
Portable Parallel Programming on Cloud and HPC: Scientific Applications of 
Twister4Azure 

Thilina Gunarathne, Bingjing Zhang, Tak-Lon Wu, Judy Qiu 
School of Informatics and Computing  

Indiana University, Bloomington. 
{tgunarat, zhangbj, taklwu, xqiu}@indiana.edu

 
Abstract— Recent advancements in data intensive computing 
for science discovery are fueling a dramatic growth in use of 
data-intensive iterative computations. The utility computing 
model introduced by cloud computing combined with the rich 
set of cloud infrastructure services offers a very attractive 
environment for scientists to perform such data intensive 
computations. The challenges to large scale distributed 
computations on clouds demand new computation frameworks 
that are specifically tailored for cloud characteristics in order 
to easily and effectively harness the power of 
clouds.  Twister4Azure is a distributed decentralized iterative 
MapReduce runtime for Windows Azure Cloud. It extends the 
familiar, easy-to-use MapReduce programming model with 
iterative extensions, enabling a wide array of large-scale 
iterative data analysis for scientific applications on Azure 
cloud. This paper presents the applicability of Twister4Azure 
with highlighted features of fault-tolerance, efficiency and 
simplicity.  We study three data-intensive applications − two 
iterative scientific applications, Multi-Dimensional Scaling and 
KMeans Clustering; one data–intensive pleasingly parallel 
scientific application, BLAST+ sequence searching. 
Performance measurements show comparable or a factor of 2 
to 4 better results than the traditional MapReduce runtimes 
deployed on up to 256 instances and for jobs with tens of 
thousands of tasks. 

Keywords- Iterative MapReduce, Cloud Computing, HPC, 
Scientific applications 

I.  INTRODUCTION 

The current scientific computing landscape is vastly 
populated by the growing set of data-intensive computations 
that require enormous amounts of computational as well as 
storage resources and novel distributed computing 
frameworks.  The pay-as-you-go Cloud computing model 
provides an option for the computational and storage needs 
of such computations. The new generation of distributed 
computing frameworks such as MapReduce focuses on 
catering to the needs of such data-intensive computations. 

Iterative computations are at the core of the vast majority 
of scientific computations. Many important data intensive 
iterative scientific computations can be implemented as 
iterative computation and communication steps, in which 
computations inside an iteration are independent and are 
synchronized at the end of each iteration through reduce and 
communication steps, making it possible for individual 
iterations to be parallelized using technologies such as 
MapReduce. Examples of such applications include 
dimensional scaling, many clustering algorithms, many 

machine learning algorithms, and expectation maximization 
applications, among others. The growth of such data 
intensive  iterative computations in number as well as 
importance is driven partly by the need to process massive 
amounts of data and partly by the emergence of data 
intensive computational fields, such as bioinformatics, 
chemical informatics and web mining. 

Twister4Azure is a distributed decentralized iterative 
MapReduce runtime for Windows Azure Cloud that was 
developed utilizing Azure cloud infrastructure services. 
Twister4Azure extends the familiar, easy-to-use MapReduce 
programming model with iterative extensions, enabling a 
wide array of large-scale iterative data analysis and scientific 
applications to utilize Azure platform easily and efficiently 
in a fault-tolerant manner. Twister4Azure effectively utilizes 
the eventually-consistent, high-latency Azure cloud services 
to deliver performance that is comparable to traditional 
MapReduce runtimes for non-iterative MapReduce. It 
outperforms traditional MapReduce runtimes for iterative 
MapReduce computation. Twister4Azure has minimal 
management & maintenance overheads and provides users 
with the capability to dynamically scale up or down the 
amount of computing resources. Twister4Azure takes care of 
almost all the Azure infrastructure (service failures, load 
balancing, etc) and coordination challenges, and frees users 
from having to deal with cloud services. Window Azure 
claims to allow the users to “Focus on your applications, not 
the infrastructure.” Twister4Azure take it one step further 
and lets users focus only on the application logic without 
worrying about the application architecture. 

