
Scalable Parallel Computing on Clouds Using Twister4Azure Iterative MapReduce

Thilina Gunarathne, Bingjing Zhang, Tak-Lon Wu, Judy Qiu
School of Informatics and Computing

Indiana University, Bloomington.
tgunarat, zhangbj, taklwu, xqiu@indiana.edu

Abstract— Recent advances in data intensive computing for science discovery are fueling a dramatic growth in use of data-intensive
iterative computations. The utility computing model introduced by cloud computing combined with the rich set of cloud
infrastructure and storage services offers a very attractive environment for scientists to perform data analytics. The challenges to
large-scale distributed computations demand new frameworks that are specifically tailored for cloud characteristics in order to
easily and effectively harness the power of clouds. Twister4Azure is a distributed decentralized iterative MapReduce runtime for
Windows Azure Cloud. It extends the familiar, easy-to-use MapReduce programming model with iterative extensions, enabling a
wide array of data mining and data analysis applications on the Azure cloud. This paper presents the Twister4Azure iterative
MapReduce runtime and discusses the applicability of Twister4Azure for scientific computation with highlighted features of fault-
tolerance, efficiency and simplicity. We study four data-intensive applications − two iterative scientific applications, Multi-
Dimensional Scaling and KMeans Clustering; two data–intensive pleasingly parallel scientific applications, BLAST+ sequence
searching and SmithWaterman sequence alignment. Performance measurements show comparable or a factor of 2 to 4 better
results than the traditional MapReduce runtimes deployed on up to 256 instances and for jobs with tens of thousands of tasks. We
also study and present solutions to several factors that affect the performance of iterative MapReduce applications on Windows
Azure Cloud.

Keywords- Iterative MapReduce, Cloud Computing, HPC, Scientific applications, Azure

1 INTRODUCTION
The current parallel computing landscape is vastly populated by the growing set of data-intensive computations that require

enormous amounts of computational as well as storage resources and novel distributed computing frameworks. The pay-as-
you-go Cloud computing model provides an option for the computational and storage needs of such computations. The new
generation of distributed computing frameworks such as MapReduce focuses on catering to the needs of such data-intensive
computations.

Iterative computations are at the core of the vast majority of large scale data intensive computations. Many important data
intensive iterative scientific computations can be implemented as iterative computation and communication steps, in which
computations inside an iteration are independent and are synchronized at the end of each iteration through reduce and
communication steps, making it possible for individual iterations to be parallelized using technologies such as MapReduce.
Examples of such applications include dimensional scaling, many clustering algorithms, many machine learning algorithms,
and expectation maximization applications, among others. The growth of such data intensive iterative computations in number
as well as importance is driven partly by the need to process massive amounts of data and partly by the emergence of data
intensive computational fields, such as bioinformatics, chemical informatics and web mining.

Twister4Azure is a distributed decentralized iterative MapReduce runtime for Windows Azure Cloud that is developed
utilizing Azure cloud infrastructure services. Twister4Azure extends the familiar, easy-to-use MapReduce programming model
with iterative extensions, enabling a wide array of large-scale iterative data analysis and scientific applications to utilize Azure
platform easily and efficiently in a fault-tolerant manner. Twister4Azure effectively utilizes the eventually-consistent, high-
latency Azure cloud services to deliver performance that is comparable to traditional MapReduce runtimes for non-iterative
MapReduce. It outperforms traditional MapReduce runtimes for iterative MapReduce computation. Twister4Azure has
minimal management & maintenance overheads and provides users with the capability to dynamically scale up or down the
amount of computing resources. Twister4Azure takes care of almost all the Azure infrastructure (service failures, load
balancing, etc.) and coordination challenges, and frees users from having to deal with cloud services. Window Azure claims to
allow the users to “Focus on your applications, not the infrastructure.” Twister4Azure take it one step further and lets users
focus only on the application logic without worrying about the application architecture.

Applications of Twister4Azure can be categorized as three classes of application patterns. First are the Map only
applications, which are also called pleasingly (or embarrassingly) parallel applications. Example of this type of applications
include Monte Carlo simulations, BLAST+ sequence searches, parametric studies and most of the data cleansing and pre-
processing applications. Section 4.4 analyzes the BLAST+[1] Twister4Azure application.

The second type of applications includes the traditional MapReduce type applications, which utilize the reduction phase
and other features of MapReduce. Twister4Azure contains sample implementations of SmithWatermann-GOTOH (SWG)[2]
pairwise sequence alignment and Word Count as traditional MapReduce type applications.

The third and most important type of applications Twister4Azure supports is the iterative MapReduce type applications. As
mentioned above, there exist many data-intensive scientific computation algorithms that rely on iterative computations,
wherein each iterative step can be easily specified as a MapReduce computation. Section IV and V present detailed analysis of
Kmeans Clustering and MDS iterative MapReduce implementations. Twister4Azure also contains an iterative MapReduce
implementation of PageRank and we are actively working on implementing more iterative scientific applications using
Twister4Azure.

Developing Twister4Azure was an incremental process, which began with the development of pleasingly parallel cloud
programming frameworks[3] for bioinformatics applications utilizing cloud infrastructure services. MRRoles4Azure[4]
MapReduce framework for Azure cloud was developed based on the success of pleasingly parallel cloud frameworks and was
released in December 2010. We started working on Twister4Azure to fill the void of distributed parallel programming
frameworks in the Azure environment (as of June 2010) and the first public beta release of Twister4Azure[5] was performed in
May 2011.

2 BACKGROUND
2.1 MapReduce

The MapReduce[6] data-intensive distributed computing paradigm was introduced by Google as a solution for processing
massive amounts of data using commodity clusters. MapReduce provides an easy-to-use programming model that features
fault tolerance, automatic parallelization, scalability and data locality-based optimizations.

2.2 Apache Hadoop
Apache Hadoop[7] MapReduce is a widely used open-source implementation of the Google MapReduce[6] distributed data

processing framework. Apache Hadoop MapReduce uses the Hadoop distributed file system(HDFS) [8] for data storage,
which stores the data across the local disks of the computing nodes while presenting a single file system view through the
HDFS API. HDFS is targeted for deployment on unreliable commodity clusters and achieves reliability through the replication
of file data. When executing Map Reduce programs, Hadoop optimizes data communication by scheduling computations near
the data by using the data locality information provided by the HDFS file system. Hadoop has an architecture consisting of a
master node with many client workers and uses a global queue for task scheduling, thus achieving natural load balancing
among the tasks. The Map Reduce model reduces the data transfer overheads by overlapping data communication with
computations when reduce steps are involved. Hadoop performs duplicate executions of slower tasks and handles failures by
rerunning the failed tasks using different workers

2.3 Twister
The Twister[9] iterative MapReduce framework is an expansion of the traditional MapReduce programming model,

which supports traditional as well as iterative MapReduce data-intensive computations. Twister supports MapReduce in the
manner of “configure once, and run many time”. Twister configures and loads static data into Map or Reduce tasks during the
configuration stage, and then reuses the loaded data through the iterations. In each iteration, the data is first mapped in the
compute nodes, and reduced, then combined back to the driver node (control node). Twister supports direct intermediate data
communication, using direct TCP as well as using messaging middleware, across the workers without persisting the interme-
diate data products to the disks. With these features, Twister supports iterative MapReduce computations efficiently when
compared to other traditional MapReduce runtimes such as Hadoop[10]. Fault detection and recovery are supported between
the iterations. In this paper, we use the java implementation of Twister and identify it as Java HPC Twister.

