFtakes 0.97 and 0.91 times longer than the

SMACOF, which means it is faster than the SMACOF, in average for 3D mappings. The DA-SMACOF still

shows high consistency in running time as well as STRESS values, but the SMACOF shows high variation

of running time in Figure 5.15-(a).

Figure 5.15-(b) is the average running time of each experiment with theALU50058 data set. As we

mentioned in Section 5.5.2, SMACOF withε = 10−5 cases stopped prematurely and it represents a very

small amount of running time. Since the SMACOF stops with toosmall a number of iteration with the

ε = 10−5 stopping condtion, I would like to analyze the runtime of both algorithms with theε = 10−6

stopping condition. As shown in Figure 5.15-(b), DA-SMACOFwith 10−6 stop condition shows much better

running time performance than does the SMACOF algorithm with theε = 10−6 stopping condition in both 2D

and 3D mapping results. The DA-SMACOF takes only 0.47 times longer than the SMACOF in 2D mappings,

5. Deterministic Annealing SMACOF 114

which means the DA-SMACOF is more than twice as fast as the SMACOF. For the 3D mapping with the

ALU50058 data set, the DA-SMACOF takes around 0.63 times longer (a.k.a. 1.60 times faster) than the

SMACOF. Note that the SMACOF takes a lot of variation with running time in 2D mapping withε = 10−6

stop condition.

Figure 5.16 illustrates the running time analysis of the DA-SMACOF and SMACOF algorithm with16s

RNA data sets, i.e.RNA50k andRNA100k. For 16s RNA data sets, I experimented with a linear cooling

scheme and a hybrid stop condition approach as well as the usual DA-exp95 case. Figure 5.16-(a) and

(b) show the running time results with the RNA50k data set in 2D and 3D space, correspondingly, and

Figure 5.16-(c) and (d) depict the running time result with the RNA100k data set in 2D and 3D space, as well.

As shown in Figure 5.16, Figure 5.16-(a) shows a very similargraph to Figure 5.16-(c), and Figure 5.16-(b)

and (d) are similar to each other.

First, I would like to analyze a runtime comparison between DA-SMACOF and SMACOF. I will use same

DA-exp95 case to compare with SMACOF to exhibit the same comparison that I have previously conducted

with other data sets. As described in Figure 5.16-(a) and (c), for the 2D mapping results, the SMACOF with

theε = 10−5 stopping condition stopped faster than the DA-exp95 with the same stop condition. However,

if we compare the running time of DA-exp95 and SMACOF withε = 10−6 stop condition in 2D mappings,

the DA-SMACOF takes around 0.68 and 0.67 times longer than the SMACOF algorithm. In other words, the

DA-SMACOF is about 1.47 and 1.50 times faster than the SMACOF. Note that the mapping quality of the

SMACOF with theε = 10−5 stopping condition for the 2D space is much worse than that ofthe DA-exp95,

as explained in Section 5.5.3.

For 3D mappings, even the SMACOF with theε = 10−5 stopping condition is slower than or comparable

to the DA-SMACOF withε = 10−5, and the SMACOF takes longer than the DA-SMACOF with theε = 10−6

stopping condition as shown in Figure 5.16-(b) and (d). Numerically, the DA-SMACOF takes around 0.82

times longer (actually, 1.22 times faster) than the SMACOF with the RNA50k data set and takes only 1.04

5. Deterministic Annealing SMACOF 115

Test

ru
n

tim
e

(s
ec

)

0

1000

2000

3000

4000

16sRNA_50K_2D

DA−e5

DA−e5,6

DA−e6

DA−l5

DA−l5,6

DA−l6

EM−5

EM−6

(a) 16sRNA 50k 2D Runtime

Test

ru
n

tim
e

(s
ec

)
0

2000

4000

6000

8000

16sRNA_50K_3D

DA−e5

DA−e5,6

DA−e6

DA−l5

DA−l5,6

DA−l6

EM−5

EM−6

(b) 16sRNA 50k 3D Runtime

Test

ru
n

tim
e

(s
ec

)

0

2000

4000

6000

8000

10000

12000

14000

16sRNA_100K_2D

DA−e5

DA−e5,6

DA−e6

DA−l5

DA−l5,6

DA−l6

EM−5

EM−6

(c) 16sRNA 100k 2D Runtime

Test

ru
n

tim
e

(s
ec

)

0

5000

10000

15000

20000

25000

16sRNA_100k_3D

DA−e5

DA−e5,6

DA−e6

DA−l5

DA−l5,6

DA−l6

EM−5

EM−6

(d) 16sRNA 100k 3D Runtime

Figure 5.16: The average running time comparison between SMACOF, DA-SMACOF (DA-exp95), and DA-
SMACOF with linear cooling (DA-lin100) for 2D and 3D mappings with 16s RNA data sets. The error bar
represents the minimum and maximum running time.EM-5/EM-6 represents SMACOF with 10−5/10−6

threshold, andDA-e5/DA-e5,6/DA-6andDA-l5/DA-l5,6/DA-l6 represents the runtime results of DA-exp95
and DA-lin100, correspondingly, with 10−5/hybrid(10−5 and 10−6)/10−6.

5. Deterministic Annealing SMACOF 116

times longer than the SMACOF with the RNA100k data set, whenε = 10−5. Also, the DA-SMACOF with

ε = 10−6 stop condition is about 1.19 times and 1.04 times faster thanthe SMACOF with same stopping

condition for RNA50k and RNA100k data sets, correspondingly.