Applications of Twister4Azure can be categorized as 
three classes of application patterns. First are the Map only 
applications, which are also called pleasingly (or 
embarrassingly) parallel applications. Example of this type 
of applications include Monte Carlo simulations, BLAST+ 
sequence searches, parametric studies and most of the data 
cleansing and pre-processing applications. Section VI 
analyzes the BLAST+[1] Twister4Azure application.  

The second type of applications includes the traditional 
MapReduce type applications, which utilize the reduction 
phase and other features of MapReduce. Twister4Azure 
contains sample implementations of SmithWatermann-
GOTOH (SWG)[2] pairwise sequence alignment and 
WordCount as traditional MapReduce type applications.  

The third and most important type of applications 
Twister4Azure supports is the iterative MapReduce type 
applications.  There exist many data-intensive scientific 
computation algorithms that rely on iterative computations, 
wherein each iterative step can be easily specified as a 



MapReduce computation. Examples of such applications 
include Dimension Reduction, Clustering, most of the 
Machine Learning algorithms, Classification and regression 
analysis. In this paper, we present detailed analysis of 
KMeansClustering and MDS iterative MapReduce 
implementation in sections IV and V respectively. 
Twister4Azure also contains an iterative MapReduce 
implementation of PageRank and we are actively working on 
implementing more iterative scientific applications. 

Developing Twister4Azure was an incremental process, 
which began with the development of pleasingly parallel 
cloud programming frameworks[3] for bioinformatics 
applications utilizing cloud infrastructure services. 
MRRoles4Azure[4] MapReduce framework for Azure cloud 
was developed based on the success of pleasingly parallel 
cloud frameworks and was released in December 2010. First 
public beta release of Twister4Azure[5] occurred in May 
2011. We started working on Twister4Azure to fill the void 
of distributed programming frameworks in the Azure 
environment (as of June 2010). 

II. BACKGROUND 

A. MapReduce 

The MapReduce[6] data-intensive distributed computing 
paradigm was introduced by Google as a solution for 
processing massive amounts of data using commodity 
clusters. MapReduce provides an easy-to-use programming 
model that features fault tolerance, automatic parallelization, 
scalability and data locality-based optimizations. Apache 
Hadoop[7] MapReduce is a widely used open-source 
implementation of the Google MapReduce distributed data 
processing framework. 

B. Twister 

The Twister[8] iterative MapReduce Framework is an 
expansion of the traditional MapReduce programming 
model, which supports traditional as well as iterative 
MapReduce data-intensive computations. Twister supports 
MapReduce in the manner of “configure once, and run 
many time”.  During the configuration stage, static data is 
configured and loaded into Map or Reduce tasks, and then 
reused through the iterations. After that, in the running 
stage, the data is first mapped to compute nodes, and 
reduced, then combined back to driver node (control node) 
in each iteration. With these features, Twister supports 
iterative MapReduce computations efficiently when 
compared to other traditional MapReduce runtimes such as 
Hadoop[9]. Fault detection and recovery are also supported 
between each iteration. In this paper we use the java 
implementation of Twister and identify it as Java 
HPCTwister. 

Java HPCTwister has one driver node for controlling 
and the Map and Reduce tasks are implemented as working 
threads managed by daemon process on each worker node. 
Daemons communicate with the driver node and with each 
other through messages. For command, communication and 
data transfers, Twister uses a Publish/Subscribe messaging 

middleware system and ActiveMQ[10] is used for the 
current experiments. Twister does not currently have an 
integrated distributed file system and the data distribution 
and management are operated through scripts.  

C. Microsoft Azure platform 

The Microsoft Azure platform [16] is a cloud computing 
platform that offers a set of cloud computing services. 
Windows Azure Compute allows the users to lease Windows 
virtual machine instances and offers the .net runtime as the 
platform through two programmable roles called Worker 
Roles and Web Roles. Starting recently Azure also supports 
VM roles (beta), giving the ability for users to directly 
deploy virtual machine instances. Azure offers a limited set 
of instances on a linear price and feature scale[11]. Azure 
small instance contains one 1.6GHz CPU core with 1.75GB 
memory and costs 0.12$ per hour. Medium, Large and Extra 
Large instances multiply the features and the cost of small 
instances by a factor of 2, 4 and 8 respectively. 

