
Information Services for Dynamically Assembled
Semantic Grids

Mehmet S. Aktas1, 2, Geoffrey C. Fox1, 2, 3, Marlon Pierce1

1 Community Grids Laboratory, Indiana University
501 N. Morton Suite 224, Bloomington, IN 47404
{maktas, gcf, mpierce}@cs.indiana.edu

http://www.communitygrids.iu.edu/index.html
2 Computer Science Department, School of Informatics, Indiana University

3 Physics Department, College of Arts and Sciences, Indiana University

Abstract. The information management requirements in systems based on Web
Service Architecture principles include both the management of large amounts
of relatively static services and associated semantic information as well as the
management of multiple dynamic regions (sessions or subgrids) where the se-
mantic information is changing frequently. We design a hybrid Information
Service supporting both the scalability of large amounts of relatively slowly
varying data and a high performance rapidly updated Information Service for
dynamic regions. We use the two Web Service standards: Universal Descrip-
tion, Discovery, and Integration (UDDI) and Web Services Context (WS-
Context). We report initial results from a prototype that is applied to sensor and
collaboration grids.

1 Introduction

E-Science Semantic Grids can often be thought of as dynamic collection of semantic
subgrids where each subgrid is a collection of modest number of services that assem-
bled for specific tasks such as forecasting earthquakes [1] or managing an au-
dio/video collaboration session [3]. We term an actively interacting (collaborating)
set of managed services as a Gaggle where services are put together for particular
functionality. Semantic Grid may consist of several Gaggles each featuring intense
local activity with less intense inter-gaggle interactions. Each Gaggle maintains most
dynamic information which is the session related metadata generated as result of
interactions among Grid/Web Services. Gaggles are also called as Grid Processes in
the China National Grid. They are sessions in the field of collaboration. An infra-
structure of the Semantic Grid is discussed in [2] where Grid Processes may be de-
fined as cooperative processes that support the definition, management and integra-
tion of business processes. We also note that Gaggles may be composed from other
“sub” Gaggles hierarchically.

Extensive metadata requirements of both the worldwide Grid and smaller sessions or
“gaggles of grid services” that support local dynamic action may be investigated in
diverse set of application domains such as sensor and collaboration grids. For exam-
ple, workflow-style Geographical Information Systems (GIS) Grids such as the Pat-
tern Informatics (PI) application [1] require information systems for storing both
semi-static, stateless metadata and transitory metadata needed to describe distributed
session state information. The PI application is an earthquake simulation and model-
ing code integrated with streaming data services as well as streaming map imaginary
services for earthquake forecasting. Another example, collaborative streaming sys-
tems such as Global Multimedia Collaboration System (GlobalMMCS) [3] involve
both large, mostly static information systems as well as much smaller, dynamic in-
formation systems. GlobalMMCS is a service-oriented collaboration system which
integrates various services including videoconferencing, instant messaging and
streaming, and is interoperable with multiple videoconferencing technologies.

Handling information requirements of these applications requires high performance,
fault tolerant information systems. These information systems must be decentralized,
relocate metadata to nearby locations of interested entities and provide efficient ac-
cess, storage of the shared information, as the dynamic metadata needs to be deliv-
ered on tight time constraints within a Gaggle. Information Services support discov-
ery and handling of services through metadata and are vital components of Grids [4].

1.1. Motivations

We identify the following problems in Information Services supporting both tradi-
tional and Semantic Grids. First, Grid Information Services need to be able to sup-
port dynamically assembled service collections gathered at any one time to solve a
particular problem at hand such as calculating damages from disruptions at the time
of a crisis. Most of the traditional Grid Information Services [5-6] however are not
built along this model. Second, Information Services should scale in numbers and
geographical area. Most existing solutions [5-6] however have centralized compo-
nents and do not address scalability and high performance issues. Third, Information
Services need to be able to take into account user demand changes when making
decisions on metadata access and storage. Fourth, Information Services need to be
able to provide uniform interface for publishing and discovery of both dynamically
generated and static information. Existing Grid Information Services however do not
provide such capabilities. We therefore see this as an important area of investigation.
This paper presents our design of an architecture and prototype to address the identi-
fied problems above. We describe a novel architecture for fault tolerant and high
performance Information Services in order to manage distributed, dynamic session
related metadata while providing consistent, uniform interface to both static and dy-
namic metadata.