If we compare the running times between two different computational temperature cooling methods for

DA-SMACOF, we can find that theDA-exp95 andDA-lin100 are compatible with theε = 10−5 stopping

condition and the DA-lin100 shows better than or comparableto performance to the DA-exp95 with theε =

10−6 stopping condition. It is interesting that the DA-lin100 shows better than or comparable to performance

with the DA-exp95 in terms of the running time, based on the fact that the tested linear cooling mechanism

takes more cooling steps than the exponential cooling scheme as shown in Figure 5.1. From the above facts,

we can deduce that the linear cooling scheme is a little bit more efficient than the exponential cooling scheme

in terms of running time.

The hybrid stop condition approach, which uses two different iteration stop conditions for the annealing

period (T > 0) and the final step (T = 0), shows interesting attributes with respect to the running time analysis

in Figure 5.16. For 2D mapping cases as in Figure 5.16-(a) and(c), the hybrid approach shows a similar

running time with a correspondingε = 10−5 stop condition. On the other hand, the DA-SMACOF with a

hybrid stop condition scheme takes a longer time than the DA-SMACOF with ε = 10−5 but a shorter time

than the DA-SMACOF withε = 10−6 for 3D mapping cases. Since the mapping quality of the DA-SMACOF

hybrid stop condition scheme is similar to the DA-SMACOF with ε = 10−5 in 2D mappings and similar to

the DA-SMACOF with theε = 10−6 in the 3D mappings as illustrated in Figure 5.10 and Figure 5.12, we can

think of the running time of the hybrid stop condition approach shown in Figure 5.16 as a reasonable result.

Since the hybrid stop condition scheme for the DA-SMACOF shows a similar mapping quality to the DA-

SMACOF withε = 10−6 for 3D mappings, if we compare the runtime of the hybrid stop condition scheme

with the corresponding DA-SMACOF withε = 10−6 experiments in 3D mappings, the hybrid stop condition

achieves a 1.53 and 1.43 times faster running time than DA-SMACOF with ε = 10−6 for the RNA50k data,

5. Deterministic Annealing SMACOF 117

and 1.66 and 1.48 times faster than DA-SMACOF withε = 10−6 for the RNA100k data with respect to the

exponential and linear cooling schemes, correspondingly.Furthermore, the hybrid stop condition approach

for DA-exp95 case is about 1.82 and 1.73 times faster than theSMACOF with ε = 10−6 for RNA50k and

RNA100k data, respectively.

In short, the DA-SMACOF generally outperforms the SMACOF, not only in mapping quality but also

in running time, with large data sets. Based on the runtime analysis of the DA-SMACOF with a large data

set in this section, we can consider the proposed DA approachfor MDS as not just an effective optimization

method for avoiding local optima but also an efficient optimization method for large data sets.

5.6 Summary

In this chapter, we have proposed an MDS solution with the deterministic annealing (DA) approach,

which utilizes the SMACOF algorithm in each cooling step. The proposed DA approach outperforms the

SMACOF and MDS-DistSmooth algorithms with respect to the mapping qualities with several different real

data sets. Furthermore, the DA-SMACOF exhibits the high consistency due to less sensitivity to the initial

configurations, in contrast to the SMACOF and MDS-DistSmooth approaches, which show high sensitivity

to both the initial configurations and the stopping condition.

With the benefit of the DA method to avoid local optima, the proposed DA approach uses slightly longer or

comparable running times to the SMACOF, and shorter runningtimes than the MDS-DistSmooth approach,

for small data sets. Moreover, the proposed DA approach is actually faster than the SMACOF algorithm with

larger data sets, and applying the hybrid stop condition scheme to the DA-SMACOF algorithm can reduce

the running time of the DA algorithm even more.

We have also investigated different computational temperature cooling parameters in an exponential cool-

ing scheme and it turns out that this approach shows some deviation of mapping results when we use a faster

5. Deterministic Annealing SMACOF 118

cooling parameter than necessary (like the DA-exp90 case inthis chapter). But the DA-exp90 shows still

better than or comparable performance compared with the compared algorithms in our experiments. Also,

the DA-exp95 results are very similar to or even better than the DA-exp99 results, although the DA-exp95

takes a shorter time than the DA-exp99 case, so that we might think α = 0.95 could be a generally reasonable

cooling parameter in an exponential scheme. In addition to the exponential cooling scheme, we also tested

with linear cooling scheme and compared both cooling schemein terms of mapping quality as well as run-

times. The linear cooling scheme shows slightly better thanor comparable to performance of the exponential

cooling scheme in both quality and efficiency criteria.

For the scalability test of the ability of avoiding local optima by the DA-SMACOF, we experimented

with various sizes of data sets from 150 to 100,000 points, and compared them with the SMACOF (and

MDS-DistSmooth for smaller data sets) applied to the same data sets. In Section 5.4 and Section 5.5, the

experimental results support the local optima avoidance attribute of the proposed DA-SMACOF algorithm,

not only for small data sets but also for large data sets.

6

Conclusions and Future Works

6.1 Summary of Work

In this dissertation, we have worked on a dimension reduction method called multidimensional scaling

(MDS). The main purpose of my dissertation work is to scale upthe mapping capacity of the MDS algorithm

for dealing with a large amount of data, and to improve the mapping quality of MDS results via avoiding local

optima. First, we applied parallelism to a well-known MDS algorithm called SMACOF [20, 21] in order

to increase the computational capacity of the MDS algorithmthrough utilizing more computing resources

on cluster systems for dealing with large amounts of data in Chapter 3. We also investigated the parallel

performance and the scalability of our parallel implementation in Chapter 3 as well. In addition to applying

parallelism in order to utilize more computation resources, we proposed an interpolation algorithm which

reduces computational complexity and memory requirement in Chapter 4. The interpolation approach divides

the given data in two sets, i.e. sample data and out-of-sample data. Then, we generate a configuration of the

sample data with the full MDS algorithm, and we find a mapping of each out-of-sample point by means of

interpolation based on the mappings of nearest neighbors ofthe interpolated point among the sample data.

