SCALABLE HIGH PERFORMANCE MULTIDIMENSIONAL
SCALING

Seung-Hee Bae

Submitted to the faculty of the Graduate School
in partial fulfillment of the requirements
for the degree
Doctor of Philosophy
in the School of Informatics and Computing

Indiana University

February 2012



Accepted by the Graduate Faculty, Indiana University, irtigkfulfillment of the require-

ments of the degree of Doctor of Philosophy.

Doctoral
Committee

January 17, 2012

Geoffrey C. Fox
(Principal Advisor)

Randall Bramley

David B. Leake

David J. Wild



Copyright(© 2012
Seung-Hee Bae

ALL RIGHTS RESERVED



| dedicate this dissertation to my wife (Hee-Jung Kim) andahidren (Seewon and Jian).



Acknowledgements

First of all, I am sincerely grateful to my advisor, Dr. Geeff C. Fox, for his insightful guidance and
cheerful encouragement to this dissertation as well as sgareh projects. On the basis of his guidance and
encouragement, it could be possible to complete Ph.D. defvhile | have been working with him, | could

learn how to research as a scientist.

I would like to thank my research committee members: Dr. Rr@ramley, Dr. David Leake, and Dr.
David Wild for their help, guidance, and invaluable comnsentthis dissertation. | would like to thank Dr.
Sun Kim, who was my former advisor and had been my researcimit@e member before he left Indiana

University, for his valuable advices and encouragement.

It has been a pleasant time to work with those friendly anllidnt colleagues at Pervasive Technology
Institute (PTI) for five years. | am thankful to Dr. Judy Qiu feer support and discussions for my research.
| am also thankful to SALSA group members: Dr. Jaliya Ekandkelina Gunarathne, Saliya Ekanayake,
Ruan Yang, Hui Li, Tak-Lon Wu, Bingjing Zhang, Yuduo Zhourame Mitchell, Adam Hughes, and Scott
Beason, for being fantastic lab mates. | am particularipkiial to Dr. Jong Youl Choi for countless valuable

discussions on various research topics as well as nonitathopics during my time at PTI.

I would like to thank administrative staffs of the School nfdrmatics and Computing and PTI for their

valuable helps to do my study at Indiana University (IU). | grateful to Ms. Cathy McGregor Foster for



her helpful advice for Ph.D. study completion, and to Ms. Widell Shiflet and Mr. Gary Miksik for their
administrative support at PTI. Because of their supportsuld focus on my Ph.D. study while | has been at

U.

Last but not least, | am very much indebted to my family foritigenerous support and encouragement
throughout my Ph.D. study at IU. My parents and my mothdeim-have been my big supporters during
my Ph.D study, and their encouragement is always cheerfiitigh this degree. | cannot fully explain my
gratitude with any words to my lovely wife, Hee-Jung, for eadurance, encouragement, and support with
love for my life as well as my study. Without her support anéets, | would not make complete this long
journey. Since | met her at Handong, she is the only perfatipamion for my life. | would like to thank to
my daughter (Seewon) and son (Jian) for being wonderfutiodril to me. They are the source of my joy and

happiness even though | was in a difficult time.

| am a debtor of love. Thank you, all!

Vi



Abstract

Today is so-calledata deluge eraA huge amount of data is flooded in many domains of moderresoci
based on the advancements of technologies and social kastwbDimension reduction is a useful tool for
data visualization of such high-dimensional data and absttata to make data analysis feasible for such
large-scale high-dimensional or abstract scientific dataong the known dimension reduction algorithms,
multidimensional scaling (MDS) is investigated in thisstigation due to its theoretical robustness and high
applicability. For the purpose of large-scale multidinienal scaling, we need to figure out two main chal-
lenges. One problem is that large-scale multidimensiacedirsg requires huge amounts of computation and
memory resources, because it requicg®?) memory and computation. Another problem is that multidi-
mensional scaling is known as a non-linear optimizatiorbfmm so that it is easy to be trapped in local

optima if EM-like hill-climbing approach is used to solve it.

In this dissertation, to tackle two challenges mentioneavabwe have applied three methodologies to
multidimensional scaling: i) parallelization, ii) intesfation, and iii) deterministic annealing (DA) optimiza-
tion. Parallelization is applied to provide required hugsoants of computation and memory resources by
utilizing large-scale distributed-memory systems, suehmailticore cluster systems. In addition, we have
investigated an interpolation method which utilizes thewn mappings of a subset of the given data, named
in-sampledata, to generate mappings of the remairongrof-samplalata. This approach dramatically re-

duces computational complexity and memory requirement. dpfimization method has been applied to

Vii



multidimensional scaling problem in order to avoid localiofa. Experimental results illustrate the proposed
methodologies are effective to scale up the mapping cgpatinultidimensional scaling algorithm and to

improve the mapping quality of multidimensional scaling avoiding local optima.
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1

Introduction

1.1 Introduction

Because of the advancements of technology, a huge amouatafice produced in many domains of
modern society, from digital personal information to sti@observation, and experimental data to medical
records data. The current era could be referred to as thalkmidata deluge eraln many scientific domains,
the volumes of data are on the tera-scale and even the mdta-$@r the study of large-scale sky surveys
in astronomy, about 20 terabytes of sky image data are tetldry the Large Synoptic Survey Telescdpe
per night, and this phenomenon has led to about 60 petabfytasvalata over ten years of operations. In
addition to large-scale sky survey data, biological seqaelata has been produced in unimaginable volumes.
Although the Human Genome Projegtwhich was finished in 2003, was completed in 13 years and cost
billions of dollars, now genome sequencing for an organiamlze done much faster and more cheaply due
to cost-effective high-throughput sequencing techn@sgin fact, innovative sequencing technologies and

the microarray technique have increased the volumes aidicdl data enormously.

1SST: Large Synoptic Survey Telescope (http://www.Isgtlest/)
2Human Genome Project (http://www.ornl.gov/sciltechteses/HumanGenome/home.shtml)
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In 2005, Intel proposed the Recognition, Mining, and SysihéRMS) [24] approach as a killer ap-
plication for the next data explosion era. Machine learrang data mining algorithms were suggested as
important algorithms for the data deluge era by [24]. Mingmgne meaningful information from these large
volumes of raw data requires a huge amount of computing paivieh exceeds a single computing machine.
To make matters worse, the asymptotic time complexities adtrof the data mining algorithms are larger
than a simpleZ(N), in that they require a significant amount of processing b#ipafor analyses over large
volumes of data. Thus, parallel and distributed compusréritical feature of performing such data analy-
ses. The efficiency and the scalability should be achievadarallel implementation of algorithms in order

to maximize the effects of parallel and distributed compuiti

One of the innovative inventions that has emerged in the coenfhardware community during the last
decade was the invention of multi-core architecture. Thesital method of improving the computing power
of computing processing units (CPUSs), such as increasoukapeed, has been limited by physical obstacles;
therefore, the CPU companies changed the focus of impraangputing power from increasing the clock
speed of a CPU to increasing the number of cores in a CPU clnige $nulticore architecture as invented,
multicore architecture has become important in softwakeld@ment with effects on the client, the server
and supercomputing systems [5, 23, 24, 66]. As mentione8b]) fhe parallelism has become a critical issue

for developing software for the purpose of effectively gsmulticore systems.

From the above statements, the necessary computatiorevahidrmous for data mining algorithms in the
future, and classical sequential programming schemewailbe suitable for multicore systems any more,
so that implementing in scalable parallelism these algorit will be one of the most important procedures

for the coming many-core and data explosion era.

Among the many data mining areas which exist, such as clngterlassification, and association rule
mining, and so on, dimension reduction algorithms are usedsualize high-dimensional data or abstract

data into a low-dimensional target space. Dimension régiuetigorithms can be used for data visualization
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which can be applied to usage to fulfill the following purpsis€l) representing unknown data distribution
structures in human-perceptible space with respect todh®vise proximity or topology of the given data;
(2) verifying a certain hypothesis or conclusion relatedhi® given data by showing the distribution of the

data; and (3) investigating relationship among the givea g spatial display.

Among the known dimension reduction algorithms, such ascdiyal Component Analysis (PCA), Multi-
dimensional Scaling (MDS) [13,45], Generative Topographapping (GTM) [11, 12], and Self-Organizing
Maps (SOM) [43], to name a few, multidimensional scaling (8)Ihas been extensively studied and used
in various real application areas, such as biology [48,3tblck market analysis [33], computational chem-
istry [4], and breast cancer diagnosis [46]. This dissemidbcuses on the MDS algorithm, and we investigate
two ultimate goals: (1) how to achieve the scalability of @S algorithm to deal with large-scale data; and
(2) how to improve the mapping quality of MDS solutions ashaslthe scalable MDS. This dissertation also

describes some detailed performance analyses and expésireéated to the proposed methodologies.

1.2 Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) [13,45, 68] is a generahtehat refers to techniques for constructing a
map of generally high-dimensional data into a target dinmangypically a low dimension) with respect to
the given pairwise proximity information. Mostly, MDS isegto visualize given high dimensional data or
abstract data by generating a configuration of the givenwlateh utilizes Euclidean low-dimensional space,

i.e. two-dimension or three-dimension.

Generally, proximity information, which is representedaasN x N dissimilarity matrix & = [§;]),
whereN is the number of points (objects) adq is the dissimilarity between poimtand j, is given for the
MDS problem, and the dissimilarity matrid) should agree with the following constraints: (1) symnuityi

(dj = 9ji), (2) nonnegativity &; > 0), and (3) zero diagonal elementy & 0). The objective of the MDS
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technique is to construct a configuration of a given highatisional data into low-dimensional Euclidean
space, where each distance between a pair of points in tHigeation is approximated to the correspond-
ing dissimilarity value as much as possible. The output ofgorithms could be represented ad\ax L
configuration matrixX, whose rows represent each data pgir(t = 1,...,N) in L-dimensional space. It is
quite straightforward to compute the Euclidean distantebenx; andx; in the configuration matriX, i.e.

dij (X) = ||x —x;||, and we are able to evaluate how well the given points aregurgil in the_-dimensional
space by using the suggested objective functions of MD&aSTRESS [44] or SSTRESS [67]. Definitions

of STRESS (1.1) and SSTRESS (1.2) are following:

oxX) = Nwi,-(di,-(X)—d,-)Z (1.1)
<<

o?(X) = .ZNWij[(dij(X))z—(éj)Z]Z (1.2)
i<J<

where 1<i < j < N andw;j is a weight value, swyj > 0.

As shown in the STRESS and SSTRESS functions, the MDS prabdemid be considered to be non-
linear optimization problems, which minimizes the STRESShe SSTRESS function in the process of

configuring ar_-dimensional mapping of the high-dimensional data.

Figure 1.1 is an example of the data visualization of 30,d0bical sequence data, which is related to
a metagenomics study, by an MDS algorithm. The colors of tietp in Figure 1.1 represent the clusters
of the data, which is generated by a pairwise clusteringridlgo by deterministic annealing [36]. The data
visualization in Figure 1.1 shows the value of the dimensixatuction algorithms which produced lower
dimensional mapping for the given data. We can see cleaglylinsters without quantifying the quality of

the clustering methods statistically.
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Figure 1.1: An example of the data visualization of 30,0@0dgical sequences by an MDS algorithm, which
is colored by a clustering algorithm.

1.3 Motivation

The recent explosion of publicly available biological geseguences, chemical compounds, and various
scientific data offers an unprecedented opportunity faa daihing. Among the various available data mining
algorithms, dimension reduction is a useful tool for infation visualization of high-dimensional data to
make analysis feasible for large volume and high-dimeraiscientific data. It facilitates the investigation

of unknown structures of high dimensional data in threea) tdimensional visualization.

In contrast to other algorithms, like PCA, GTM, and SOM, whienerally construct a low dimensional

configuration based on vector representations of the ddd&g 8Mms at constructing a new mapping in a target
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dimension on the basis of pairwise proximity (typicallysimilarity or distance) information; as a result, it
does not require feature vector information of the undegypplication data to acquire a lower dimensional
mapping of the given data. Hence, MDS is an extremely usg@ioitaach for data visualization of a certain
type of data, which would prove impossible or improper torespnt by feature vectors but tat has pairwise
dissimilarity, such as a biological sequence data. MDSpof$e, is also applicable to data represented by
feature vectors as well. MDS provides more broad appligghiian other dimension reduction methods in

terms of the given format of the data.

In the past, the data size given dealt with by machine legraimd data mining algorithms was usually
small enough to be executed on a single CPU or node withowt@msideration of parallel computing. On the
other hand, in the modern data-deluged world, we can find rirtdeyesting data sets with large amounts of
units which are impossible to run as sequential programming single node due, not only to the prohibitive
computing requirements but also, because of the requiredamesize. Therefore, we have to figure out
how to increase the computational capability of the MDS atgm in order to manage large-scale high-
dimensional data sets. In addition to the increase of datg e invention and emergence of multi-core
architectures has also required a change in the progranpanagligm, so as to be able to utilize the maximal

performance of the multi-core chips.

In general, there are two different approaches with whicimorove the computing capability of MDS
algorithm. One is to increase the available computing nessy i.e. CPUs and main memory size, and the

other method is to reduce the computational time complexity

In addition to the motivation of increasing computationapability because of the large scale of the
data, another motivation of this thesis is based on the li@tthe MDS problem is a non-linear optimization
problem, which means it might have many local optima, so tteedance of non-global local optima is an
essential property needed in order to obtain a better qualiMDS outputs. Also, if we achieve the local

optima avoidance feature, it may result in generating lessitve parameters and more consistent MDS
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output, than the output of the MDS algorithm which suffersnfrbeing trap in local optima. Thus, this

dissertation also investigates how to avoid local optiniectifzely and efficiently.

1.4 The Research Problem

The explosion of data and the invention of multi-core amsttiire has brought forth interesting reseach
issues in the data mining community as well as other commaience areas. We reviewed the interesting
research motivations in relation to the MDS algorithm int#er1.3. As we discussed in Section 1.3, two
main goals of this dissertation are: (1) examining the $gkthaof the MDS algorithm due to the large-scale
of the given data, i.e. millions of points; and (2) the locptima avoidance issue of MDS, which is a non-
linear optimization problem. These motivations of thissdigation have lead us to the following research

problems:

Parallelization
Applying distributed parallelism to the MDS algorithm is ataral process for achieving an increase in
the computational capability by using distributed compgithodes. This makes it possible to acquire
more computing resources and to utilize the full power oftiredre systems. Several issues should
be covered to implement an algorithm in parallel, such adaheé-balance, efficiency, and scalability

issues.

Reduction of Complexity
Since the time complexity and memory requirements of the MR@rithm is&(N?) due to the use
of an N by N pairwise dissimilarity matrix, whef¢is the number of points, and the distributed paral-
lel implementation of MDS algorithm is still limited to thaimber of available computing resources,

the development of an innovative MDS method, which redulcegitne complexity and the memory
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requirement, is required to reach the goal of scalabilitthefMDS algorithm. The parallel implemen-
tation of the proposed MDS approach will be highly encouddgecause the size of the data could be

enormous.

Optimization Method
Trapping in a local optima problem is a well-known problentlté non-linear optimization methods,
including MDS problem. This is a very important issue for tian-linear optimization problems to
avoid local optima. However, it is difficult to avoid local tipa by using simple heuristics, which
are based on the hill-climbing optimization method. Vas@on-determinstic optimization methods,
such as the Genetic Algorithms (GA) [37] and Simulated Atinga(SA) [40], were proposed as
solutions of local optima avoidance problems. They havalmsed for many non-linear optimization
problems. As with other data mining algorithms, variousroptation methods have been applied to
the MDS problem for the purpose of avoiding local optimasltrue that the GA and SA algorithms
are very successful for avoiding local optima, which is tbalgf these algorithms. These algorithms,
however, are also known to suffer from long running times tlu¢heir non-deterministic random
walking approach. By taking the above statements into denation, we would like to solve the local
optima issue of the MDS problem by applying a determinigtitraization method, which is not based

on a simple gradient descent approach.

1.5 Contributions

We can summarize the contributions of this dissertationeasgothe purpose of improving MDS algo-

rithms in relation to computational capability and mappipglity such as the following:

e [Parallelization] Efficient parallel implementation via the Message Passitgrface (MPI) in order to

scale up the computing capability of a well-known MDS algan (SMACOF) by utilizing distributed
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systems, i.e. cluster systems.

¢ [Reducing Complexity] Development of an innovative algorithm, which reduces thegutational
complexity and memory requirement of MDS algorithms, andciiproduces acceptable mapping
results; this step will be taken for the purpose of scalirgMDS algorithm’s capacity up to millions

of points, a step which is usually intractable for genetirmapping via normal MDS algorithms.

¢ [Local Optima Avoidance] Providing an MDS algorithm which could comprehend out theal@p-
tima avoidance problem in a deterministic way so that it gates better quality mapping in a reason-

able amount of time.

1.6 Dissertation Organization

This dissertation is composed of several chapters and degitar describes a unique part of this thesis

as follows:

In Chapter 2, we describe some background methodologageddio this dissertation. First, we discussed
the well-known MDS algorithm which is named Scaling by a Miding of a COmplicated Function (SMA-
COF). This is implemented in distributed parallel fashioiChapter 3. Also, we summarize the optimization
method, named Deterministic Annealing (DA), which aimswvatiding local optima and which is used in this

dissertation. The Message Passing Interface (MPI) stdrisl&riefly mentioned in this chapter as well.

How to achieve distributed parallel implementation of tHdACOF algorithm is illustrated in detail
in Chapter 3. Since the load balance has a critical impadi@efficiency of the parallel implementations, we
discuss how to decompose and spread out the given data tpesess; this approach is directly connected
to the load balance issue. Furthermore, we described theagepassing patterns of each components of

the parallelized algorithm, here SMACOF, in Chapter 3. Tamilled experimental analysis, which is based
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on the testing results on two different cluster system#vied the explanation of the parallel implementation

in Chapter 3.

Chapter 4 describes the interpolation algorithm of the MESbfem which reduces computational com-
plexity from ¢(N?) to ¢(nM), whereN is the full data sizen is thesampleddata size, and1 = N — n.
Furthermore, we introduce how to parallelize the proposégtpolation algorithm of MDS due to the huge
amounts of data points. This section is followed by a disomssf a quality comparison between the pro-
posed interpolation algorithm and the full MDS algorithrs,veell as parallel performance analysis of the

parallelized implementation of this algorithm.

In contrast to Chapter 3 and Chapter 4, which focus on scaimthe computing capability of MDS
algorithms, we propose the step of applying the deternirgstnealing (DA) [62, 63] optimization method
to the MDS problem; this approach will result in an avoidaot®cal optima in a deterministic way. This
information is presented in Chapter 5. In Chapter 5, we atsopare the DA applied MDS algorithm with

other MDS algorithms, with respect to the mapping qualitgt amning time.

Finally, in Chapter 6, we present the conclusions of thisetigtion and future research interests related

to the proposed algorithms discussed in this dissertation.
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Backgrounds

2.1 Classical Multidimensional Scaling

The classical scalingClassical MDS) was the first practical technique availdbleMDS, which was
proposed by Torgerson [68, 69] and Gower [31]. The lineaelalgic theorems mentioned by Eckart and
Young [25] and Young and Householder [75] are the bases a@ldssical MDS. The main idea of the classical
MDS is that, if the dissimilarities are represented by Hiedin distances, then we can find the configurations
which represent the dissimilarities by using some matrigrapons. Here, we briefly introduce the classical

MDS algorithm, and the algorithm is explained in detail inater 12 of [13].

The matrix of squared Euclidean distances of the given doatels D@ (X) or simply D?) can be

expressed by a simple matrix equation with respect to thedawate matrix X), as shown in (2.1) and (2.2):

D@ = c1'+1d —2xx (2.1)

cl' +1c¢ — 2B, (2.2)

11
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wherec is the diagonal elements X!, 1 is the one vector whose elements are all ONE¢'1 and Xt
are transpose of &, andX, correspondingly, anB = X X!. (2.1) illustrates the relation between the squared

distances and the scalar products of the coordinate magyix (

The centering matrixJ) can be defined ab= | —n~111', wherel is the identity matrix, which translates
a matrix to a column centered matrix by multiplying them. Buyltiplying the left and the right sides by the

centering matrixJ, a process called ttdouble centeringperation, we can introduce the following equations:

JDPJ = J(c1'+1d —2xxH)J (2.3)
= Jcl'J+J1c¢ ) - J(2B)d (2.4)
= Jd'+0cJ—2IBJ (2.5)
= —2JBJ (2.6)
= -2B. (2.7)

Since the centering of a vector of ones turns out to be a vetteeros (1J = J1 = 0), the first two
terms are elliminated. Without a loss of generality, we cssuae that the coordinate matri)(is a column
centered matrix. Then, the result of the double centerirggatjpn on theB matrix is equal tdB itself, since

X is a column centered matrix. Therefore, we can define théaalhetweerB andD® as in (2.8).

B= —:—ZLJD(ZU. (2.8)

If we applyeigendecompositioon B, we can havd = QAQ!. A could be represented as/°A/2, and

if we apply this to the eigendecomposition results of Braatrix:
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Algorithm 2.1 Classical MDS algorithm

1: Calculate the matrix of squared dissimilart{?).

2: ComputeBy by applying double centeringgs = —33A®J.
3: Compute the eigendecomposition®)¥ = QAQ'.
4: [* Q. is the firstL eigenvectors o */
5: [* A\ is the firstL eigenvalues of\ which is greater than ZERO. */
6: Calculatel-dimensional coordinate matri by X = Q+/\i/2.
7: return X.
B = QAQ (2.9)
QAY2AY2Q! (2.10)
Q/\l/Z(/\l/Z)'[Q’[ (211)
= (QAYZ)(QAYZ)! = XX\ (2.12)

By (2.12), we can find the coordinate matrix from the givenasqd distance matrix. The classical MDS
is very close to the above method, and the only differendesisit uses the squared dissimilarity matx3)

instead of the matrix of squared distancB&().

Algorithm 2.1 describes the classical MDS procedure, amddmputational time complexity i§'(N®)
due to the eigendecomposition. Note that) is not a Euclidean distance matrix, some eigenvalues cauld b
negative. The classical MDS algorithm ignores those negaigenvalues as errors. Since the classical MDS
is an analytical solution, it does not require iterationgéb a solution as shown in Algorithm 2.1. Another
merit of the classical MDS is that it provides nested sohsgidn that the two dimensions of a 2D solution
are the same as the first two dimensions of a 3D result. Thetmgdunction of the classical MDS is called

STRAIN and it is defined as follows:
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Algorithm 2.2 SMACOF algorithm

1. Z <X

2: k<= 0;

3: £ « small positive number;

4: MAX <= maximum iteration;

5: Computeg!? = g(X[);

6: while k=0 or (Ao > € andk < MAX) do

7. k<ek+1;

8. XK =vTB(xk-1)xk-1]

o: Computeg¥ = g(x[K)

10 Z<XN;

11: end while

12: return Z;

S(X) = |IXX' = Ba |~ (2.13)

2.2 Scaling by a MAjorizing of a COmplicated Function (SMACOF)

There are a lot of different algorithms which could be useddive the MDS problem, and Scaling by

MAjorizing a COmplicated Function (SMACOF) [20, 21] is onktbem. SMACOF is an iterative majoriza-

tion algorithm used to solve the MDS problem with the STREB®ron. The iterative majorization proce-

dure of the SMACOF could be thought of as an Expectation-ki&ation (EM) [22] approach. Although

SMACOF has a tendency to find local minima due to its hill-dding attribute, it is still a powerful method

since the algorithm, theoretically, guarantees a deciiegbe STRESSd) criterion monotonically. Instead

of a mathematically detail explanation of the SMACOF altori, we illustrate the SMACOF procedure in

this section. For the mathematical details of the SMACOIBidtlgm, please refer to [13].