The Azure Storage Queue is an eventual consistent, 
reliable, scalable and distributed web-scale message queue 
service that is ideal for small, short-lived, transient messages. 
The Azure queue does not guarantee the order of the 
messages, the deletion of messages or the availability of all 
the messages for a single request, although it guarantees 
eventual availability over multiple requests. Each message 
has a configurable visibility timeout. Once it is read by a 
client, the message will not be visible for other clients until 
the visibility time expires or if the previous reader delete it.  

The Azure Storage Table service offers a large-scale 
eventually consistent structured storage. Azure Table can 
contain a virtually unlimited number of entities (aca records 
or rows) that can be up to 1MB. Entities contain properties 
(aca cells), that can be up to 64KB. A table can be 
partitioned to store across many nodes for scalability.  

The Azure Storage BLOB service provides a web-scale 
distributed storage service in which users can store and 
retrieve any type of data through a web services interface.  
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Figure 1.  MRRoles4Azure Architecture[1] 

MRRoles4Azure is a distributed decentralized 
MapReduce runtime for Windows Azure cloud platform that 
utilizes Azure cloud infrastructure services. MRRoles4Azure 
overcomes the latencies of cloud services by using 



sufficiently coarser grained map and reduce tasks. It 
overcomes the eventual data availability of cloud storage 
services through re-trying and explicitly designing the 
system so that it does not rely on the immediate availability 
of data across all distributed workers. As in Figure 1 
MRRoles4Azure uses Azure Queues for map and reduce task 
scheduling, Azure Tables for metadata storage and 
monitoring data storage, Azure BLOB storage for data 
storage (input, output and intermediate) and the Window 
Azure Compute worker roles to perform the computations. 

In order to withstand the brittleness of cloud 
infrastructures and to avoid potential single point failures, 
MR4Azure was designed as a decentralized control 
architecture which does not rely on a central coordinator or a 
client side driver. MR4Azure provides users with the 
capability to dynamically scale up/down the number of 
computing resources. The Map and Reduce tasks of the 
MR4Azure runtime are dynamically scheduled using global 
queues achieving natural load balancing given sufficient 
amount of tasks. MR4Azure handles task failures and slower 
tasks through re-execution and duplicate executions 
respectively. MapReduce architecture requires the reduce 
tasks to ensure the receipt of all the intermediate data 
products from Map tasks before beginning the reduce phase. 
Since ensuring such a collective decision is not possible  
with the direct use of eventual consistent tables, 
MRRoles4Azure uses additional data structures on top of 
Azure Tables for this purpose. Gunarathne et al.[1] presents 
more detailed description about MRRoles4Azure and show 
that MRRoles4Azure performs comparably to the other 
popular MapReduce runtimes. 

III. TWISTER4AZURE – ITERATIVE MAPREDUCE  

Twister4Azure extends the MRRoles4Azure to support 
such iterative MapReduce executions, enabling a wide array 
of large-scale iterative data analysis and scientific 
applications to easily platform and efficiently utilize the 
Azure in a fault-tolerant manner. Twister4Azure utilizes the 
scalable, distributed and highly-available Azure cloud 
services as the underlying building blocks and sustains the 
decentralized architecture of MRRoles4Azure, avoiding 
single point failures. 

A. Twister4Azure Programming model 

There exists a significant amount of data analysis as well 
as scientific computation algorithms that rely on iterative 
computations, where each iterative step can easily be 
specified as a MapReduce computation. Typical data-
intensive iterative computations follow the structure given in 
Code 1. We can identify two main types of data in these 
computations, the loop invariant input data and the loop 
variant delta values. Delta values are the result or a 
representation of the result of processing the input data in 
each iteration. These delta values are used in the computation 
of the next iteration. One example of such delta values would 
be the centroids in a KMeans Clustering computation 
(section IV). Single iterations of such computations are easy 
to parallelize by processing the data points or blocks of data 
points independently in parallel and performing 

synchronization between the iterations through 
communication steps. 