We can proceed with including millions of points by using theproposed interpolation method as shown

119

6. Conclusions and Future Works 120

in Chapter 4. For the purpose of achieving better mapping quality, we applied an optimization method

named deterministic annealing (DA) [62, 63] to the MDS problem in Chapter 5. We tested the proposed

DA-SMACOF with various data sets with a variety of the sizes compared to other MDS algorithms, and the

DA-SMACOF produced better quality mappings than the other comparable MDS algorithms.

6.2 Conclusions

Large-scale data analysis is a prominent research area due to the data explosion which has occurred in

almost every domain. Huge amounts of data are generated, notonly from the scientific and technical area

but also from personal life activities, such as digital pictures, video clips, postings on a personal blog system

or social network media, and so on. The dimension reduction algorithms aim to generate low-dimensional

human-perceivable configurations which are very useful forinvestigating high-dimensional data sets. Among

the many dimension reduction algorithms, we focus on the multidimensional scaling (MDS) algorithm in this

dissertation, due to its robustness and high applicability.

We have worked on several ways to improve a well-known MDS algorithm, called SMACOF [20, 21],

with respect to not only computing capability but also mapping quality. To increase the possible number

of points generated in a new configuration in a target dimension, we have worked on the parallelization of

SMACOF algorithm. The parallelization enables the SMACOF algorithm to deal with hundreds of thousands

of points via distributed multicore cluster systems, such as 32 nodes with 768 cores. Although the parallel

SMACOF implementation provides much more computing power,it cannot affordably configure millions

of points since the computational complexity and memory requirement of the SMACOF algorithm is still

O(N2). The proposed majorizing interpolation MDS (MI-MDS) makespossible the strategy generating a

mapping of millions of points with a trade-off between the computing capacity and the mapping quality. We

have worked on the improvement of mapping quality by avoiding local optima as well as on the increase of

6. Conclusions and Future Works 121

the computing capacity of the MDS solution. Below we have summarized what we have worked out in each

chapter of this dissertation.

6.2.1 High-Performance Distributed Parallel Multidimensional Scaling (MDS)

In order to configure mappings with large amounts of data through the MDS algorithm, we need to

utilize distributed computing systems due to the requirement of a large amount of computing power and

memory. Thus, we parallelized a well-known MDS solution named SMACOF [20, 21] via MPI [27, 73].

The MPI standard has been supported in most programming languages, such as C, C++, Java, and C#, and

MPI.NET [32], which we used in this thesis, provides MPI implementation for the C# language.

As we mentioned in Chapter 3, we implemented the scalable andhigh-performance parallel SMACOF

algorithm which shows high efficiency and scalability. In Chapter 3, we demonstrated how the importance

of the data decomposition structure can influence message passing routines and overhead as well as a cache-

line effect. We measured both overall elapsed running time and sub-routine runtimes with respect to various

data decomposition structures, and found that the row-based decomposition worsens the cache reusability for

updating the distance matrix with larger data sets. The worse cache reusability results in performance degra-

dation of row-based decomposition with larger data set. On the other hand, column-based decomposition also

increases message passing overhead for updating another participating matrix (B(X)) of the SMACOF algo-

rithm. Based on both experimental results, we conclude thatthebalanceddata decomposition is generally

better than theskeweddata decomposition for parallel SMACOF algorithm.

The efficiency and scalability analyses are important criteria for the evaluation of parallel implementation.

Although the efficiency is decreased, the decreased efficiency is still good enough for a certain degree of

parallelism. The main reason for the efficiency degradationof the parallel SMACOF implementation, as the

number of parallel units being increased, is that the ratio of parallel overhead portion is increased but the pure

parallel computation time is decreased as the number of parallel units is increased. Figure 3.8 and Table 3.3

6. Conclusions and Future Works 122

supported two important aspects of the proposed parallel SMACOF: (1) the fact that it achieves good load-

balance; and (2) that the decreased efficiency of the parallel SMACOF with more parallel units is due to the

inevitable message passing overhead for the parallel implementation.

In short, the major contribution of the parallel SMACOF implementation is that it can afford to utilize

cluster systems, which provide hundreds or even thousands times more computing power and memory re-

sources than a single node machine, for running the MDS algorithm with a much larger number of data

points, such as hundreds of thousands of points that would beimpossible to run in a single node machine

by sequential computing. The proposed parallel SMACOF algorithm shows relatively high efficiency and

scalability by paying some inevitable overhead.

6.2.2 Interpolation approach for MDS

By using the parallel SMACOF algorithm on a cluster system, we can configure hundreds of thousands of

points in a target dimensional space. However, there are many interesting problems with more than millions

of points, in that it is impractical to use only the parallel SMACOF implementation to configure mappings for

millions of points in a target dimension due to the resource requirements ofO(N2) concerning computation

and memory. In order to raise the affordable number of pointsof the MDS algorithm at least up to millions

of points, we developed an interpolation approach for the MDS problem. The interpolation method for

a given data follows a two-fold operations: (1) we select samples from the given full data and generate

mappings of thesampledata; (2) we then interpolate eachout-of-sampledata with respect to the mapping

positions of its nearest neighbors among sampled data. By applying the interpolation approach, we reduce the

computational complexity of the MDS algorithm fromO(N2) to O(nN) whereN is the total data size andn is

the sample data size. We applied the iterative majorizationmethod to interpolate a points with respect to the

mapping positions of its nearest neighbors. The mathematical equations for the proposed iterative majorizing

interpolation method are provided in Chapter 4. In Chapter 4, we also illustrated how to parallelize the

6. Conclusions and Future Works 123

interpolation algorithms.