Algorithm 2.2 illustrates the SMACOF algorithm for the MD8lgtion. The main procedure of the

SMACOF are its iterative matrix multiplications, callecet@uttman transformas shown in Line 8 in Al-

gorithm 2.2, wher&/T is the Moore-Penrose inverse [52, 54] (or pseudo-inversgjatrix V. TheN x N

matricesV andB(Z) are defined as follows:
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v [vij] (2.14)
—Wij if i

Vij (2.15)
B(2) [bij] (2.16)

—Wij&j/dij(Z) ifiF]
bij 0 if dij(Z) = 0,i # | (2.17)

= Zizi i ifi= ]

If the weights are equal to onev{ = 1) for all pairwise dissimilarities, theW andVT are simplified as

follows:

(2.18)

(2.19)

wheree= (1,...,1)! is one vector whose lengthh In this thesis, we generate mappings based on the equal

weights weighting scheme and we use (2.19\Mbr

As in Algorithm 2.2, the computational complexity of the SKI®F algorithm is¢’(N?), since the

Guttman transform performs a multiplication of ldn« N matrix and arN x L matrix twice, typicallyN > L

(L =2 or 3), and the computation of the STRESS vaB ¥), andD(X¥) also take7(N?). In addition,

the SMACOF algorithm require§'(N?) memory because it needs seveak N matrices, as in Table 3.1.

Due to the trends of digitization, data sizes have increasedmously, so it is critical that we are able to

investigate large data sets. However, it is impossible ttSMACOF for a large data set under a typical
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single node computer due to the memory requirement incséag@(N?). In order to remedy the shortage
of memory in a single node, we illustrate how to parallelize SMACOF algorithm via message passing

interface (MPI) for utilizing distributed-memory clustgystems in Chapter 3.

2.3 Message Passing Interface (MPI)

The Message Passing Interface (MPI) [27,73] standard isgukage-independent message passing proto-
col, and is the one of the most widely used parallel programymiethods in the history of parallel computing.
MPI is a library specification for a message passing systemzhwaims at utilizing distributed computing
resources, i.e. computer cluster systems, for the purgfasereasing the computing power to deal with the

large scale problem caused by the communication betwee&egses via messages.

MPI specification is composed of the definitions of a set ofinms used to illustrate various paral-
lel programming models effectively, such as point-to-pa@iommunication, collective communication, the
topologies of communicators, derived data types, and ledi&. Since MPI uses language-independent
specifications for calls and language bindings, MPI runsimne available for many programming languages,

for instance, Fortran, C, C++, Java, C#, Python, and so on.

MPI communication procedures can be categorized by twerifit mechanisms: (i) a point-to-point
communication procedure in which a communication is oeraetween two processes; and (ii) a collective
communication procedure, in which all processes withinrarmmainication group should invoke the collective

communication procedure.

A point-to-point communication can occur with a pairsgdndandreceiveoperations. The MPI send
and receive operations are divided into: (i) a blocking atien and (ii) a nonblocking operation. In [27],

blocking and nonblocking operations are defined as follows:
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blocking If a return from the procedure indicates the user is allowe@tuse resources specified in the call.

nonblocking If the procedure may return before the operation completed before the user is allowed to

re-use resources (such as buffers) specified in the call.

In addition to astandardmode, MPI also proposes three more communication modes(i)theiffered

(ii) synchronousand (iii) readymodes. In thestandard communication mode, MPI decides whether the
outgoing message will be buffered or not, not by users, scetstardard mode send operation can be started
regardless of posting of the matching receive; this comnmag be complete before a maching receive is
posted, or it will not complete until a maching receive hasrbposted and the data has been moved to the
receiver. Abuffered mode send operation is defined dseal procedure so that it depends only on the local
process and can complete without regard to other procelsstect, MPI must buffer the outgoing message
of a buffered mode send operation so it can complete in thad tegion. In thesynchronouscommunication
mode, a send operation can be started regardless of posting matching receive, similar to the standard
and buffered modes. However, it will not complete succalysiuntil a matching receive operation is posted
and the receive operation has started to receive the mesfé#iye synchronous send. A send in tleady
mode may be startednly if the matching receive operation is already posted, unlikenal ®peration in
other communication modes. Both blocking and nonblockemngdsoperations can use these four different

communication modes explained above.

Several collective communication procedures are defindueitMP| standard [27]: barrier synchroniza-
tion, broadcast, scatter, gather, allgather, scattérégéivhich is complete exchange or all-to-all), and reduc-
tion/allreduction operations i.e. sum, min, max, or usdimgel functions. A collective operation requires

that all processes in the communication group call the comcation routine.

MPI is highly used under distributed cluster systems, witichnected via a high-speed network; it is

used for utilizing large-scale computing and memory resesirprovided by these cluster systems, to solve
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large-scale data-intensive or computing-intensive apfitns. MPI also supports various communication
topologies, such as 2D or 3D grids and general graphs tosioas well as dynamic communiation groups.
In addition, new types of functionality, such as dynamicqasses, one-sided communication, parallel I/O,
and so on, are added to MPI standard 2 [26]. MPI provides fleXibe-grained parallel programming

environment based on various features of MPI.

2.4 Threading

Emerging multicore processors places a spotlight pam@delputing, including threading, since it is able
to supply many computing units in a single node and even in@eiCPU. Threading is used to investigate
parallelism within shared memory systems, such as graphérsessors, multicore systems, and Symmetric

Multiprocessor (SMP) Systems.

Threading supports fine grained task parallelism, whichictba effective for various applications with-
out message passing overhead. For the correct use of thgeadiwever, we have to consider the following:
(i) dealing with critical sections, which should be mutyadixclusive between threads; and (ii) cache false
sharing overhead and cache line effects. There are a loredding libraries, which suppport parallelism
via threads, such as POSIX Threads [15], OpenMP [3], the FPasdllel Library (TPL) [47], Intel Threading
Building Blocks (TBB) [2, 60], and the Boost library [1, 39f) name a few. The Concurrency and Coordi-
nation Runtime (CCR) [18, 61] library supports a more coogikd threading parallelism through message
passing via Port, which can be thought of as a way to queueagess In addition to these libraries, most

programming languages also support threading in variousso

Since multicore technology has been invented, multicord<iRave become universal and typical, in that
most cluster systems are multicore cluster systems. Muéicluster systems are distributed memory systems

which are composed of multiple shared memory system nodastiwork connection. Thus, Hybrid parallel
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programming paradigms, which combine distributed memamalbelism via MPI for inter-node communi-
cations and shared memory parallelism via threading libsar.e. OpenMP and TPL, within each node, have

been investigated [56, 59]. In this dissertation, | havelube hybrid parallel paradigm in Chapter 4 as well.

2.5 Deterministic Annealing (DA)

Since the simulated annealing (SA) was introduced by Kitkgaet al. [40], people widely accepted
SA and other stochastic maximum entropy approaches to sgtimization problems for the purpose of
finding global optimum instead of hill-climbing determiticsapproaches. SA is a Metropolis algorithm [51],
which accepts not only the better proposed solution but évenvorse proposed solution than the previous
solution, based on a certain probability which is relatethescomputational temperaturél’). Also, it is
known that the Metropolis algorithm converges to an equiiliitm probability distribution known as th@ibbs
probability distribution If we denotes#’(X) as the energy (or cost) function ar#é as afree energythen

Gibbs distribution density as follows:

PE(X) = exp(—%(%(x) —9)) , (2.20)
F=_T Iog/exp<—%%(x)) dx. (2.21)

and thefree energy .£), which is a suggested objective function of SA, is minimibgdhe Gibbs probability

densityP®. Also, free energy# can be written as follows:

Fp=<H >p-T.7(P) (2.22)

= / P(X) 7 (X)dX + T / P(X)logP(X)dX (2.23)
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where< H >p represents thexpected energgnd . (P) denotesentropyof the system with probability
densityP. Here,T is used as a Lagrange multiplier to control the expectedggn#vith a high temperature,
the problem space is dominated by tetropyterm which makes the problem space become smooth so
it is easy to move further. As the temperature is getting @odlowever, the problem space is gradually
revealed as the landscape of the original cost function lwimaits the movement within the problem space.
To avoid being trapped in local optima, people usually stéf a high temperature and slowly decrease the

temperature in the process of finding a solution.

SA relies on random sampling with the Monte Carlo method torede the expected solution, e.g. ex-
pected mapping in target dimension for MDS problem, so thsaiffers from a long running time. Deter-
ministic annealing (DA) [62, 63] can be thought of as an agpnation algorithm of SA which tries to keep
the merits of SA. The DA [62, 63] method actually tries to cddte the expected solution exactly or approx-
imately with respect to the Gibbs distribution as an amen#ro€SA's long running time, while it follows

the computational annealing process using Eq. (2.22), iolwh decreases from high to low.
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High Performance Multidimensional Scaling

3.1 Overview

Due to the innovative advancements in science and techyalog amount of data to be processed or
analyzed is rapidly growing and it is already beyond the capaf most commodity hardware we are using
currently. To keep up with such fast development, study &gadntensive scientific data analyses [28] has
been already emerging in recent years. It is a challengeafiows computing research communities, such as
high-performance computing, database, and machine tepamd data mining communities, to learn how to
deal with such large and high dimensional data in this daizgeel era. Unless developed and implemented
carefully to overcome such limits, techniques will face rsabe limits of usability. Parallelism is not an
optional technology any more but an essential factor faowsrdata mining algorithms, including dimension
reduction algorithms, by the result of the enormous sizé®fiata to be dealt by those algorithms (especially

since the data size keeps increasing).

Visualization of high-dimensional data in low-dimensiaagn essential tool for exploratory data anal-
ysis, when people try to discover meaningful informatiorickhis concealed by the inherent complexity of

the data, a characteristic which is mainly dependent onitjftedimensionality of the data. This task is also

21
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getting more difficult and challenged by the huge amount efgiven data. In most data analysis with such
large and high-dimensional dataset, we have observedubhtastask is no more CPU bounded but rather

memory bounded, in that any single process or machine ctwofobthe whole data in its memory any longer.

In this chapter, | tackle this problem for developing a higinffprmance visualization for large and high-
dimensional data analysis by using distributed resourdtsparallel computation. For this purpose, we will
show how we developed a well-known dimension-reductiosedavisualization algorithm, named Multidi-
mensional Scaling (MDS), in the distributed fashion so the can utilize distributed memories and be able

to process large and high dimensional datasets.

In this chapter, we introduce the details of our parallelizersion of an MDS algorithm, called parallel
SMACOF, in Section 3.2. The brief introduction of SMACOF [2Q] can be found at Section 2.2 of Chap-
ter 2. In the next, we show our performance results of ourlighxeersion of MDS in various compute cluster
settings, and we present the results of processing up t®@Q0@ata points in Section 3.3 followed by the

summary of this chapter in Section 3.4.

3.2 High Performance Visualization

We have observed that processing a very large dataset isnhoa@pu-boundedut also amemory-
boundedccomputation, in that memory consumption is beyond thetgtifia single process or even a single
machine, and that it will take an unacceptable running timeun a large data set even if the required
memory is available in a single machine. Thus, running meeléarning algorithms to process a large
dataset, including MDS discussed in this thesis, in a thsted fashion is crucial so that we can utilize
multiple processes and distributed resources to handydaseye data which usually will take a long time and
even not fit in the memory of a single process or a compute nbde.memory shortage problem becomes

more obvious if the running OS is 32-bit which can handle asn#&B virtual memory per process. To
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Table 3.1: Main matrices used in SMACOF
Matrix ~ Size  Description

A N x N Matrix for the given pairwise dissimilarity; ]
D(X) NxN Matrix for the pairwise Euclidean distance of
mapped in target dimensidd; |
\% Nx N Matrix defined by the valug; in (2.14)
\ai N x N  Matrix for pseudo-inverse of
B(Z) NxN Matrix defined by the valubj in (2.16)
w Nx N  Matrix for the weight of the dissimilaritjw;]
XK NxL Matrix for currentL-dimensional configuration
of N data pointsq[k](i =1...,N)
Xk=1 NxL Matrix for previousL-dimensional configuration
of N data pointsq[kfl](i =1,...,N)
process large data with efficiency, we have developed ttalphrersion of MDS by using a Message Passing
Interface (MPI) fashion. In the following, we will discussone details on how we decompose data using the
MDS algorithm to fit in the memory limit of a single process oachine. We will also discuss how to

implement an MDS algorithm, called SMACOF, by using MPI ptives to get some computational benefits

of parallel computing.

3.2.1 Parallel SMACOF

Table 3.1 describes frequently used matrices in the SMACIQ&rithm. As shown in Table 3.1, the
memory requirement of SMACOF algorithm increases quachtyi asN increases. For the small dataset,
memory would not be any problem. However, it turns out to batacal problem when we deal with a large
data set, such as hundreds of thousands or even millionsmdgtance, ifN = 10,000, then on®\ x N matrix
of 8-byte double-precision numbers consumes 800 MB of mamary, and ifN = 100,000, then on&l x N
matrix uses 80 GB of main memory. To make matters worse, thA@BF algorithm generally needs six
N x N matrices as described in Table 3.1, so at least 480 GB of meimoequired to run SMACOF with

100,000 data points without considering thox L configuration matrices in Table 3.1 and some required
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temporary buffers.

If the weight is uniform (;j = 1, Vi, j), we can use only four constants for representingN V andVv’
matrices in order to saving memory space. We, howevermns@t at least threé x N matrices, i.eD(X), A,
andB(X), which requires 240 GB memory for the above case, whichllsstunfeasible amount of memory

for a typical computer. That is why we have to implement a felreersion of SMACOF with MPI.

To parallelize SMACOF, it is essential to ensure load batdratata decomposition as much as possible.
Load balance is important not only for memory distributiart Blso for computational distribution, since
parallelization implicitly benefits computation as well @&mory distribution, due to less computing per
process. One simple approach of data decomposition is thassume = n?, wherep is the number of
processes andlis an integer. Though it is a relatively less complicatedbaegosition than others, one major
problem of this approach is that it is a quite strict constréd utilize available computing processors (or
cores). In order to release that constraint, we decompo$é&sahl matrix to mx n block decomposition,
wheremis the number of block rows andis the number of block columns, and the only constraint of the
decomposition isn x n= p, where 1< m,n < p. Thus, each process requires only approximatély daf
the full memory requirements of SMACOF algorithm. Figuré Blustrates how we decompose edtkx N
matrix with 6 processes and = 2,n = 3. Without a loss of generality, we assuiN&m = N%n = 0 in

Figure 3.1.

A processh,0 < k < p (sometimes, we will us®; for matchingM;;) is assigned to one rectangular

block M;j; with respect to the simple block assignment equation in(3.1

K=ixn+] (3.1)

where 0<i <m,0< j <n. ForN x N matrices, such a VT, B(X[k]), and so on, each blod¥;; is assigned

to the corresponding proce8g, and for XK and X[*-% matrices,N x L matrices wherd. is the target
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Figure 3.1: An example of aN x N matrix decomposition of parallel SMACOF with 6 processes ai 3
block decomposition. Dashed line represents where didgteraents are.

dimension, each process has a Nilk L matrix because these matrices have a relatively smalkeraid this
results in reducing the number of additional message passirtine calls. By scattering decomposed blocks
throughout the distributed memory, we are now able to run 8K with as huge a data set as the distributed

memory will allow concerning the cost of message passingaazs and a complicated implementation.

Although we assumdl%m = N%n = 0 in Figure 3.1, there is always the possibility tiN#om £ O or
N%n #£ 0. In order to achieve a high load balance underiB&m £ 0 or N%n # 0 cases, we use a simple
nodul ar operation to allocate blocks to each process with at most @MEor column difference between

them. The block assignment algorithm is illustrated in Altjon 3.1.

At the iterationk in Algorithm 2.2, the application should acquire up-toaiatformation of the following

matrices:A, VT, B(xk-1), X[k~ andg¥, to implement Line 8 and Line 9 in Algorithm 2.2. One good
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Algorithm 3.1 Pseudo-code for block row and column assignment for eaatepsdfor high load balance.

Input: pNum, N, myRank

1: if N%pNum= 0then

2: nRows =N/ pNum;

3: else

4. if myRank> (N%pNum) then
5

6

7

nRows = N/ pNum;

else
nRows = N/ pNum + 1;
8: endif
9: end if

10: return nRows;

feature of the SMACOF algorithm is that some of matrices avariable, i.e A andVT, through the iteration.
On the other hand(X¥-1) and STRESSd¥) value keep changing at each iteration, si¥ée ¥ andx

are changed in every iteration. In addition, in order to updX 1) and the STRESSa(X) value in
each iteration, we have to take tNex N matrices’ information into account, so that related preesshould
communicate via MPI primitives to obtain the necessaryrimi@tion. Therefore, it is necessary to design
message passing schemes to do parallelization for catuyldte B(Xk-1) and STRESSd¥) values as

well as the parallel matrix multiplication in Line 8 in Algi¢thm 2.2.

Computing the STRESS (Eg. (3.2)) can be implemented simplg partial error sum obDj; andAjj

followed by anMPI _Al | r educe:

oX) = 3 wi(di(X)-ay)? (3.2)

i<]J<N

where 1<i < j < N andw;j is a weight value, saj; > 0. On the other hand, calculation B(X[kfl]), as

shown at Eq. (2.16), and parallel matrix multiplication ace simple, especially for the caserof£ n.

Figure 3.2 depicts how parallel matrix multiplication aipglbetween aiN x N matrix M and anN x L
matrix X. Parallel matrix multiplication for SMACOF algorithm is plemented in a three-step process

of message communication via MPI primitives. Block matriultiplication of Figure 3.2 for acquiring;



3. High Performance Multidimensional Scaling 27

Moo| Mgy | Moo -
J I
. —

EEEEE EEEEEE

X C

Figure 3.2: Parallel matrix multiplication ™ x N matrix andN x L matrix based on the decomposition of
Figure 3.1

(i=0,1) can be written as follows:

Ci= Mij - Xj. (3.3)
0<)<3

SinceM;j of N x N matrix is accessed only by the corresponding proBgssomputingVij - Xj part is done

by Rj. Each computed sub-matrix B, which is% x L matrix for Figure 3.2, is sent to the process assigned
Mo, and the process assignkth, sayPo, sums the received sub-matrices to geneCatey one collective
MPI primitive call, such asv¥Pl _Reduce with the Addi t i on operation. Thery sendsC; block to Pyg

by one collective MPI call, nameldPl _Gat her, as well. Note that we are able to ugel _Reduce and

MPI _Gat her instead ofMPl _Send andMPl _Recei ve by establishing row- and column-communicators
for each procesB;. MPI _Reduce is called under an established row-communicatorysafCommwhich

is constructed byR; where 0< j < n, andMPI _Gat her is called under defined column-communicator
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Algorithm 3.2 Pseudo-code for distributed parallel matrix multiplicatin parallel SMACOF algorithm

Input: M, X
1: /* m=Row Bl ocks,n= Col unm Bl ocks */
2: I* i = Rank- | n- Row, j = Rank- | n- Col umm */
3: /* rowComn: Row Communi cat or of rowi, owComme Po,R1,Pz2,...,Fn_1) */
4: [* colComma: Col unm Communi cat or of column 0,colCommg € Po where 0<i < n?*/
5: Tij = Mij -Xj
6: if j #0then
7:  [* AssumeMPl _Reduce is defined adPl _Reduce(data, operation, root) *
8 SendTjj to B by callingMPI _Reduce (T, Addi t i on, Po).
9: else
10:  Generat€; = MPl _Reduce (Tjp, Addi t i on, Rp).
11: end if
12: if i ==0andj ==0then
13:  /* AssumelMP| _Gat her is defined ad/Pl _Gat her (data, root) */
14:  GatherC; wherei =0,...,m—1 by callingMPl _Gat her (Cy, Pyp)
15:  CombineC with Cj where 0<i <m
16: BroadcasC to all processes
17: else if j == 0then
18:  SendC; to Pyg by callingMPI _Gat her (G, Py)
19:  ReceiveC Broadcasted b¥yg
20: else
21:  ReceiveC Broadcasted bz
22: end if
of P, saycolComng whose members afgy where 0< i < m. Finally, Py combines the gathered sub-

matrix blocksC;, where 0< i < m, to construcN x L matrix C, and broadcasts it to all other processes by

MPI _Br oadcast call.

sa

Each arrow in Figure 3.2 represents message passing diredthin dashed arrow lines describes mes-

ge passing olfzJ x L sub-matrices by eitheWPl _Reduce or MPl _Gat her, and message passing of

matrix C by MPI _Br oadcast is represented by thick dashed arrow lines. The pseudo aodeafallel

matrix multiplication in SMACOF algorithm is in Algorithm.2

For the purpose of computirﬁg(x[kfl]) in parallel, whose elemenbg; is defined in (2.17), the message

passing mechanism in Figure 3.3 should be applied underaiflock decomposition, as in Figure 3.1. Since

bss= — ¥s2j bsj, @ proces®; assigned td;; should communicate a vectsy, whose element is the sum of
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Figure 3.3: Calculation aB(X[*~) matrix with regard to the decomposition of Figure 3.1.

corresponding rows, with processes assigned sub-matthecfame block-rowy, wherek =0,...,n—1,
unless the number of column blocks isrl=£= 1). In Figure 3.3, the diagonal dashed line indicates thg-dia
onal elements, and the green colored blocks are diagonztdfor each block-row. Note that the definition
of diagonal blockss a block which contains at least one diagonal element aftaigix B(X). Also, dashed
arrow lines illustrate the message passing direction. Eneesas in parallel matrix multiplication, we use
a collective call, i.,eMPI _Al | r educe of row-communicator wittAddi t i on operation, to calculate row
sums for the diagonal values Bfinstead of using pairwise communicate routines, sudiRis Send and
MPI _Recei ve. Algorithm 3.3 shows the pseudo-code of computing subiRcin process$; with MPI

primitives.
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Algorithm 3.3 Pseudo-code for calculating assigned sub-m&sixiefined in (2.17) for distributed-memory
decomposition in parallel SMACOF algorithm
Input: M, X
: I* m=Row Bl ocks,n=Col um Bl ocks */
/* i = Rank- | n- Row, j = Rank- | n- Col urm */
: [* We assume that sub-matri; is assigned to procesy */
. Find diagonal blocks in the same row (row
. if Bjj ¢ diagonal blockshen
compute elementss; of Bj;
Send a vectasij, whose element is the sum of corresponding rowBytavhereBj, € diagonal blocks.
For simple and efficient implementation, we W48 _Al | r educe call for this.
. else
9:  compute elementsy; of Bjj, wheres#t
10:  Receive a vectasy, whose element is the sum of corresponding rows, wkete, ..., n from other
processes in the same block-row, and sum them to compute-awawector byMPl Al | r educe

Noahrwde

[ee]

call.
11:  Computebss elements based on the row sums.
12: end if

3.3 Performance Analysis of the Parallel SMACOF

For the performance analysis of parallel SMACOF discussékis chapter, we have applied our parallel
SMACOF algorithm for high-dimensional data visualizationow-dimension to the dataset obtained from
the PubChem databdsevhich is an NIH-funded repository for over 60 million cherai molecules. It pro-
vides their chemical structure fingerprints and biologaalvities, for the purpose of chemical information
mining and exploration. Among 60 Million PubChem datasethis chapter we have used 100,000 randomly
selected chemical subsets and all of them have a 166-loagybialue as a fingerprint, which corresponds to

the maximum input of 100,000 data points having 166 dimessio

In the following, we will show the performance results of quarallel SMACOF implementation with
respectto 6,400, 12,800, 50,000 and 100,000 data poinitsgd&6 dimensions, represented as 6400, 12800,

50K, and 100K datasets, respectively.