1.2. Requirements

We design our architecture to meet the following requirements:

Uniformity: The types and update frequency of information may vary in both tradi-
tional and Semantic Grids. This requires a hybrid Information Service providing a
uniform interface to dynamic/static metadata and supporting both the scalability of
large amounts of relatively slowly varying information and a high performance rap-
idly updated Information Service for dynamic regions.

Interoperability: Information should be accessible by diverse set of consumer ser-
vices through standard interfaces to increase usability. This requires leveraging exist-
ing Web Service standards for service discovery and communication to enable Infor-
mation Services and consumer services to operate effectively together.

Persistence: Archival of session metadata may provide a metadata management sys-
tem enabling session failure recovery or replay/playback capabilities for collaboration
grids. This requires persistent metadata storage capability.

Dynamism: Dynamic metadata, i.e. rapidly updated and short-lived information need
to be supported in both traditional and Semantic Grids. Furthermore, metadata need
to be reallocated based on changing user demands and locations. This requires Infor-
mation Services that can support metadata for dynamic regions and that can provide
discovery of data-systems hosting the metadata under consideration in a dynamic
fashion.

Performance: The update frequency on short-lived metadata may vary based on
applications. Here, the system is required to support dynamic changes with a fine
granularity time delay for the systems with a modest number of involved services
(say, up to thousand services per session).

1.3. Contributions and Organization

The main contributions of this paper are two-fold. First, we present a novel architec-
ture for a WS-Context [20] complaint metadata catalog service supporting distributed
or centralized paradigms. We use an extended version of UDDI [21] for slowly vary-
ing metadata and present a uniform and consistent interface to both short-lived dy-
namic and slowly varying quasi-static metadata. We explore the application of con-
text (session-related dynamic metadata) management in Grid systems to correlate
activities in workflow-style applications, by providing a novel approach for manage-
ment of widely distributed, shared session-related dynamic metadata. We investigate
the problem of distributed session management in Grid applications, by providing an
approach for distributed event (session metadata) management system enabling ses-
sion failure recovery or replay/playback capabilities. We also address lack of search

capabilities in Grid Information Services, by providing uniform search interface to
both interaction independent and conversation-based metadata enabling service dis-
covery through events.

Our second contribution is the application of topic-based publish/subscribe methods
to the problems of dynamic replication methodology to support dynamic metadata.
We utilize a multi-publisher, multicast communication middleware and a topic-based
publish/subscribe messaging system as a communication middleware to exchange
messages between peers.

This paper is organized as follows. Section 2 reviews the state of art in existing in-
formation services and replica hosting environments. Section 3 reviews our design for
information systems to support Gaggles paying particular attention to distributed data
management aspects of the system. We discuss the status and the evaluation of our
prototype in Section 4. In Section 5, we summarize and discuss future work.

2 Background

Most existing decentralized solutions to Information Services can be broadly catego-
rized by the manner of in which decentralization is realized such as a) hierarchical,
structured and b) unstructured, peer-to-peer (P2P). In structured architectures, com-
ponents of the system are strictly controlled and may depend on each other for pub-
lishing and discovery of information. For an example, Globus Monitoring and Dis-
covery System (MDS4) [5] has a hierarchical architecture where there is a single top-
level Information Service that presents a uniform interface to clients to access data,
while the data is collected by lower-level information providers. Another example is
the structured P2P systems where the nodes in the systems are equally enabled and
controlled and service information is disseminated to all nodes [7, 8].