In Chapter 4, we discussed: (1) the comparative experimental analysis between the proposed majorizing

interpolation MDS (hereafter MI-MDS) and MDS only in terms of mapping quality and execution time;

and (2) the parallel performance of MI-MDS algorithm. For mapping quality comparison purposes, the

normalized STRESS value of interpolation approach, which combines with MDS running with the sample

data and MI-MDS with the out-of-sample data, is compared to the MDS only running. For the Pubchem 100k

data set, the normalized STRESS value of the interpolation approach with a 50k sample data is only around

0.0038 bigger than the results of the MDS only. Note that the interpolation approach is 3.3 times faster than

the MDS only approach, and that the MI-MDS takes only around 19 seconds to generate mappings of 50k

out-of-sample data. We also experimented with larger out-of-sample data size, such as 1 million, 2 millions,

and 4 millions points (hereafter 1M, 2M, and 4M, correspondingly). Since we cannot run parallel MDS with

more than 200,000 data points on Cluster-II in Table 4.1 due to the out of memory exception, there is no

way to compare the mapping quality of the interpolation approach result with MDS only results. However,

we can evaluate the mapping quality of the interpolation results with larger data sizes (like millions) by

comparing them to the normalized STRESS values of the MDS result of sampled data. As we expected, the

approximation feature of MI-MDS degraded the mapping quality a little, but the mapping qualities of MI-

MDS results with 1M, 2M, and 4M data points are similar to one another as shown in Figure 4.9, interestingly

enough.

In addition to the mapping quality analysis of the MI-MDS, wealso investigated the parallel performance

of the hybrid parallel MI-MDS algorithm in Chapter 4. The independence between the interpolated points

is a very nice feature to parallelize the MI-MDS algorithm. The parallel MI-MDS algorithm is a pleasingly

parallel application due to the independence between each interpolated points. Thus, the parallel MI-MDS

implementation achieves high efficiency in parallel as shown in Section 4.4.3.

In short, the proposed interpolation algorithm (MI-MDS) succeeds to generate a configuration of millions

6. Conclusions and Future Works 124

of points in a target dimension in moderate running time. Themapping quality of the outputs from the

interpolation approach is comparable to the mapping quality of the MDS only results, which takes a much

longer execution time than the interpolation approach. We parallelized the proposed MI-MDS algorithm

to deal with millions of out-of-sample data with high efficiency due to the independent properties of the

interpolated points.

6.2.3 Improvement in Mapping Quality

By working on the parallelization of MDS algorithm and development of interpolation algorithm, we

have contributed in quantitative scope to the MDS algorithmfor the purpose of dealing with large-scale input

data. In addition to this quantitative contribution, we have also worked on a method to avoid the local-optima

problem of the MDS algorithm which results in the contribution of mapping quality improvement. For the

sake of overcoming the local-optima problem on MDS, we applied a well-known optimization method, called

the Deterministic Annealing (DA) [62,63], to the MDS problem. In Chapter 5, we proposed an MDS solution

with a DA optimization approach. The SMACOF [20, 21] algorithm is used to generate an approximated

mapping for the given data at each cooling step (T) in the proposed DA MDS solution. (Hereafter, we call

the proposed DA MDS solution theDA-SMACOF.)

In order to experiment with the local-optima avoidance property, we compared the DA-SMACOF al-

gorithm with other MDS algorithms, i.e. the SMACOF and MDS-DistSmooth (MDS by distance smooth-

ing [35]), with various real data sets. The experimental results are shown in Section 5.4 and Section 5.5.

The experimental analysis illustrates that the DA-SMACOF outperformed other comparable algorithms, the

SMACOF and MDS-DistSmooth, in terms of mapping quality. Also, a high consistency of mapping results

is exhibited among the DA-SMACOF results and it confirms thatthe DA-SMACOF’s decreased sensitivity

to intial configurations. On the other hand, the SMACOF and MDS-DistSmooth are highly sensitive to the

initial configurations and the stopping condition parameter. In order to see the difference of the optimization

6. Conclusions and Future Works 125

activity between the SMACOF and DA-SMACOF, we investigatedthe trace of the STRESS value by each

algorithms. As shown in Figure 5.14, the trace of the STRESS value for the DA-SMACOF shows a reversed

‘S’ shaped progress, which starts from a very high STRESS value and slow improvement initially. On the

other hand, the SMACOF case shows ’L’ shaped progress, whichillustrates faster improvement from the be-

ginning with a much lower starting STRESS value followed by long tailed small improvement. It is a natural

interpretation for the STRESS value trace results that the steepest improvement by the SMACOF results in

being trapped in local optima but the gradual progress by theDA-SMACOF related to the computational

temperature demonstrates its avoidance of local-optima.

In comparison for the running time, the proposed DA-SMACOF takes comparable to or slightly longer

than the SMACOF algorithm but it uses a much shorter running time than the MDS-DistSmooth with better

mapping results, for the small data sets in Section 5.4. Furthermore, the DA-SMACOF is even faster than the

SMACOF algorithm with larger data sets as in Section 5.5, andit produced better quality mappings than the

SMACOF. We can reduce the DA-SMACOF running time even more byapplying the hybrid stop condition

scheme to the DA-SMACOF, as shown in Figure 5.16.