In addition to the PubChem dataset, we also use a biologécplence dataset for our performance test.

1pubChem htt p: // pubchem ncbi . nl m ni h. gov/
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Table 3.2: Cluster systems used for the performance asalysi

Features Cluster-I Cluster-lI

# Nodes 8 32

CPU AMD Opteron 8356 2.3GHz Intel Xeon E7450 2.4 GHz

# CPU / # Cores per node| 4/16 4/24

Total Cores 128 768

L1 (data) Cache per core | 64 KB 32 KB

L2 Cache per core 512 KB 1.5MB

Memory per node 16 GB 48 GB

Network Giga bit Ethernet 20 Gbps Infiniband

Operating System Windows Server 2008 HPC Ed|- Windows Server 2008 HPC Edi-
tion (Service Pack 2) - 64 bit tion (Service Pack 2) - 64 bit

The biological sequence dataset contains 30,000 biolbggcpence data with respect to the metagenomics
study based on pairwise distance matrix. Using these datgats, we have performed our experiments on

our two decent compute clusters as summarized in Table 3.2.

Since we focus on analyzing the parallel runtime of the pEr&8MACOF implementation but not map-
ping quality in this chapter, every experiment in this cleaps finished after 100 iterations without regard
to the stop condition. In this way, we can measure paraligime performance with the same number of

iterations for each data with different experimental emwiments.

3.3.1 Performance Analysis of the Block Decomposition

Figure 3.4-(a) and (c) show the overall elapsed time corapasi for the 6400 and 12800 PubChem data
sets with respect to how to decompose the giMexn N matrices with 32 cores in Cluster-1 and Cluster-I1.
Also, Figure 3.4-(b) and (d) illustrate the partial runtine¢ated to the calculation &{(X) and the calculation
of D(X) of 6400 and 12800 PubChem data sets. An interesting clesistizt of Figure 3.4-(a) and (c) is that
matrix data decomposition does not much affect the executiotime for a small data set (here 6400 points,

in Figure 3.4-(a)), but for a large data set (here 12800 ppintFigure 3.4-(c)), row-based decomposition,
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such asp x 1, is severely worse in performance compared to other datangigositions. Figure 3.4-(c)
and (d) describe that the overall performance with resgedata decomposition is highly connected to the

calculation of the distance matrix runtime.

Also, Figure 3.5-(a) and (c) show the overall elapsed timamarisons for the 6400 and 12800 PubChem
data sets with respect to how to decompose the dieN matrices with 64 cores in Cluster-1 and Cluster-II.
Figure 3.5-(b) and (d) illustrate the partial runtimes tedbto the calculation oB(X) and the calculation of
D(X) of 6400 and 12800 PubChem data sets, the same as Figurarilar $ Figure 3.4, the data decom-
position does not make a substantial difference in the dweratime of the parallel SMACOF with a small
data set. However, row-based decomposition, in this cage<althlock decomposition, takes much longer
for running time than the other decompositions, when we henparallel SMACOF with the 12800 points
data set. If we compare Figure 3.5-(c) with Figure 3.5-(d§,a@n easily find that the overall performance
with respect to data decomposition is mostly affected byctileulation of the distance matrix runtime for

the 64 core experiment.

The performance of overall elapsed time and partial rurgiofehe 6400 and 12800 Pubchem data sets
based on different decompositions of the givér N matrices with 128 cores are experimented in only the
Cluster-11 system in Table 3.2. Those performance plotshosvn in Figure 3.6. As shown in Figure 3.4 and
Figure 3.5, the data decomposition does not have a conbidémapact on the performance of the parallel
SMACOF with a small data set but it does have a significantémfbe on that performance with a larger data

set.

The main reason for the above data decomposition experahersults is the cache line effect that af-
fects cache reusability, and generally balanced blockmeosition shows better cache reusability so that it
occurs with less cache misses than the skewed decompasdid8]. In the parallel implementation of the
SMACOF algorithm, two main components actually access dathiple times so that will be affected by

cache reusability. One is thBl x N] - [N x D] matrix multiplication part. Since we implement the matrix
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multiplication part based on the block matrix multiplieatimethod with a 64 64 block for the purpose of
better cache utilization, the runtime of matrix multiplicen parts is almost the same without regard to data

decomposition.

However, the distance matrix updating part is a tricky padtnce each entry of the distance matrix
is accessed only once whenever the matrix is updated, ittieamy to think about the entries reusability.
Although each entry of the distance matrix is accessed ambg @er each update, the new mapping points
are accessed multiple times for calculation of the distanatix. In addition, we update the distance matrix
row-based direction for better locality. Thus, it is beftarthe number of columns to be small enough so that
the coordinate values of each accessed mapping points dating the assigned distance sub-matrix remain

in the cache memory as much as is necessary.

Figure 3.4-(b),(d) through Figure 3.6-(b),(d) illustratee cache reusability effect on 6400 points data
and 12800 points data. For instance, for the row-based deesition casep x 1 decomposition, each
process is assigned & p x N block, i.e. 100« 6400 data block for the cases Wf= 6400 andp = 64.
WhenN = 6400, the runtime of the distance matrix calculation pagsinot make much difference with
respect to the data decomposition. We might consider thtite inumber of columns of the assigned block
is less than or equal to 6400, then cache utilization is ncerharmful for the performance of the distance
matrix calculation part of the parallel SMACOF. On the othand, wherN = 12800 which is doubled, the
runtime of the distance matrix calculation part of row-lthdecompositionf x 1), and which is assigned a
12800/ p x 12800 data block for each process, is much worse than the dettee decomposition cases, as in
sub-figure (d) of Figure 3.4 - Figure 3.6. For the other decositipn cases, such ag'2 x 2 through 1x p
data decomposition cases, the number of columns of theresbiglock is less than or equal to 6400, when
N = 12800, and the runtime performance of distance matrix taiom part of those cases are similar to each

other and much less than the row-based data decomposition.

We have also investigated the runtime of B(&) calculation, since the message passing mechanism for
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computingB(X) is different based on data decomposition. Since the diaigelaments oB(X) are the neg-
ative sum of elements in the corresponding rows, it is reglio callVPl _Al | r educe or MPl _Reduce
MPI APIs for each row-communicator. Thus, the less numberoddmn blocks means faster (or less MPI
overhead) processes in computB(X), and even the row-based decomposition case does not neaitlttoe
MPI API for calculatingB(X). The effect of the different message passing mechanisB&49fin regard to

data decomposition is shown in sub-figure (b) and (d) of g4 through Figure 3.6.

In terms of a system comparison between the two test systehable 3.2, Cluster-1l performs better than
Cluster-l in Figure 3.4 through Figure 3.6, although thecklepeeds of the cores are similar to each other.
There are two different factors between Cluster-I and @luBtin Table 3.2. We believe that those factors
result in Cluster-1l outperforming Cluster-1, i.e. L2 cachize and Networks. The L2 cache size per core
is 3 times bigger in Cluster-1I than Cluster-1, and Cludiezonnected by 20Gbps Infiniband but Cluster-I
connected via 1Gbps Ethernet. Since SMACOF with large dagannemory-bound application, it is natural

that the bigger cache size results in the faster running time

3.3.2 Performance Analysis of the Efficiency and Scalabiljt

In addition to data decomposition experiments, we meadteegdarallel scalability of parallel SMACOF
in terms of the number of processgsWe investigated the scalability of parallel SMACOF by ringwith
different number of processes, e—= 64, 128, 192, and 256. On the basis of the above data decdinposi
experimental results, the balanced decomposition hasdpgaied to this process scaling experiments.pAs
increases, the elapsed time should decrease, but lindarmppance improvement could not be achieved due

to the parallel overhead.

We make use of the parallel efficiency value with respect ¢éonthmber of parallel units for the purpose

of measuriing scalability. Eq. (3.4) and Eq. (3.5) are theatipns of overhead and efficiency calculations:
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_ PT(p)—T(1)

f= T (3.4)
_ 1T

ETTET T T () (3:9)

where p is the number of parallel units[ (p) is the running time withp parallel units, andr (1) is the
sequential running time. In practice, Eq. (3.4) and Eq.)(8ah be replaced with Eq. (3.6) and Eq. (3.7) as

follows:

=T (36
_ 1 T(p)
£= 1+f  aT(py) (3.7)

wherea = p;/p, andp; is the smallest number of used cores for the experimert, 3d. We use Eg. (3.6)

and Eq. (3.7) in order to calculate the overhead and correlpg efficiency, since it is impossible to run
in a single machine for 50k and 100k data sets. Note that we L8eomputing nodes in Cluster-11 (total
memory size in 16 computing nodes is 768 GB) to perform thérgcaxperiment with a large data set, i.e.
50k and 100k PubChem data, since the SMACOF algorithm regdi80 GB memory for dealing with 100k

data points, as we disscussed in Section 3.2.1, and Clistn-only perform that with more than 10 nodes.

The elapsed time of the parallel SMACOF with two large data, &0k and 100k, is shown in Figure 3.7-
(a), and the corresponding relative efficiency of Figure(8)7is shown in Figure 3.7-(b). Note that both
coordinates are log-scaled, in Figure 3.7-(a). As showngare 3.7-(a), the parallel SMACOF achieved per-
formance improvement as the number of parallel ugjsr{creases. However, the performance enhancement

ratio (a.k.a. efficiency) is reduced asncreases, which is demonstrated in Figure 3.7-(b). Theoreéor
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Table 3.3: Runtime Analysis of Parallel Matrix Multipliéan part of parallel SMACOF with 50k data set in
Cluster-I|

‘ #Procs H tMatMult | tMM _Computing | tMM _Overhead

64 668.8939 552.5348 115.9847
128 420.828 276.1851 144.2233
192 366.1 186.815 179.0401
256 328.2386 140.1671 187.8749

reducing efficiency is that the ratio of the message passiaghead over the assigned computation per each
process is increased due to more message overhead andrigasticg portion per process gsncreases, as

shown in Table 3.3.

Table 3.3 is the result of the runtime analysis of the paratiatrix multiplication part of the proposed
parallel SMACOF implementation which detached the timehef pure block matrix multiplication compu-
tation part and the time of the MPI message passing overhaxadagp parallel matrix multiplication, from
the overall runtime of the parallel matrix multiplicatioan of the parallel SMACOF implementation. Note
that#Procs tMatMult , tMM _Computing, andtMM _Overhead represent the number of processes (par-
allel units), the overall runtime of the parallel matrix riplication part, the time of the pure block matrix
multiplication computation part, and the time of the MPI sege passing overhead part for parallel matrix

multiplication, respectively.

Theoretically, theMM _Computing portion should be negatively linear with respect to the nenddf
parallel units, if the number of points is the same and the lmlance is achieved. Also, tidM _Overhead
portion should be increased as the number of parallel uitscreased, if the number of points is the same.
More specifically, ifVPI _Bcast is implemented as one of the classical algorithms, such asoanial tree
or a binary tree algorithm [55], in MPIL.NET library, then ttdM _Overheadportion will follow somewhat
O ([lg p|) with respect to the number of parallel unit),(since theMPl _Bcast routine in Algorithm 3.2
could be the most time consuming MPI method among the MPinmesibf parallel matrix multiplication due

in part to the large message size and the maximum number ahoaioation participants.
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Figure 3.8 illustrates the efficiency (calculated by Eq7)Bof tMatMult andtMM _Computing in Ta-

ble 3.3 with respect to the number of processes. As showrgur&i3.8, the pure block matrix multiplication
part shows very high efficiency, which is almost ONE. In othards, the pure block matrix multiplica-
tion part of the parallel SMACOF implementation achievegdir speed-up as we expected. Based on the
efficiency measurement afAM _Computing in Figure 3.8, we could conclude that the proposed parallel
SMACOF implementation achieved good enough load balanderenmajor component of the decrease of
the efficiency is the compulsary MPI overhead for implenmenfparallelism. By contrast, the efficiency of
the overall runtime of the parallel matrix multiplicatioagpis decreased to around 0.5, as we expected based

on Table 3.3.

We also compare the measured MPI overhead of the paralleixmmatiltiplication tMM _Overhead)
in Table 3.3 with the estimation of the MPI overhead with exgpto the number of processes. The MPI
overhead is estimated based on the assumptionMPlat Bcast is implemented by a binomial tree or a
binary tree algorithm, so that the runtime Pl _Bcast is in &([lg(p)]) with respect to the number of
parallel units f). The result is described in Figure 3.9. In Figure 3.9, ithswn that the measured MPI
overhead of the parallel matrix multiplication part hasmikir shape with estimation overhead. We could
conclude that the measured MPI overhead of the parallebxmatrtiplication part takes the expected amount

of time.

In addition to the experiment with pubChem data, which isrespnted by a vector format, we also
experimented on the proposed algorithm with other real skettg which contains 30,000 biological sequence
data with respect to the metagenomics study (hereafter lM@B0ata set). Although it is hard to present a
biological sequence in a feature vector, researchers danlate a dissimilarity value between two different
sequences by using some pairwise sequence alignmentthigsrilike Smith Waterman - Gotols\V-G

algorithm [30, 65] which we used here.

Figure 3.10 shows: (a) the runtime; and (b) the efficiencyhef parallel SMACOF for the MC30000



3. High Performance Multidimensional Scaling 38

data in Cluster-I and Cluster-Il in terms of the number ofqesses. We tested it with 32, 64, 96, and 128
processes for Cluster-I, and experimented on it with mooegsses, i.e. 160, 192, 224, and 256 processes,
for Cluster-II. Both (a) and (b) sub-figure of Figure 3.10whgimilar tendencies to the corresponding sub-
figure of Figure 3.7. If we compare Figure 3.10 to Figure 3.&,0an see that the efficiency of the parallel
SMACOF for MC30000 data is generally lower than that of theaflal SMACOF for the 50k and 100k

pubChem data sets.

3.4 Summary

In this chapter, | have described a well-known dimensiomcédn algorithm, called MDS (SMACOF),
and | have discussed how to utilize the algorithm for a huga dat. The main issues involved in dealing
with a large amount of data points are not only lots of comjiata but also huge memory requirements. As
we described in Section 3.2.1, it takes 480 GB of memory tamerSMACOF algorithm with 100,000 data
points. Parallelization via the traditional MPI approactorder to utilize the distributed memory computing
system, which can support much more computing power and@xte accessible memory size, is proposed
as a solution for the amendment of the computation and mesimstage so as to be able to treat large data

with SMACOF.

As we discussed in the performance analysis, the data dexsitiom structure is important to maximize
the performance of the parallelized algorithm since it @femessage passing routines and the message
passing overhead as well as the cache-line effect. We lookeatll elapsed time of the parallel SMACOF
based on data decomposition as well as sub-routine runtsuel as calculation of BofZ matriB(X)) and
distance matrix@(X)). The cache reusability affects the performance of updatie distance matrix of the
newly generated mappings with respect to the data decotipoiiwe run a large data set. For a larger data

set, row-based decomposition shows much longer runtinmedtieers for the distance matrix calculation, and
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it influences the overall runtime as well. For the calculaid the BofZ matrix, the less column blocks case
shows the better performance due to required row-based caication. From the above analysis, balanced
data decompositiom{x n) is generally better than skewed decompositipix (L or 1x p) for the parallel

MDS algorithm.

In addition to data decomposition analysis, we also andlyhe efficiency and the scalability of the
parallel SMACOF. Although the efficiency of the parallel SRIAF is decreased by increasing the number
of processes due to the increase of overhead and the deofgage parallel computing time, the efficiency
is still good enough for a certain degree of parallelism. iRstance, the efficiency is still over 70% with the
100k data set with 256 parallelism. Based on the fact thatvivd _Computing in Table 3.3 achieved almost
linear speedup as in Figure 3.8, it is shown that the para@ACOF implementation deals with the load
balance issue very well and the inevitable message pasgarbend for parallelism is the main factor of the

reduction of the efficiency.

There are important problems for which the data set sizetoardarge for even our parallel algorithms to
be practical. Because of this, | developed interpolatigoreaches for the MDS algorithm, which could be
synergied by the proposed parallel SMACOF implementatitere we run normal MDS (or parallel MDS)
with a (random) subset of the dataset (calbagnple datp and the dimension reduction of the remaining
points are interpolated based on the pre-mapped mappiriioposf the sample data. The detail of the

interpolation approach [7] is reported in Chapter 4.
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Interpolation Approach for Multidimensional

Scaling

4.1 Overview

Due to the advancements in science and technology over shedgeral decades, every scientific and
technical field has generated a huge amount of data as timgdsasd in the world. We are really in the
era of data deluge. In reflecting on the data deluge era,idtasive scientific computing [28] has emerged
in the scientific computing fields and it has been attractimgetby many people. To analyze those incred-
ible amount of data, many data mining and machine learniggrdhms have been developed. Among the
many data mining and machine learning algorithms that haea linvented, we focus on dimension reduc-
tion algorithms, which reduce data dimensionality frongoral high dimension to target dimension, in this

chapter.

Among the many dimension reduction algorithms which exssich as principle component analysis

(PCA), generative topographic mapping (GTM) [11, 12], setjanizing map (SOM) [43], multidimensional

47
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scaling (MDS) [13, 45], | have worked on MDS for this thesiseWously, we parallelize the MDS algo-
rithm to utilize multicore clusters and to increase the cataponal capability with minimal overhead for the
purpose of investigating large data, such as 100k data Hélvever, parallelization of an MDS algorithm,
whose computational complexity and memory requiremenie @ (N?) whereN is the number of points, is
still limited by the memory requirement for huge data, e.glioms of points, although it utilizes distributed
memory environments, such as clusters, for acquiring mamony and computational resources. In this
chapter, we try to solve the memory-bound problem by intixm based on pre-configured mappings of
the sample data for the MDS algorithm, so that we can provaddiguration of millions of points in the

target space.

This chapter is organized as follows. First we will brieflgdiss existing methods ofit-of-sampl@rob-
lem in various dimension reduction algorithms in Sectich 4.hen, the proposed interpolation method and
how to parallelize it are described in Section 4.3. The quatmparison between interpolated results and the
full MDS running results and parallel performance evalatf those algorithms are shown in Section 4.4,

followed by the summary of this chapter in Section 4.5.

4.2 Related Work

The out-of-samplenethod, which embeds new points with respect to previousthfigured points, has
been actively researched for recent years, and it aims abiimg the capability of dimension reduction
algorithms by reducing the computational and memory-watgirement with the trade-off of slightly ap-

proximated mapping results.

In a sensor network localization field, when there are oniytesst of pairwise distances between sensors

and a subset of anchor locations are available, people figdout the locations of the remaining sensors.
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For instance, the semi-definite programming relaxatiom@gghes and its extended approaches has been pro-
posed to solve this issue [74]. [10] and [70] proposed otgashple extension for the classical multidimen-
sional scaling (CMDS) [68], which is based on spectral dguosition of a symmetric positive semidefinite
matrix (or the approximation of positive semidefinite matrand the embeddings in the configured space are
represented in terms of eigenvalues and eigenvectors[@Ditprojected the new point onto the principal
components, and [70] extends the CMDS algorithm itself éodht-of-sample problem. In [70], the authors
describe how to embed one point between the embeddings ofitfiral n objects through modification of

the original CMDS equations, which preserves the mappifgfseooriginaln objects, with(n+ 1) x (n+ 1)
matrix A, instead ofn x n matrix Az, and extends to embedding a number of points simultanebyslging

matrix operations. Recently, a multilevel force-based Milgprithm was proposed as well [38].

In contrast to applying the out-of-sample problem to CMD&xtend the out-of-sample problem to gen-
eral MDS results with the STRESS criteria of Eq. (1.1) in Gkaj2, which finds embeddings of approxi-
mating to the distance (or dissimilarity) rather than theeinproduct as in CMDS, with an gradient descent
optimization method, called iterative majorizing. The posed iterative majorizing interpolation approach

for the MDS problem will be explained in Section 4.3.

4.3 Majorizing Interpolation MDS

One of the main limitation of most MDS applications is thatytiequire’(N?) memory as well ag’(N?)
computation. Thus, though it is possible to run them with alsdata size without any trouble, it is impos-
sible to execute them with a large number of data due to meltimitation; therefore, this challenge could
be considered as being a memory-bound problem. For inst&uzding by MAjorizing of COmplicated
Function (SMACOF) [20, 21], a well-known MDS applicatioravExpectation-Maximization (EM) [22] ap-

proach, uses siX x N matrices. IfN = 100,000, then on®& x N matrix of 8-byte double-precision numbers



4. Interpolation Approach for Multidimensional Scaling 50

requires 80 GB of main memory, so the algorithm needs to aegiieast 480 GB of memory to store these
six N x N matrices. It is possible to run a parallel version of SMACOEhWIPI in Cluster-1l in Table 4.1
with N =100 000. If the data size is increased only twice, however, thenSMACOF algorithm should
have 1.92 TB of memory, which is bigger than the total memdrglaster-1l in Table 4.1 (1.536 TB), so it
is impossible to run it within the cluster. Increasing meyngire will not be a solution, even though it could

increase the runnable number of points. It will encountersiime problem as the data size increases.

To solve this obstacle, we develop a simple interpolatiopra@ch based on pre-mapped MDS result
of the sample of the given data. Our interpolation algoritsnsimilar to thek nearest neighbok{NN)
classification [19], but we approximate to a new mappingtmsof the new point based on the positions of
k-NN, among pre-mapped subset data, instead of classify/ifepr the purpose of deciding a new mapping
position in relation to th&NN positions, the iterative majorization method is apge in the SMACOF [20,
21] algorithm. The details of mathematical majorizatiomuatipns for the proposed out-of-sample MDS
algorithm is shown below. The algorithm proposed in thisptbais called Majorizing Interpolation MDS

(hereafteMI-MDS).

