Scientific Applications of Twister4Azure
Iterative MapReduce in Azure cloud for data-instensive iterative scientific problems
Authors Name/s per 1st Affiliation (Author)
line 1 (of Affiliation): dept. name of organization

line 2: name of organization, acronyms acceptable

line 3: City, Country

line 4: e-mail address if desired

Authors Name/s per 2nd Affiliation (Author)
line 1 (of Affiliation): dept. name of organization

line 2: name of organization, acronyms acceptable

line 3: City, Country

line 4: e-mail address if desired

Abstract—
Keywords-component; formatting; style; styling; insert (key words)

I. Introduction (Heading 1)
The problem (large data intensive)

Cloud Computing for science. Map Reduce for scientific computations

Iterative computations
From Azure “Focus on your applications, Not the infrastructure”.. We take it one more step further and let the users focus only on the application logic, not worrying about the application architecture.

MapReduce. Iterative MapReduce.

Developing Twister4Azure was an incremental process, which started with our development of pleasingly parallel cloud programming frameworks1[]
 for bioinformatics applications utilizing cloud infrastructure services. Based on the success of pleasingly parallel cloud frameworks, we developed MapReduceRoles4Azure(MRRoles4Azure)2[]
, which is a MapReduce programming framework and a run time for Windows Azure Cloud. Twister4Azure adds iterative MapReduce extensions to MRRoles4Azure to support efficient execution of iterative MapReduce computations.
Applications of Twister4Azure can be categorized in the 3 classes of application patterns. First are the Map only applications, which are also called pleasingly (or embarrassingly) parallel applications. This type of applications include…..Currently we have implemented Cap3 sequence assembly and Blast+ sequence searching pleasingly parallel applications using Twister4Azure. In section VIII we present more details and analyze the Blast+ Twister4Azure application.
Second type of applications is the typical MapReduce type applications. X,y, and z are examples of this type of applications. Twister4Azure contains sample implementations of SmithWatermann-GOTOH (SWG) pairwise sequence alignment and WordCount as typical MapReduce type applications. We present more details and analysis about the SWG application in section VII.
Third and the most important type of applications Twister4Azure supports is the iterative MapReduce type applications. There exist many data intensive scientific computation algorithms that rely on iterative computations, where each iterative step can be easily specified as a MapReduce computation. Examples of such applications include Dimension Reduction, Clustering, most of the Machine Learning algorithms, Classification and regression analysis. A more detailed analysis about data intensive scientific iterative algorithms is given in section III. We have implemented contains Multi-Dimensional-Scaling3[]
 , KMeansClustering, PageRank and Latent-Dirichlet-Allocation(LDA)4[]
 iterative MapReduce applications using Twister4Azure. We present more details and analysis on KMeansClustering and MDS implementation in sections V and VI respectively.
In this paper we present 4 scientific applications implemented using Twister4Azure. Those are KMeans Clustering, Multi-dimensional Scaling, Sequence Alignment using SmithWatermann-GOTOH (SWG) and sequence assembly using BLAST+. Among them KMeansClusterig and Multi-Dimensional scaling are data intensive iterative algorithms. In additions to those, Twister4Azure has implementations of WordCount, Cap3 sequence Assembly and PageRank, while out ongoing work involves implementation of LDA using Twister4Azure.

Overview of applications
II. Background
A. MapReduce & Hadoop
B. Twister5[]

C. Azure
D. MRRoles4Azure

Cloud services

Monitoring

III. Iterative Scientific Algorithms

Loosely synchronous algorithms

(http://www.netlib.org/utk/lsi/pcwLSI/text/node175.html#SECTION001110000000000000000)
Structure of common data intensive iterative algorithms – complexity ~= data size.. (if possible some equation)
Identify applicable sponsor/s here. (sponsors)
Fixed value problem..
IV. Twister4Azure – Iterative MapReduce
[image: image1]
A. Iterative Data Cache

Caches the loop-invariant (static) data across iterations. Data that are reused in subsequent iterations. traditional MR key-value pairs. Comparatively larger sized data. Cached between iterations. Saves time on download, loading and parsing of input data. Avoids the data download, loading and parsing cost between iterations
Single cache storage per worker-role shared across map and reduce workers.

CachedInputFormats to specify cacheable data.