In addition to a comparative analysis conducted between DA-SMACOF and other well-known MDS al-

gorithms, we have experimented with various parameters of the DA-SMACOF as well, such as temperature

cooling parameters and the stop condition parameter. First, we have worked on different temperature cooling

parameters (i.e.α = 0.90, 0.95, and 0.99 denotedDA-exp90, DA-exp95, and DA-exp99, correspondingly) in

an exponential computational temperature cooling scheme.The case ofα = 0.90 is a kind of faster cool-

ing parameter than appropriate, and the outputs of DA-exp90generated somewhat variated STRESS value

distributions, in contrast to the DA-exp95 and DA-exp99 cases, but the DA-exp90 shows still better than or

comparable to performance to the SMACOF and MDS-DistSmoothalgorithms in Section 5.4. Furthermore,

the DA-exp95 performs similar to or even better than the DA-exp99, and it takes less time than the DA-exp99

case. Based on the experiment of the temperature cooling parameter in the exponential cooling scheme, we

6. Conclusions and Future Works 126

conclude thatα = 0.95 in an exponential cooling mechanism could generally be a reasonable choice. Sec-

ond, we also compared the exponential and linear cooling schemes in terms of mapping quality and execution

time. The linear cooling scheme shows a little bit better than or comparable to performance to the exponential

cooling scheme not only in mapping quality but also in running time.

We experimented the proposed DA-SMACOF algorithm with eight different real data sets and compared

the mapping quality with that of other algorithms. The size of data sets varies from 150 to 100,000 points.

For the all test cases, the DA-SMACOF shows better STRESS value than the compared algorithms without

regard to the size of data. It shows that the proposed DA-SMACOF avoids local optima, as the algorithm

intended, not only for small data sets but also for large amounts of data sets. The detailed experimental results

of those data sets are showin in Section 5.4 and Section 5.5.

6.3 Future Works

In this section, I would like to mention about some possible future works related to the proposed method-

ologies in this thesis. Those future research issues will improve the features of the proposed algorithms in

this thesis.

6.3.1 Hybrid Parallel MDS

In [28,57], we investigated the overhead of a pure MPI and a hybrid (MPI-Threading) model with multi-

core cluster systems. In [28], the pure MPI outperforms the hybrid model for the application with a relatively

fast message passing synchronization overhead. However, for the case of the high MPI synchronization time,

the hybrid model outperforms the pure MPI model with high parallelism. Since the MPI overhead increases

as the number of processes is increased in Figure 3.9, it is worth to investigate hybrid parallel model of

SMACOF.

6. Conclusions and Future Works 127

6.3.2 Hierarchical Interpolation Approach

In Chapter 4, we discussed an interpolation approach which reduces the time complexity of the MDS

algorithm fromO(N2) to O(nM), wheren is the sample size andM is the out-of-sample size (M = N−n).

MI-MDS provides us with a very high capability of configuringlarge amounts of data points in a target

dimension via a modest amount of execution time. Although the time complexity of the MI-MDS is much

better than that of the normal MDS algorithm, and it shows efficient running times compared to running times

of the parallel SMACOF as described in Chapter 4, we can even reduce the time complexity toO(M · log(n))

by using a hierarchical approach, such as the Barnes-Hut tree [8] (hereafterBH-tree). The BH-tree technique

divides the given space by a tree-structured subspace of cubic cells, and the division occurs recursively in

each cubic cells. For instance, the volume of 2D and 3D space is divided by aquadtreeand anoctree

structure, correspondingly. The BH-tree technique is originally proposed to advance the time complexity of

the N-bodysimulation. We can reduce in log-scale the number of points which needs to be considered as

possible neighbors among the sampled data of each interpolated point by applying the BH-tree technique.

Currently, a colleague of our research group has been working on this hierarchical interpolation approach for

MDS problem.

6.3.3 Future Works for DA-SMACOF

It will be interesting to integrate DA-SMACOF ideas with theinterpolation technology described in [7] to

give a robust approach to dimension reduction of large datasets that scales likeO(nN) ratherO(N2) of general

MDS methods. The adaptive cooling scheme for computationaltemperature of DA-SMACOF is another

interesting topic for further research. The adaptive cooling scheme may result in more efficient running on

DA-SMACOF by changing computational temperature based on the progress of the algorithm. Although we

have worked on mainly the DA-SMACOF with a uniform weighted case (unweighed case,wi j = constant)

in Chapter 5, DA-SMACOF algorithm for weighted case, such asSammon’s mapping (wi j = 1/δi j), could be

6. Conclusions and Future Works 128

also useful under certain environments. Therefore, it is aninteresting research topic to extend the proposed

DA-SMACOF to a generalized DA MDS algorithm which can deal with general weighted cases as well as

unweighted case.

6.4 Contributions

The followings are the envisioned contributions of this dissertation in Section 1.5:

• [Parallelization] Efficient parallel implementation via Message Passing Interface (MPI) in order to

scale up the computing capability of a well-known MDS algorithm (SMACOF) by utilizing cluster

systems.

• [Reducing Complexity] Development of an innovative algorithm, which reduces the computational

complexity and memory requirement of MDS algorithms and produced acceptable mapping results,

for the purpose of scaling the MDS algorithm’s capacity up tomillions of points which is usually

intractable to generate a mapping via normal MDS algorithms.

• [Local Optima Avoidance] Providing an MDS algorithm which could figure out the local optima

avoidance problem in a deterministic way so that it generates better quality mapping in a reasonable

amount of time.