The proposed algorithm is implemented as follows. We arergV data in a high-dimensional space,
say D-dimension, and proximity information\(= [&;]) of those data as in Section 1.2. AmoNgdata,
the configuration of th@ sample points in.-dimensional spaceg, ..., X, € R", calledX, are already con-
structed by an MDS algorithm; here we use the SMACOF algaritfhen, we seledt nearest neighbors
(py,---, Pk € P) of the given new point, amongpre-mapped points with respect to correspondiagvhere
X represents the new point. | use a linear search to find-thearest neighbors amomgsampled data, so
that the complexity of finding thie-nearest neighbors i8(n) per one interpolated point (hexg Finally, the
new mapping of the given new poirtc R" is calculated based on the pre-mapped position of the select
k-NN and the corresponding proximity informatidg. The finding new mapping position is considered as a

minimization problem of STRESS (4.1) as similar as normal34oblem withm points, wheren=k+ 1.



4. Interpolation Approach for Multidimensional Scaling 51

However, only one poink is movable amongn points, so we can simplify the STRESS equation (4.1) as

follows (Eq. (4.2)), and we set;; = 1, forVi, j in order to simplify.

oX) = 5 (@j(X)-a;)? (4.1)
i<J]<m
k k
= (f-l-lzldii_z_zidxdix 4.2)

wheredy is the original dissimilarity value betwegn andx, dix is the Euclidean distance Indimension

betweenp; andx, and% is constant part. The second term of Eq. (4.2) can be deplayéallowing:

1= pol? 4+ [[x— pi|? (4.3)

k
2%

k
= k||x|\2+;||pi|\2—2x‘q (4.4)

whereq! = (z!‘:l pi17---,2ik:1 pi) and p;j representg-th element ofp;. In order to establish majorizing
inequality, we applyCauchy-Schwarinequality to—di of the third term of Eq. (4.2). Please, refer to chapter
8 in [13] for details of how to apply th€auchy-Schwarinequality to—dix. Sincedix = ||p; — X||, —dix could

have following inequality based dbauchy-Schwarinequality:

Y 5-1(Pia — Xa) (Pia — Za)
diz
(p—X'"(p—2

—dix

IN

(4.5)

wherez = (z,...,z ) andd;; = ||p; — Z|. The equality in Eq. (4.5) occursXfandz are equal. If we apply
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Eq. (4.6) to the third term of Eq. (4.2), then we obtain

k k dx
—_Zldxdix < _-Zld_iz(pi _X)t(pi - ) (4'7)
7 & Oix
= X 3 @R+ (4.8)

i= Yiz

where%, is a constant. If Eq. (4.4) and Eq. (4.8) are applied to EQ)(4hen it could be like following:

k k
o(X) =%+ Zd§< - Z_Zaxdix (4.9)
k
<6 +K||x||* - 2th+_2\|\ pl?

k 5
-2 d—_x(z— P)+%p (4.10)

=1(X,2) (4.12)

where boths” and%, are constants. In the Eq. (4.1T)x,z), a quadratic function oX, is a majorization
function of the STRESS. Through setting the derivative(of z) equal to zero, we can obtain a minimum of

it; that is

k

01(x,2) = 2kx— 2q—2_ %(z— p)=0 (4.12)
k O (z_n

X:q+2|:ldiz(z pl) (4.13)

k

whereq! = (z!;l pil,...,zik:l piL), pij representg-th element ofp;, andk is the number of the nearest
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neighbors that we selected.

The advantage of the iterative majorization algorithm &t ihproduces a series of mappings with non-
increasing STRESS values as proceeds, which results iogena. It is good enough to find local minima,
since the proposed MI algorithm simplifies the complicated-tinear optimization problem as a small non-
linear optimization problem, such &s- 1 points non-linear optimization problem, whére< N. Finally, if

we substitute with x'=1 in Eq. (4.13), then we generate an iterative majorizing éqndike the following:

k. .
= K (4.14)
1k5
It] - X (yt=1] '
XU =p+ E X 4.15

whered;; = ||p, — x!~!|| andp is the average di-NN’s mapping results. Eq. (4.15) is an iterative equation
used to embed newly added point into target-dimensionaesgaased on pre-mapped positionskofiN.

The iteration stop condition is essentially the same asahidite SMACOF algorithm, which is

Ao(SY) = o(StY) —o(d!) < ¢, (4.16)

whereS= PU {x} ande¢ is the given threshold value.

The time complexity of the proposed MI-MDS algorithm to fikcetmapping of one interpolated point
is (k) on the basis of Eg. (4.15), if we assume that the number ddtiters of finding one interpolated
mapping is very small. Since finding nearest neighbors tékes and mapping via MI-MDS requireg (k)
for one interpolated point, the overall time complexity tadfimappings of overall out-of-sample points (N-n
points) via the proposed MI-MDS algorithmds(kn(N — n)) = &'(n(N — n)), due to the fact thadt is usually

negligible compared ta or N.
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Algorithm 4.1 Majorizing Interpolation (MI) algorithm

1: Find k-NN: find k nearest neighbors of p; € P i =1,...,k of the given new data based on original
dissimilarity d.

: Gather mapping results in target dimension ofktieN.

: Calculatep, the average of pre-mapped resultgpE P.

. Generate initial mapping of calledx'?, eitherp or a random variation frorp point.

. Computeo(S%), whereS% = Pu {x9]}.

- whilet = 0 or Ao (SY) > £ andt < MAX _ITER) do
increase by one.

Computext! by Eq. (4.15).

Computea (SY).

10: end while

a b~ W N

© o N

11: return xt;

The process of the overall out-of-sample MDS with a largasiettcould be summarized by the following
steps: (1) Sampling; (2) Running MDS with sample data; andn{&rpolating the remain data points based

on the mapping results of the sample data.

The summary of the proposed MI algorithm for interpolatidracnew data, say, in relation to pre-
mapping result of the sample data is described in Algorithin Klote that the algorithm usgsas an initial
mapping of the new point® unless initialization withp makesd, = 0, since the mapping is based on the
k-NN. p makesdix = 0, if and only if all the mapping positions of theNNs are on the same position. if
makesdy =0 (i = 1,...,Kk), then we generate a random variation fromhaoint with the average distance

of 3y as an initial position ok

4.3.1 Parallel MI-MDS Algorithm

Suppose that, amony points, the mapping results afsample points in the target dimension, day
dimension, are given so that we could use those pre-mappeltisrefn points via MI-MDS algorithm which
is described above to embed the remaining poits-(N —n). Though interpolation approach is much faster

than full running MDS algorithm, i.e0(Mn+n?) vs. ¢(N?), implementing parallel MI-MDS algorithm is
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essential, sincM can be still huge, like millions. In addition, most of clust@re now in forms of multicore-
clusters after the invention of the multicore-chip, so we asing hybrid-model parallelism, which combine

processes and threads together as used in [28,57].

In contrast to the original MDS algorithm in which the mappof a point is influenced by the other points,
interpolated points are totally independent one anotlxeg selecte&-NN in the MI-MDS algorithm, and
the independency of among interpolated points makes th#BIE algorithm to be pleasingly-parallel. In
other words, there must be minimum communication overh&kw, load-balance can be achieved by using
modular calculation to assign interpolated points to eagfalfel unit, either between processes or between

threads, as the number of assigned points are differentsttone.

4.3.2 Parallel Pairwise Computation Method with Subset of @ta

Although interpolation approach itself is #(Mn), if we want to evaluate the quality of the interpolated
results by STRESS criteria of Eq. (1.1) of ovefdlpoints, it require’(N?) computation. Note that we im-
plement our hybrid-parallel MI-MDS algorithm as each pisghas access to only a subsevbihterpolated
points, without loss of generalityl/p points, as well as the information of all pre-mappegoints. It is
natural way of using a distributed-memory system, such astet systems, to access only a subset of huge
data which spread to over the clusters, so that each proeeds to communicate each other for the purpose

of accessing all the necessary data to compute STRESS.

In this section, we illustrate how to calculate symmetricywse computation efficiently in parallel with
the case that only a subset of data is available for each ggoda fact, general MDS algorithms utilize
pairwise dissimilarity information, but suppose we areegiM original vectors irD-dimensiony;,...,yy €Y
andy; € RP, instead of a given dissimilarity matrix, as PubChem fingentpdata that we used for our
experiments. Thus, in order to calculate the distance igireal D-dimensiond;j = ||y, —y;l| in Eq. (1.1),

it is necessary to communicate messages between each ptoogst the required original vector, sgy
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Figure 4.1: Message passing pattern and parallel symnpatiievise computation for calculating STRESS
value of whole mapping results.

andy;. Here, we used the proposed pairwise computation methoc&sune the STRESS criteria of MDS
problem in Eq. (1.1), but the proposed parallel pairwise gotation method will be used efficiently for
general parallel pairwise computation whose computingpmmants are independent, such as generating a
distance (or dissimilarity) matrix of all data, under thenddion that each process can access only a subset

of the required data.

Figure 4.1 describes the proposed scheme when the numbeoadgses) is 5, odd numbers. The
proposed scheme is an iterative two-step approach, (IDgahd (2) computing, and the iteration number is
[(1+---+p—1)/p] = [(p—1)/2]. Note that iteration ZERO is calculating the upper triamgplart of the
corresponding diagonal block, which does not requires aggspassing. After iteration ZERO is done, each

processp; sends the originally assigned data block to the previousgagp; 1 and receives a data block
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from the next procesp;;1 in cyclic way. For instance, procegg sends its own block to procepg_1, and
receives a block from procegs. This rolling message passing can be done using one singleMmitive

per processiPl _SENDRECV( ) , which is efficient. After sending and receiving messagashegrocess
performs currently available pairwise computing blockhwigéspect to receiving data and originally assigned
block. In Figure 4.1, black solid arrows represent each agespassings at iteration 1, and orange blocks
with process ID are the calculated blocks by the correspmdamed process at iteration 1. From iteration
2 to iteration[(p—1)/2], the above two-steps are done repeatedly and the onlyefiferis nothing but
sending a received data block instead of the originallygamesi data block. The green blocks and dotted blue

arrows show iteration 2 which is the last iteration for theecafp = 5.

Also, for the case that the number of processes is even, thedivo-step scheme works in high effi-
ciency. The only difference between the odd number casetandven number case is that two processes
are assigned to one block at the last iteration of even nugdse, but not in an odd number case. Though
two processes are assigned to a single block, it is easy tevaclvad balance by dividing two sections of
the block and assigning them to each process. Therefore,dust number process and even number pro-
cess cases are parallelized well using the above rollimgpcing scheme, with minimal message passing

overhead. The summary of the above parallel pairwise coatiputis shown in Algorithm 4.2.

4.4 Analysis of Experimental Results

To measure the quality and parallel performance of the me@gdIDS interpolationN]I-MDS) approach
discussed in this chapter, we have used 166-dimensionalichbdataset obtained from the PubChem project
databask which is an NIH-funded repository for over 60 million cherai molecules and provides their

chemical structures and biological activities, for thegmse of chemical information mining and exploration.

1pubChem htt p: // pubchem ncbi . nl m ni h. gov/
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Algorithm 4.2 Parallel Pairwise Computation

1: input: Y = a subset of data;

. input: p = the number of process;

: rank < the rank of process;

: sendTo< (rank— 1) mod p

: recvFrom<= (rank+ 1) mod p

k< 0;

: Compute upper triangle in the diagonal blocks in Figure 4.1;
: MAXJITER< [(p—1)/2]

9: while k < MAX_ITERdoO
1. k<k+1;
11: if k=1then
12: MPI _ SENDRECV(Y,sendToqY,,recvFron);

o N O U WN

13: else

14: Ys<VYy;

15: MPI _ SENDRECV(Ys,send ToY,, recvFrony;
16:  endif

17: Do Computation();
18: end while

In this chapter we have used observations which consishabraly selected up to 4 million chemical subsets

for our testing. The computing cluster systems we have usedriexperiments are summarized in Table 4.1.

In the following, we will mainly show: i) exploration of theptimal number of nearest neighbors; ii)
the quality of the proposed MI-MDS interpolation approacipéerforming MDS algorithms, with respect to
various sample sizes — 12.5k, 25k, and 50k randomly seldcied 100k dataset as a basis — as well as the
mapping results of large-scale data, i.e. up to 4 milliompsiand iii) parallel performance measurements of
our parallelized interpolation algorithms on our clustgrsystems as listed in Table 4.1; and finally, iv) our

results on processing up to 4 million MDS maps based on tiretaesult from 100K dataset.

4.4.1 Exploration of optimal number of nearest neighbors

Generally, the quality dk-NN (k-nearest neighbor) classification (or regression) isedl&d the number
of neighbors. For instance, if we choose a larger numbehtek,tthen the algorithm shows a higher bias but

lower variance. On the other hands, #aBIN algorithm shows a lower bias but a higher variance baseal o
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Table 4.1: Compute cluster systems used for the performamalgsis

Features Cluster-1 Cluster-1I

# Nodes 8 32

CPU AMD Opteron 8356 2.3GHz Intel Xeon E7450 2.4 GHz

# CPU/ # Cores pernode 4/16 4]24

Total Cores 128 768

Memory per node 16 GB 48 GB

Network Giga bit Ethernet 20 Gbps Infiniband

Operating System Windows Server 2008 HPC Edition Windows Server 2008 HPC Edition
(Service Pack 2) - 64 bit (Service Pack 2) - 64 bit

smaller number of neighbors. For the cas&-®N classification, the optimal nhumber of nearest neighbors
(K) can be determined by thé-fold cross validation methold2] or leave-one-out cross validation method

and usually the value that minimizes the cross validatiooras picked.

Although we cannot use the N-fold cross validation methaditcide the optimélt value of the proposed
MI-MDS algorithm, we can compare the mapping results wigpeet tok value based on STRESS value.
In order to explore the optimal number of nearest neighlwesexperimented with the MI-MDS algorithm

with differentk values, i.e. X k < 20 with 100k pubchem data.

Figure 4.2 shows the comparison of mapping quality betweeivl-MDS results of 100K data with 50k
sample data size in terms of differdatalues. The y-axis of the plot is trmalized STRES&lue which
is divided byy ;. 6&. The normalized STRESS value is equal to ONE when all the ingpp at the same
position, in that the normalized STRESS value denotes taéve portion of the squared distance error rates
of the given data set without regard to various scale¥jafue to data difference. The equation of normalized

STRESS is shown in Eq. (4.17) below.

_ L )82
G(X)_i<J§NXi<J‘5€(d”(X) aj) (4.17)

Figure 4.2 shows an interesting result that the optimal remobnearest neighbors is ‘two’ rather than
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Figure 4.2: Quality comparison between interpolated tesul 00k with respect to the number of nearest
neighborsk) with 50k sample and 50k out-of-sample result.

larger values. Also, the normalized STRESS value is sibticecreased a% is increased, whek =5 and

larger, and the normalized STRESS value of MI-MDS resulth @0-NN is almost double of that with 2-NN.

Before we analyze the optimal number of nearest neighbothéproposed MI-MDS method with the
given Pubchem dataset, | would like to mention how the predddl-MDS solves the mapping ambiguity
problem wherk = 2,3 for three dimensional target space. When the target diilmers3D space, logically,
the optimal position of the interpolated points can be inraleiif k = 2, and the optimal position of the
interpolated points can be at two symmetric positions wébpect to the face contains all three nearest
neighbors, in the case &= 3. The derivative MI-MDS equation in Eg. (4.15), howevernswains the
interpolation space corresponding to the number of neardghbors, by setting the initial position as the

average of the mappings of nearest neighbors. In the calse-d, the interpolation space is constructed
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(@) k=2 (b)k=3

Figure 4.3: The illustration of the constrained interpolatspace whek = 2 ork = 3 by initialization at the
center of the mappings of the nearest neighbors.

as a line () which includes the mapping positions of the two nearegghit®drs, when the initial mapping
of the interpolation is the center of nearest neighbpjs Similarly, the possible mapping position of the

interpolated point is constrained within the FaE@ {hen it contains the three nearest neighbors wher8.

Figure 4.3-(a) and (b) illustrate the constrained intemfioh space in case &kf= 2 and 3, correspondingly.
In Figure 4.3 xp represents the initial mapping position of the interpalgieint which is the same gsand
v; (i = 1,2 or 3) is the vector representation xf— p;, wherex; is the current mapping position of the
interpolated point ang; is the mapping position in target dimension of nearest rimgh Note thaxy (= )
is on the lind whenk = 2 and on the facé whenk = 3. If v; andv, are on the same line avy + Bv; is also
on the same liné. Similarly, if v1, v», andvsz are on the same Faég av; + Bvo + Y3 is also on the same
faceF. Thus, the final mapping position of the interpolated poiithw = 2 or 3 is constrained in the life
or faceF, as shown in Figure 4.3. This results in removing the ambjgfithe optimal mapping position of

the small nearest neighbor cases, for exarkpie2, 3 when the target dimension is 3.

We can think of two MI-MDS specific properties as possiblesoees for the results of the experiment
of the optimal number of nearest neighbors which is shownigurde 4.2. A distinct feature of MI-MDS

algorithm compared to oth&NN approaches is that the increase of the number of neagiggilrors results
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Table 4.2: Analysis of Maximum Mapping Distance betwd&edNs with respect to the number of nearest

neighborsk).

| #-NNs || <3.0 > 6.0 >7.0 > 8.0 | %of (<3.0)| %of (>6.0)]
2 45890 409 164 53 91.780 0.818
3 41772 916 387 139 83.544 1.832
5 34503 1945 867 334 69.006 3.890
10 22004 4230 2005 826 44.008 8.460
20 10304 8134 4124 1797 20.608 16.268

in generating more a complicated problem space to find thggmgjposition of the newly interpolated point.
Note that the interpolation approach allows only the intdafed point to be moved and the selected nearest
neighbors are fixed in the target dimension. This algorithpnoperty effects more severe constraints to find
optimal mapping position with respect to Eq. (4.2). Alsotenthat finding the optimal interpolated position
does not guarantee that it makes better mapping in termdlafdta mapping, but it means that MI-MDS

algorithm works as the algorithm designed.

Another specific property of MI-MDS is that the purpose of MiieMDS algorithm is to find appropriate
embeddings for the new points based on the given mappindseasdmple data. Thus, it could be better
to be sensitive to the mappings of closely-located neamsghbors of the new point than to be biased to
the distribution of the mappings of whole sample points.urég4.4 illustrates the mapping difference with
respect to the number of nearest neighbors used for MI-MB8ridhm with 50k sample and 50k out-of-
sample data. The 50k sample data is selected randomly frergilen 100k data set, so it is reasonable
that the sampled 50k data and out-of-sample 50k show simigdributions. As shown in Figure 4.4-(a),
the interpolated points are distributed similar to the sachplata as we expected. Also, Figure 4.4-(a) are
much more similar to the configuration of the full MDS runnimgh 100k data, which is shown later in this
chapter, than other results in Figure 4.4. On the other haigdre 4.4-(b) through Figure 4.4-(f) are shown

in center-biased mapping, and the degree of bias of thospingmincreases dsincreases.

In order to understand more about why biased mappings aerged by larger nearest neighbors cases
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(e)vk:15 (Hk=20
Figure 4.4: The mapping results of MI-MDS of 100k Pubchenadsith 50k sample data and 50k out-of-

sample data with respect to the number of nearest neighkjorBti{e sample points are shown in red and the
interpolated points are shown in blue.
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Figure 4.5: Histogram of the original distance and the pemping distance in the target dimension of 50k
sampled data of 100k. The maximum original distance of tHesa®npled data is 1098 and the maximum
mapping distance of the 50k sampled data i9&Q.
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with the test dataset, we have investigated the given aiglistance distribution of the 50k sampled data
set and the trained mapping distance distribution of thepéegindata. Also, we have analyzed the training
mapping distance betwe&rNNs with respect td. Figure 4.5 is the histogram of the original distance distri
bution and the trained mapping distance distribution of &&kpled data used in Figure 4.2 and Figure 4.4.
As shown in Figure 4.5, most of the original distances areeitwben 5 and 7, but the trained mapping dis-
tances reside in a more broad interval. Table 4.2 demoastthe distribution of the maximum mapping
distance between selectkeNNs with respect to the number of nearest neighbors. Themar original

distance is 1198 and the maximum mapping distance of the 50k sampled £142960.

As shown in Figure 4.16-(a), the mapping of Pubchem datag@spherical shape. Thus, the maximum
mapping distance of the 50k sampled data could be similgraaliameter of the spherical mapping. The
distance 3.0 is close to the half of radius of the sphere amdidtance 6.0 is close to the radius of the sphere.
Therefore, in Table 4.2, the column o£“3.0" represents the cases that nearest neighbors are closppecha
together, and the columns of“6.0" and others illustrate the cases that some nearest neighbafar from

other nearest neighbors. Note that the entries06:0’ column include that of > 7.0’ and “> 8.0’ as well.

The analysis of mapping distance betwdeNNs with the tested Pubchem dataset shows interesting
results. Initially, we expected th&t="5 ork = 10 could be small enough numbers of the nearest neighbors,
which would make nearest neighbors be positioned near ébehia the training mapping results. Contrary
to our expectation, as shown in Table 4.2, even in the cake-&#, nearest neighbors are not near each other
for some interpolated data. The cases of two nearest neiglpbsitioned more than a 6.0 distance occurred
more than 400 times. As we incredsto be equal to 3, the occurrence of the cases of at least twesiea
neighbors distanced more than 6.0 increases more than dfweBat it was wherk = 2. On the other hand,
the number of the cases of all of the selected nearest naighlogsely mapped is decreased in Table 4.2. The
percentage of the cases of all of the selected nearesethoefgbiosely mapped is also shown in Table 4.2.

Between the cases &f= 2 andk = 3, the difference of the ak-NNs closely mapped cases is abol2% of
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a 50k out-of-sample points. For the case&ef 20, the occurrence of closely mapped cases is dropped down

from 918% to 206%.

From the above investigation of the mapping distance 8istion between selected nearest neighbors, it
is found that, even with a small number of nearest neightieesieighbors can be mapped relatively far from
each other, and the number of those cases is increasdd mereased. The long distance mappings between
nearest neighbors could result in generating center-thiasgpings by interpolation. We can think of this as
a reason for why the 2-NN case shows better results than cdlses, which use the larger number of nearest

neighbors, with the Pubchem dataset.

In short, as we explored the optimal number of nearest neighlvith Pubchem data sé¢,= 2 is the
optimal case as shown in Figure 4.2 with the Pubchem datasétihe larger nearest neighbor cases show
biased mapping results, as shown in Figure 4.4. Therefoeeuse 2-NN for the forthcoming MI-MDS

experiments analyzed in this section.