 
Code 1 Typical data-intensive iterative computation 
1: k ← 0; 
2: MAX ← maximum iterations 
3: δ[0] ← initial delta value 
4: while ( k< MAX_ITER || f(δ[k], δ[k-1]) ) 
5:      foreach datum in data 
6:            β[datum] ← process (datum, δ[k]) 
7:      end foreach 
8:      δ[k+1] ← combine(β[]) 
9:      k ← k+1 
10: end while 
 

 
Typical data-intensive iterative computations can be 

easily parallelized using the Twister4Azure iterative map 
reduce model. Twister4Azure will generate map tasks for 
each data block (line 5-7 in Code 1) and each map task will 
calculate a partial result, which will be communicated to the 
respective reduce tasks. The typical number of reduce tasks 
will be orders of magnitude less than the number of map 
tasks. Reduce tasks (line 8) will perform any necessary 
computations, combine the partial results received and output 
part of the final result. A single merge task will merge the 
results emitted by the reduce tasks and evaluate the loop 
conditional function (line 8 and line 4), often comparing the 
new delta results with the older delta results. The new delta 
output of the merge tasks will then be broadcasted to all the 
map tasks in the next iteration. Figure 2 presents the flow of 
the Twister4Azure programming model.  

1) Map  and  Reduce API 
Twister4Azure extends the map and reduce functions of 

traditional MapReduce to include the broadcast data (delta 
values) as an input parameter. The broadcast data is provided 
as follows to the Map and Reduce task as a list of key-value 
pairs.  

Map(<key>, <value>, list_of <key,value>) 
Reduce(<key>, list_of <value>, list_of <key,value>) 

 

2) Merge 
Merge is a new step Twister4Azure introduces to the 

MapReduce programming model to support iterative 
applications; it executes after the Reduce step. Merge Task 
receives all the Reduce outputs and the broadcast data for the 
current iteration as the inputs.  There can only be one merge 
task for a MapReduce job. With merge, the overall flow of 
the iterative MapReduce computation flow would look as 
follows. 

Reduce
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Add 

Iteration? No

Map Combine

Map Combine

Map Combine

Data Cache
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Hybrid scheduling of the new iteration

Job Start

Job Finish
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Figure 2. Twister4Azure programming model 



Map -> Combine -> Shuffle -> Sort -> Reduce -> Merge 
Since Twister4Azure does not have a centralized driver 

to take control decisions, the Merge step serves as the “loop-
test” in the Twister4Azure decentralized architecture. Users 
can add a new iteration, finish the job or schedule a new 
MapReduce job from the Merge task. These decisions can be 
made based on the number of iterations or on comparisons of 
the results from the previous iteration and the current 
iteration, such as the k-value difference between iterations 
for KMeansClustering.  Users can use the results of the 
current iteration and the broadcast data to make these 
decisions. It is possible to specify the output of merge task as 
the broadcast data of the next iteration. 

Merge(list_of <key,list_of<value>>,list_of <key,value>) 

B. Data Cache 

Twister4Azure In-Memory DataCache caches the loop-
invariant (static) data across iterations in the memory of 
worker roles. Caching avoids the data download, loading and 
parsing cost of loop invariant input data, which then gets 
reused in the iterations. These data products are 
comparatively larger sized and consist of traditional MR key-
value pairs.  Twister4Azure maintains a single in-memory 
data cache storage per worker-role shared across map, 
reduce and merge workers, allowing the reuse of cached data 
across different tasks as well as across any MapReduce 
application within the same job. The caching of loop-
invariant data gives significant speedups for the data-
intensive iterative MapReduce applications. Broadcast data 
also utilize the data cache to optimize the data broadcasting 
as mentioned in Subsection D. 