In this section, we summarize how to achieve the envisioned contributions in this dissertation that we

mentioned in Section 1.5. The methods of how we achieved the proposed contributions in this dissertation

are shown below:

• [Parallelization] We parallelized the SMACOF algorithm [20,21] via MPI.NET [32] and C# language

which is a managed code. The implemented parallel SMACOF algorithm shows the achievement of

6. Conclusions and Future Works 129

good load-balance. Due to the inevitable messages on each iteration of SMACOF algorithm, the par-

allel efficiency is lowered as the number of parallel units isincreased. However, the parallel efficiency

is still good enough with an appropriate number of parallel units with respect to the data size. The

computing capability of the parallel SMACOF is scaled up to hundreds of thousands of points on the

multicore cluster systems that we have.

• [Reducing Complexity] We designed an interpolation algorithm which divides the given data into two

sets assampledata andout-of-sampledata. The interpolation algorithm consists of two-steps: (1)

mapping sample data by full MDS running; and (2) intepolate the out-of-sample data based on the

mappings of sample data generated by (1) step. We designed aninterpolation algorithm which reduces

the computation complexity fromO(N2) to O(nM), wheren is the size of sample data andM = N−n.

Also, the proposed interpolation algorithm reduces the memory requirement for generating a mapping

position for each point. Due to the reduced computational complexity and memory requirement, the

proposed interpolation algorithm actually scales the mapping capacity up to millions of points not only

with a much faster running time but also with an acceptable mapping quality. As shown in Chapter 4,

the intepolation approach enables us to configure up to 4-million points in 3D space.

• [Local Optima Avoidance] In addition to the contributions of scalability of the MDS algorithm, we

also solved the avoidance of the local optima issue which is awell-known problem of EM-like opti-

mization methods. We have applied deterministic annealing(DA) [62, 63] optimization to the MDS

algorithm to avoid local optima via simplifying the expected energy function by approximation based

on computational temperature (T). The unique attribute of the DA optimization method is thatit is

a deterministic approach, which does not rely on non-deterministic random movement, in contrary to

other global optimization methods, such as simulated annealing (SA) and genetic algorithm (GA), so

that it does not suffer from long running times. Since we utilized the SMACOF algorithm to find a map-

ping of the given data at each temperature (T), we could also parallelize the proposed DA-SMACOF

6. Conclusions and Future Works 130

algorithm by using the parallel SMACOF implementation [16]which is proposed in Chapter 3. The

proposed DA-SMACOF algorithm depicted the local optima avoiding property by high-consistency of

mapping quality and less-sensitivity to initial configuration. We compared the proposed DA-SMACOF

algorithm with other algorithms by running with various size of data sets from 150 to 100,000 as in Sec-

tion 5.4 and Section 5.5. It outperformed other compared MDSalgorithms, i.e. SMACOF [20,21] and

MDS-DistSmooth [35], in terms of mapping quality with various data sets, and we could conclude that

the better mapping quality of DA-SMACOF results from avoiding local optima for which we designed

it.

Bibliography

[1] Boost c++ libraries.http://www.boost.org.

[2] Intel threading building blocks for open source.http://threadingbuildingblocks.org/.

[3] Openmp: The openmp specification for parallel programming.http://openmp.org/wp.

[4] D. Agrafiotis, D. Rassokhin, and V. Lobanov. Multidimensional scaling and visualization of large

molecular similarity tables.Journal of Computational Chemistry, 22(5):488–500, 2001.

[5] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L.

Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The landscape of parallel computing research:

A view from berkeley. Technical Report UCB/EECS-2006-183,EECS Department, University of Cal-

ifornia, Berkeley, Berkeley, California, Dec 2006.http://www.eecs.berkeley.edu/Pubs/

TechRpts/2006/EECS-2006-183.html.

[6] S.-H. Bae. Parallel multidimensional scaling performance on multicore systems. InProceedings of the

Advances in High-Performance E-Science Middleware and Applications workshop (AHEMA) of Fourth

IEEE International Conference on eScience, pages 695–702, Indianapolis, Indiana, Dec. 2008. IEEE

Computer Society.

131

BIBLIOGRAPHY 132

[7] S.-H. Bae, J. Y. Choi, X. Qiu, and G. Fox. Dimension reduction and visualization of large high-

dimensional data via interpolation. InProceedings of the ACM International Symposium on High

Performance Distributed Computing (HPDC) 2010, Chicago, Illinois, June 2010.

[8] J. Barnes and P. Hut. A hierarchical o(n log n) force-calculation algorithm.Nature, 324:446–449, 1986.

[9] M. Batzer and P. Deininger. Alu repeats and human genomicdiversity. Nature Reviews Genetics,

3(5):370–379, 2002.

[10] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N.L. Roux, and M. Ouimet. Out-of-sample ex-

tensions for lle, isomap, mds, eigenmaps, and spectral clustering. InAdvances in Neural Information

Processing Systems, pages 177–184. MIT Press, 2004.

[11] C. Bishop, M. Svensén, and C. Williams. GTM: A principled alternative to the self-organizing map.

Advances in neural information processing systems, pages 354–360, 1997.

[12] C. Bishop, M. Svensén, and C. Williams. GTM: The generative topographic mapping.Neural compu-

tation, 10(1):215–234, 1998.

[13] I. Borg and P. J. Groenen.Modern Multidimensional Scaling: Theory and Applications. Springer, New

York, NY, U.S.A., 2005.

[14] M. Brusco. A simulated annealing heuristic for unidimensional and multidimensional (city-block) scal-

ing of symmetric proximity matrices.Journal of Classification, 18(1):3–33, 2001.

[15] D. R. Butenhof.Programming with POSIX threads. Addison-Wesley Professional, 1997.