Java HPC Twister uses a master driver node for management and controlling of the computations. The Map and Reduce
tasks are implemented as worker threads managed by daemon processes on each worker node. Daemons communicate with
the driver node and with each other through messages. For command, communication and data transfers, Twister uses a Pub-
lish/Subscribe messaging middleware system and ActiveMQ[11] is used for the current experiments. Twister performs opti-
mized broadcasting operations by using chain method[12] and uses minimum spanning tree method[13] for efficiently send-
ing Map data from the driver node to the daemon nodes . Twister supports data distribution and management through a set of
scripts as well as through the HDFS[8].

2.4 Microsoft Azure platform
The Microsoft Azure platform [16] is a cloud-computing platform that offers a set of cloud computing services. Windows

Azure Compute allows the users to lease Windows virtual machine instances according to a platform as service model and
offers the .net runtime as the platform through two programmable roles called Worker Roles and Web Roles. Starting recently

Azure also supports VM roles (beta), enabling the users to deploy virtual machine instances supporting an infrastructure as a
service model as well. Azure offers a limited set of instance types (Table 1) on a linear price and feature scale[14].

Table 1 Azure Instance Types
Virtual Machine

Size
CPU

Cores Memory Cost Per Hour

Extra Small Shared 768 MB $0.04
Small 1 1.75 GB $0.12

Medium 2 3.5 GB $0.24
Large 4 7 GB $0.48

Extra Large 8 14 GB $0.96

The Azure Storage Queue is an eventual consistent, reliable, scalable and distributed web-scale message queue service that

is ideal for small, short-lived, transient messages. The Azure queue does not guarantee the order of the messages, the deletion
of messages or the availability of all the messages for a single request, although it guarantees eventual availability over
multiple requests. Each message has a configurable visibility timeout. Once a client reads a message, the message will be
invisible for other clients for the duration of the visibility time out. It will become visible for the other client once the visibility
time expires unless the previous reader deletes it. The Azure Storage Table service offers a large-scale eventually consistent
structured storage. Azure Table can contain a virtually unlimited number of entities (aca records or rows) that can be up to
1MB. Entities contain properties (aca cells), that can be up to 64KB. A table can be partitioned to store the data across many
nodes for scalability. The Azure Storage Blob service provides a web-scale distributed storage service in which users can store
and retrieve any type of data through a web services interface. Azure Blob services supports two types of Blobs, Page blobs
that are optimized for random read/write operations and Block blobs that are optimized for streaming. Windows Azure Drive
allows the users to mount a Page blob as a local NTFS volume.

Azure has a logical concept of regions that binds a particular service deployment to a particular geographic location or in
other words to a data center. Azure also has an interesting concept of ‘affinity groups’ that can be specified for both services
as well as for storage accounts. Azure tries its best to deploy services and storage accounts of a given affinity group close to
each other to ensure optimized communication between each other.

2.5 MRRoles4Azure

Figure 1. MRRoles4Azure Architecture [4]

MRRoles4Azure is a distributed decentralized MapReduce runtime for Windows Azure cloud platform that utilizes Azure
cloud infrastructure services. MRRoles4Azure overcomes the latencies of cloud services by using sufficiently coarser grained
map and reduce tasks. It overcomes the eventual data availability of cloud storage services through re-trying and explicitly
designing the system so that it does not rely on the immediate availability of data across all distributed workers. As shown in

Figure 1, MRRoles4Azure uses Azure Queues for map and reduce task scheduling, Azure Tables for metadata and monitoring
data storage, Azure Blob storage for data storage (input, output and intermediate) and the Window Azure Compute worker
roles to perform the computations.

In order to withstand the brittleness of cloud infrastructures and to avoid potential single point failures, we designed
MRRoles4Azure as a decentralized control architecture that does not rely on a central coordinator or a client side driver.
MRRoles4Azure provides users with the capability to dynamically scale up/down the number of computing resources.
MRRoles4Azure runtime dynamically schedules Map and Reduce tasks using a global queue achieving natural load balancing
given sufficient amount of tasks. MR4Azure handles task failures and slower tasks through re-execution and duplicate
executions respectively. MapReduce architecture requires the reduce tasks to ensure the receipt of all the intermediate data
products from Map tasks before beginning the reduce phase. Since ensuring such a collective decision is not possible with the
direct use of eventual consistent tables, MRRoles4Azure uses additional data structures on top of Azure Tables for this
purpose. Gunarathne et al.[4] present more detailed description about MRRoles4Azure and show that MRRoles4Azure
performs comparably to the other contemporary popular MapReduce runtimes.

2.6 Bio sequence analysis pipeline
The bio-informatics genome processing and visualizing pipeline[15] shown in Figure 2 inspired the application use cases

analyzed in this paper. This pipeline uses SmithWatermann-GOTOH application, analyzed in section 4.3, or BLAST+
application, analyzed in section 4.4, for sequence alignment, Pairwise clustering for sequence clustering and the Multi-
dimensional Scaling application, analyzed in section 4.1, to reduce the dimensions of the distance matrix to generate 3D
coordinates for visualization purposes. This pipeline is currently in use to process and visualize hundreds of thousands of
genomes with the ultimate goal of visualizing millions of genome sequences.

Figure 2. Bio sequence analysis pipeline

3 TWISTER4AZURE – ITERATIVE MAPREDUCE
Twister4Azure is an iterative MapReduce framework for Azure cloud that extends the MapReduce programming model to

support data intensive iterative computations. Twister4Azure enables a wide array of large-scale iterative data analysis and
data mining applications to utilize the Azure cloud platform in an easy, efficient and fault-tolerant manner. Twister4Azure
extends the MRRoles4Azure architecture utilizing the scalable, distributed and highly available Azure cloud services as the
underlying building blocks and employing a decentralized control architecture that avoids single point failures.

3.1 Twister4Azure Programming model
We identified the following requirements for choosing or designing a suitable programming model for scalable parallel

computing in cloud environments.
1) Ability to express a sufficiently large and useful subset of large-scale data intensive and parallel computations,
2) Should be simple, easy-to-use and familiar to the users,
3) Suitable for efficient execution in the cloud environments.
We selected the data-intensive iterative computations as a suitable and sufficiently large subset of parallel computations

that can be executed in the cloud environments efficiently, while using iterative MapReduce as the programming model.

3.1.1 Data intensive iterative computations
There exists a significant amount of data analysis, data mining and scientific computation algorithms that rely on iterative

computations, where we can easily specify each iterative step as a MapReduce computation. Typical data-intensive iterative

computations follow the structure given in Code 1 and Figure 3. We can identify two main types of data in these computations,
the loop invariant input data and the loop variant delta values. Loop variant delta values are the result or a representation of the
result of processing the input data in each iteration. Computations of an iteration uses the delta values from the previous
iteration as an input. Hence, these delta values need to be communicated to the computational components of the subsequent
iteration. One example of such delta values would be the centroids in a KMeans Clustering computation (section 4.2). Single
iterations of such computations are easy to parallelize by processing the data points or blocks of data points independently in
parallel and performing synchronization between the iterations through communication steps.