Twister4Azure also supports disk-based caching of the 
Azure Blobs. Twister4Azure stores all the files it downloads 
from the Blob storage in the local instance storage. Any 
request for a previously downloaded data product will be 
served from the local disk cache.  

C. Cache Aware Scheduling 

In order to take maximum advantage of the data caching 
for iterative computations, Map tasks of the subsequent 
iterations need to be scheduled with cache awareness. A map 
task that requires processing a certain data product needs to 
be scheduled to the worker role with that data product in the 
DataCache, if there is any. Decentralized architecture of 
Twister4Azure presents a challenge in this situation as 
Twister4Azure does not have a central entity which has a 
global view of the data products cached in the worker roles 
or has the ability to push the tasks to a specific worker role.  

As a solution to the above issue, Twister4Azure opted for 
a model in which the workers pick tasks to execute based on 
the data products they have in their DataCache and based on 
the information that is published in a central bulletin board 
(an Azure table). Naïve implementation of this model 
requires all the tasks for a particular job to be advertised, 
making the bulletin board a bottleneck. Twister4Azure 
avoids this issue by locally storing the executed map task 
execution histories (meta-data required for execution of a 
map task) for the cached data products. This allows the 
workers to pick map tasks for execution, immediately after 

the worker gets the information about a new iteration. With 
this optimization, the bulletin board only advertises 
information about the new iterations. As shown in Figure 3, 
new MapReduce Jobs (non-iterative and 1st iteration of 
iterative) are scheduled through scheduling queues.  

Any tasks that did not get scheduled in the above manner 
will be added back to the task scheduling queue by the first 
available worker without a matching task. This ensures the 
eventual completion of the job and the fault tolerance of the 
tasks in the event of a worker failure and also ensures the 
dynamic scalability of the system when new workers are 
brought up. This mechanism can also be used to avoid the 
slow executing tail tasks of the iteration by duplicate 
execution in available instances. However, handling of slow 
executing tasks of iterations is still under development and is 
not used in the experiments that were performed for this 
paper.  

 

D. Data broadcasting 

The loop variant data (δ values in Code 1) needs to 
broadcasted to all the tasks in an iteration. With 
Twister4Azure users can specify broadcast data for iterative 
as well as non-iterative jobs. Typically, in data-intensive 
iterative computations the loop-variant data (δ) is orders of 
magnitude smaller than the loop-invariant data. Currently 
Twister4Azure uses the Azure blob storage to communicate 
the broadcast data. Twister4Azure supports caching of 
broadcast data ensuring that only a single retrieval of 
Broadcast data occurs per node per iteration. This increases 
the efficiency of broadcasting when there is more than one 
map/reduce/merge worker per worker-role and when there 
are multiple waves of map tasks per iteration. In some of our 
experiments, we had more than 16 such tasks per workerrole. 

E. Intermediate data communication  

MRRoles4Azure uses the Azure blob storage to store  
intermediate data products and the Azure tables to store 
meta-data about intermediate data products, which 
performed well for non-iterative appications. Based on our 
experience, tasks in iterative MapReduce jobs are of 
relatively finer granularity making the intermediate data 
communication overhead more prominent and they produce  
a large number of smaller intermediate data products causing 
the Blob storage based intermediate data transfer model to 
under-perform.  Hence, we opted for a hybrid model, in 
which smaller data products are direct transferred through 
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Figure 3. Cache Aware Hybrid Scheduling



the Azure tables. Twister4Azure uses the intermediate data 
product meta-data table entry itself to store the intermediate 
data products up to a certain size (currently 64kb which is 
the limit for a single item in an Azure table entry) and use 
the blob storage for the data products that are larger than that 
limit. Additionally in Twister4Azure, all data 
communication is performed using Asynchronous 
operations. 

F. Other features 

Twister4Azure supports typical MapReduce fault 
tolerance through re-execution of failed tasks, ensuring the 
eventual completion of the iterative computations.  

 Twister4Azure also supports the deployment of multiple 
MapReduce applications in a single deployment, making it 
possible to utilize more than one MapReduce application 
inside an iteration of a single job. This also enables 
workflow scenarios without redeployment.  Twister4Azure 
also provides users with a web-based monitoring console 
from which they can monitor the progress of their jobs. 