Unstructured P2P architectures can be characterized as systems where there is lack of
control on the capabilities of the system nodes and where there is no organizational
structure. For an example, Relational Grid Monitoring Architecture (R-GMA) [6]
presents a P2P architecture where consumers directly connect to information provid-
ers to retrieve the data without intermediary nodes. An extensive survey on Grid
Information Services can be found at [9]. Architectures with pure decentralized stor-
age models have focused on the concept of distributed hash tables (DHT) [7, 8]. DHT
approach assumes possession of an identifier such as hash table that identifies the
service that need to be discovered. Each node forwards the incoming query to a
neighbor based on the calculations made on DHT. Although the DHT approach pro-
vides good performance on routing messages to corresponding nodes, it has various
limitations such as primitive query capabilities on the database operations. Here, we
design an architecture which can be defined as an unstructured P2P approach to
P2P/Grid environment. We use multi-publisher message broadcasting through a
topic-based publish/subscribe messaging system, which support access and storage
decisions among distributed nodes.

Well-defined descriptions of resources, services and data constitute metadata. Meta-
data can be represented using varying metadata models such as XML Schema or
Semantic Web languages (RDF, OWL, etc.). Here, we are mainly concerned with
managing the metadata and delivering to clients, not with knowledge processing. We
presume the metadata models to be application-specific and not defined by us. To this
end, we are concentrating on distributed computing problems of managing metadata
in the Semantic Grid. See Section 4 of this paper for more discussion.

An approach to solve the problem of locating services of interests is the UDDI Speci-
fications [21] from OASIS (http://www.oasis-open.org). The UDDI is WS-I compati-
ble and offers users a unified and systematic way to find service providers through a
centralized registry of services. We identify the following limitations in UDDI Speci-
fications. First, UDDI introduces keyword-based retrieval mechanism. It does not
allow advanced metadata-oriented query capabilities on the registry. Second, UDDI
does not take into account the volatile behavior of services. So, there may be stale
data in registry entries. Third, UDDI does not support extensive metadata require-
ments of rich interacting systems. For instance, services may require an Information
Service to publish and discover session metadata generated by one or more services
as a result of their interactions. Fourth, since UDDI is domain-independent, it does
not provide domain-specific query capabilities such as geo-spatial queries.

There have been some solutions introduced to provide better retrieval mechanism by
extending existing UDDI Specifications. UDDI-M [10] and UDDIe [11] projects
introduce the idea of associating metadata (name-value pairs) and lifetime with UDDI
Registry. UDDI-MT [12-13] improves this approach in several ways such as improv-
ing the metadata representation from attribute name-value pairs into RDF triples to
provide semantically rich service descriptions and relevant information. The Gri-
moires registry project (http://twiki.grimoires.org/bin/view/Grimoires/WebHome)
extends the UDDI-MT to provide a registry which can support multiple service de-
scription models by taking into account robustness, efficiency and security issues.
Another approach to leverage UDDI Specifications was introduced by METEOR-S
[14] project which also utilizes semantic web languages when describing a service
(such as data, functionality, quality of service and executions) in order to provide
more expressiveness power and better service match-making process.

In our design, we too extend UDDI information model by providing an extension
where we associate metadata with service descriptions. We use (name, value) pairs to
describe characteristics of services similar to the UDDI-M and UDDIe projects. We
expand on the capabilities that are supported by these projects, by providing domain-
specific query capabilities. An example for domain-specific query capability could be
XPATH queries on the auxiliary and domain-specific metadata files stored in the
UDDI Registry. Another distinguishing aspect of our design is the support for session
metadata. Our design supports not only quasi-static, stateless metadata, but also more
extensive metadata requirements of interacting systems. UDDI-MT and METEOR-S
projects are example projects that utilize semantic web languages to provide better
service matchmaking in retrieval process. This research has been definitely investi-

gated [12-14] and so not covered in our design. We view dynamic and domain-
specific metadata requirements of sensor/GIS and collaboration Grids as higher prior-
ity.

We use replication, a well-known and commonly used technique to improve the qual-
ity of metadata hosting environments, in our architecture. Sivasubramanian et al. [15]
give an extensive survey on reviewing research efforts on designing and developing
World Wide Web replica hosting environments, as does Robinovich in [16], paying
particular attention to dynamic replication. As the nature of our target data is dy-
namic, we focus on data hosting systems that are handling with dynamic data. These
systems can be discussed under following important design issues: a) distribution of
client requests among data replicas b) selection of hosting environments for replica
placement c) consistency enforcement.