Code 1 Typical data-intensive iterative computation
1: k ← 0;
2: MAX ← maximum iterations
3: δ[0] ← initial delta value
4: while (k< MAX_ITER || f(δ[k], δ[k-1]))
5: foreach datum in data
6: β[datum] ← process (datum, δ[k])
7: end foreach
8: δ[k+1] ← combine(β[])
9: k ← k+1
10: end while

Figure 3. Structure of a typical data-intensive iterative application

Twister4Azure extends the MapReduce programming model to support easy parallelization of iterative computations by
adding a Merge step to the MapReduce model and by adding an extra input parameter for the Map and Reduce APIs to support
the loop-variant delta inputs. Code 1 depicts the structure of a typical data-intensive iterative application, while Code 2 depicts
the corresponding Twister4Azure MapReduce representation. Twister4Azure will generate map tasks (line 5-7 in Code 1, line
8-12 in Code 2) for each data block and each map task will calculate a partial result, which will be communicated to the
respective reduce tasks. The typical number of reduce tasks will be orders of magnitude less than the number of map tasks.
Reduce tasks (line 8 in Code 1, line 13-15 in Code2) will perform any necessary computations, combine the partial results
received and emit parts of the total reduce output. A single merge task (line 16-19 in Code 2) will merge the results emitted by
the reduce tasks and will evaluate the loop conditional function (line 8 and 4 in Code1), often comparing the new delta results
with the older delta results. Finally, the new delta output of the iteration will be broadcast or scattered to the map tasks of the
next iteration (line 7 Code2). Figure 4. presents the flow of the Twister4Azure programming model.

Code 1 Typical data-intensive iterative computation
1: k ← 0;
2: MAX ← maximum iterations
3: δ[0] ← initial delta value
4: α ← true

5: while (k< MAX_ITER || α)
6: distribute datablocks
7: broadcast δ[k]
8: map (datablock, δ[k])
9: foreach datum in datablock
10: β[datum] ← process (datum, δ[k])
11: end foreach
12: emit (β)

13: reduce (list of β)
14: β’ ← combine (list of β)
15: emit (β’)

16: merge (list of β’, δ[k])
17: δ[k+1] ← combine (list of β)
18: α ← f(δ[k], δ[k-1])
19: emit (α, δ[k+1])

20: k ←k+1
21: end while

Figure 4. Twister4Azure programming model

Reduce

Reduce

Merge
Add

Iteration? No

Map Combine

Map Combine

Map Combine

Data Cache

Yes

Hybrid scheduling of the new iteration

Job Start

Job Finis

Broadcast

3.1.2 Map and Reduce API
Twister4Azure extends the map and reduce functions of traditional MapReduce to include the loop variant delta values as

an input parameter. This additional input parameter is a list of key, value pairs. This parameter can be used to provide an
additional input through a broadcast operation or through a scatter operation. Having this extra input allows the MapReduce
programs to perform Map side joins avoiding the significant data transfer and performance costs of reduce side joins[13] and
avoiding the often unnecessary MapReduce jobs to perform reduce side joins. PageRank computation presented by Bu, Howe,
et.al.[16] demonstrates the inefficiencies of using Map side joins for iterative computations. Twister4Azure non-iterative
computations can also use this extra input to receive broadcast or scatter data to the Map & Reduce tasks.

Map(<key>, <value>, list_of <key,value>)
Reduce(<key>, list_of <value>, list_of <key,value>)

3.1.3 Merge
Twister4Azure introduces Merge as a new step to the MapReduce programming model to support iterative MapReduce

computations. Merge task executes after the Reduce step. Merge Task receives all the Reduce outputs and the broadcast data
for the current iteration as the inputs. There can only be one merge task for a MapReduce job. With merge, the overall flow of
the iterative MapReduce computation would look as follows.

Map -> Combine -> Shuffle -> Sort -> Reduce -> Merge->Broadcast
Since Twister4Azure does not have a centralized driver to take control decisions, the Merge step serves as the “loop-test”

in the Twister4Azure decentralized architecture. Users can add a new iteration, finish the job or schedule a new MapReduce
job from the Merge task. These decisions can be made based on the number of iterations or by comparing the results from the
previous iteration with the current iteration, such as the k-value difference between iterations for KMeansClustering. Users
can use the results of the current iteration and the broadcast data to make these decisions. It is possible to specify the output of
merge task as the broadcast data of the next iteration.

Merge(list_of <key,list_of<value>>,list_of <key,value>)

3.2 Data Cache
Twister4Azure locally caches the loop-invariant (static) input data across iterations in the memory and instance storage

(disk) of worker roles. Data caching avoids the download, loading and parsing cost of loop invariant input data, which are
reused in the iterations. These data products are comparatively larger sized and consist of traditional MapReduce key-value
pairs. The caching of loop-invariant data gives significant speedups for the data-intensive iterative MapReduce applications.
These speedups are even more significant in cloud environments as caching and reusing of data helps to overcome the
bandwidth and latency limitations of cloud data storages.

Twister4Azure supports three levels of data caching, 1) instance storage (disk) based caching, 2) direct in-memory caching
and 3) memory-mapped-file based caching. For the disk-based caching, Twister4Azure stores all the files it downloads from
the Blob storage in the local instance storage. Local disk cache automatically serves all the requests for previously downloaded
data products. Currently Twister4Azure do not support the eviction of the disk cached data products and assume that the input
data blobs do not change during the course of a computation.

Selection of data for in-memory and memory-mapped-file based caching needs to be specified in the form of InputFormats.
Twister4Azure provides several built-in InputFormat types that support both in-memory as well as memory-mapped-file based
caching. Currently Twister4Azure performs least recently used (LRU) based cache eviction for these two types of caches.

Twister4Azure maintains a single instance of each data cache per worker-role shared across map, reduce and merge
workers, allowing the reuse of cached data across different tasks as well as across any MapReduce application within the same
job. Section 5 presents a more detailed discussion about the performance trade-offs and implementation strategies of the
different caching mechanisms.

3.3 Cache Aware Scheduling
In order to take maximum advantage of the data caching for iterative computations, Map tasks of the subsequent iterations

need to be scheduled with awareness of the data products that are cached in the worker-roles. If the loop-invariant data for a
map task is present in the DataCache of a certain worker-role, then Twister4Azure should assign that particular map task to
that particular worker-role. Decentralized architecture of Twister4Azure presents a challenge in this situation, as
Twister4Azure does not have a central entity that has a global view of the data products cached in the worker-roles or has the
ability to push the tasks to a specific worker-role.

As a solution to the above issue, Twister4Azure opted for a model in which the workers pick tasks to execute based on the
data products they have in their DataCache and based on the information that is published in to a central bulletin board (an
Azure table). Naïve implementation of this model requires all the tasks for a particular job to be advertised, making the bulletin
board a bottleneck. We avoid this by locally storing the Map task execution histories (meta-data required for execution of a

map task) from the previous iterations. With this optimization, the bulletin board only advertises information about the new
iterations. This allows the workers to start the execution of the map tasks for a new iteration as soon as the workers get the
information about a new iteration through the bulletin board. High-level pseudo-code for the cache aware scheduling algorithm
is given in Code 3. Every free map worker executes this algorithm. As shown in Figure 5. , Twister4Azure schedules new
MapReduce jobs (non-iterative and 1st iteration of iterative) through Azure queues. Twister4Azure hybrid cache aware
scheduling algorithm is currently configured to give priority for the iterations of the already executing tasks over new
MapReduce computations.

Any tasks for an iteration that was not scheduled in the above manner will be added back to the task-scheduling queue and
will be executed by the first available free worker. This ensures the eventual completion of the job and the fault tolerance of
the tasks in the event of a worker failure and ensures the dynamic scalability of the system when new workers are added to the
virtual cluster. Duplicate task execution can happen in very rare occasions due to the eventual consistency nature of the Azure
Table storage. However, these duplicate executed tasks do not affect the accuracy of the computations due to the side effect
free nature of the MapReduce programming model.

There are efforts that use multiple queues together to increase the throughput of the Azure Queue’s. However, queue
latency is not a significant bottleneck for Twister4Azure iterative computations as scheduling of only the first iteration depends
on Azure queues.