IV. KMEANS  CLUSTERING 

Clustering is the process of partitioning a given data set 
into disjoint clusters.  The use of clustering and other data 
mining techniques to interpret very large data sets has 
become increasingly popular, with petabytes of data 
becoming commonplace. The K-Means clustering[12] 
algorithm has been widely used in many scientific and 
industrial application areas due to its simplicity and 

applicability to large data sets. We are currently working on 
a scientific project that requires clustering of several 
TeraBytes of data using KMeansClustering and millions of 
centroids. 

K-Means clustering is often implemented using an 
iterative refinement technique, in which the algorithm 
iterates until the difference between cluster centers in 
subsequent iterations, i.e. the error, falls below a 
predetermined threshold. Each iteration performs two main 
steps, the cluster assignment step, and the centroids update 
step. In the MapReduce implementation, assignment step is 
performed in the Map Task and the update step is performed 
in the Reduce task. Centroid data is broadcasted at the 
beginning of each iteration. Intermediate data 
communication is relatively costly in KMeans clustering as 
each Map Task outputs data equivalent to the size of the 
centroids in each iteration. 

Figure 4(a) presents the Twister4Azure 
KMeansClustering performance on different Azure compute 
instance types, with the number of map workers per instance 
equal to the number of cores of the instance. We did not 
notice any significant performance variations across the 
instances. Figure 4(b) shows that the performance scales well 
with the number of iterations. The performance improvement 
with a higher number of iterations in Figure 4(b) is due to the 
initial data download/parsing overhead distributing over the 
iterations.  Figure 4(c) presents the number of map tasks 
executing at a given time throughout the job. The job 
consisted of 256 map tasks per iteration, generating 2 waves 
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of map tasks per iteration. The dips represent the 
synchronization at the end of iterations. The gaps between 
the bars represent the overheads of the intermediate data 
communication, reduce tasks, merge task, data broadcasting 
and the new iteration scheduling that happens between 
iterations. According to the graph such overheads are 
relatively very small. Figure 5(c) depicts the execution time 
of MapTasks across the whole job. The higher execution 
time of the tasks in the first iteration is due to the overhead 
of data downloading, parsing and loading, which can be 
considered as an indication of the performance improvement 
we get in subsequent iterations due to data caching.  

We also compared the Twister4Azure KMeansClustering 
performance with implementations of Java HPC Twister and 
Hadoop. The Java HPC Twister and Hadoop experiments 
were performed in a dedicated iDataPlex cluster of Intel(R) 
Xeon(R) CPU E5410 (2.33GHz) x 8 cores with 16GB 
memory per compute node with Gigabit Ethernet on Linux. 
Java HPCTwister results do not include the initial data 
distribution time.  Figure 5(a) presents the relative (relative 
to the smallest parallel test in 32 instances) parallel 
efficiency of KMeansClustering for strong scaling, in which  
we keep the amount of data constant and increase the 
number of instances/cores. Figure 5(c) presents the execution 
time for weak scaling, wherein we increase the number of 
compute resources while keeping the work per core constant 
(work ~ number of nodes). We notice that Twister4Azure 
performance scales well up to 128 nodes in both experiments 
and shows minor performance degradation with 192 and 256 

instances. The Twister4Azure adjusted line in Figure 5(b) 
depicts the performance of Twister4Azure normalized 
according to the pure sequential KMeans performance 
difference between the Azure(tsa) and Cluster(tsc) 
environments using ta x (tsc/tsa). This estimation, however, 
does not take into account the overheads which remain 
constant irrespective of the computation time. All tests we 
performed using 20 dimensional data and 500 centroids. 