Significant speedups for some data-intensive iterative MapReduce applications.Cached data can be reused by any MR application within the job.
B. BroadCast Data

Loop variant data (dynamic data) – broadcast to all the map tasks in beginning of the iteration.

Comparatively smaller sized data.

Can be specified even for non-iterative MR jobs.

Supports caching – efficiency in case of more than one worker per role or more than one map task (more than one wave of map tasks) per worker role per iteration. Make sure only a single download of Broadcast data happens per node per iteration.
C. Cache Aware Scheduling

[image: image2]
· Map tasks need to be scheduled with cache awareness
· Map task which process data ‘X’ needs to be scheduled to the worker with ‘X’ in the Cache
· Nobody has global view of the data products cached in workers
· Decentralized architecture
· Impossible to do cache aware assigning of tasks to workers
· Solution: workers pick tasks based on the data they have in the cache
· Job Bulletin Board : advertise the new iterations
New Job (1st iteration) Through queues. New iteration- Publish entry to Job Bulletin Board, Workers pick tasks based on in-memory data cache and execution history (MapTask Meta-Data cache) ,Any tasks that do not get scheduled through the bulletin board will be added to the queue.
D. Programming model

1) Map

Twister4Azure extends the “map” function of traditional MapReduce programming model to include the broadcast data as an input parameter. The broadcast data is provided to the Map task as a list of key-value pairs as follows.
Map(key, value,List<key-value-pairs>,..)

2) Reduce

3) Merge

· Extension to the MapReduce programming model to support iterative applications
Map -> Combine -> Shuffle -> Sort -> Reduce -> Merge
TwisterAzure introduces a new “merge” step to the MapReduce programming model which executes after the Reduce step. Merge Task receives all the Reduce outputs and the broadcast data for the current iteration. There can only be one merge task for a MapReduce job.
Since Twister4Azure do not have a centralized driver to take control decisions, Merge step serves as the “loop-test” in the Twister4Azure decentralized architecture. User can add a new iteration, finish the job or schedule a new MR job from the Merge task. These decisions can be made based on the number of iterations or based on comparison of the result from previous iteration and the current iteration, such as the k-value difference between iterations for K-Means or the stress value difference between iterations for MDS. User can use the results of the current iteration and the broadcast data to make these decisions. Possible to make the output of merge the broadcast data of the next iteration.
Merge(Dictionary<key, List<values>>,List<key-value-pairs>,..)
E. Other features

1) Fault Tolerance

2) Multi applications
Ability to deploy multiple Map Reduce applications in a single deployment

Possible to invoke different MR applications in a single job

Support for many application invocations in a workflow without redeployment

3) Improved intermediate data tranfer

Had to optimize as the task granularity is smaller in iterative algorithms.
When values are small, direct transfer through the table.

Async operations…
F. Work in progress
Dealing with the slower tasks (tail).

Direct intermediate communication.

Process vs threads

Cache invalidation

Table of MapReduce run times…

G. Overheads affecting Twister4Azure(may be move to perf section)
Cloud service latencies
Initial data download from Blob storage

Intermediate data transfer – mitigated by c on c overlap

Initial job submission overhead – overhead of queue poling interval ,..table polling interval..Cannot be too small (money, scalability limit)
(Reduce and Merge steps overhead)
Data Broadcast overhead (upload/download from Azure)
H. Why Twister4Azure?
No framework when we started. (now MPI possible with VM Roles and Azure HPCS integration)
Takes care of framework issues – retrying- load balancing, fault tolerance, async opetations.. No need for the users to deal with cloud services..
Coordination among tasks.
Easy to use Familiar programming model.. Optimized iterative execution..

Dynamically scalable model.. availability. Less management overhead due to cloud services.
Monitoring UI’s..
Tested and proven many times..

Performance Methodology

*twister performance do not contain the initial data distribution times.

Azure os version 1.13 was used.
Table of Azure instance types..

V. KMeans Clustering
Intermediate data communication is costly as each of Map Task transfers a copy of the centroid values to the reducers.
Adjust performance using Azure sequential time vs Quarry sequential times…

1. Weak scaling speedup results (keep the workload per node constant)
2. Strong scaling results (Increase the number of nodes for constant total workload.)