Code 3 Cache aware hybrid decentralized scheduling algo-
rithm. (Executes in every map worker)

1: while (mapworker)
2: foreach jobiter in bulletinboard
3: cachedtasks[]← select tasks from taskhistories where

 ((task.iteration == jobiter.baseiteration) and
 (memcache[] contains task.inputdata))

4: foreach task in cachedtasks
5: newtask ← new Task

 (task.metadata, jobiter.iteration, …)
6: if (newtask.duplicate()) continue;
7: taskhistories.add(newTask)
8: newTask.execute()
9: end foreach
10: // perform steps 3 to 8 for disk cache
11: if (no task executed from cache)
12: addTasksToQueue (jobiter)
13: end foreach

14: msg ← queue.getMessage())
15: if (msg !=null)
16: newTask ← new Task(msg.metadata, msg.iter, ….)
17: if (newTask.duplicate()) continue;
18: taskhistories.add(newTask)
19: newTask.execute()
20: else sleep()
21: end while

Figure 5. Cache Aware Hybrid Scheduling

3.4 Data broadcasting
The loop variant data (δ values in Code 1) needs to be broadcasted or scattered to all the tasks in an iteration. With

Twister4Azure users can specify broadcast data for iterative as well as for non-iterative jobs. In typical data-intensive iterative
computations, the loop-variant data (δ) is orders of magnitude smaller than the loop-invariant data.

Twister4Azure supports two types of data broadcasting methods, 1) using a combination of Azure blob storage and Azure
tables, 2) Using a combination of direct TCP and Azure blob storage. First method broadcasts smaller data products using
Azure tables and the larger data products using the blob storage. Hybrid broadcasting improves the latency and the
performance when broadcasting smaller data products. This method works well for smaller number of instances and does not
scale well for large number of instances.

The second method implements a tree based broadcasting algorithm that uses Windows Communication Foundation
(WCF) based Azure TCP inter-role communication mechanism for the data communication as shown in Figure 6. This method
supports configurable number of parallel outgoing TCP transfers per instance (three parallel transfers in Figure 6) , enabling
the users and the framework to customize the number of parallel transfers based on the I/O performance of the instance type,

the scale of the computation and the size of the broadcast data. Since the direct communication is relatively unreliable in cloud
environments, this method also supports an optional persistent backup that uses the Azure Blob storage. The broadcast data
will get uploaded to the Azure Blob storage in the background and any instances that did not receive the TCP based broadcast
data will be able to fetch the broadcast data from this persistent backup. This persistent backup also ensures that the output of
each iteration will be stored persistently making it possible to roll back iterations if needed.

Twister4Azure supports caching of broadcast data ensuring that only a single retrieval or transmission of Broadcast data
occurs per node per iteration. This increases the efficiency of broadcasting when there are more than one map/reduce/merge
worker per worker-role and when there are multiple waves of map tasks per iteration. Some of our experiments contained up to
64 such tasks per worker-role per iteration.

Figure 6. Tree based broadcast over TCP with Blob storage as the persistent backup. N3 shows the utilization of data cache to share the broadcast data

whithin an instance.

3.5 Intermediate data communication
MRRoles4Azure uses the Azure blob storage to store intermediate data products and the Azure tables to store meta-data

about intermediate data products, which performed well for non-iterative applications. Based on our experience, tasks in
iterative MapReduce jobs are of relatively finer granular making the intermediate data communication overhead more
prominent. They produce a large number of smaller intermediate data products causing the Blob storage based intermediate
data transfer model to under-perform. Hence, we opted for a hybrid model, in which Twister4Azure transfers smaller data
products through the Azure tables. Twister4Azure uses the intermediate data product meta-data table entry itself to store the
intermediate data products up to a certain size (currently 64kb that is the limit for a single item in an Azure table entry) and
uses the blob storage for the data products that are larger than that limit. Twister4Azure also supports using direct TCP
communication for the intermediate data communication. This intermediate communication can be made fault tolerant by
uploading the data products to persistent Blob store in the background.

3.6 Fault Tolerance
Twister4Azure supports typical MapReduce fault tolerance through re-execution of failed tasks, ensuring the eventual

completion of the iterative computations. Recent improvements to Azure queues service include the ability to update the queue
messages, ability to dynamically extend the visibility time outs and to support for much longer visibility timeouts up to 7 days.
We are currently working on improving the Queue based fault tolerance of Twister4Azure utilizing these newly introduced
features of the Azure queues that allows us to support much more finer grained monitoring and fault tolerant as oppose to the
time out based current fault tolerance implementation.

3.7 Other features
 Twister4Azure also supports the deployment of multiple MapReduce applications in a single deployment, making it

possible to utilize more than one MapReduce application inside an iteration of a single job. This also enables Twister4Azure to
support workflow scenarios without redeployment. Twister4Azure also provides users with a web-based monitoring console
from which they can monitor the progress of their jobs. Twister4Azure provides users with CPU and memory utilization
information for their jobs and currently we are working on displaying this information graphically from the monitoring
console.

Table 2. Evaluation cluster configurations

Cluster CPU cores Memory I/O Performance Compute Resource OS

Azure Small 1 X 1.6 GHz 1.75 GB 100 MBPS, shared network
infrastructure

Virtual instances on
shared hardware

Windows
Server

Azure Large 4 X 1.6 GHz 7 GB 400 MBPS, shared network
infrastructure

Virtual instances on
shared hardware

Windows
Server

Azure Extra
Large

8 X 1.6 GHz 14 GB 800 MBPS, shared network
infrastructure

Virtual instances on
shared hardware

Windows
Server

EC2 XL 4 X ~2 Ghz 15 GB High (EC2 terminology) ,
shared network infrastructure

Virtual instances on
shared hardware

Linux

EC2 HCXL 8 X ~2.5 Ghz 7 GB High (EC2 terminology) ,
shared network infrastructure

Virtual instances on
shared hardware

Linux

HighMem 8 X 2.4 GHz
(Intel®Xeon® CPU E5620)

192 GB Gigabit ethernet, dedicated
switch

Dedicated bare metal
hardware

Linux

iDataPlex 8 X 2.33 GHz
 (Intel®Xeon® CPU E5410)

16 GB Gigabit ethernet, dedicated
switch

Dedicated bare metal
hardware

Linux

4 SCIENTIFIC APPLICATION CASE STUDIES
4.1 Multi Dimensional Scaling

The objective of multi-dimensional scaling (MDS) is to map a data set in high-dimensional space to a user-defined lower
dimensional space with respect to the pairwise proximity of the data points[17]. Dimensional scaling is used mainly in the
visualizing of high-dimensional data by mapping them to two or three-dimensional space. MDS has been used to visualize
data in diverse domains, including but not limited to bio-informatics, geology, information sciences, and marketing. We use
MDS to visualize dissimilarity distances for hundreds of thousands of DNA and protein sequences to identify relationships.

In this paper we use Scaling by MAjorizing a COmplicated Function (SMACOF)[18], an iterative majorization algorithm.

The input for MDS is an N*N matrix of pairwise proximity values, where N is the number of data points in the high-
dimensional space. The resultant lower dimensional mapping in D dimensions, called the X values, is an N*D matrix.

The limits of MDS are more bounded by memory size than the CPU power. The main objective of parallelizing MDS is to
leverage the distributed memory to support processing of larger data sets. In this paper, we implement the parallel SMACOF
algorithm described by Bae et al[19]. This results in iterating a chain of three MapReduce jobs, as depicted in Figure 5. For the
purposes of this paper, we perform an unweighted mapping that results in two MapReduce jobs steps per iteration, BCCalc and
StressCalc. Each BCCalc Map task generates a portion of the total X matrix. MDS is challenging for Twister4Azure due to its
relatively finer grained task sizes and multiple MapReduce applications per iteration.