V. MULTI DIMENSIONAL SCALING 

The objective of multi-dimensional scaling (MDS) is to 
map a data set in high-dimensional space to a user-defined 
lower dimensional space with respect to the pairwise 
proximity of the data points[13].  Dimensional scaling is 
used mainly in the visualizing of high-dimensional data by 
mapping them to two or three dimensional space.  MDS has 
been used to visualize data in diverse domains, including but 
not limited to bio-informatics, geology, information sciences, 
and marketing. We use MDS to visualize dissimilarity 
distances for hundreds of thousands of DNA and protein 
sequences to identify relationships.  

 
In this paper we use Scaling by MAjorizing a 

COmplicated Function (SMACOF)[14], an iterative 
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majorization algorithm. The input for MDS is an N*N matrix 
of pairwise proximity values, where N is the number of data 
points in the high-dimensional space.  The resultant lower 
dimensional mapping in D dimensions, called the X values, 
is an N*D matrix. 

The limits of MDS are more bounded by memory size 
than the CPU power. The main objective of parallelizing 
MDS is to leverage the distributed memory to support 
processing of larger data sets. In this paper, we implement 
the parallel SMACOF algorithm described by Bae et al[15]. 
This results in iterating a chain of 3 MapReduce jobs, as 
depicted in Figure 8. For the purposes of this paper, we 
perform an unweighted mapping that results in two 
MapReduce jobs steps per iteration, CalculateBC and 
CalculateStress. Each BCCalc Map task generates a portion 
of the total X matrix. MDS is more challenging for 
Twister4Azure due to its relatively finer grained task sizes 
and multiple MapReduce applications per iteration. 

Figure 6(a) presents Twister4Azure MDS performance 
on different Azure compute instance types, with number of 
map workers per instance equal to number of cores of the 
instance. The performance degraded with the larger 
instances, which could be due to the memory bandwidth 
limitations. Figure 6(b) depicts the execution time of 
individual MapTasks for 10 iterations of MDS on 64 
instances. The higher execution time of the tasks in the first 
iteration is due to the overhead of data downloading, parsing 
and loading. This overhead is relatively much higher in MDS 
(up to ~300% of task execution time vs ~60% in KMeans), 
leading to Twister4Azure with caching providing large 
performance gains relative to any non-caching 
implementation. Figure 6(c) presents the number of map 
tasks executing at a given time for 10 iterations. The gaps 
between iterations are small, yet relatively larger than in 
KMeans which depicts that the between-iteration overheads 
are slightly larger for MDS relative to the task execution 
time. Also we can notice several tasks taking abnormally 
long execution times, slowing down the whole iteration. 
Figure 7(c) shows that the performance improves with a 
higher number of iterations in which is due to the initial data 
download/parsing overhead distributing over the iterations.   

We also compared the Twister4Azure MDS performance 
with Java HPC Twister MDS implementation. The Java HPC 
Twister experiment was performed in a dedicated cluster of 
Intel(R) Xeon(R) CPU E5620 (2.4GHz) x 8 cores with 
192GB memory per compute node with Gigabit Ethernet on 
Linux. Java HPCTwister results do not include the initial 

data distribution time.  Figure 7(a) presents the execution 
time for weak scaling, where we increase the number of 
compute resources while keeping the work per core constant 
(work ~ number of nodes). We notice that Twister4Azure 
exhibits acceptable encouraging performance. Figure 7(b) 
shows that MDS performance scales well with increasing 
data sizes.  The Twister4Azure adjusted line in Figure 7(a) 
and (b) depicts the performance of Twister4Azure when 
normalized according to the pure sequential MDS BC 
calculation and Stress calculation performance difference 
between the Azure(tsa) and Cluster(tsc) environments using ta 
x (tsc/tsa). This estimation however does not account for the 
overheads which remain constant irrespective of the 
computation time. In the above testing, the total number of 
Map tasks ranged from 10240 to 40960, proving 
Twister4Azure’s ability to support large number of tasks 
effectively. 

VI. SEQUENCE SEARCHING USING BLAST 

NCBI BLAST+ [1] is the latest version of popular 
BLAST program, that is used to handle sequence similarity 
searching. Queries are processed independently and have no 
dependencies between them. This makes it possible to use 
multiple BLAST instances to process queries in a pleasingly 
parallel manner.  