4.4.2 Comparison between MDS and MI-MDS

4.4.2.1 Fixed Full Data Case Figure 4.6 shows the comparison of quality between MI-MD&ults of
100K data with different sample data sizes by using 2-NN ammBMSMACOF) as the only results with the
100k Pubchem data. The y-axis of the plot is the normalizellEESS value which is shown in Eq. (4.17).
The normalized STRESS difference between the MDS only teanld interpolated with 50k is only around
0.0038. Even with a small portion of sample data (12.5k datanlg &/8 of 100k), the proposed MI-MDS
algorithm produces good enough mapping in the target dilmensing a much smaller amount of time than
when we ran MDS with a full 100k of data. In Figure 4.7, we congghe commulated running time of the
out-of-sampleapproach, which combines the full MDS running time of sangdé and MI-MDS running
time of the out-of-sample data with respect to different glensize, to the running time of the full MDS run

with the 100k data. As shown in Figure 4.7, the overall rugriime of the out-of-sample approach is much
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Figure 4.6: Quality comparison between the interpolatsditef 100k with respect to the different sample
sizes (INTP) and the 100k MDS result (MDS)

smaller than the full MDS approach. To be more specific, theofisample approach for 100k dataset takes
around 251, 9.3, and 33 times faster than the full MDS approach with respect toedéhit sample sizes,

12.5k, 25k, and 50k, correspondingly.

Figure 4.8 shows the MI-MDS interpolation running time onligh respect to the sample data using 16
nodes of the Cluster-1l in Table 4.1. The MI-MDS algorithrkea around &5, 1435, and 188 seconds
with different sample sizes, i.e. 12.5k, 25k, and 50k, to fiesv mappings of 87500, 75000, and 50000
points based on the pre-mapping results of the correspgrsdimple data. Note that the full MDS running
time with 100k using 16 nodes of the Cluster-1l in Table 4.&rsund 27006 sec. In Figure 4.8, we can find
the interesting feature that it takes much less time to firmdmeappings of 87,500 points (8.55 seconds) than

to find new mappings of 50,000 points (18.98 seconds). Theores the computational time complexity
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Figure 4.7: Running time comparison between the Out-of{Bampproach which combines the full MDS
running time with sample data and the MI-MDS running timehwatt-of-sample data whe¥i = 100k, with
respect to the different sample sizes and the full MDS rexutie 100k data.

of MI-MDS is ¢(Mn) wheren is the sample size and = N —n. Thus, the running time of MI-MDS is
proportional to the number of new mapping points if the sangite ) is the same, as in the larger data set
case shown below in this chapter. However, the above case @pposite case. The full data sing (s fixed,

so that both the sample data sirg¢ §nd the out-of-sample data sizd) are variable and correlated. We can
illustrate @(Mn) as a simple quadratic equation of variablas following: @ (n (N —n)) = (N xn—n?),
which has maximum when = N/2. The above experiment cabe= 100k andn = 50k is the maximum

case, so that the case of 50k sample data of MI-MDS took lothgerthe case of the 12.5k sample data.

4.4.2.2 Fixed Sample Data Sizé\bove we discussed the MI-MDS quality of the fixed total num@d©0k)

with respect to the different sample data sizes, comparduetdIDS running results with total number of
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Figure 4.8: Elapsed time of parallel MI-MDS running time @0k data with respect to the sample size using
16 nodes of the Cluster-1l in Table 4.1. Note that the comiutal time complexity of MI-MDS is¢’(Mn)
wheren is the sample size arld = N —n.

data (100k). Now, the opposite direction of the test, whesig the scalability of the proposed interpolation
algorithm, is performed as follows: we fix the sample date $& 100k, and the interpolated data size is
increased from one million (1M) to two million (2M) to four tion (4M). Then, the STRESS value is
measured for each running result of total data, i.e. 1M + 1@8k+ 100k, and 4M + 100k. The measured
STRESS value is shown in Figure 4.9. There is some qualitypletsveen the full MDS running results with
100k data and the 1M interpolated results based on that 1@@pimg; they have about aOD7 difference

in the normalized STRESS criteria. However, there is nottmifference between the normalized STRESS
values of the 1M, 2M, and 4M interpolated results, althoughsample size is quite a small portion of the
total data and the out-of-sample data size increases asupladhe numbers. From the above results, we

could consider that the proposed MI-MDS algorithm workshaet is scalable if we are given a good enough
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Table 4.3: Large-scale MI-MDS running time (seconds) wildk sample data

1 Million

2 Million

4 Million

731.1567

1449.1683

2895.3414

pre-configured result which represents well the structfithegiven data. Note that it is not possible to run

the SMACOF algorithm with only 200k data points due to memmwynds, within the systems in Table 4.1.
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Figure 4.9: The STRESS value change of the interpolatiagyetadata, such as 1M, 2M, and 4M data points,

with 100k sample data. The initial STRESS value of MDS restit00k data is @719.

We also measure the runtime of the MI-MDS algorithm with géascale data set up to 4 million points.

Figure 4.10 shows the running time of the out-of-sample @g@gh in a commulated bar graph, which rep-

resents the full MDS running time of sample dat£ 100Kk) in the red bar and the MI-MDS interpolation

time of out-of-sample datan(= 1M, 2M, and 4M) in the blue bar on top of the red bar. As we expect

the running time of MI-MDS is much faster than the full MDS ning time in Figure 4.10. Although the
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Figure 4.10: Running time of the Out-of-Sample approactctvisiombines the full MDS running time with
sample dataNl = 10k) and the MI-MDS running time with different out-of-samplatd sizes, i.e. 1M, 2M,
and 4M.

MI-MDS interpolation running time in Table 4.3 is much snealthan the full MDS running time (27006
seconds), the MI-MDS deals with a much larger amount of goirg. 10, 20, and 40 times larger number of
points. Note that we cannot run the parallel SMACOF algarif6] with even 200,000 points on our current
sytsems in Table 4.1. Even though we assume that we are atla the parallel SMACOF algorithm with
millions of points onCluster-11 in Table 4.1, the parallel SMACOF will take 100, 400, and 1606ts longer
with 1M, 2M, and 4M data than the running time of parallel SMBE with 100k data, due to th€'(N?)
computational complexity. As opposed to the approximatdMDS running time, the proposed MI-MDS
interpolation takes much less time to deal with millions ofrts than parallel SMACOF algorithm. In nu-
meric, MI-MDS interpolation is faster than approximatet parallel MDS running time in 3693.5, 7454.2,

and 14923.8 times with 1M, 2M, and 4M data, correspondingly.
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If we extract the MI-MDS running time only with respect to thgt-of-sample data size from Figure 4.10,
the running time should be proportional to the number of aftsample data since the sample data size is
fixed. Table 4.3 shows the exact running time of the MI-MDSeiipblation method with respect to the
number of the out-of-sample data sizg, (based on the same sample datb=£ 100k). The running time is

almost exactly proportional to the out-of-sample data @ieas it should be.

4.4.3 Parallel Performance Analysis of MI-MDS

In the above section, we discussed the quality of the cortsilconfiguration of the MI-MDS approach
based on the STRESS value of the interpolated configuratimhthe running time benefits of the proposed
MI-MDS interpolation approach. Here, we would like to intigate the MPI communication overhead and
parallel performance of the proposed parallel MI-MDS inmpéstation in Section 4.3.1 in terms of efficiency

with respect to the running results within Cluster-1 andstdu-I1 in Table 4.1.

First of all, we prefer to investigate the parallel overhesgpecially the MPI communication overhead,
which could be major parallel overhead for the parallel MDBlin Section 4.3.1. Parallel MI-MDS consists
of two different computations, the MI part and the STRESSwation part. The MI part is pleasingly
parallel and its computational complexityd& M), whereM = N — n, if the sample siza is considered as
a constant. The Ml part uses only two MPI primitivé®] _GATHER andMPlI _ BROADCAST, at the end of
interpolation to gather all the interpolated mapping ressathd spread out the combined interpolated mapping
results to all the processes for further computation. Tthescommunicated message amount through MPI
primitives is¢' (M), so it is not dependent on the number of processes but theenohtvhole out-of-sample

points.

For the STRESS calculation part, that were applied to th@gsed symmetric pairwise computation
in Section 4.3.2, each process uddd SENDRECV k times to send an assigned block or rolled block,

whose size isvl/p, wherek = [(p— 1) /2] for communicating required data aiPl _ REDUCE twice for
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calculatingy;_j(dij — &;)? andy;; §. Thus, the MPI communicated data sizefi$M/p x p) = (M)

without regard to the number of processes.

The MPI overhead during the Ml part and the STRESS calcgatart at Cluster-1 and Cluster-II in Ta-
ble 4.1 are shown in Figure 4.11 and Figure 4.12, correspghdiNote that the x-axis of both figures is the
sample sizer() but notM = N — n. In the figures, the model is generatedzadvl) starting with the small-
est sample size, here 12.5k. Both Figure 4.11 and Figureshd® that the actual overhead measurement

follows the MPI communication overhead model.
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Figure 4.11: Parallel overhead modeled as due to MPI comeatian in terms of sample data sizg)(using
Cluster-1in Table 4.1 and message passing overhead model.

Figure 4.13 and Figure 4.14 illustrate the efficiency of titeripolation part and the STRESS calculation
part of the parallel MI-MDS running results with differergtraple size - 12.5k, 25k, and 50k - with respect

to the number of parallel units using Cluster-1 and Clusitezerrespondingly. Equations for the efficiency is
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Figure 4.12: Parallel overhead modeled as due to MPI comeatian in terms of sample data size)(using
Cluster-1lin Table 4.1 and message passing overhead model.

follows:

_PT(P-T()
1
Tt (4.19)

where p is the number of parallel units; (p) is the running time withp parallel units, andr (1) is the

sequential running time. In practice, Eq. (4.18) can beaegd with following:

fm —O’T(pTl)(F;)T(pZ) (4.20)
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wherea = p;/p2 and p; is the smallest number of used cores for the experimerd)gba> 1. We use

Eq. (4.20) for the overhead calculation.
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Figure 4.13: Efficiency of the interpolation part (INTP) atheé STRESS evaluation part (STR) runtimes in
the parallel MI-MDS application with respect to differeainsple data sizes using Cluster-l in Table 4.1. The
total data size is 100K.

In Figure 4.13, 16 to 128 cores are used to measure paral@rpeance with 8 processes, and 32 to
384 cores are used to evaluate the parallel performance @firtiposed parallel MI-MDS with 16 processes
in Figure 4.14. Processes communicate via MPI primitivebeath process is also parallelized at the thread
level. Both Figure 4.13 and Figure 4.14 show very good efificjavith an appropriate degree of parallelism.
Since both the Ml part and the STRESS calcualtion part ar@spigly parallel within a process, the major
overhead portion is the MPI message communicating overhebds load balance is not achieved in the
thread-level parallelization within each process. In thevjpus paragraphs, the MPI communicating over-

head is investigated and the MPI communicating overheagtstgM) relation. Thus, the MPI overhead is
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Figure 4.14: Efficiency of the interpolation part (INTP) atheé STRESS evaluation part (STR) runtimes in
the parallel MI-MDS application with respect to differeatsple data sizes using Cluster-Il in Table 4.1. The
total data size is 100K.

constant if we examine it with the same number of processed¢rensame out-of-sample data sizes. Since
the parallel computation time decreases as more cores @tlelug the overhead time remains constant, this
dynamic lowers the efficiency as the number of cores is isg@aas we expected. Note that the number
of processes which lowers the efficiency dramatically ifedént between the Cluster-l1 and Cluster-1l. The
reason is that the MPI overhead time of Cluster-1 is biggantthat of Cluster-1l due to different network
environments, i.e. Giga bit ethernet and 20Gbps Infinibark difference is easily found by comparing

Figure 4.11 and Figure 4.12.
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(a) MDS 12.5k (b) MDS 50k

Figure 4.15: Interpolated MDS results of total 100k PubCldataset trained by (a) 12.5k and (b) 50k
sampled data. Sampled data are colored in red and integgqgdaints are in blue.

4.4.4 Large-Scale Data Visualization via MI-MDS

Figure 4.15 shows the proposed MI-MDS results of a 100k PebCitataset with respect to the different
sample sizes, such as (a) 12.5k and (b) 50k. Sampled datatengdlated points are colored in red and blue,
correspondingly. With our parallel interpolation algbrits for MDS, we have also processed a large volume
of PubChem data by using our Cluster-1l, and the results lawers in Figure 4.16. We performed parallel
MI-MDS to process datasets of hundreds of thousand and upritlidn by using the 100k PubChem data
set as a training set. In Figure 4.16, we show the MI-MDS tesfi2 million dataset based on 100k training
set, compared to the mapping of 100k training set data. Theepialated points are colored in blue, while the
training points are in red. As one can see, our interpolaigorithms have produced a map closed to the

training dataset.
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/
/

(a) MDS 100Kk (trained set) (b) MDS 2M + 100k

Figure 4.16: Interpolated MDS results. Based on 100k sasnf@y additional 2M PubChem dataset is
interpolated (b). Sampled data are colored in red and iatet@d points are in blue.

4.5 Summary

In this chapter, we have proposed interpolation algoritfongxtending the MDS dimension reduction
approaches to very large datasets, i.e up to the million® prbposed interpolation approach consists of
two-phases: (1) the full MDS running with sampled datg @nd (2) the interpolation of out-of-sample
data N — n) based on mapped position of sampled data. The proposegdafdagon algorithm reduces the
computational complexity of the MDS algorithm froff(N?) to &'(n x (N — n)). The iterative majorization
method is used as an optimization method for finding mappasitions of the interpolated point. We have
also proposed in this chapter the usage of parallelizedpalation algorithms for MDS which can utilize
multicore/multiprocess technologies. In particular, vidiaed a simple but highly efficient mechanism for

computing the symmetric all-pairwise distances to prouieroved performance.

Before starting a comparative experimental analysis betwél-MDS and the full MDS algorithm, we

explored the optimal number &NN. 2-NN is the best case for the Pubchem data which we us#dsn
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chapter. We have shown that our interpolation approachsgigsults of good quality with high parallel
performance. In a quality comparison, the experimentallteshows that the interpolation approach output
is comparable to the normal MDS output, which takes much men@ing time than interpolation. The
proposed interpolation algorithm is easy to parallelinesieach interpolated points is independent of other
out-of-sample points, so many points can be interpolatedwoently without communication. The parallel

performance is analyzed in Section 4.4.3, and it shows vigty éfficiency as we expected.

Consequently, the interpolation approach enables us tiigewa 4 millions Pubchem data points in this
chapter with an acceptable normalized STRESS value, cadparthe normalized STRESS value of 100k
sampled data in less than ONE hour, and the size can be egtéundleer with a moderate running time.
Note that if we use parallel MDS only, we cannot even run wiity@00,000 points on the Cluster-Il system
in Table 4.1 due to the out of memory exception, and if it wesegible to run parallel MDS with 4 million
data points on the Cluster-Il system, it would take aroun@@®times longer than the interpolation approach
as mentioned in Section 4.4.2. Future research includdgapn of these ideas to different areas including

metagenomics and other DNA sequence visualization.



3

Deterministic Annealing SMACOF

5.1 Overview

Multidimensional scaling (MDS) [13,45] is a well-known démsion reduction algorithm which is a non-
linear optimization problem constructing a lower dimemsibconfiguration of high dimensional data with
respect to the given pairwise proximity information basadia objective function, namely STRESS [44] or

SSTRESS [67]. Below equations are the definition of STRESH éhd SSTRESS (5.2):

o(X) = 3 wij(dj(X)-8))* (5.1)
i<J<N

o?(X) = 2 Wil (0) — (&) (5.2)
I<]<

where 1<i < j <N, wij is a weight valuew;; > 0), dij (X) is a Euclidean distance between mapping results of
X andxj, andg;j is the given original pairwise dissimilarity value betwegandx;. SSTRESS is adopted by
ALSCAL algorithm (Alternating Least Squares Scaling) [6&hd usesquaredEuclidean distances results
in simple computations. A more natural choice could be STRE®ich is used by SMACOF [20] and

Sammon’s mapping [64].

80
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Due to the non-linear optimization properties of the MDSlgemn, many heuristic optimization methods
have been applied to solve the MDS problem. An optimizatiethod called iterative majorization is used to
solve the MDS problem by a well-known MDS algorithm called S&#0F [20,21]. The iterative majorization
method is a type of Expectation-Maximization (EM) approg?i, and it is well understood that EM method

suffers from local minima problem although EM method is vijdgpplied to many optimization problems.

From the motivation of local-optima avoidance, | have pisgzban MDS algoirthm which applies a robust
optimization method called Deterministic Annealing (DAR] 63] to the MDS problem, in this chapter. A
key feature of the DA algorithm is to endeavour to find glohatimum in adeterministic way63] without
trapping local optima, instead of using a stochastic randpproach, which results in a long running time, as
in Simulated Annealing (SA) [40]. DA usesean field approximatignvhich is calculated in a deterministic

way, by using the statistical physics integrals.

In Section 5.2, | briefly discuss various optimization methavhich have been applied to the MDS
problem to avoid local optima. Then, the proposed DA MDS atgm based on iterative majorization
method is explained in Section 5.3. Section 5.4 and Sectibrillastrate performance of the proposed
DA MDS algorithm compared to other MDS algorithms with vat@adata sets followed by the conclusion

in Section 5.6.

5.2 Related Work

5.2.1 Avoiding Local Optima in MDS

As | mentioned above, many heuristic optimization methedsaplied to solve the MDS problem, which
is a non-linear optimization problem. In this section, | @blike to summarize those various optimization

approaches which have been applied to MDS problem.
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SMACOF is a quite useful algorithm, since it monotonicalgcoeases the STRESS criterion [20] by
each iteration. However, the well-known problem of the ggatidescent approach is to be trapped in a
local minima due to its hill-climbing approach, and it is &ipp to SMACOF as well. In order to avoid the
local optima problem, stochastic optimization approachesh as simulated annealing (SA) [40] and genetic
algorithms (GA) [29, 37], have been used for solving the MD8bem [14, 49, 50, 72, 76], but stochastic
algorithms are well-known to suffer from a long running tichee to their Monte Carlo approach. In addition
to stochastic algorithms, the distance smoothing [35] aedunneling method [34] for MDS problem were

proposed to avoid local optima in a deterministic way.

Recently, Ingram et al. introduced a multilevel algorithafied Glimmer [38] which is based on a force-
based MDS algorithm with restriction, relaxation, and iptdation operators. Glimmer shows less sensitivity
to initial configurations than the GPU-SF subsystem, whichsed in Glimmer [38], due to the multilevel
nature. In Glimmer’s paper [38], however, the SMACOF altfon shows better mapping quality than Glim-
mer. Also, the main purpose of Glimmer is to achieve a speegedinning time with less cost of quality
degradation rather than it being explicitly focused on ioayimg mapping quality. By contrast, this chapter
focuses on an optimization method which improves mappiraityun a deterministic approach. Therefore,
we will compare the proposed algorithm to other optimizatidgorithms, i.e. the SMACOF [20] and the

Distance Smoothing method [35], in Section 5.4 and Sectibn 5

In addition to many optimization methods mentioned abowgeministic annealing (DA) [62, 63] is
also a well-known optimization method. DA method is usedrf@ny optimization problems, including
clustering [62, 63], pairwise clustering [36], and MDS [4th name a few. Since it is intractable to calculate
Z in Eq. (2.21) exactly, an approximation technique calleeln field approximatiois used to solve the
MDS problem by DA in [41], in that Gibbs distributioR®(X) is approximated by a factorized distribution

with density
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N
PO(X|©) = _UQi (Xi| ). (5.3)

where@; is a vector of mean field parametenoefandg;(x;|©;) is a factor serves as a marginal distribution
model of the coordinates of. To optimize parameter®;, Klock and Buhmann [41] minimized Kullback-
Leibler (KL) divergence between the approximated der@yX) and the Gibbs density®(X) through EM

algorithm [22].

5.3 Deterministic Annealing SMACOF

Although DA-MDS [41] shows the general approach of applyd#yto the MDS problem through mean
field approximation, it is not clearly explained how it cadveoMDS in the paper [41]. While the authors
mentioned that the Gibbs density is approximated by a ferddistribution with density (Eq. (5.3)) in [41],
they did not clearly pose which model densities are praltfiegplicable to proceeding the mean field ap-
proximation in order to solve the MDS problem in their pap&t][ Therefore, | developed an alternative
way to solve the MDS problem by using a DA optimization methanad will introduce the alternative way

to utilize the DA method to the MDS problem in this section.

Klock and Buhmann applied deterministic annealing to theSviipboblem by defining an approximation
of Gibbs distribution P°(X)) via factorized distribution as shown in Eq. (5.3). Themytideveloped the so-
lution for the MDS problem for the given data by minimizingetullback-Leibler (KL) divergence between

the factorial distribution®°(X)) and the Gibbs distributiorPC(X)).

On the other hand, the alternative DA method for the MDS moblvas initiated by defining a tractable
expected energy function of MDS problem, which is based oimale Gaussian distribution, as shown in
Eq. (5.5) below. Then, the Gibbs distribution is approxiasaby exchanging the newly defined expected

energy function £73) into 57 (X) of Eq. (2.20) as shown in Eq. (5.6). Finally, the proposed®aigm finds
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an MDS solution for a given data set by minimizig#ps(P°).

Based on the experimental results with various data setsyrsin Section 5.4 and Section 5.5, the pro-
posed DA MDS algorithm can be considered as the best algosithich finds better quality mapping in a
deterministic way than other deterministic MDS solutiorithwespect to the quality and the consistency of
the outputs. Also, it even shows some efficiency with larggeeimental data sets compared to the EM-like

algorithm.

From now on, | would like to introduce the details of the prepd DA approach for the MDS problem
in this chapter. If we use the STRESS (5.1) objective fumcis an expected energy (cost) function in

Eq. (2.22), then we can defiv&ps and.7# as following:

Sos =Y wij(dij(X) - 8j) (5.4)
i<J<N
N - 11.)2
Ho — Z% (5.5)

where % corresponds to an energy function based on a simple mudtteaGaussian distribution arna
represents the average of the multivariate Gaussiantdistyn ofi-th point = 1,...,N) in target dimension

(L-dimension). Also, we defing® and.%, as following:

PO(X) —eXP<—%(%—90)>, (5.6)

Fo=-T Iog/exp<—%%> dX = —Tlog(2nT)-/2 (5.7)

We need to minimize&Zyps(P°) =< ups — 73 > +Fo(PP) with respect tq;. Since— < % > +.%o(PP)

is independent tqu;, only < s ps > part is necessary to be minimized with regarduto If we apply
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< XX >= U 4; + TLto < Hups >, then< JGups > can be deployed as following:

N
< Hps>= Y Wi(<[x—xl > —-8j) (5.8)
i<J<N
N 2
= 3wyl w2+ 2TL- &) (5.9)
i<J<N
s 2
~ Y Wil —pll+v2TL=4)) (5.10)
i<J<N

where||al| is Normp of a vectora. Eq. (5.9) can be approximated to Eq. (5.10), since the bifgthe smaller

|t — 1] and the smalleT, the bigger|y; — ;.