Distribution of client requests is the problem of redirecting a client to the most
appropriate replica server. Most existing solutions to this problem are based on DNS-
Server such as in [17-18]. These solutions utilize a redirector/proxy server that ob-
tains physical location of collection of data-systems hosting a replica of the requested
data, and choose one to redirect client’s request.

Replica placement is another issue that deals with selecting data hosting environ-
ments for replica placement and deciding how many replicas to have in the system.
Existing solutions, that apply dynamic replication, monitor various properties of the
system when making replica placement decisions [18-19]. For instance, Radar [18]
replicates/migrates dynamic content based on changing client demands. Spread [19]
considers the path between the data-system and client and makes decisions to repli-
cate dynamic content on that path.

The consistency enforcement issue has to do with ensuring all replicas of the same
data to be the same. Various techniques have been introduced in consistency man-
agement. For instance, the Akamai project [17] introduces versioning where a version
number is encoded to document identifier, so that client would only fetch the updated
data from the corresponding data hosting system. Radar [18] applies primary-copy
approach where an update can be done only on the primary-copy of the data.

Our architecture differs from web replica hosting systems in the following ways.
First, the intended use of our architecture is not to be a web-scale hosting environ-
ment. The scale of our target systems is in the order of a few dozen to at most a thou-
sand entities participating in a session. Our target domains range from collaboration
systems such as GlobalMMCS project to geographical information systems such as
Pattern Informatics GIS-Grid. The participant entities of these systems might dynami-
cally generate metadata during a session. Such metadata can be expected to be small
in size and big in the volume depending on the Grid application. Second, existing
solutions to dynamic replication assume all data-hosting servers to be ready and
available for replica placement and ignore “dynamism” in the network topology. In
reality, data-systems can fail anytime and may present volatile behavior. We use a

pure Peer-to-Peer approach, which is based on multi-publisher multicast mechanism,
when distributing access and storage requests to data-systems.

3 Information Services

We have designed a novel architecture to Information Services presenting a uniform
interface to support handling and discovery of not only quasi-static, stateless meta-
data, but also session related metadata. In order to be compatible with existing
Grid/Web Service standards, we based the interface of our system on the WS-Context
[20] and UDDI [21] Specifications. We have extended and integrated both specifica-
tions to provide uniform and consistent service interface to both dynamic and static
metadata as illustrated in Figure 1.

Our approach is to utilize the existing state-of-art systems for handling and discover-
ing static metadata and address the problems of distributed management of dynamic
metadata. To do this, on receiving querying/publishing metadata requests, the system
applies following steps to process service metadata. First, the system separates dy-
namic and static portions of the metadata. For instance, static metadata could be
throughput or location of a service whereas dynamic metadata could be session iden-
tifier pointing to a workflow session in which the service is participating. Second, the
system delegates the task of handling and discovery of static portion of the metadata
to UDDI. As we research UDDI Specifications to integrate with our system, we have
encountered various limitations in its capabilities which we address in a separate
paper [22]. Third, the system itself provides handling and discovery using dynamic
portions of the metadata in the metadata replica hosting environment.

Information Service

WSDL

IS Client

WSDL WSDL

HTTP(S)

WSDL

IS Client

DB

JDBC

Context Service

Extended WS-Context

IS Client

WSDL

DB

JDBC

Extended UDDI
Service

Extended UDDI

UDDI WSDL
Service Interface Descriptions
uddi_api_v3_portType.wsdl

WSDL WSDL WSDL

WS-Context Ver1.0
ws-context.wsdl

WSDL

Fig.1. Our design integrates both UDDI and WS-Context Metadata
Services to provide uniform programming interface to service metadata.

The intended use of our approach is to support information in dynamically assembled
Semantic Grids where “real-time” decisions are being made on which services to tie
together in a dynamic workflow to solve a particular problem. One may think of WS-
Context complaint Information Services as the metadata catalog for semantic meta-
data as in an RDF triple store. The semantic metadata expresses the relationships
between resources and the applications that access the metadata catalog deduct fur-
ther (inferred) information. In our design, the distinctive semantic richness comes
from the highly dynamic architecture with metadata from more than two services (in
contrast WS-Transfer, WS-Metadata Exchange Specifications that only easily get
semantic enhancement from the two services that exchange metadata). We discuss
various research issues in building Information Services for dynamically assembled
Semantic Grids in the following section.