Figure 5. Twister4Azure Multi-Dimensional Scaling

Figure 6. MDS weak scaling where we the workload per core is
constant. Ideal is a straight horizontal line.

 Figure 7. Data size scaling using 128 Azure small
instances/cores, 20 iterations.

We compared the Twister4Azure MDS performance with Java HPC Twister MDS implementation. The Java HPC Twister

experiment was performed in the HighMem cluster (Table 2). Twister4Azure tests were performed using Azure Large
instances. Java HPC Twister results do not include the initial data distribution time. Figure 6 presents the execution time for
weak scaling, where we increase the number of compute resources while keeping the work per core constant (work ~ number
of cores). We notice that Twister4Azure exhibits encouraging performance and scales similar to the Java HPC Twister. Figure
7 shows that MDS performance scales well with increasing data sizes.

The JavaHPCTwister cluster is a bare metal cluster with dedicated network and with faster processors. It is expected to be
significantly faster than the cloud environment for the same number of CPU cores. The adjusted performance estimate the
performance of the two systems when the underlying hardware differences are negated. The Twister4Azure adjusted (ta) line in
Figure 6 and 7 depicts the performance of Twister4Azure normalized according to the sequential MDS BC calculation and
Stress calculation performance difference between the Azure(tsa) instances and the nodes in Cluster(tsc) environment used for
Java HPC Twister. It is calculated using ta x (tsc/tsa). This estimation however does not account for the overheads that remain
constant irrespective of the computation time. In the above testing, the total number of tasks per job ranged from 10240 to
40960, proving Twister4Azure’s ability to support large number of tasks effectively.

4.2 KMeans Clustering
Clustering is the process of partitioning a given data set into disjoint clusters. The use of clustering and other data mining
techniques to interpret very large data sets has become increasingly popular, with petabytes of data becoming commonplace.
The K-Means clustering[20] algorithm has been widely used in many scientific and industrial application areas due to its
simplicity and applicability to large data sets. We are currently working on a scientific project that requires clustering of
several TeraBytes of data using KMeansClustering and millions of centroids.

K-Means clustering is often implemented using an iterative refinement technique, in which the algorithm iterates until the
difference between cluster centers in subsequent iterations, i.e. the error, falls below a predetermined threshold. Each iteration
performs two main steps, the cluster assignment step, and the centroids update step. In the MapReduce implementation,
assignment step is performed in the Map Task and the update step is performed in the Reduce task. Centroid data is
broadcasted at the beginning of each iteration. Intermediate data communication is relatively costly in KMeans clustering as
each Map Task outputs data equivalent to the size of the centroids in each iteration.

Figure 8(a) presents the Twister4Azure KMeansClustering performance on different types of Azure compute instances,
with the number of map workers per instance equal to the number of cores of the instance. We did not notice any significant
performance variations across the instances for KMeansClustering. Figure 8(b) shows that the performance scales well with the
number of iterations. The performance improvement with a higher number of iterations in Figure 8(b) is due to the initial data
download/parsing overhead distributing over the iterations. Figure 8(c) presents the number of map tasks executing at a given
time throughout the job. The job consisted of 256 map tasks per iteration, generating two waves of map tasks per iteration. The
dips represent the synchronization at the end of iterations. The gaps between the bars represent the total overhead of the
intermediate data communication, reduce task execution, merge task execution, data broadcasting and the new iteration
scheduling that happens between iterations. According to the graph, such overheads are relatively small for the
KMeansClustering application. Figure 9(c) depicts the execution time of MapTasks across the whole job. The higher execution
time of the tasks in the first iteration is due to the overhead of initial data downloading, parsing and loading, which is an
indication of the performance improvement we get in subsequent iterations due to the data caching.

We compared the Twister4Azure KMeans Clustering performance with implementations of Java HPC Twister and

Hadoop. The Java HPC Twister and Hadoop experiments were performed in a dedicated iDataPlex cluster (Table 2).
Twister4Azure tests were performed using the Azure small instances that contain single CPU core. Java HPC Twister results
do not include the initial data distribution time. Figure 9(a) presents the relative (relative to the smallest parallel test with 32
cores/instances) parallel efficiency of KMeans Clustering for strong scaling, in which we keep the amount of data constant
and increase the number of instances/cores. Figure 9(b) presents the execution time for weak scaling, wherein we increase the
number of compute resources while keeping the work per core constant (work ~ number of nodes). We notice that
Twister4Azure performance scales well up to 256 instances in both experiments. In 9(a), the relative parallel efficiency of
JavaHPCTwister for 64 cores is greater than 1. We believe the memory load was a bottleneck in the 32 core experiment, while
it’s not the case for 64 core experiment. We used direct TCP intermediate data transfer and Tree based TCP broadcasting when
performing these experiments. Tree based TCP broadcasting scaled well up to the 256 Azure small instances. Using this result,
we can hypothesis that our Tree based broadcasting algorithm will scale well for 256 Azure Extra Large instances (2048 total
number of CPU cores) as well, since the workload, communication pattern and other properties remain same irrespective of the
instance type.

The Twister4Azure adjusted (ta) line in Figure 9(b) depicts the performance of Twister4Azure normalized according to the
ratio of Kmeans sequential performance difference between Azure (tsa) instances and the Kmeans sequential performance in
the cluster (tsc) nodes calculated using the ta x (tsc/tsa) equation. This estimation, however, does not take into account the
overheads that remain constant irrespective of the computation time. All tests were performed using 20 dimensional data and
500 centroids.

4.3 Sequence alignment using SmithWaterman GOTOH
SmithWaterman [21] algorithm with GOTOH [22] (SWG) improvement is used to perform pairwise sequence alignment

on two FASTA sequences. We use SWG application kernel in parallel to calculate the all-pairs dissimilarity of a set of n
sequences resulting in n*n distance matrix. Set of map tasks for a particular job are generated using the blocked decomposition

Figure 8. Twister4Azure KMeansClustering (20D data with 500 centroids, 32 cores). Left(a): Instance type study with 10 iterations 32 million data points

Center(b) : Time per iteration with increasing number of iterations 32 million data points.
Right(c): Twister4Azure executing Map Task histogram for 128 million data points in 128 Azure small instances

Figure 9. KMeansClustering Scalability. Left(a): Relative parallel efficiency of strong scaling using 128 million data points.

Center(b): Weak scaling. Workload per core is kept constant (ideal is a straight horizontal line).
Right(c) :Twister4Azure Map task execution time histogram for 128 million data points in 128 Azure small instances

of strictly upper triangular matrix of the resultant space. Reduce tasks aggregate the output from a row block. In this
application, the size of the input data set is relatively small, while the size of the intermediate and the output data are
significantly larger due to the n2 result space, stressing the performance of inter-node communication and output data storage.
SWG can be considered as a memory-intensive application. More details about the Hadoop-SWG application implementation
can be found in [23]. The Twister4Azure SWG implementation also follows the same architecture and blocking strategy as in
the Hadoop-SWG implementation. Twister4Azure SWG uses NAligner [24] as the computational kernel.

We performed the SWG weak scaling test from Gunarathne et al.[4] using Twister4Azure to compare the performance of
Twister4Azure SWG implementation on Azure Small instances (Table 2) with Amazon ElasticMapReduce using EC2 XL
(Table 2) instances and Apache Hadoop implementation on iDataPlex cluster (Table 2). Figure 10 shows that the
Twister4Azure SWG performs comparable to the Amazon EMR and Apache Hadoop. The performance of Twister4Azure
SWG lied between +/- 2% of MRRoles4Azure SWG performance[4], confirming that the extra complexity of Twister4Azure
has not adversely affected the non-iterative MapReduce performance.