In [41], Klock and Buhmann tried to find an approximationR§f(X) with a mean field factorization
method by minimizing the Kullback-Leibler (KL) divergenasing an EM approach. The found parameters
obtained by minimizing the KL-divergence betweRf(X) andP?(X) using the EM approach are essentially

the expected mapping in the target dimension under thermupreblem space with computational tempera-

ture ().

In contrast, we try to find expected mapping, which minimiZ&gos(P°), directly with a new objective
function (G); this which is then applied using a DA approach to the MDSfem space with a computational
temperatureT) by well-known EM-like MDS solution, called SMACOF [20]. ‘Ehefore, asT varies, the
problem space also varies, and the SMACOF algorithm is wstdd expected mapping under each problem
space at a correspondiiig In order to apply SMACOF algorithm to DA method, we subgétthe original
STRESS equation (5.1) with Eq. (5.10). Note tpaindi; are the expected mappings we are looking for,
so we can considef; — ;|| asdij (Xt), whereXy represents the embedding resultd tdimension aff
andd;; means the Euclidean distance between mappings of paimd j. Thus, the new STRESS] is as

follows:
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N
0= Wij(dij(XT)-l-vZTL—dj)z (5.11)
i<]<N
N ~
= Y wy(di(Xr) - &) (5.12)
i<J<N
with (ﬁj defined as following:
. G —V2TL if §>+V2TL
&j = (5.13)

0 otherwise

In addition, T is a lagrange multiplier so it can be thought oflas= T2, thenv/2TL = T /2L and we will

useT instead off for the simple notation. Thus, Eq. (5.13) can be written devis:

. & —TV2L if & >TV2L
3j = (5.14)

0 otherwise

Now, we can apply SMACOF to find expected mapping with resfethe new STRESS (5.12) which
is based on computational temperatlireThe MDS problem space could be smoother with highehan
with lower T, sinceT represents the portion of entropy to the free enefgys in Eq. (2.22). Generally,
the DA approach starts with a highand gets cooled dowh as time goes on, like the physical annealing
process. However, if the starting computational tempeeg(i) is very high, a condition which results in all
5,- becoming ZERO, then all points will be mapped at origh).(Once all mappings are at the origin, then
the Guttman transform is unable to construct other mappéngspt the mapping of all at the origin, since
the Guttman transform does multiplication iterativelylwjirevious mapping to calculate current mapping.
Thus, we need to calculalg which makes at least or&q bigger than ZERO, so that at least one of the points

is not located a®©.

With computedTy, the Ay = [&,—] can be calculated, and we are able to run SMACOF algorithr wit
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Algorithm 5.1 DA-SMACOF algorithm

Input: Aanda *0<a<1*

: Computelp

: Computep = [&] based on Eq. (5.14).

: Generate random initial mapping.

k<0;

: while Ty > Tmin do R

Xki+1 = output of SMACOF withA, andXy. X is used for initial mapping of the current SMACOF
running.

Cool down computational Temperatulig ; = o Ty
: Updateﬁkﬂ w.r.t. Tyy 1.

90 k<k+1,;

10: end while

o uRr wWN P

©

/* Finally, we will run SMACOF with original dissimilarity mtrix (A) by usingXy as the initial mapping.
*

11: X = output of SMACOF based ot andXy.

12: return: X;

respect to Eq. (5.12). After a new mapping is generated Wjthy the SMACOF algorithm, sa¥(g, then
we will cool down the temperature in an exponential way, lTlke; = a Ty, and keep completing the above
steps untilT becomes too small. Finally, we sEt= 0 and then run SMACOF by using the latest mapping
as an initial mapping with respect to original STRESS (5 will assume a uniform weightw;j = 1
where 0< i < j < N. The proposed deterministic annealing SMACOF algorithalled DA-SMACOF, is

illustrated in Algorithm 5.1.

5.3.1 Temperature Cooling Mechanism

Although we introduced the DA-SMACOF algorithm with erponentiatooling mechanism for cooling
computational temperaturg, 1 = aTy) where 0< a < 1, we can also extend DA-SMACOF withliaear
cooling mechanism for decreasing the computational teatper, which is illustrated as followsk 1 =
Tk — B wheref3 is a small constant value. In contrast to those fixed coolieglmnisms (exponential and
linear mechanism) which are not cooling adaptively basedhencurrent status of the solution, Choi et

al. [17] recently proposed an adaptive cooling methodedl&d the DA approach for Generative Topographic
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Mapping (GTM) [11, 12].

Since DA methods are highly dependent on the movement ofdimpatational temperature, it is worth-
while to investigate different cooling mechanism, suchxgmeential and linear cooling scheme. For imple-
mentation of both cooling mechanism, we calculBgx based on the given original dissimilarity matriX)(
and seflmin asTmax Multiplied by a small number, i.e. 0.01 or 0.001. For the edqatial cooling mechanism,
we can simply multiplya on T until T < Tyin. On the other hand, we need to calculBtefor the linear
cooling scheme, based on user defistp numbe(s) as well asThaxandTmin as in Eq. (5.15):

B Tmasx— Tmin.

= (5.15)

Figure 5.1 depicts computational temperature movememnpbes of exponential cooling mechanism and
linear cooling mechanism with real data used in Section35.f1 Figure 5.1, we used parameters for the

cooling method as followsEin = 0.01 x Tnaxands= 100 for a linear cooling scheme.

5.4 Experimental Analysis

For the performance analysis of the proposed determiristiealing MDS algorithm, callddA-SMACOF,
we would like to examine DA-SMACOF's capability of avoiditaral optima in terms of its objective func-
tion value (normalized STRESS in (5.16)) and the sengjtiviithe initial configuration by comparing it with
the original EM-like SMACOF algorithm and MDS by Distance &othing [35] MDS-DistSmooth here-
after for short) which tries to find global optimum mappinge Wave tested the above algorithms with many
different data sets, including well-known benchmarkintpdsets from the UCI machine learning repository
as well as some real application data, such as the chemiecgdaand data and biological sequence data, in

order to evaluate the proposed DA-SMACOF.

1UCI Machine Learning Repositoriat t p: / / ar chi ve. i ¢s. uci . edu/ m /
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Figure 5.1: The computational temperature movement wisipeet to two different cooling temperature
mechanismsdxponentialandlinear).

Since the MDS-DistSmooth requires a number of smoothingssi¢éhich affects the degree of smooth-
ness, and the cooling parameten) (of computational temperaturd ) affects the annealing procedure in
DA-SMACOF, we examine two different numbers of smoothirepstumbersg= 100 ands = 200) for the
MDS-DistSmooth and three different cooling parameters=(0.9, 0.95, and 099) for the DA-SMACOF
algorithm, as well. (Hereafter, MDS-DistSmooth with srmtdng stepss = 100 ands = 200 are described
by DS-s100andDS-s200respectively, and the DA-SMACOF with temperature cooliaggmetersr = 0.9,
0.95, and 099 are represented BA-exp90, DA-exp95 andDA-exp99, correspondingly.) We also examine

two different thresholds for the stopping condition, ke= 10~° ande = 105, for tested algorithms.

To compare the mapping quality of the proposed DA-SMACOM@MACOF and MDS-DistSmooth,
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Figure 5.2: The normalized STRESS comparison ofrilsedata mapping results in 2D space. The bar graph
illustrates the average of 50 runs with random initialiaatiand the corresponding error bar represents the
minimum and maximum of the normalized STRESS values of SMRQ@DS-DistSmooth with different
smoothing stepss(= 100 ands = 200) (DS-s100and-s200hereafter for short), and DA-SMACOF with
different cooling parameterst(= 0.9, 0.95, and 099) (DA-exp90,-exp95 and-exp99hereafter for short).
The x-axis is the threshold value for the stopping conditibiterations (10° and 10°6).

we measure the normalized STRESS which substitutes (5.1) for 1/ 3| 6& like in the following:

o(X) = i<;<NZi%jé%<dij(x> —&j)? (5.16)

in that the normalized STRESS value denotes the relativitopoof the squared distance error rates of the

given data set without regard to the scaledpf
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5.4.1 Iris Data

The iris datd set is a very well-known benchmarking data set for the datangiand pattern recognition
communities. Each data item consists of four different vadlies (a.k.a4D real-valued vectgrand each
value represents an attribute of each instance, such athlengvidth of sepal (or petal). There are three
different classesliis Setosa, Iris Versicolour, and Iris Virginidan the iris data set and each class contains
50 instances, so there are total 150 instances in the idssaét It is known that one class is linearly separable

from the other two, but the remaining two are not linearlyeseple from each other.

In Figure 5.2, The mapping quality of the constructed coméigjians of the iris data by SMACOF, MDS-
DistSmooth, and DA-SMACOF is compared by the average, timénmin, and the maximum of the normal-
ized STRESS values among 50 random-initial runnings. Thpgeed DA-SMACOF with all tested cooling
parameters, including quite fast cooling parametet<0.9), outperforms SMACOF and MDS-DistSmooth
in Figure 5.2 except DS-s200 case with= 106, Although DS-s200 witle = 10 % is comparable to the
DA-SMACOF results, DS-s200 takes almost 3 times longer Brexp95 withe = 10~° which shows more

consistent results than DS-s200.

Numerically, DA-exp95 improves the mapping quality of B% and 458% of the SMACOF results in
terms of the average of the STRESS values with10~° ande = 10~°, correspondingly. DA-exp95 shows
better mapping quality — about 836 and 13?% — than even DS-s100, which is the algorithm to find the

global optimum, withe = 10~° ands = 105,

In terms of sensitivity to the initial configuration, the S®F shows very divergent STRESS value
distributions for bothe = 107° ande = 107 cases in Figure 5.2. This illustrates that SMACOF is quite
sensitive to the initial configuration (a.k.a. easy to bpped inlocal optimg. In addition, MDS-DistSmooth

also shows a relatively high sensitivity to the initial cgnfiation with the iris data set although the degree

2Iris Data setht t p: / / archi ve. i cs. uci . edu/ mi / dat asets/Iris
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Figure 5.3: The 2D median output mappings of iris data withA&MDF (a), DS-s100 (b), and DA-exp95 (c),
whose threshold value for the stopping condition is20Final normalized STRESS values of (a), (b), and
(c) are 000264628, 100208246, and.00114387, correspondingly.
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of divergence is less than SMACOF algorithm. In contrasttt@palgorithms, the proposed DA-SMACOF
shows high consistency without regard to initial settingalihwe could interprete as it being likely to avoid
local optima. Since it is well-known that a slow cooling teengture is necessary to avoid local optima, we
expected that the DA-exp90 might be trapped in local optissh@wn in Figure 5.2. Although the DA-exp90
cases show some variations, the DA-exp90 cases still shooh fetter results than the SMACOF and the
MDS-DistSmooth except for the DS-s200 witlz &= 1076 case. In fact, the standard deviation of DA-exp95
with the e = 10~° result is 108 x 106 and DA-exp99 withs = 10> and DA-exp95/exp99 witls = 106
shows a ZERO standard deviation in terms of the STRESS valfug8 random-initial runs. We can also
note that the difference of the DA-SMACOF results between 10-° ande = 10~ is negligible with the
iris data, whereas the average of SMACOF and MDS-DistSm@&is100) withe = 10~° is about 35%%

and 816% worse than correspondigg= 10~° results.

Figure 5.3 illustrates the difference of actual mapping SM¥, MDS-DistSmooth, and DA-SMACOF-.
All of the mappings are the median results of a stopping dardivith 10-° threshold value. The mapping
in Figure 5.3ais the 2D mapping result of the median valueASMF, and Figure 5.3b represents the median
result of the MDS-DistSmooth. Three mappings in Figure 5e3adlittle bit different from one another, and
clearer structure differentiation between class 1 andsc®as shown in Figure 5.3c which is the median

STRESS valued result of DA-SMACOF.

5.4.2 Chemical Compound Data

The second data set consists of chemical compound data 8atim3tances represented by 155 dimen-
sional real-valued vectors. For the given original diskinitly (A), we measure the Euclidean distance of each

instance of pairs based on feature vectors as well as thesaitésset.

Figure 5.4 depicts the average mapping quality of 50 runs3@f ¢hemical compounds mapping re-

sults with regard to different experimental setups as inath@ve description. For the chemical compound
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Figure 5.4: The normalized STRESS comparison ofdhemical compounddata mapping results in 2D

space. The bar graph illustrates the average of 50 runs afittiom initialization, and the corresponding
error bar represents the minimum and maximum of the noredI&TRESS values of SMACOF, DS-s100
and -s200, and DA-exp90, DA-exp95, and DA-exp99. The x-&xihe threshold value for the stopping
condition of iterations (10° and 10°5).

data set, all the experimental results of the proposed DAASMIF (DA-exp90, DA-exp95, and DA-exp99)
show superior performance to the SMACOF and the MDS-Dist8mwith bothe = 10°° ande = 106
stopping conditions. In detail, the average STRESS of th&SW®IF is 250 and 188 times larger than cor-
responding DA-SMACOF results with = 10° ande = 10°° threshold, and the average STRESS of the
MDS-DistSmooth shows.86 and 157 times larger than the DA-SMACOF algorithm with= 10-° and

£ =108, Furthermore, the minimum STRESS values of SMACOF and MOSSnooth experiments are
larger than the average of all DA-SMACOF results. One irgtiing phenomena in Figure 5.4 is that the
MDS-DistSmooth shows worse performance on average svith10~° stopping condition than SMACOF

and DS-s100 shows better than DS-s200.
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Similar to Figure 5.2, all the SMACOF and the MDS-DistSmoeiperimental results show a higher
divergence in terms of the STRESS values in Figure 5.4 thapithposed DA-SMACOF. On the other hand,
DA-SMACOF shows much less divergence with respect to theESRvalues, especially in the DA-exp99

case.

For the comparison between different cooling parametersyeaexpected, the DA-exp90 shows some
divergence and a little bit higher average than the DA-ex@85DA-exp99, but much less of an average than
the SMACOF. Interestingly, DA-exp95 shows relatively karglivergence than DA-exp90 due to outliers.
However, those outliers of DA-exp95 happened rarely amd@hgibs and most of DA-exp95 running results

are similar to the minimum value of the corresponding test.

5.4.3 Cancer Data

The cancer dafaset is a well-known data set found in the UCI Machine LearrRepository. Each
data item consists of 11 columns and the first and the lasnuolepresent th&-numberand theclass
correspondingly. The remaining 9 columns are attributeesidescribed in integers ranging from 1 to 10.
There are two different classédsefhign and malignagtin the cancer data set. Originally, it contained 699
data item; however, we used only 683 data points which haggyaittribute value included, since 16 items

have some missing information.

Figure 5.5 depicts the average mapping quality of 50 run$8& cancer data mapping results with re-
gard to different experimental setups as in the above. Focdéimcer data set, all experimental results of the
proposed DA-SMACOF (DA-exp90, DA-exp95, and DA-exp99)whsuperior performance to SMACOF
and MDS-DistSmooth witls = 10~°, and better than SMACOF and comparable to MDS-DistSmootth wi

£ = 10°% stopping conditions. Interestingly, the DA-exp99 casewshworse results than the DA-exp95

SBreast Cancer Data set, http://archive.ics.uci.edu/ ni/datasets/Breast+Cancer +W sconsi n+
(Original)
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Figure 5.5: The normalized STRESS comparison offiteast cancerdata mapping results in 2D space.
The bar graph illustrates the average of 50 runs with randtialization, and the corresponding error bar
represents the minimum and maximum of the normalized STRE&®s of SMACOF, DS-s100 and -s200,
and DA-exp90,DA-exp95, and DA-exp99. The x-axis is the shoéd value for the stopping condition of
iterations (10° and 10°%).

and the DA-exp90 results, although the DA-exp99 case findrtbst minimum mapping in terms of nor-
malized STRESS value. In detail, the average STRESS of SMABQ86% and 113% worse than the
corresponding DA-SMACOF results with= 10> and& = 10~ threshold, and the average STRESS of
the MDS-DistSmooth shows a performance which.828 worse than the DA-SMACOF with = 10~° and

comparable to the DA-SMACOF with= 10-5.

Although the DA-SMACOF experimental results show some mjeace in terms of the STRESS values
in Figure 5.5, in contrast to Figure 5.2 and Figure 5.4, the ®MACOF experimental results show less

divergence of the STRESS values than the SMACOF and the MB&iDooth in Figure 5.5.
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Figure 5.6: The normalized STRESS comparison ofyibastdata mapping results in 2D space. The bar
graph illustrates the average of 50 runs with random iiedion, and the corresponding error bar represents
the minimum and maximum of the normalized STRESS values cAS@IF, DS-s100 and -s200, and DA-
exp90,DA-exp95, and DA-exp99. The x-axis is the threshaldie for the stopping condition of iterations
(10 °and 10°°).

5.4.4 YeastData

The yeast dafeset is composed of 1484 entities, and each entity is repieséy 8 real-value attributes

in addition to the sequence name and class labels.

The normalized STRESS comparison of the yeast mappingtsesuldifferent algorithms is illustrated
in Figure 5.6 in terms of the average mapping quality of 5Csrfar 1484 points mapping. DA-SMACOF
shows better performance than the other two algorithmdsretperiments similar to the above experiments.

The SMACOF keeps showing a much higher divergence ratherttteaDA-SMACOF with both stopping

“Yeast Data sehtt p: / / archi ve. i ¢s. uci . edu/ ni / dat aset s/ Yeast
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Figure 5.7: The average running time comparison between SO MDS-DistSmoothg= 100), and DA-
SMACOF (DA-exp95) for 2D mappings with tested data sets. &ter bar represents the minimum and
maximum running time EM-5/EM-6 represents SMACOF with 16/10-6 threshold, andS-5/DS-6and
DA-5/DA-6 represents the runtime results of MDS-DistSmooth and DAASKAF, correspondingly, in the
same way.

condition cases. Also, the MDS-DistSmooth shows diver§aRESS distribution with the = 10~° stop-
ping condition, but not with the = 10~ stopping condition. The DA-SMACOF shows quite stable ressul
except for the DA-exp90 case withea= 10> stopping condition, as well as a better solution. In terms of
the best mapping (a.k.a. minimum normalized STRESS vadlld)A-SMACOF experiments obtain a better
solution than the SMACOF and MDS-DistSmooth, and even le=silt of the SMACOF is worse than the

average of the proposed DA approach.

5.4.5 Running Time Comparison

From Section 5.4.1 to Section 5.4.4, we have been analybmgniapping quality by comparing DA-

SMACOF with SMACOF and MDS-DistSmooth. DA-SMACOF outperfts SMACOF in all test cases, and
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outperforms or is comparable to MDS-DistSmooth. In thigise¢ we would like to compare the running
time among those algorithms. Figure 5.7 describes the geetmning time of each test case for SMACOF,
MDS-DistSmooth, and DA-exp95 with 50 runs for the testecaddh order to make a distinct landscape

in Figure 5.7, we plot the quadrupled runtime results ofitiseandcancerdata.

In Figure 5.7, all runnings are performed in sequential catimg with AMD Opteron 8356 2.3GHz CPU
and 16GB memory. As shown in Figure 5.7, DA-SMACOF is a fewetinslower than SMACOF but faster
than MDS-DistSmooth in all test cases. In detail, DA-SMAC@kes 2.8 to 4.2 times longer than SMACOF
but 1.3 to 4.6 times shorter than the MDS-DistSmooth withitiseandcompounddata set in Figure 5.7a.
Also, DA-SMACOF takes 1.3 to 2.8 times longer than the SMACHE 3.7 to 9.1 times shorter than the
MDS-DistSmooth with theancerandyeastdata set in Figure 5.7b. Interestingly, less deviation ashby
DA-SMACOF than other compared algorithms in all cases, wgdpect to running time as well as STRESS

values.

5.5 Experiment Analysis of Large Data Sets

So far, the experimental data sets are of a relatively srird| §e. 150, 333, 683 and 1484 instances,
in Section 5.4. In contrast to smaller data sizes as in theeabssts, | present an experimental analysis
for larger data sets containing anywhere from 30,000 pdsgsguences) to 100,000 points. Since MDS
algorithms requireg7(N?) of main memory, we have to use much larger amounts of memany tain
memory in a single node for running analyseswith 30,000 orempwmints. Thus, we use the distributed
memory version of the SMACOF (and DA-SMACOF) algorithms][ficrun these large data sets. Also, we
experiment dimension reduction in three dimensional sf@gas well as 2D space, since the configuration

of 2D mapping might involve high constraints for a largeradset.

Since the running time of the SMACOF (and DA-SMACOF) for kargata sets is much longer than that
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for smaller data sets, we would compare the SMACOF restiit thivse of the DA-SMACOF witlw = 0.95

for the exponential cooling schemPA-exp95) based on previous experimental comparisons among DA-
exp90, DA-exp95, DA-exp99 in Section 5.4. Instead of cormgpthree different exponential cooling pa-
rameters ¢), we would like to explore other DA parameters, such ¢isear cooling scheméor computa-
tional temperatureT() cooling scheme and laybrid stop conditiorwhich uses two different stop condition
parametersg, £2) for the annealing period (whefle> 0) and after the annealing period (whére= 0). For
instance, we usg = 10> whenT > 0 and sek, = 10 % whenT = 0 for both exponential and linear cooling

schemes in this section.

The rationale of using the hybrid stop condition is highliated to our previous experimental results in
which the DA-SMACOF results witle = 102 were highly similar to those witls = 10 6. Based on the
similarity of the DA-SMACOF results with different stop cdition parameters, it is a logical deduction that
the DA-SMACOF is able to avoid local optima if the iteratido condition parametee) is small enough to
reach an approximated average mappings at each computatiperatureX) but is not necessarily too small
to avoid local optima. The small difference in the STRESSiealbetween DA-SMACOF with = 10~° and
with £ = 10-8 might result from the nature of different stop conditionsamfi = 0. In terms of running time,
however, the iteration stop condition parame®rraakes a significant difference between wies 10°
ande = 1075, Thus, if we could make up the small difference of the STRE&8es betweea = 10> and
£ = 10% by using the hybrid stop condition approach, it would prevédconsiderable gain with respect to

running time.

5.5.1 Metagenomics Data

One of the large data sets we used for evaluation of the DA-SMR algorithm is a biological sequence
data with respect to the metagenomics study. Although iard ko present a biological sequence in a feature

vector, people can calculate a dissimilarity value betweerdifferent sequences by using pairwise sequence
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Figure 5.8: The normalized STRESS comparison ofrtfetagenomics sequencdata mapping results in
2D and 3D space. The bar graph illustrates the average ofrlEwith random initialization, and the corre-
sponding error bar represents the minimum and maximum ofidhmalized STRESS values of SMACOF
and DA-SMACOF witha = 0.95. The x-axis is the threshold value for the iteration stegmondition of
the SMACOF and DA-SMACOF algorithms (1Band 10°6).

alignment algorithms, like the Smith Waterman - Got&W-Q algorithm [30, 65] which we used for this

metagenomics data set.