[16] J. Y. Choi, S.-H. Bae, X. Qiu, and G. Fox. High performance dimension reduction and visualization for

large high-dimensional data analysis. InProceedings of the 10th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (CCGRID) 2010, May 2010.

BIBLIOGRAPHY 133

[17] J. Y. Choi, X. Qiu, M. Pierce, and G. Fox. Generative topographic mapping by deterministic annealing.

In Proceedings of the 10th International Conference on Computational Science (ICCS) 2010, Amster-

dam, The Nethelands, June 2010.

[18] G. Chrysanthakopoulos and S. Singh. An asynchronous messaging library for c#. InProceedings of the

Workshop on Synchronization and Concurrency in Object-Oriented Languages, pages 89–97, 2005.

[19] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Transaction on Information

Theory, 13(1):21–27, 1967.

[20] J. de Leeuw. Applications of convex analysis to multidimensional scaling.Recent Developments in

Statistics, pages 133–146, 1977.

[21] J. de Leeuw. Convergence of the majorization method formultidimensional scaling.Journal of Classi-

fication, 5(2):163–180, 1988.

[22] A. Dempster, N. Laird, and D. Rubin. Maximum likelihoodfrom incomplete data via the em algorithm.

Journal of the Royal Statistical Society. Series B, pages 1–38, 1977.

[23] J. Dongarra, D. Gannon, G. Fox, and K. Kennedy. The impact of multicore on computational sci-

ence software.CTWatch Quarterly, 3(1), Feb 2007.http://www.ctwatch.org/quarterly/

archives/february-2007.

[24] P. Dubey. Recognition, mining and synthesis moves computers to the era of tera.Technology@Intel

Magazine, 2005.

[25] C. Eckart and G. Young. The approximation of one matrix by another of lower rank.Psychometrika,

1(3):211–218, 1936.

[26] M. P. I. Forum. Mpi-2: Extensions to the message passinginterface.http://www.mpi-forum.

org/docs/mpi-20-html/mpi2-report.html.

BIBLIOGRAPHY 134

[27] M. P. I. Forum. Mpi: A message passing interface standard. http://www.mpi-forum.org/

docs/mpi-11-html/mpi-report.html.

[28] G. Fox, S. Bae, J. Ekanayake, X. Qiu, and H. Yuan. Parallel data mining from multicore to cloudy grids.

In Proceedings of HPC 2008 High Performance Computing and Grids workshop, Cetraro, Italy, July

2008.

[29] D. E. Goldberg.Genetic algorithms in search, optimization and machine learning. Addison-Wesley,

1989.

[30] O. Gotoh. An improved algorithm for matching biological sequences.Journal of Molecular Biology,

162(3):705–708, 1982.

[31] J. Gower. Some distance properties of latent root and vector methods used in multivariate analysis.

Biometrika, 53(3-4):325–338, 1966.

[32] D. Gregor and A. Lumsdaine. Design and implementation of a high-performance mpi for c# and the

common language infrastructure. InProceedings of the 13th ACM SIGPLAN Symposium on Principles

and practice of parallel programming, pages 133–142. ACM, 2008.

[33] P. Groenen and P. Franses. Visualizing time-varying correlations across stock markets.Journal of

Empirical Finance, 7(2):155–172, 2000.

[34] P. Groenen and W. Heiser. The tunneling method for global optimization in multidimensional scaling.

Psychometrika, 61(3):529–550, 1996.

[35] P. Groenen, W. Heiser, and J. Meulman. Global optimization in least-squares multidimensional scaling

by distance smoothing.Journal of classification, 16(2):225–254, 1999.

[36] T. Hofmann and J. M. Buhmann. Pairwise data clustering by deterministic annealing.IEEE Transactions

on Pattern Analysis and Machine Intelligence, 19:1–14, 1997.

BIBLIOGRAPHY 135

[37] J. H. Holland.Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor,

MI, 1975.

[38] S. Ingram, T. Munzner, and M. Olano. Glimmer: Multilevel MDS on the GPU.IEEE Transactions on

Visualization and Computer Graphics, 15(2):249–261, 2009.

[39] B. Kempf. The boost.threads library.Dr. Dobb’s, 2002.

[40] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.Science,

220(4598):671–680, 1983.

[41] H. Klock and J. M. Buhmann. Data visualization by multidimensional scaling: a deterministic annealing

approach.Pattern Recognition, 33(4):651–669, 2000.

[42] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In

International joint Conference on artificial intelligence, volume 14, pages 1137–1145. Morgan Kauf-

mann, 1995.

[43] T. Kohonen. The self-organizing map.Neurocomputing, 21(1-3):1–6, 1998.

[44] J. B. Kruskal. Multidimensional scaling by optimizinggoodness of fit to a nonmetric hypothesis.Psy-

chometrika, 29(1):1–27, 1964.

[45] J. B. Kruskal and M. Wish.Multidimensional Scaling. Sage Publications Inc., Beverly Hills, CA,

U.S.A., 1978.

[46] H. Lahdesmaki, X. Hao, B. Sun, L. Hu, O. Yli-Harja, I. Shmulevich, and W. Zhang. Distinguishing key

biological pathways between primary breast cancers and their lymph node metastases by gene function-

based clustering analysis.International journal of oncology, 24(6):1589–1596, 2004.

[47] D. Leijen, W. Schulte, and S. Burckhardt. The design of atask parallel library. InProceedings of the

BIBLIOGRAPHY 136

24th ACM SIGPLAN conference on Object oriented programmingsystems languages and applications,

OOPSLA ’09, pages 227–242, New York, NY, USA, 2009. ACM.

[48] E. Lessa. Multidimensional analysis of geographic genetic structure.Systematic Biology, 39(3):242–

252, 1990.