Figure 10. Twister4Azure SWG performance. Left : Raw execution time. Center : Execution time adjusted to compensate the sequential performance

difference in the environments relative to Hadoop Bare Metal Right: Parallel efficiency relative to 64*1024 test case

4.4 Sequence searching using Blast
NCBI BLAST+ [1] is the latest version of popular BLAST program, that is used to handle sequence similarity searching.

Queries are processed independently and have no dependencies between them making it possible to use multiple BLAST
instances to process queries in a pleasingly parallel manner. We performed the BLAST+ scaling speedup performance
experiment from Gunarathne, et al[3] using Twister4Azure Blast+ to compare the performance with Amazon EC2 classic
cloud with EC2 and Apache Hadoop BLAST+ implementations. We used Azure Extra Large instances (Table 2) with 8 Map
workers per node for the Twister4Azure BLAST experiments. We used a sub-set of a real-world protein sequence data set (100
queries per map task) as the input BLAST queries and used NCBI’s non-redundant (NR) protein sequence database. All of the
implementations downloaded and extracted the compressed BLAST database to a local disk of each worker prior to processing
of the tasks. Twister4Azure’s ability to specify deploy time initialization routines was used to download and extract the
database. The performance results do not include the database distribution times.

The Twister4Azure BLAST+ absolute efficiency (Figure 11) was better than the Hadoop and EMR implementations.

Additionally the Twister4Azure performance was comparable to the performance of the Azure Classic Cloud BLAST results
that we had obtained earlier. This shows that the performance of BLAST+ is sustained in Twister4Azure, even with the added
complexity of MapReduce and iterative MapReduce.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Ti
m

e
(s

)

Num. of Cores * Num. of Blocks

50

60

70

80

90

100

110

Re
la

tiv
e

Pa
ra

lle
l E

ffi
ci

en
cy

Num. of Cores * Num. of Blocks

0

500

1000

1500

2000

2500

3000
Ad

ju
st

ed
 T

im
e

(s
)

Twister4Azure Amazon EMR Hadoop on Bare Metal

Figure 11. Twister4Azure BLAST performance. Left : Time to process a single query file. Right: Absolute parallel efficiency

5 PERFORMANCE CONSIDERATIONS FOR LARGE SCALE ITERATIVE APPLICATIONS ON AZURE
In this section, we perform a detailed performance analysis of several factors that affect the performance of large-scale

parallel iterative MapReduce applications on Azure, in the context of Multi-Dimensional-Scaling application presented in
Section 4.1. These applications typically perform tens to hundreds of iterations. Hence, we focus mainly on optimizing the
performance of the majority of iterations, while giving a lower priority in optimizing the initial iteration.

In this section we use a dimension-reduction computation of 204800 * 204800 element input matrix, partitioned in to 1024
data blocks (number of map tasks is equal to the number of data blocks), using 128 cores and 20 iterations as our use case. We
focus mainly on the BCCalc computation as it is much more computationally intensive than the StressCalc computation. Table
2 presents the execution time analysis of this computation under different mechanisms. The ‘Task Time’ in Table 2 refers to
the end-to-end execution time of BCCalc Map Task including the initial scheduling, data acquiring and the output data
processing time. The ‘Map Fn Time’ refers to the time taken to execute the Map function of the BCCalc computation excluding
the other overheads. In order to eliminate the skewedness of ‘Task Time’ introduced by the data download in the first
iterations, we calculate the averages and standard deviations excluding the first iteration. ‘# of slow tasks’ is defined as the
number of tasks that take more than twice the average time for that particular metric. We used a single Map worker per
instance in the Azure small instances and four Map workers per instances in the Azure Large instances.

5.1 Local Storage Caching
As discussed in section 3.1, it is possible to optimize iterative MapReduce computations by caching the loop-invariant

input data across the iterations. We use the Azure Blob storage as the input data storage for Twister4Azure computations.
Twister4Azure supports local instance (disk) storage caching as the simplest form of data caching. Local storage caching
allows the subsequent iterations (or different applications or tasks in the same iteration) to reuse the input data from the local
storage rather than fetching them from the Azure Blob Storage. This resulted in speedups of more than 50 % (estimated) over a
non-cached MDS computation of the sample use case. However, local storage caching causes the applications to read and
parse data from the instances storage each time the data is used. On the other hand, on-disk caching puts minimal strain on the
instance memory.

Twister4Azure also supports the ‘in-memory caching’ of the loop-invariant data across iterations. With in-memory
caching, Twister4Azure fetch the data from the Azure Blob storage, parse and load them in to the memory during the first
iteration. After the first iteration, these data products remain in memory throughout the course of the computation for reuse by
the subsequent iterations, eliminating the overhead of reading and parsing data from disk. As shown in Table 2, in-memory
caching improved the average run time of the BCCalc map task by approximately 36% and the total run time by approximately
22% over disk based caching. Twister4Azure performs cache-invalidation for in-memory cache using Least Recently Used
(LRU) policy. In a typical Twister4Azure computation, the loop-invariant input data stays in the in-memory cache for the
duration of the computation, while Twister4Azure caching policy will evict the broadcast data for iterations after the particular
iterations.

As mentioned in section 3.3, Twister4Azure supports cache-aware scheduling for data cached in-memory as well as for
data cached in local-storage.

Table 2 Execution time analysis of a MDS computation. 20480 * 20480 input data matrix, 128 total cores, 20

iterations. 20480 BCCalc map tasks.

Mechanism
Instance
Type

Total
Execution
Time (s)

Task Time (BCCalc) Map Fn Time (BCCalc)

Average
(ms)

STDEV
(ms)

of slow
tasks

Average
(ms)

 STDEV
(ms)

of slow
tasks

Disk Cache only small * 1 2676 6,390 750 40 3,662 131 0

In-Memory
Cache

small * 1 2072 4,052 895 140 3,924 877 143
large * 4 2574 4,354 5,706 1025 4,039 5,710 1071

Memory
Mapped File
(MMF) Cache

small * 1 2097 4,852 486 28 4,725 469 29

large * 4 1876 5,052 371 6 4,928 357 4

5.2 Non-Deterministic Performance Anomalies
When using in-memory caching, we started to notice occasional non-deterministic fluctuations of the Map function

execution times in some of the tasks (143 slow Map Fn time tasks in row 2 of Table 2). These slow tasks, even though few,

affect the performance of the computation significantly because the execution time of a whole iteration is dependent on the
slowest task of the iteration. Even though Twister4Azure supports the duplicate execution of the slow tasks, duplicate tasks for
non-initial iterations are often more costlier than the total execution time of a slow task that uses data from a cache, as the
duplicate task would have to fetch the data from the Azure Blob Storage. Figure 12 top row gives an example of an execution
trace of a computation that shows this performance fluctuation. The performance fluctuations cause occasional unusual high
task execution times in the left graph while the tail of the bars in the right hand graph shows the effect of performance
fluctuations for the execution time of iterations. With further experimentation, we were able to narrow down the cause of this
anomaly to the use of large amount of memory, including the in-memory data cache, within a single .NET process. One may
assume that using only local storage caching would perform better as it reduces the load on memory. We in fact found that the
Map function execution times were very stable when using local storage caching (zero slow tasks and smaller standard
deviation in Map Fn time in row 1 of Table 2). However, the ‘Task Time’ that includes the disk reading time is unstable when
local-storage cache is used (40 slow ‘Task Time’ tasks in row 1 of Table 2).