Figure 5.8 is the comparison between the average of 10 rairdtahruns of DA-SMACOF (DA-exp95)
and SMACOF with the metagenomics data set, which contai@®@@oints. Similar to previous results, the
SMACOF shows a tendency to be trapped in local optima by tiegisome variation and larger STRESS
values, and even the minimum STRESS values are bigger tlyaresuits of DA-exp95 in 2D mapping case.
For 2D mapping, the DA-exp95 results actually demonstrdi2 6% and 104% improvement compared to
the SMACOF on average, with= 102 ande = 106, correspondingly. The DA-exp95 results in 3D space
are 63% and 50% better than the SMACOF in average, with= 10° ande = 105, correspondingly, as
well. Note that the STRESS values of the mappings in 3D spacmach less than those of the mappings in

2D space, regardless of algorithms.
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Figure 5.9: The normalized STRESS comparison of Ah&) sequencedata mapping results in 2D and
3D space. The bar graph illustrates the average of 10 rummsrasitdom initialization, and the correspond-
ing error bar represents the minimum and maximum of the nliwethSTRESS values of SMACOF and
DA-SMACOF with a = 0.95. The x-axis is the threshold value for the iteration stogmondition of the
SMACOF and DA-SMACOF algorithms (1@ and 10°6).

As shown in Figure 5.8, all of the DA-exp95 results are vemiksir to each other, especially when the
stopping condition i€ = 10°6. Although DA-exp95 withe = 102 in 3D shows some variation in Fig-
ure 5.8-(b), in fact, all the mappings except the maximum B3R case show very similar STRESS values
as depicted, in that the minimum STRESS value is close towbrage. Furthermore, all the generated map-
pings by DA-exp95 witte = 10~ in 3D case shows the same STRESS value up to théddale. In contrast
to the DA-SMACOF, the SMACOF shows a larger variation in bstibpping conditions in Figure 5.8, and
all the mappings generated by the SMACOF are worse thanealD&exp95 results except the outlier (the

maximum STRESS case with 1®stop condition).



5. Deterministic Annealing SMACOF 103

5.5.2 ALU Sequence Data

We also used another type of biological sequence data, witinkisted of 50058 samples of Alu re-
peats [9] coming from the Human and Chimpanzee genomeshéopurpose of comparison between the
proposed DA-SMACOF and SMACOF. The required all-pairwiggsidghilarity matrix for MDS problem is

also computed based on pairwise sequence alignment rasuitsSection 5.5.1.

In Figure 5.9, the comparison between the average of 10 ramutal runs of DA-SMACOF (DA-exp95)
and SMACOF with 50058 ALU sequence data in 2D and 3D with twftednt iteration stop condition is
illustrated. Similar to other results, in every experiméne DA-exp95 shows better quality of mappings in
terms of the average normalized STRESS values than do theC&WAesults. As shown in Figure 5.9, the
maximum normalized STRESS values of all DA-exp95 experisare less than the minimum normalized
STRESS value of corresponding SMACOF experiments. In éta DA-exp95 results in the 2D mapping
show 163% and 46% improvement, compared to the SMACOF, on average with10 > ande = 107,
respectively. For 3D mapping, the DA-exp95 results aré8%Zband 16% better than the corresponding
SMACOF results in average with the same stopping conditi@-exp95 also shows a high consistency
of mappings with respect to the normalized STRESS valueb@srsin other examples, and the standard

deviation of the normalized STRESS values of DA-exp95 with 10~ in 3D space is 42 x 10°°.

One interesting feature of the SMACOF result in Figure 5. both the 2D and 3D SMACOF map-
pings with thes = 10~ stop condition show high consistent normalized STRESSesadthough these are
much worse than the corresponding DA-exp95 results. Tha neaison for the high consistency of SMA-
COF withe = 10° is that SMACOF has stopped prematurely due to the relatieeye stop condition for
the data. As illustrated in Figure 5.15-(b), the runtime M#SCOF with ALU sequences data with= 10"
stop condition is unbelievably faster than the other tesi Wie same data. If we compare the average itera-
tion number, it is extremely clear that the SMACOF resultthefALU data with thes = 10~° stop condition

have been stopped pre-maturely. The average iteration ensnolh the SMACOF with ALU sequence data
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Figure 5.10: The normalized STRESS comparison ofld®RNA sequencelata with 50000 sequences for
mapping in 2D and 3D space. The bar graph illustrates theageenof 10 runs with random initialization,
and the corresponding error bar represents the minimum axihmam of the normalized STRESS values
of SMACOF, DA-SMACOF witha = 0.95 (DA-exp95), and DA-SMACOF with linear cooling with 100
steps DA-lin100). The x-axis is the threshold value for the iteration stopgpiondition of the SMACOF and
DA-SMACOF algorithms (105, 10, andhybrid approach).

with £ = 1072 case are 24.6 (either 24 or 25) and 20.2 (either 20 or 21}itvesafor 2D and 3D mapping,
correspondingly. These numbers of the SMACOF with the ALgussce data witls = 10 case, however,

are 954.70 and 974.56 iterations with high variations foraid 3D mapping, respectively.

5.5.3 16sRNA 50k Data

The third and fourth test data sets are 16s RNA biologicaleece data sets with different sizes, such as
50,000 (hereaftdRNA50k) and 100,000 (hereaft®&NA100k). Since they are biological sequence data sets,
it is hard to represent them with feature vectors but it issfe to generate a pairwise dissimilarity matrix.
Instead of theSW-Glocal sequence alignment algorithm [30, 65] which we usedédnperate a pairwise

dissimilarity matrix for the Metagenomics data set, we utedNeedleman-Wunsch (NW) algorithm [53],
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which is a global sequence alignment algorithm, for crgptinpairwise dissimilarity matrix of 16sRNA
sequence data sets (both 50k and 100k) for the MDS input.idrsittion, we also testedliaear cooling
scheme with 100 steps (hereaff@f-lin100) and ahybrid stop conditiorthreshold approach as well as a

DA-exp95 experimental setting. We experimented mappinmironly 2D space but also 3D space.

Figure 5.10 describes the mapping quality comparison ingexf the average normalized STRESS values
based on 10 random runs of each experimental setup with RKA&t set. In Figure 5.10, DA-SMACOF
shows a better quality of mappings in terms of the averageESHRvalues than the SMACOF results in every
experiment, as well. As shown in Figure 5.10-(a), all DA-SGF experiments significantly outperform
the SMACOF results in 2D space. Numerically, the 2D mappésylts of DA-exp95 are 28% and 280%
better than the SMACOF on average with= 10> ande = 10~ stop conditions, correspondingly. For 3D
mapping case, the SMACOF showd % worse than DA-exp95 when= 10°, and 21% worse than DA-
exp95 where = 106, As usual, the DA-SMACOF shows consistent mapping qualiti Vittle variation of

STRESS values for all test cases, especially the mappir@f3 space.

One interesting attribute of the experimental results iguFé 5.10 is that the DA-SMACOF shows a
higher consistency in 3D mappings, but SMACOF also showgyhdriconsistency in 2D mappings (com-
pared to other SMACOF results) with much worse mapping guetimpared to DA-SMACOF. However, it
is not a result from the premature convergence due to thedatgpping condition as mentioned in Sec-
tion 5.5.2, since SMACOF with both stopping conditios=f 10-°,10 %) show similarly much higher
STRESS values, regardless of stopping conditions. Baseheofact that 2D mapping is much more con-
strained than 3D mapping, we may interpret the high consigtan 2D mappings of SMACOF with RNA50k

data as a result of a deep local optima under the 2D MDS mampbitigg RNA50k data problem space.

The additional experimental features in Figure 5.10 araesli cooling scheme and a hybrid stop condi-
tion approach. In Figure 5.10, the linear cooling schemeavstslightly better performance in 2D mapping in

terms of STRESS values than exponential cooling schemes@ngarable to exponential cooling scheme in
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3D mapping results. For the hybrid stop condition approagieements, the mapping quality of the hybrid
stop condition approach is similar to that of the- 10° case in 2D mappings for both the exponential and
linear cooling schemes. The mapping quality of the hybrigrapch is similar to that of = 1076 case in the
3D mappings for both the exponential and linear cooling se® as opposed to the 2D mappings results.
Based on the mapping quality results of the hybrid stop dondicheme, we infer that the hybrid stop con-
dition scheme works more effectively in less constrainadrenments. (Here, 3D mapping represents much

less constrained environments than 2D mapping.)

Figure 5.11 depicts an example of how the DA-SMACOF formsmitagping in 2D space from the high
temperatureTp = o x Tmay to the final mapping result, and corresponding normaliZERESS value §).
As illustrated in Figure 5.11-(a), the DA-SMACOF startsrifra mapping in which all the points are close to
one points whose normalized STRESS value is 0.999995 whioéry close to 1.0, as shown in Figure 5.14-
(a). AsT decreases, the DA-SMACOF algorithm gradually forms a stinecl mapping from the initial one-
point centered mapping. Ak is decreased, the corresponding normalized STRESS wa)usq0 decreases
gradually as in Figure 5.11-(b), and DA-SMACOF forms aditthapping structure as shown in that figure.
As the DA-SMACOF algorithm gradually configures a structureapping as in Figure 5.11-(c),(d), and
(e), o decreases rapidly as small as 0.202537 when0.103781, almost five times smaller than whkn
Finally, the DA-SMACOF algorithm provides the final mappin@D space after sat = 0 in Figure 5.11-(f).

Interestingly, Figure 5.11-(e) and -(f) are configured ima&milar shapes with different scales.

5.5.4 16sRNA 100k Data

The mapping quality comparison in terms of the average nlizathSTRESS values based on 10 random
runs of each experimental setup wRINA10Ok data set is shown in Figure 5.12. Like other experimental
results in this chapter, the DA-SMACOF shows a better guafimappings in terms of the average STRESS

values than do the SMACOF results in every experiment. Imadvexperimental setup, Figure 5.12 shows
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Figure 5.11: The mapping progress of DA-SMACOF WRINA50k data set in 2D space with respect to
computational temperaturg@ ) and corresponding normalized STRESS valap (
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Figure 5.12: The normalized STRESS comparison oflige RNA sequencelata with 100000 sequences
for mapping in 2D and 3D space. The bar graph illustrates\ibeage of 10 runs with random initialization,
and the corresponding error bar represents the minimum axihmam of the normalized STRESS values
of SMACOF, DA-SMACOF witha = 0.95 (DA-exp95), and DA-SMACOF with linear cooling with 100
steps DA-lin100). The x-axis is the threshold value for the iteration stopgpiondition of the SMACOF and
DA-SMACOF algorithms (105, 10, andhybrid approach).

a very similar mapping quality graph to Figure 5.10. Numeahc the 2D mapping results of DA-exp95
are 302% and 283% better than the SMACOF on average with= 10 ° and& = 10® stop conditions,
correspondingly. For the 3D mapping case, SMACOF show&%@vorse than DA-exp95 when= 10",
and 26% worse than DA-exp95 when= 10 6. As usual, DA-SMACOF shows consistent mapping quality
by a little variation of the STRESS values for all test ca3ése standard deviation of STRESS values of 3D

mappings by DA-SMACOF is as small as about 1@r 10 5.

In terms of the linear cooling scheme and the hybrid stop itmmdapproach experiments, Figure 5.12
shows the same tendency to Figure 5.10. Also, there are soigaeufeatures of Figure 5.12. The one
thing is that the best mapping of all experimental runnimg2D space is generated by the DA-exp95 with

€ = 107 stop condition, and the difference with other mappings isgetible in Figure 5.12-(a). This result
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proves that it is possible to find a better mapping by the DAARIDF algorithm with a less constrained
stop condition (heres = 10°°, instead ofe = 10°). Another unique feature in Figure 5.12, compared to
Figure 5.10, is that one of the SMACOF runs in 3D space witlethel 0-° stop condition quite prematurely

stopped and resulted in generating a poor configurationasrsim Figure 5.12-(b).

5.5.5 Comparison of the STRESS progress

In addition to the normalized STRESS value comparison betwiee proposed DA-SMACOF and SMA-
COF, in order to investigate how to avoid local optima by DW/SCOF, we would like to look into the
STRESS value progress of SMACOF and DA-exp95 with ¢he 106 stop condition in the 2D and 3D
mapping results. Figure 5.13 and Figure 5.14 illustratettttuesition of the STRESS values of each exper-
iment of SMACOF and DA-exp95 algorithms wittiC30000 and RNA50k, correspondingly. As shown
in Figure 5.13 and Figure 5.14, the DA-SMACOF algorithm tstéirom a high STRESS value (almost 1.0)
and tends to decrease its STRESS value slowly at first, amdettygerience a faster decrease in the interme-
diate stage, and converge to a solution with a less STRE$® tlen the SMACOF, in a reversed 'S’ shaped
transition for both (a) and (b) subfigures of Figure 5.13 amife 5.14. On the other hand, the SMACOF
algorithm starts with a smaller initial STRESS value (serathan 0.5) than the DA-SMACOF but shows a
steep descent of the STRESS value progress in the beginmihigiag tails after the short steep decrease in

both 2D and 3D mapping cases in Figure 5.13 and Figure 5.14.

(c) and (d) subgraphs of Figure 5.13 and Figure 5.14 toolstmde on the axis of the normalized STRESS
value from (a) and (b) subfigures of Figure 5.13 and Figurd,5cbrrespondingly. By log-scaling on the
y-axis, we can look into the details of the almost flat regiah$igh iterations in (a) and (b) subfigures
of Figure 5.13 and Figure 5.14. Interestingly, the logiscphelps to differentiate the DA-SMACOF results
in both the 2D and 3D mappings, while the results of the SMAG@Brithm still show some flat regions by

even log-scaled graphs, as shown in Figure 5.13 and Figlie 5.
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Figure 5.13: The normalized STRESS progress comparise@CiB0k data in 2D and 3D space by SMACOF

and DA-exp95. The x-axis is the cummulated iteration nunatd&MACOF and DA-SMACOF algorithms.
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Note that the DA-exp95 stops at a lesser number of iterafmmisoth the 2D and 3D mappings than the
SMACOF algorithm, and it affects the running time as showkigure 5.15-(a) and Figure 5.16. We can
interpret the steep improvement of mapping quality by SMAO®the beginning as being powerful but it
results in being trapped in local optima easily, and the gahinprovement by DA-SMACOF based on the
change of computational temperature gives an effect inwiican avoid local optima and be efficient for

large data sets.

5.5.6 Running Time Analysis of Large Data Sets

| described the runtime analysis of the DA-SMACOF compaoeather algorithms (SMACOF and MDS-
DistSmooth) with relatively small data sets in Section%.4n Section 5.4.5, the DA-SMACOF takes awhile
longer than the SMACOF but also demonstrates a shorter timethe MDS-DistSmooth algorithm. How-
ever, the DA-SMACOF takes a comparable and even shortertiaredoes the SMACOF with larger data
sets in the 2D and 3D mappings, interestingly enough. SimedA-SMACOF and SMACOF algorithms
require too much computing power and main memory, para#lébn is essential for testing with large data
points. Therefore, we tested DA-SMACOF and SMACOF with thieIMersion of these algorithms [16] for
testing with larger data sets. The details of the runtimdyaisafor each large data set will be represented in
this section. In Figure 5.15 and Figure 5.16, the bar graplwsliihe average runtime of 10 runs of each ex-
perimental set up, and the error-bar on top of each bar gegglesents the minimum and maximum running

time of the corresponding experiments.

First, for themetagenomicsiata set with 30,000 points, | tested this set with 128 waglfeism by using
the MPI version of the SMACOF and DA-SMACOF [16]. The runnimge results of DA-SMACOF and
SMACOF algorithms with the metagenomics data is shown imf€idp.15-(a). In detail, the DA-SMACOF
takes only 1.36 and 1.12 times longer than the SMACOF in gecfar the 2D mapping results, and several

SMACOF runs actually take longer than the DA-SMACOF runniiinges. In contrast to the running time



5. Deterministic Annealing SMACOF 112

Alg Alg
—o— DA-exp95 —o— DA-exp95
—e- SMACOF o~ SMACOF
0.8 08-
@ @
L . 0.6 -
o 06 i
[ =
[2] (2]
° o
Q (5
N N
g E
S 0.4- £ 0.4-
P4 =z
0.2-
0.2-
I I ] I I I I I I I I I I
0 100 200 300 400 500 0 100 200 300 400 500 600
Iteration Iteration
(a) 16sRNA 50k 2D STRESS Movement (b) 16sRNA 50k 3D STRESS Movement
Alg Alg
—e— DA-exp95 —e— DA-exp95
—s~ SMACOF —e— SMACOF
102+
10702+
1004 -
10704+
] [/ I
0 v 10 T
w w
14 o
= e =
010 (]
B Bt
N N
© ©
£ £
g 10 g 10
1012-
107 -
10 14
10 =
I I I I I I I I I I I I I
0 100 200 300 400 500 0 100 200 300 400 500 600
Iteration Iteration
(c) 16sRNA 50k 2D STRESS Movement - logscale (d) 16sRNA 50k 3D STRESS Movement - logscale
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rithms.



5. Deterministic Annealing SMACOF 113

5000 - 12000 -

10000 -
4000 -

8000 -
3000 -

6000 -

run time (sec)
run time (sec)

2000 -

4000 -

1000 -
2000 -

I I I I
MC30K_2D MC30K_3D ALU50K_2D ALUS50K_3D
Test Test

(a) MC30000 Data Runtime (b) ALU50058 Data Runtime

Figure 5.15: The average running time comparison betweeAGM and DA-SMACOF (DA-exp95) for
2D and 3D mappings with MC30000 and ALU50058 data sets. Tt bar represents the minimum and
maximum running timeEM-5/EM-6 represents SMACOF with 16/10-6 threshold, andA-5/DA-6 rep-
resents the runtime results of DA-SMACOF, correspondiriglthe same way.

results of smaller data sets in Section 5.4.5, the DA-SMAG&Kes 0.97 and 0.91 times longer than the
SMACOF, which means it is faster than the SMACOF, in averag@D mappings. The DA-SMACOF still
shows high consistency in running time as well as STRESSegahkut the SMACOF shows high variation

of running time in Figure 5.15-(a).

Figure 5.15-(b) is the average running time of each experiméth the ALU50058 data set. As we
mentioned in Section 5.5.2, SMACOF with= 10"° cases stopped prematurely and it represents a very
small amount of running time. Since the SMACOF stops with $awall a number of iteration with the
£ = 1075 stopping condtion, | would like to analyze the runtime of tbaigorithms with thes = 10
stopping condition. As shown in Figure 5.15-(b), DA-SMAC®Fh 106 stop condition shows much better
running time performance than does the SMACOF algorithrh thies = 10~ stopping condition in both 2D

and 3D mapping results. The DA-SMACOF takes only 0.47 tirnagér than the SMACOF in 2D mappings,
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which means the DA-SMACOF is more than twice as fast as the S®IR For the 3D mapping with the
ALU50058 data set, the DA-SMACOF takes around 0.63 timegédorfa.k.a. 1.60 times faster) than the
SMACOF. Note that the SMACOF takes a lot of variation withming time in 2D mapping witle = 10°

stop condition.

Figure 5.16 illustrates the running time analysis of the BIMACOF and SMACOF algorithm withh6s
RNA data sets, i.eRNA50k andRNA100k. For 16s RNA data sets, | experimented with a linear cooling
scheme and a hybrid stop condition approach as well as thel D#\+exp95 case. Figure 5.16-(a) and
(b) show the running time results with the RNA50k data sethéhd 3D space, correspondingly, and
Figure 5.16-(c) and (d) depict the running time result with RNA100k data set in 2D and 3D space, as well.
As shown in Figure 5.16, Figure 5.16-(a) shows a very singitaph to Figure 5.16-(c), and Figure 5.16-(b)

and (d) are similar to each other.

First, | would like to analyze a runtime comparison betwe@aEMACOF and SMACOF. | will use same
DA-exp95 case to compare with SMACOF to exhibit the same @iapn that | have previously conducted
with other data sets. As described in Figure 5.16-(a) anddcjhe 2D mapping results, the SMACOF with
the e = 10° stopping condition stopped faster than the DA-exp95 withghme stop condition. However,
if we compare the running time of DA-exp95 and SMACOF with- 10 stop condition in 2D mappings,
the DA-SMACOF takes around 0.68 and 0.67 times longer thalSMACOF algorithm. In other words, the
DA-SMACOF is about 1.47 and 1.50 times faster than the SMAQ@fe that the mapping quality of the
SMACOF with thee = 10~° stopping condition for the 2D space is much worse than thiteDA-exp95,

as explained in Section 5.5.3.

For 3D mappings, even the SMACOF with the= 10° stopping condition is slower than or comparable
to the DA-SMACOF withe = 10-°, and the SMACOF takes longer than the DA-SMACOF withghe 108
stopping condition as shown in Figure 5.16-(b) and (d). Nucady, the DA-SMACOF takes around 0.82

times longer (actually, 1.22 times faster) than the SMACQth the RNA50k data set and takes only 1.04
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Figure 5.16: The average running time comparison betweefAGMF, DA-SMACOF (DA-exp95), and DA-
SMACOF with linear cooling (DA-lin100) for 2D and 3D mappisgith 16s RNA data sets. The error bar
represents the minimum and maximum running tiniM-5/EM-6 represents SMACOF with 16/10©
threshold, andA-e5/DA-e5,6/DA-6and DA-I5/DA-I5,6/DA-16 represents the runtime results of DA-exp95
and DA-lin100, correspondingly, with 18/hybrid(10° and 10°6)/107°.
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times longer than the SMACOF with the RNA100k data set, when10-°. Also, the DA-SMACOF with
£ =107 stop condition is about 1.19 times and 1.04 times faster tharSMACOF with same stopping

condition for RNA50k and RNA100k data sets, correspongingl

If we compare the running times between two different corafomal temperature cooling methods for
DA-SMACOF, we can find that thBA-exp95 and DA-lin100 are compatible with the = 10~° stopping
condition and the DA-lin100 shows better than or compartbfeerformance to the DA-exp95 with tlze=
10-% stopping condition. It is interesting that the DA-lin10Gs¥s better than or comparable to performance
with the DA-exp95 in terms of the running time, based on tlot flaat the tested linear cooling mechanism
takes more cooling steps than the exponential cooling setenshown in Figure 5.1. From the above facts,
we can deduce that the linear cooling scheme is a little bierefficient than the exponential cooling scheme

in terms of running time.