We performed the BLAST+ scaling speedup 
performance experiment from Gunarathne, et al[3] to 
compare the performance of Twister4Azure Blast+ 
performance with Amazon EC2 classic cloud and Apache 
Hadoop BLAST+ implementations. We used Azure Extra 
Large instances with 8 Map workers per node for the 
Twister4Azure BLAST experiments. We used a sub-set of a 
real-world protein sequence data set as the input BLAST 
queries and used NCBI’s non-redundant (NR) protein 
sequence database. In order to make the tasks coarser 
granular, we bundled 100 queries in to each data input file 
resulting in files with sizes in the range of 7-8 KB. All of the 
implementations download and extract the compressed 
BLAST database to a local disk of each worker prior to 
beginning processing of the tasks. Twister4Azure’s ability to 
specify deploy time initialization routines was used to 
download and extract the database. The performance results 
do not include the database distribution times. 

The Twister4Azure BLAST+ absolute efficiency (Figure 
9) was better than the Hadoop and EMR implementations. 
Additionally the Twister4Azure performance was 
comparable to the performance of the Azure Classic Cloud 
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Figure 9. Twister4Azure BLAST performance. Left : Time to process a single query file.  Right: Absolute parallel efficiency 



BLAST results that we had obtained earlier. This shows that 
the performance of BLAST+ is sustained in Twister4Azure, 
even with the added complexity of MapReduce and iterative 
MapReduce. 

VII. RELATED WORKS 

CloudMapReduce[16] for Amazon Web Services (AWS) 
and Google AppEngine MapReduce[17] follows an 
architecture similar to MRRoles4Azure, where they utilize 
the cloud services are the building blocks. Amazon 
ElasticMapReduce[18] offers Apache Hadoop as a hosted 
service on the Amazon AWS cloud environment. However 
none of them support iterative MapReduce.  

Haloop[19] extends Apache Hadoop to support iterative 
applications and supports caching of loop-invariant data as 
well as loop-aware scheduling. Spark[20] is a framework 
implemented using Scala to support interactive MapReduce 
like operations to query and process read-only data 
collections, while supporting in-memory caching and re-
using of data products. 

AzureBlast[21] is an implementation of parallel BLAST 
on Azure environment using Azure cloud services with an 
architecture similar to the ClassicCloud model, which is a 
predecessor to Twister4Azure. CloudClustering[22] is a 
prototype KMeansClustering implementation on Azure cloud 
using Azure infrastructure services. CloudClustering uses 
multiple queues (single queue per worker) for job scheduling 
and supports caching of loop-invariant data.  

VIII. CONCLUSION AND FUTURE WORKS 

We have developed Twister4Azure, a novel iterative 
MapReduce distributed computing runtime for Azure cloud. 
We have implemented three important scientific applications 
using Twister4Azure – Kmeans Clustering, MDS and 
BLAST+. Twister4Azure enables the users to easily and 
efficiently perform large scale iterative data analysis for  
scientific applications on a commercial cloud platform. 

In developing Twister4Azure, we encounter the 
challenges of scalability and fault tolerance unique to 
utilizing the cloud interfaces. We have developed a solution 
to support multi-level caching of loop-invariant data across 
iterations as well as caching of any reused data (e.g. 
broadcast data) and proposed a novel hybrid scheduling 
mechanism to perform cache-aware scheduling. 

KMeanClustering and MDS are presented as iterative 
scientific applications of Twister4Azure. Experimental 
evaluation shows that Kmeans Clustering using 
Twster4Azure with virtual instances outperforms Apache 
Hadoop by a factor of 2 to 4 and exhibits performance 
comparable to Java HPC Twister running on a local cluster. 
We consider the results presented in this paper as one of the 
first or the first large-scale study of Azure performance for 
non-trivial scientific applications. 

Twister4Azure and Java HPC Twister illustrate our 
roadmap to a cross platform new programming paradigm 
supporting large scale data analysis, an important area for 
both HPC and eScience applications.  
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