A memory-mapped file contains the contents of a file mapped to the virtual memory and can be read or modified directly
through memory. Memory-mapped files can be shared across multiple processes and can be used to facilitate inter-process
communication. .NET framework version 4 introduces first class support for memory-mapped files to .NET world. .NET
memory mapped files facilitate the creation of a memory-mapped file directly in the memory, with no associated physical file,
specifically to support inter-process data sharing. We exploit this feature by using such memory-mapped files to implement the
Twister4Azure in-memory data cache. In this implementation, Twister4Azure fetch the data directly to the memory-mapped
file and the memory mapped file will be reused across the iterations. The Map function execution times become stable with the
memory-mapped file based cache implementation (row 4 and 5 of Table 2).

With our earlier in-memory cache implementation, the performance on larger Azure instances (with number of workers
equal to the number of cores) was very unstable (row 3 of Table 2). On the contrary, when using memory-mapped caching, the
execution times were more stable on the larger instances than in smaller instances (row 4 vs 5 in Table 2). The ability to utilize
larger instances effectively is a significant advantage as usage of larger instances improves the data sharing across workers,
facilitate better load balancing within the instances, provide better deployment stability, reduce the data broadcasting load and
simplify the cluster monitoring.

The memory-mapped file based caching requires the data to be parsed (decoded) each time the data is used adding an
overhead to the task execution times. In order to avoid duplicate loading of data products to memory, we use real time data
parsing in the case of memory-mapped files. Hence, the parsing overhead becomes part of the Map function execution time.
However, we find that the execution time stability advantage outweighs the added cost. In Table 2, we present results using
Small and Large Azure instances. Unfortunately, we were not able to utilize Extra Large instances during the course of our
testing due to an Azure resource outage bound to our ‘affinity group’. We believe the computations will be even more stable in
Extra Large instances. Middle row of Figure 12 presents an execution trace of a job that uses Memory Mapped file based
caching.

Figure 12: Execution traces of MDS iterative MapReduce computations using Twister4Azure. TOP ROW: Using in-

memory caching on small instances. MIDDLE ROW: Using Memory-Mapped file based caching on Large instances..
LEFT COLUMN: shows the execution time of tasks in each iteration. The taller bars represent the MDSBCCalc

computation, while the shorter bars represent the MDSStressCalc computation. A pair of BCCalc and StressCalc bars
represents an iteration. RIGHT COLUMN: Number of active map tasks of the computation at a given time (A 500 second view
from the 3rd iteration onwards). The wider bars represent BCCalc computations, while the narrower bars represent StressCalc

computations. The gaps between the computations represent the overhead of task scheduling, reduce task execution, and merge
task execution and data broadcasting.

6 RELATED WORK
CloudMapReduce[25] for Amazon Web Services (AWS) and Google AppEngine MapReduce[26] follow an architecture

similar to MRRoles4Azure, in which they utilize the cloud services as the building blocks. Amazon ElasticMapReduce[27]
offers Apache Hadoop as a hosted service on the Amazon AWS cloud environment. However, none of them support iterative
MapReduce. Spark[28] is a framework implemented using Scala to support interactive MapReduce like operations to query
and process read-only data collections, while supporting in-memory caching and re-use of data products.

Azure HPC scheduler is a new Azure feature that enables the users to launch and manage high-performance computing
(HPC) and other parallel applications in the Azure environment. Azure HPC scheduler supports parametric sweeps, Message
Passing Interface (MPI) and LINQ to HPC applications together with a web-based job submission interface. AzureBlast[29] is
an implementation of parallel BLAST on Azure environment that uses Azure cloud services with an architecture similar to the
Classic Cloud model, which is a predecessor to Twister4Azure. CloudClustering[30] is a prototype KMeansClustering
implementation that uses Azure infrastructure services. CloudClustering uses multiple queues (single queue per worker) for job
scheduling and supports caching of loop-invariant data.

6.1 Microsoft Daytona
Microsoft Daytona[12] is a recently announced iterative MapReduce runtime developed by Microsoft Research for

Microsoft Azure Cloud Platform. It builds on some of the ideas of the earlier Twister system. Daytona utilizes Azure Blob
Storage for storing intermediate data and final output data enabling data backup and easier failure recovery. Daytona supports
caching of static data between iterations. Daytona combines the output data of the Reducers to form the output of each iteration.
Once the application has completed, the output can be retrieved from Azure Blob storage or can be continually processed by
using other applications. In addition to the above features, which are similar to Twister4Azure, Daytona also provides
automatic environment deployment and data splitting for MapReduce computations and claims to support a variety of data
broadcast patterns between the iterations. However, as oppose to Twister4Azure, Daytona uses a single master node based
controller to drive and manage the computation. This centralized controller substitute the ‘Merge’ step of Twister4Azure, but
makes Daytona prone to single point of failures.

Currently Excel DataScope is presented as an application of Daytona. Users can upload data in their Excel spreadsheet to
the DataScope service or select a data set already in the cloud, and then select an analysis model from our Excel DataScope
research ribbon to run against the selected data. The results can be returned to the Excel client or remain in the cloud for further
processing and/or visualization. Daytona is available as a “Community Technology Preview” for academic and non-
commercial usage.

6.2 Haloop
Haloop[16] extends Apache Hadoop to support iterative applications and supports on-disk caching of loop-invariant data as

well as loop-aware scheduling. Similar to Java HPC Twister and Twister4Azure, Haloop also provides a new programming
model, which includes several APIs that can be used for expressing iteration related operations in the application code.

However Haloop does not have an explicit Merge operation similar to Twister4Azure and uses a separate MapReduce job
to perform the Fixpoint evaluation for the terminal condition evaluation. HaLoop provides a high-level query language, which
is not available in either Java HPC Twister or Twister4Azure.

HaLoop performs centralized loop aware task scheduling to accelerate iterative MapReduce executions. Haloop enables
data reuse across iterations, by physically co-locating tasks that process the same data in different iterations. In HaLoop, the
first iteration is scheduled similarly to traditional Hadoop. After that, the master node remembers the association between
data and node and the scheduler tries to retain previous data-node associations in the following iterations. HaLoop also sup-
ports on-disk caching for reducer input data and reducer output data. Reducer input data cache stores the intermediate data
generated by the map tasks, which optimizes the Reduce side joins. Twister4Azure additional input parameter for Map API
eliminates the need for such reduce side joins. Reducer output data-cache is specially designed to support Fixpoint Evalua-
tions using the output data from older iterations. Twister4Azure currently do not support this feature.

7 CONCLUSIONS AND FUTURE WORK
We have developed Twister4Azure, a novel iterative MapReduce distributed computing runtime for Azure cloud. We

implemented four significant scientific applications using Twister4Azure – MDS, Kmeans Clustering, SWG sequence
alignment and BLAST+. Twister4Azure enables the users to easily and efficiently perform large-scale iterative data analysis
for scientific applications on a commercial cloud platform.

In developing Twister4Azure, we encounter the challenges of scalability and fault tolerance unique to utilizing the cloud
interfaces. We have developed a solution to support multi-level caching of loop-invariant data across iterations as well as
caching of any reused data (e.g. broadcast data) and proposed a novel hybrid scheduling mechanism to perform cache-aware
scheduling.