3. Iterations scalability

4. Performance with different instance types.

5. Overhead test calculation using double computations

Tests 1 & 2 for Twister (java), Twister4Azure and hadoop. Rest is only for Twister4azure.
VI. MDS

The equation

X_k = invV * (B(X_k-1) * X_k-1)

BC = B(X_k-1) * X_k-1

X = invV * BC

Then Stress calculation…

Reference sueng-hee’s ccgrid paper and SMACOF in chapter 8 of Modern MDS book.

Everything stored as shorts. Converted to double only at the point of the actual calculation. Saves memory, but more computations. Intermediate data products from each Map task is only a portion of the total X matrix.
More challenging for Twister4Azure than KMeans due to finer grained tasks.

[image: image3]
Instance Type study(Compare execution graphs for small and XL… May be the time is for data download bandwidth might be the difference)
Strong scaling

Iterations scalability

Overhead calculation using double compute.

VII. SWG

Rerun the SWG test from the CCPE journal paper and compare with the results in that paper.
6[]

VIII. Blast

Rerun the BLAST test from the CCPE paper and compare with the result in that paper.
IX. Future Works
A. Workflow

B. Twister4Azure as a service

X. Related Works

AzureBlast7[]

Azure KMeans

CloudMapReduce8[]

Google AppEngine MapReduce

DryadLinq

Amazon elastic map reduce

Haloop9[]

Berkeley sparkl..10[]

iMapReduce (take info)

References

[1]
Thilina Gunarathne, Tak-Lon Wu, Jong Youl Choi, Seung-Hee Bae, and J. Qiu, "Cloud Computing Paradigms for Pleasingly Parallel Biomedical Applications," Concurr. Comput. : Pract. Exper. Special Issue, October 20 2010.

[2]
T. Gunarathne, W. Tak-Lon, J. Qiu, and G. Fox, "MapReduce in the Clouds for Science," in Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference on, 2010, pp. 565-572.

[3]
J. Y. Choi, S.-H. Bae, X. Qiu, and G. Fox, "High Performance Dimension Reduction and Visualization for Large High-dimensional Data Analysis," presented at the The 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid2010), Melbourne, Australia, 2010.

[4]
David M. Blei, Andrew Y. Ng, and Michael I. Jordan, "Latent dirichlet allocation," J. Mach. Learn. Res., vol. 3, pp. 993-1022, 2003.

[5]
J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, and G.Fox, "Twister: A Runtime for iterative MapReduce," presented at the Proceedings of the First International Workshop on MapReduce and its Applications of ACM HPDC 2010 conference June 20-25, 2010, Chicago, Illinois, 2010.

[6]
J. Ekanayake, T. Gunarathne, and J. Qiu, "Cloud Technologies for Bioinformatics Applications," Parallel and Distributed Systems, IEEE Transactions on, vol. 22, pp. 998-1011, 2011.

[7]
Wei Lu, Jared Jackson, and Roger Barga, "AzureBlast: A Case Study of Developing Science Applications on the Cloud," presented at the ScienceCloud: 1st Workshop on Scientific Cloud Computing co-located with HPDC 2010 (High Performance Distributed Computing), Chicago, IL, 2010.

[8]
"cloudmapreduce," Retrieved Sep. 20, 2010: http://code.google.com/p/cloudmapreduce/.

[9]
Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst, "HaLoop: Efficient Iterative Data Processing on Large Clusters," presented at the The 36th International Conference on Very Large Data Bases, Singapore, 2010.

[10]
Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica, "Spark: Cluster Computing with Working Sets," presented at the 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud '10), Boston, 2010.

�

Twister4Azure programming model

�

Cache Aware Hybrid Scheduling

�

Twister4Azure Multi-Dimensional Scaling Application

[image: image4.emf]Reduce

Reduce

Merge

Add

Iteration?

No

Map

Combine

Map

Combine

Map

Combine

Data Cache

Yes

Hybrid scheduling of the new iteration

Job Start

Job Finish

[image: image5.png]New Job
‘ Scheduling Queue

Worker Role
Map Map
1 2
Red Red
1 2

In Memory Data Cache

Left over tasks
that did not get
scheduled throug|
bulletin board.

Map Task Meta Data Cache

Job Bulletin Board +

In Memory Cache +
Execution History

New Iteration

[image: image6.wmf]BC:

Calculate BX

Map

Reduce

Merge

X:

Calculate

invV

(BX)

Map

Reduce

Merge

Calculate

Stress

Map

Reduce

Merge

New Iteration

Optional Step