The hybrid stop condition approach, which uses two differemation stop conditions for the annealing
period (T > 0) and the final stepl{= 0), shows interesting attributes with respect to the rugtime analysis
in Figure 5.16. For 2D mapping cases as in Figure 5.16-(a)endhe hybrid approach shows a similar
running time with a correspondirgy= 10> stop condition. On the other hand, the DA-SMACOF with a
hybrid stop condition scheme takes a longer time than theSMMCOF with € = 10~° but a shorter time
than the DA-SMACOF witte = 10~ for 3D mapping cases. Since the mapping quality of the DA-SXM&
hybrid stop condition scheme is similar to the DA-SMACOFwit= 10-° in 2D mappings and similar to
the DA-SMACOF with thes = 10~° in the 3D mappings as illustrated in Figure 5.10 and Figut& Sve can
think of the running time of the hybrid stop condition apprbahown in Figure 5.16 as a reasonable result.
Since the hybrid stop condition scheme for the DA-SMACORgha similar mapping quality to the DA-
SMACOF with e = 1078 for 3D mappings, if we compare the runtime of the hybrid stopdition scheme
with the corresponding DA-SMACOF with= 10 experiments in 3D mappings, the hybrid stop condition

achieves a 1.53 and 1.43 times faster running time than DAGOF with £ = 10~° for the RNA50k data,



5. Deterministic Annealing SMACOF 117

and 1.66 and 1.48 times faster than DA-SMACOF wéth 106 for the RNA100k data with respect to the
exponential and linear cooling schemes, correspondirgiythermore, the hybrid stop condition approach
for DA-exp95 case is about 1.82 and 1.73 times faster thaSMACOF with & = 10-° for RNA50k and

RNA100k data, respectively.

In short, the DA-SMACOF generally outperforms the SMACO®&t anly in mapping quality but also
in running time, with large data sets. Based on the runtinadyais of the DA-SMACOF with a large data
set in this section, we can consider the proposed DA approadiDS as not just an effective optimization

method for avoiding local optima but also an efficient optiation method for large data sets.

5.6 Summary

In this chapter, we have proposed an MDS solution with therdghistic annealing (DA) approach,
which utilizes the SMACOF algorithm in each cooling step.eTgroposed DA approach outperforms the
SMACOF and MDS-DistSmooth algorithms with respect to theppiag qualities with several different real
data sets. Furthermore, the DA-SMACOF exhibits the highsistancy due to less sensitivity to the initial
configurations, in contrast to the SMACOF and MDS-DistSrhaiproaches, which show high sensitivity

to both the initial configurations and the stopping conditio

With the benefit of the DA method to avoid local optima, thegmeed DA approach uses slightly longer or
comparable running times to the SMACOF, and shorter runtimegs than the MDS-DistSmooth approach,
for small data sets. Moreover, the proposed DA approachusby faster than the SMACOF algorithm with
larger data sets, and applying the hybrid stop conditiorsehto the DA-SMACOF algorithm can reduce

the running time of the DA algorithm even more.

We have also investigated different computational tentpegaooling parameters in an exponential cool-

ing scheme and it turns out that this approach shows somataevof mapping results when we use a faster
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cooling parameter than necessary (like the DA-exp90 casieisrchapter). But the DA-exp90 shows still
better than or comparable performance compared with theaoed algorithms in our experiments. Also,
the DA-exp95 results are very similar to or even better thenRA-exp99 results, although the DA-exp95
takes a shorter time than the DA-exp99 case, so that we nfigiiktdr = 0.95 could be a generally reasonable
cooling parameter in an exponential scheme. In additiohéceiponential cooling scheme, we also tested
with linear cooling scheme and compared both cooling scharterms of mapping quality as well as run-
times. The linear cooling scheme shows slightly better iratomparable to performance of the exponential

cooling scheme in both quality and efficiency criteria.

For the scalability test of the ability of avoiding local apta by the DA-SMACOF, we experimented
with various sizes of data sets from 150 to 100,000 pointd, @mpared them with the SMACOF (and
MDS-DistSmooth for smaller data sets) applied to the sant@ skets. In Section 5.4 and Section 5.5, the
experimental results support the local optima avoidanicidate of the proposed DA-SMACOF algorithm,

not only for small data sets but also for large data sets.
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Conclusions and Future Works

6.1 Summary of Work

In this dissertation, we have worked on a dimension redngatiethod called multidimensional scaling
(MDS). The main purpose of my dissertation work is to scaléh@amapping capacity of the MDS algorithm
for dealing with a large amount of data, and to improve thepirapquality of MDS results via avoiding local
optima. First, we applied parallelism to a well-known MDga@ithm called SMACOF [20, 21] in order
to increase the computational capacity of the MDS algorithrough utilizing more computing resources
on cluster systems for dealing with large amounts of datahiapfer 3. We also investigated the parallel
performance and the scalability of our parallel implemgaotain Chapter 3 as well. In addition to applying
parallelism in order to utilize more computation resouyees proposed an interpolation algorithm which
reduces computational complexity and memory requirenme@hiapter 4. The interpolation approach divides
the given data in two sets, i.e. sample data and out-of-gadgih. Then, we generate a configuration of the
sample data with the full MDS algorithm, and we find a mappihgach out-of-sample point by means of
interpolation based on the mappings of nearest neighbdireahterpolated point among the sample data.

We can proceed with including millions of points by using th@posed interpolation method as shown

119
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in Chapter 4. For the purpose of achieving better mappindityuave applied an optimization method
named deterministic annealing (DA) [62, 63] to the MDS pesblin Chapter 5. We tested the proposed
DA-SMACOF with various data sets with a variety of the sizempared to other MDS algorithms, and the

DA-SMACOF produced better quality mappings than the otloengarable MDS algorithms.

6.2 Conclusions

Large-scale data analysis is a prominent research areadhbe tata explosion which has occurred in
almost every domain. Huge amounts of data are generatednhofrom the scientific and technical area
but also from personal life activities, such as digital pies, video clips, postings on a personal blog system
or social network media, and so on. The dimension reduclgorithms aim to generate low-dimensional
human-perceivable configurations which are very usefuhfastigating high-dimensional data sets. Among
the many dimension reduction algorithms, we focus on thdidioensional scaling (MDS) algorithm in this

dissertation, due to its robustness and high applicability

We have worked on several ways to improve a well-known MD®rtlgm, called SMACOF [20, 21],
with respect to not only computing capability but also magpguality. To increase the possible number
of points generated in a new configuration in a target dinoensive have worked on the parallelization of
SMACOF algorithm. The parallelization enables the SMAC@®&dthm to deal with hundreds of thousands
of points via distributed multicore cluster systems, sust82 nodes with 768 cores. Although the parallel
SMACOF implementation provides much more computing povtezannot affordably configure millions
of points since the computational complexity and memoryiment of the SMACOF algorithm is still
0(N?). The proposed majorizing interpolation MDS (MI-MDS) makssssible the strategy generating a
mapping of millions of points with a trade-off between themmuting capacity and the mapping quality. We

have worked on the improvement of mapping quality by avajdatal optima as well as on the increase of
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the computing capacity of the MDS solution. Below we have mamzed what we have worked out in each

chapter of this dissertation.

6.2.1 High-Performance Distributed Parallel Multidimensional Scaling (MDS)

In order to configure mappings with large amounts of dataufihothe MDS algorithm, we need to
utilize distributed computing systems due to the requirgnod a large amount of computing power and
memory. Thus, we parallelized a well-known MDS solution ean8SMACOF [20, 21] via MPI [27, 73].
The MPI standard has been supported in most programmingéaes, such as C, C++, Java, and C#, and

MPI.NET [32], which we used in this thesis, provides MPI implentation for the C# language.

As we mentioned in Chapter 3, we implemented the scalablehmidperformance parallel SMACOF
algorithm which shows high efficiency and scalability. Inapker 3, we demonstrated how the importance
of the data decomposition structure can influence messagingaoutines and overhead as well as a cache-
line effect. We measured both overall elapsed running tintesaib-routine runtimes with respect to various
data decomposition structures, and found that the rowebdseomposition worsens the cache reusability for
updating the distance matrix with larger data sets. The avoashe reusability results in performance degra-
dation of row-based decomposition with larger data set.H@mther hand, column-based decomposition also
increases message passing overhead for updating anottieippéing matrix 8(X)) of the SMACOF algo-
rithm. Based on both experimental results, we concludettiedbalanceddata decomposition is generally

better than thekewedlata decomposition for parallel SMACOF algorithm.

The efficiency and scalability analyses are importantGater the evaluation of parallel implementation.
Although the efficiency is decreased, the decreased effigienstill good enough for a certain degree of
parallelism. The main reason for the efficiency degradatiche parallel SMACOF implementation, as the
number of parallel units being increased, is that the rdtacallel overhead portion is increased but the pure

parallel computation time is decreased as the number ofi@laraits is increased. Figure 3.8 and Table 3.3
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supported two important aspects of the proposed parall&d@&OF: (1) the fact that it achieves good load-
balance; and (2) that the decreased efficiency of the pp8MACOF with more parallel units is due to the

inevitable message passing overhead for the parallel imgaigation.

In short, the major contribution of the parallel SMACOF irapientation is that it can afford to utilize
cluster systems, which provide hundreds or even thousameés tmore computing power and memory re-
sources than a single node machine, for running the MDS ithgowith a much larger number of data
points, such as hundreds of thousands of points that woulthpessible to run in a single node machine
by sequential computing. The proposed parallel SMACOFrélyn shows relatively high efficiency and

scalability by paying some inevitable overhead.

6.2.2 Interpolation approach for MDS

By using the parallel SMACOF algorithm on a cluster systemcan configure hundreds of thousands of
points in a target dimensional space. However, there arg imgeresting problems with more than millions
of points, in that it is impractical to use only the paralltdSCOF implementation to configure mappings for
millions of points in a target dimension due to the resouecpiirements o#’(N?) concerning computation
and memory. In order to raise the affordable number of paihtee MDS algorithm at least up to millions
of points, we developed an interpolation approach for theSviboblem. The interpolation method for
a given data follows a two-fold operations: (1) we select gas from the given full data and generate
mappings of thesampledata; (2) we then interpolate eaoht-of-samplalata with respect to the mapping
positions of its nearest neighbors among sampled data. @yiag the interpolation approach, we reduce the
computational complexity of the MDS algorithm fraf(N?) to ¢ (nN) whereN is the total data size anis
the sample data size. We applied the iterative majorizatiethod to interpolate a points with respect to the
mapping positions of its nearest neighbors. The matheai&tipiations for the proposed iterative majorizing

interpolation method are provided in Chapter 4. In Chaptewd also illustrated how to parallelize the
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interpolation algorithms.

In Chapter 4, we discussed: (1) the comparative experirhangdysis between the proposed majorizing
interpolation MDS (hereafter MI-MDS) and MDS only in termEmapping quality and execution time;
and (2) the parallel performance of MI-MDS algorithm. Forpping quality comparison purposes, the
normalized STRESS value of interpolation approach, whimnliines with MDS running with the sample
data and MI-MDS with the out-of-sample data, is comparetiédMDS only running. For the Pubchem 100k
data set, the normalized STRESS value of the interpolappnaach with a 50k sample data is only around
0.0038 bigger than the results of the MDS only. Note that titerpolation approach is 3.3 times faster than
the MDS only approach, and that the MI-MDS takes only arouaiddconds to generate mappings of 50k
out-of-sample data. We also experimented with larger dtsample data size, such as 1 million, 2 millions,
and 4 millions points (hereafter 1M, 2M, and 4M, correspagdty). Since we cannot run parallel MDS with
more than 200,000 data points on Cluster-1l in Table 4.1 duthé¢ out of memory exception, there is no
way to compare the mapping quality of the interpolation apph result with MDS only results. However,
we can evaluate the mapping quality of the interpolatiomlteswith larger data sizes (like millions) by
comparing them to the normalized STRESS values of the MD$tressampled data. As we expected, the
approximation feature of MI-MDS degraded the mapping dualilittle, but the mapping qualities of MlI-
MDS results with 1M, 2M, and 4M data points are similar to onetaer as shown in Figure 4.9, interestingly

enough.

In addition to the mapping quality analysis of the MI-MDS, also investigated the parallel performance
of the hybrid parallel MI-MDS algorithm in Chapter 4. The emkndence between the interpolated points
is a very nice feature to parallelize the MI-MDS algorithnheTparallel MI-MDS algorithm is a pleasingly
parallel application due to the independence between edetpblated points. Thus, the parallel MI-MDS

implementation achieves high efficiency in parallel as showSection 4.4.3.

In short, the proposed interpolation algorithm (MI-MDSgeseeds to generate a configuration of millions
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of points in a target dimension in moderate running time. TWapping quality of the outputs from the
interpolation approach is comparable to the mapping quafithe MDS only results, which takes a much
longer execution time than the interpolation approach. \Aflfelized the proposed MI-MDS algorithm
to deal with millions of out-of-sample data with high effioiy due to the independent properties of the

interpolated points.

6.2.3 Improvement in Mapping Quality

By working on the parallelization of MDS algorithm and deyeinent of interpolation algorithm, we
have contributed in quantitative scope to the MDS algoritbnthe purpose of dealing with large-scale input
data. In addition to this quantitative contribution, we éalso worked on a method to avoid the local-optima
problem of the MDS algorithm which results in the contribuatiof mapping quality improvement. For the
sake of overcoming the local-optima problem on MDS, we agjdi well-known optimization method, called
the Deterministic Annealing (DA) [62,63], to the MDS profieln Chapter 5, we proposed an MDS solution
with a DA optimization approach. The SMACOF [20, 21] algbnit is used to generate an approximated
mapping for the given data at each cooling st€pi( the proposed DA MDS solution. (Hereafter, we call

the proposed DA MDS solution tH2A-SMACOF)

In order to experiment with the local-optima avoidance erog we compared the DA-SMACOF al-
gorithm with other MDS algorithms, i.e. the SMACOF and MD&t3mooth (MDS by distance smooth-
ing [35]), with various real data sets. The experimentalltssare shown in Section 5.4 and Section 5.5.
The experimental analysis illustrates that the DA-SMAC@iperformed other comparable algorithms, the
SMACOF and MDS-DistSmooth, in terms of mapping quality. ddla high consistency of mapping results
is exhibited among the DA-SMACOF results and it confirms thatDA-SMACOF's decreased sensitivity
to intial configurations. On the other hand, the SMACOF and9vDistSmooth are highly sensitive to the

initial configurations and the stopping condition paramdteorder to see the difference of the optimization
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activity between the SMACOF and DA-SMACOF, we investigatieel trace of the STRESS value by each
algorithms. As shown in Figure 5.14, the trace of the STRE&Ge/for the DA-SMACOF shows a reversed
‘S’ shaped progress, which starts from a very high STRESSevahd slow improvement initially. On the

other hand, the SMACOF case shows 'L’ shaped progress, vilhistrates faster improvement from the be-
ginning with a much lower starting STRESS value followeddayd tailed small improvement. It is a natural
interpretation for the STRESS value trace results that téepest improvement by the SMACOF results in
being trapped in local optima but the gradual progress byDeSMACOF related to the computational

temperature demonstrates its avoidance of local-optima.

In comparison for the running time, the proposed DA-SMAC@kes comparable to or slightly longer
than the SMACOF algorithm but it uses a much shorter runrimg than the MDS-DistSmooth with better
mapping results, for the small data sets in Section 5.4hEurtore, the DA-SMACOF is even faster than the
SMACOF algorithm with larger data sets as in Section 5.5,iaptbduced better quality mappings than the
SMACOF. We can reduce the DA-SMACOF running time even morafigylying the hybrid stop condition

scheme to the DA-SMACOF, as shown in Figure 5.16.

In addition to a comparative analysis conducted betweerSACOF and other well-known MDS al-
gorithms, we have experimented with various parameterseoPXA-SMACOF as well, such as temperature
cooling parameters and the stop condition parameter, Rieshave worked on different temperature cooling
parameters (i.ea = 0.90, 0.95, and 0.99 denot&d\-exp90, DA-exp95, and DA-expI®rrespondingly) in
an exponential computational temperature cooling scherhe. case ofr = 0.90 is a kind of faster cool-
ing parameter than appropriate, and the outputs of DA-exg@@&rated somewhat variated STRESS value
distributions, in contrast to the DA-exp95 and DA-exp99%sadut the DA-exp90 shows still better than or
comparable to performance to the SMACOF and MDS-DistSmalgbrithms in Section 5.4. Furthermore,
the DA-exp95 performs similar to or even better than the DRA99Y, and it takes less time than the DA-exp99

case. Based on the experiment of the temperature coolirzgrgder in the exponential cooling scheme, we
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conclude thatr = 0.95 in an exponential cooling mechanism could generally beaaanable choice. Sec-
ond, we also compared the exponential and linear coolingreel in terms of mapping quality and execution
time. The linear cooling scheme shows a little bit bettenthiacomparable to performance to the exponential

cooling scheme not only in mapping quality but also in rugrtime.

We experimented the proposed DA-SMACOF algorithm with edjfierent real data sets and compared
the mapping quality with that of other algorithms. The sizelata sets varies from 150 to 100,000 points.
For the all test cases, the DA-SMACOF shows better STRES&\thhn the compared algorithms without
regard to the size of data. It shows that the proposed DA-S®IR@voids local optima, as the algorithm
intended, not only for small data sets but also for large antwof data sets. The detailed experimental results

of those data sets are showin in Section 5.4 and Section 5.5.

6.3 Future Works

In this section, | would like to mention about some possihteife works related to the proposed method-
ologies in this thesis. Those future research issues wpkave the features of the proposed algorithms in

this thesis.

6.3.1 Hybrid Parallel MDS

In [28,57], we investigated the overhead of a pure MPI andtaitlyf{MPI-Threading) model with multi-
core cluster systems. In [28], the pure MPI outperforms tHaild model for the application with a relatively
fast message passing synchronization overhead. Howevéngf case of the high MPI synchronization time,
the hybrid model outperforms the pure MPI model with highgliatism. Since the MPI overhead increases
as the number of processes is increased in Figure 3.9, it ithwo investigate hybrid parallel model of

SMACOF.
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6.3.2 Hierarchical Interpolation Approach

In Chapter 4, we discussed an interpolation approach wtadhaes the time complexity of the MDS
algorithm from¢’(N?) to & (nM), wheren is the sample size ard is the out-of-sample sizd/( = N —n).
MI-MDS provides us with a very high capability of configuritegrge amounts of data points in a target
dimension via a modest amount of execution time. Althoughtitme complexity of the MI-MDS is much
better than that of the normal MDS algorithm, and it showsigffit running times compared to running times
of the parallel SMACOF as described in Chapter 4, we can exgunce the time complexity t@(M -log(n))
by using a hierarchical approach, such as the Barnes-Huf8téhereafteBH-tred. The BH-tree technique
divides the given space by a tree-structured subspace af calbs, and the division occurs recursively in
each cubic cells. For instance, the volume of 2D and 3D spackvided by aquadtreeand anoctree
structure, correspondingly. The BH-tree technique isinally proposed to advance the time complexity of
the N-bodysimulation. We can reduce in log-scale the number of poiteflivneeds to be considered as
possible neighbors among the sampled data of each intéedgt@int by applying the BH-tree technique.
Currently, a colleague of our research group has been wgdkirthis hierarchical interpolation approach for

MDS problem.

6.3.3 Future Works for DA-SMACOF

It will be interesting to integrate DA-SMACOF ideas with timéerpolation technology described in [7] to
give a robust approach to dimension reduction of large dégdlisat scales like’(nN) rather¢’(N?) of general
MDS methods. The adaptive cooling scheme for computatitemaperature of DA-SMACOF is another
interesting topic for further research. The adaptive eg@picheme may result in more efficient running on
DA-SMACOF by changing computational temperature basedemtogress of the algorithm. Although we
have worked on mainly the DA-SMACOF with a uniform weightetbe (unweighed case;j; = constanj

in Chapter 5, DA-SMACOF algorithm for weighted case, sucBasimon’s mappingy; = 1/4;), could be
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also useful under certain environments. Therefore, it imtaresting research topic to extend the proposed
DA-SMACOF to a generalized DA MDS algorithm which can dealhngeneral weighted cases as well as

unweighted case.

6.4 Contributions

The followings are the envisioned contributions of thissdigation in Section 1.5:

e [Parallelization] Efficient parallel implementation via Message Passingrfate (MPI) in order to
scale up the computing capability of a well-known MDS algfori (SMACOF) by utilizing cluster

systems.

¢ [Reducing Complexity] Development of an innovative algorithm, which reduces thegutational
complexity and memory requirement of MDS algorithms anddpaed acceptable mapping results,
for the purpose of scaling the MDS algorithm’s capacity upritlions of points which is usually

intractable to generate a mapping via normal MDS algorithms

e [Local Optima Avoidance] Providing an MDS algorithm which could figure out the locatioma
avoidance problem in a deterministic way so that it generaggter quality mapping in a reasonable

amount of time.

In this section, we summarize how to achieve the envisiomedributions in this dissertation that we
mentioned in Section 1.5. The methods of how we achievedriygosed contributions in this dissertation

are shown below:

e [Parallelization] We parallelized the SMACOF algorithm [20,21] via MPI.NETR[3and C# language

which is a managed code. The implemented parallel SMACOéritihgn shows the achievement of
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good load-balance. Due to the inevitable messages on eaakioh of SMACOF algorithm, the par-

allel efficiency is lowered as the number of parallel unit;mcgeased. However, the parallel efficiency
is still good enough with an appropriate number of parall@tauwith respect to the data size. The
computing capability of the parallel SMACOF is scaled up tméireds of thousands of points on the

multicore cluster systems that we have.

¢ [Reducing Complexity] We designed an interpolation algorithm which divides theegidata into two

sets assampledata andout-of-sampledata. The interpolation algorithm consists of two-stefds: (
mapping sample data by full MDS running; and (2) intepola&te dut-of-sample data based on the
mappings of sample data generated by (1) step. We desigriategoolation algorithm which reduces
the computation complexity fron?(N?) to ¢ (nM), wheren is the size of sample data aWl= N —n.
Also, the proposed interpolation algorithm reduces the orgmrequirement for generating a mapping
position for each point. Due to the reduced computationaiexity and memory requirement, the
proposed interpolation algorithm actually scales the nrappgapacity up to millions of points not only
with a much faster running time but also with an acceptablppimey quality. As shown in Chapter 4,

the intepolation approach enables us to configure up to Hemjpoints in 3D space.

¢ [Local Optima Avoidance] In addition to the contributions of scalability of the MDSyatithm, we
also solved the avoidance of the local optima issue whichwglaknown problem of EM-like opti-
mization methods. We have applied deterministic anned#y) [62, 63] optimization to the MDS
algorithm to avoid local optima via simplifying the expetttenergy function by approximation based
on computational temperatur&); The unique attribute of the DA optimization method is thdas
a deterministic approach, which does not rely on non-detestic random movement, in contrary to
other global optimization methods, such as simulated dmge¢SA) and genetic algorithm (GA), so
that it does not suffer from long running times. Since weazéil the SMACOF algorithm to find a map-

ping of the given data at each temperaturg (ve could also parallelize the proposed DA-SMACOF
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algorithm by using the parallel SMACOF implementation [¥4]ich is proposed in Chapter 3. The
proposed DA-SMACOF algorithm depicted the local optimaidivay property by high-consistency of
mapping quality and less-sensitivity to initial configuoat We compared the proposed DA-SMACOF
algorithm with other algorithms by running with variousesiaf data sets from 150 to 100,000 as in Sec-
tion 5.4 and Section 5.5. It outperformed other compared MBSrithms, i.e. SMACOF [20,21] and
MDS-DistSmooth [35], in terms of mapping quality with vaugdata sets, and we could conclude that
the better mapping quality of DA-SMACOF results from avaigliocal optima for which we designed

it.
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