We presented MDS and Kmeans Clustering as iterative scientific applications of Twister4Azure. Experimental evaluation
shows that MDS using Twister4Azure on public cloud environment scales similar to the Java HPC Twister MDS on a local
cluster. Further, the Kmeans Clustering using Twster4Azure with virtual instances outperforms Apache Hadoop in a local
cluster by a factor of 2 to 4 and exhibits performance comparable to Java HPC Twister running on a local cluster. We consider
the results presented in this paper as one of the first study of Azure performance for large-scale iterative scientific applications.

Twister4Azure and Java HPC Twister illustrate our roadmap to a cross platform new programming paradigm supporting
large scale data analysis, an important area for both HPC and eScience applications.

ACKNOWLEDGMENT
This work is funded in part by the Microsoft Azure Grant. We would also like to thank Geoffrey Fox and Seung-Hee Bae

for many discussions.

REFERENCES
[1] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, T.L. Madden, BLAST+: architecture and applications, BMC Bioinformatics
2009, 10:421, (2009).
[2] J. Ekanayake, T. Gunarathne, J. Qiu, Cloud Technologies for Bioinformatics Applications, Parallel and Distributed Systems, IEEE Transactions on, 22
(2011) 998-1011.
[3] T. Gunarathne, T.-L. Wu, J.Y. Choi, S.-H. Bae, J. Qiu, Cloud computing paradigms for pleasingly parallel biomedical applications, Concurrency and
Computation: Practice and Experience, (2011) n/a-n/a.
[4] T. Gunarathne, W. Tak-Lon, J. Qiu, G. Fox, MapReduce in the Clouds for Science, in: Cloud Computing Technology and Science (CloudCom), 2010
IEEE Second International Conference on, 2010, pp. 565-572.
[5] Twister4Azure, Retrieved May 10, 2012, http://salsahpc.indiana.edu/twister4azure/.
[6] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Commun. ACM, 51 (2008) 107-113.

http://salsahpc.indiana.edu/twister4azure/

[7] Apache Hadoop, Retrieved May 10, 2012, from ASF: http://hadoop.apache.org/core/.
[8] Hadoop Distributed File System HDFS, Retrieved May 10, 2012; http://hadoop.apache.org/hdfs/.
[9] J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, G.Fox, Twister: A Runtime for iterative MapReduce, in: Proceedings of the First International
Workshop on MapReduce and its Applications of ACM HPDC 2010 conference June 20-25, 2010, ACM, Chicago, Illinois, 2010.
[10] B. Zhang, Y. Ruan, T.-L. Wu, J. Qiu, A. Hughes, G. Fox, Applying Twister to Scientific Applications, in: CloudCom 2010, IUPUI Conference Center
Indianapolis, 2010.
[11] Apache, ActiveMQ, Retrieved May 10, 2012, from :http://activemq.apache.org/.
[12] Microsoft Daytona, Retrieved Feb 1, 2012, from : http://research.microsoft.com/en-us/projects/daytona/.
[13] J. Lin, C. Dyer, Data-Intensive Text Processing with MapReduce, Synthesis Lectures on Human Language Technologies, 3 (2010) 1-177.
[14] Windows Azure Compute, Retrieved July 25th 2011; http://www.microsoft.com/windowsazure/features/compute/.
[15] Judy Qiu, Thilina Gunarathne, Jaliya Ekanayake, Jong Youl Choi, Seung-Hee Bae, Hui Li, Bingjing Zhang, Yang Ryan, Saliya Ekanayake, Tak-Lon
Wu, Scott Beason, Adam Hughes, Geoffrey Fox, Hybrid Cloud and Cluster Computing Paradigms for Life Science Applications, in: 11th Annual
Bioinformatics Open Source Conference BOSC 2010, Boston, 2010.
[16] Yingyi Bu, Bill Howe, Magdalena Balazinska, Michael D. Ernst, HaLoop: Efficient Iterative Data Processing on Large Clusters, in: The 36th
International Conference on Very Large Data Bases, VLDB Endowment, Singapore, 2010.
[17] J.B. Kruskal, M. Wish, Multidimensional Scaling, Sage Publications Inc., 1978.
[18] J. de Leeuw, Convergence of the majorization method for multidimensional scaling, Journal of Classification, 5 (1988) 163-180.
[19] S.-H. Bae, J.Y. Choi, J. Qiu, G.C. Fox, Dimension reduction and visualization of large high-dimensional data via interpolation, in: Proceedings of the
19th ACM International Symposium on High Performance Distributed Computing, ACM, Chicago, Illinois, 2010, pp. 203-214.
[20] S. Lloyd, Least squares quantization in PCM, Information Theory, IEEE Transactions on, 28 (1982) 129-137.
[21] T.F. Smith, M.S. Waterman, Identification of common molecular subsequences, Journal of Molecular Biology, 147 (1981) 195-197.
[22] O. Gotoh, An improved algorithm for matching biological sequences, Journal of Molecular Biology, 162 (1982) 705-708.
[23] J. Ekanayake, T. Gunarathne, J. Qiu, G. Fox, Cloud Technologies for Bioinformatics Applications, Accepted for publication in Journal of IEEE
Transactions on Parallel and Distributed Systems, (2010).
[24] JAligner., Retrieved December, 2009; http://jaligner.sourceforge.net.
[25] cloudmapreduce, Retrieved Sep. 20, 2010: http://code.google.com/p/cloudmapreduce/.
[26] AppEngine MapReduce, Retrieved July 25th 2011; http://code.google.com/p/appengine-mapreduce.
[27] Amazon Web Services, Retrieved Mar. 20, 2011, from Amazon: http://aws.amazon.com/.
[28] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: Cluster Computing with Working Sets, in: 2nd USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud '10), Boston, 2010.
[29] Wei Lu, Jared Jackson, Roger Barga, AzureBlast: A Case Study of Developing Science Applications on the Cloud, in: ScienceCloud: 1st Workshop on
Scientific Cloud Computing co-located with HPDC 2010 (High Performance Distributed Computing), ACM, Chicago, IL, 2010.
[30] A. Dave, W. Lu, J. Jackson, R. Barga, CloudClustering: Toward an iterative data processing pattern on the cloud, in: First International Workshop on
Data Intensive Computing in the Clouds, Anchorage, Alaska, 2011.

http://hadoop.apache.org/core/
http://hadoop.apache.org/hdfs/
http://research.microsoft.com/en-us/projects/daytona/
http://www.microsoft.com/windowsazure/features/compute/
http://jaligner.sourceforge.net/
http://code.google.com/p/cloudmapreduce/
http://code.google.com/p/appengine-mapreduce
http://aws.amazon.com/

	1 Introduction
	2 Background
	2.1 MapReduce
	2.2 Apache Hadoop
	2.3 Twister
	2.4 Microsoft Azure platform
	2.5 MRRoles4Azure
	2.6 Bio sequence analysis pipeline

	3 TWISTER4AZURE – ITERATIVE MAPREDUCE
	3.1 Twister4Azure Programming model
	3.1.1 Data intensive iterative computations
	3.1.2 Map and Reduce API
	3.1.3 Merge

	3.2 Data Cache
	3.3 Cache Aware Scheduling
	3.4 Data broadcasting
	3.5 Intermediate data communication
	3.6 Fault Tolerance
	3.7 Other features

	4 Scientific Application Case Studies
	4.1 Multi Dimensional Scaling
	4.2 KMeans Clustering
	4.3 Sequence alignment using SmithWaterman GOTOH
	4.4 Sequence searching using Blast

	5 Performance Considerations For Large Scale Iterative Applications on Azure
	5.1 Local Storage Caching
	5.2 Non-Deterministic Performance Anomalies

	6 Related Work
	6.1 Microsoft Daytona
	6.2 Haloop

	7 Conclusions and Future Work
	Acknowledgment
	References