[49] R. Mathar. A hybrid global optimization algorithm for multidimensional scaling. InClassification and

knowledge organization: proceedings of the 20th annual conference of the Gesellschaft für Klassifika-

tion eV University of Freiburg, March 6-8, 1996, pages 63–71. Springer Verlag, 1997.

[50] R. Mathar and A.Žilinskas. On global optimization in two-dimensional scaling. Acta Applicandae

Mathematicae: An International Survey Journal on ApplyingMathematics and Mathematical Applica-

tions, 33(1):109–118, 1993.

[51] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of state calculations

by fast computing machines.The journal of chemical physics, 21(6):1087–1092, 1953.

[52] E. H. Moore. On the reciprocal of the general algebraic matrix. Bulletin of American Mathematical

Society, 26:394–395, 1920.

[53] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the

amino acid sequence of two proteins.Journal of molecular biology, 48(3):443–453, 1970.

[54] R. Penrose. A generalized inverse for matrices.Proceedings of the Cambridge Philosophical Society,

51:406–413, 1955.

[55] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. Fagg, E. Gabriel, and J. Dongarra. Performance analysis

of mpi collective operations.Cluster Computing, 10(2):127–143, 2007.

[56] J. Qiu and S.-H. Bae. Performance of windows multicore systems on threading and mpi.Concurrency

and Computation: Practice and Experience, 2011.

BIBLIOGRAPHY 137

[57] J. Qiu, S. Beason, S. Bae, S. Ekanayake, and G. Fox. Performance of windows multicore systems

on threading and mpi. In2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing, pages 814–819. IEEE, 2010.

[58] X. Qiu, G. C. Fox, H. Yuan, S.-H. Bae, G. Chrysanthakopoulos, and H. F. Nielsen. Data mining on

multicore clusters. InProceedings of 7th International Conference on Grid and Cooperative Computing

GCC2008, pages 41–49, Shenzhen, China, Oct. 2008. IEEE Computer Society.

[59] R. Rabenseifner, G. Hager, and G. Jost. Hybrid mpi/openmp parallel programming on clusters of multi-

core smp nodes. InParallel, Distributed and Network-based Processing, 200917th Euromicro Interna-

tional Conference on, pages 427–436. IEEE, 2009.

[60] J. Reinders. Intel threading building blocks: outfitting C++ for multi-core processor parallelism.

O’Reilly Media, Inc., 2007.

[61] J. Richter. Concurrent affairs-concurrencyand coordination runtime.MSDN Magazine-Louisville, pages

117–128, 2006.

[62] K. Rose. Deterministic annealing for clustering, compression, classification, regression, and related

optimization problems.Proceedings of IEEE, 86(11):2210–2239, 1998.

[63] K. Rose, E. Gurewitz, and G. C. Fox. A deterministic annealing approach to clustering.Pattern Recog-

nition Letters, 11(9):589–594, 1990.

[64] J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers,

18(5):401–409, 1969.

[65] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.Journal of molec-

ular biology, 147(1):195–197, 1981.

BIBLIOGRAPHY 138

[66] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in software.Dr. Dobb’s

Journal, 30(3), 2005.http://www.gotw.ca/publications/concurrency-ddj.htm.

[67] Y. Takane, F. W. Young, and J. de Leeuw. Nonmetric individual differences multidimensional scaling:

an alternating least squares method with optimal scaling features.Psychometrika, 42(1):7–67, 1977.

[68] W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika, 17(4):401–419,

1952.

[69] W. S. Torgerson.Theory and methods of scaling.Wiley, New York, U.S.A., 1958.

[70] M. W. Trosset and C. E. Priebe. The out-of-sample problem for classical multidimensional scaling.

Computational Statistics and Data Analysis, 52(10):4635–4642, 2008.

[71] J. Tzeng, H. Lu, and W. Li. Multidimensional scaling forlarge genomic data sets.BMC bioinformatics,

9(1):179, 2008.

[72] J. Vera, W. Heiser, and A. Murillo. Global optimizationin any Minkowski metric: a permutation-

translation simulated annealing algorithm for multidimensional scaling. Journal of Classification,

24(2):277–301, 2007.

[73] D. Walker and J. Dongarra. Mpi: a standard message passing interface. Supercomputer, 12:56–68,

1996.

[74] Z. Wang, S. Zheng, Y. Ye, and S. Boyd. Further relaxations of the semidefinite programming approach

to sensor network localization.SIAM Journal on Optimization, 19(2):655–673, 2008.

[75] G. Young and A. Householder. Discussion of a set of points in terms of their mutual distances.Psy-

chometrika, 3(1):19–22, 1938.

BIBLIOGRAPHY 139

[76] A. Zilinskas and J. Zilinskas. Parallel genetic algorithm: assessment of performance in multidimen-

sional scaling. InGECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary

computation, pages 1492–1501, New York, NY, USA, 2007. ACM.

Curriculum Vitae

Name: Seung-Hee Bae
Date of Birth: November 13, 1975
Place of Birth: Seoul, Korea

Education:
February, 2004 Master of Science,

Computer Science and Engineering
Seoul National University, Seoul, Korea

February, 2002 Bachelor of Engineering,
Computer Science and Electronic Engineering
Handong Global University, Pohang, Korea

Experience:
January, 2007 - Present Research Assistant

Pervasive Technology Institute, Indiana University
Bloomington, Indiana

January, 2006 - December, 2006 Research Assistant
School of Informatics, Indiana University
Bloomington, Indiana

Honors:
Hyundong Scholarship (March, 1995 - February, 1997)
Handong Global University, Pohang, Korea