3.1. Fault Tolerant High Performance Information Services

We have considered two application domains from sensor/GIS and collaboration
grids to demonstrate the use of our system: GlobalMMCS and PI GIS-Grid.
GlobalMMCS is a peer to peer collaboration environment where videoconferencing
sessions can take place. Any number of widely distributed services can attend to a
collaboration session. GlobalMMCS requires persistent archival of session metadata
to provide replay/playback and session failure recovery capabilities. The PI GIS-Grid
is a workflow-style Grid application which requires storage of transitory metadata
needed to correlate activities of participant entities. Both application domains require
a decentralized metadata hosting environment which can support both scalability (of
large amounts of information) and performance requirements (of rapidly updated
dynamic information). To this end, we identify two important research issues that
need to be answered in our design: fault tolerance and high performance.

We use replication technique to provide fault tolerance and high performance which
improves the quality of our data hosting environment. If one of the redundant storage
elements goes down, it automatically consults remaining elements to restore itself.
The replication technique can also lead into high performance by reducing the time
between a client issuing a request and receiving the corresponding response. As the
nature of our data is very dynamic, we use dynamic data replication technique, where
data replicas may be created, deleted, or migrated among hosting data-systems based
on changing user demands [16]. Two important aspects of dynamic replication are
access and storage algorithms.

3.2. Access Algorithm

The access algorithm distributes client requests to appropriate replica hosting data-
systems. Our model is based on pure Peer-to-Peer approach where each node can
probe all other nodes in the network to look up metadata. A primary role of the access
algorithm is the discovery of one or more data-systems hosting the requested meta-
data. This discovery process consists of two steps: data-system discovery and access.

The first step concerns with selection of data-systems that can answer the client re-
quests. The second step is to inform the data-system that is most appropriate for han-
dling the request. In the first step, to find metadata, a node sends a probe message to
all other nodes through a software multicast mechanism; target data-systems that host
the metadata matching the probe send a response directly to requestor node. Here,
response message consists of information regarding how well the data-system can
handle this query. For instance, such information may include proximity information
between the client and the data-system. On receiving response messages, the re-
questor node chooses the most appropriate data-system that can handle the request. In
the second step, the requestor node sends the client request to the chosen data-system
particularly asking to handle the request.

3.3. Storage Algorithm

Storage algorithm selects data-systems for replica placement and decides how many
replicas to have in the system. In our design, storage decisions are made autono-
mously at each node without any knowledge of other replicas of the same metadata.
The storage decision is made based on the client requests served by that node. Storage
process consists of two separate steps such as metadata placement and metadata crea-
tion. The first step has to do with selection of data-systems that should hold the rep-
lica and the second step has to do with metadata replica creation. In the first step,
each node (data-system) runs the storage algorithm which defines client request
thresholds for replica creation and deletion. If a metadata entry is in high demand
which is above a pre-defined threshold, then the metadata is replicated. If a metadata
entry is in low demand which is below a pre-defined threshold, it will be deleted. To
replicate metadata, a node sends a “storage” message to all other nodes through a
software multicast mechanism; target data-systems, that have available space, send a
respond to directly requestor node. Here, the response message consists of various
decision metrics such as client proximity information. On receiving the response
messages, replica placement algorithm chooses the most appropriate data-system to
replicate the metadata. In the second step, the requestor node sends a replica creation
message directly to the chosen data-system asking to store a replica of metadata in
consideration. This process creates a dynamic metadata storage in which metadata is
moved based on changing client demands.

3.4. Multi-publisher Multicasting Communication Middleware

An importing aspect of our system is that we utilize software multicasting capability
which is an important communication medium supporting the ability to send out ac-
cess and storage requests to the all nodes of the system. Any node can publish and
subscribe to topics which in turn create a multi-publisher multicast broker network as
communication middleware. Here, the publisher does not need to know the location
and identities of receivers. It publishes a message to a topic to which all nodes sub-
scribe. We use NaradaBrokering’s (NB) [23] publish/subscribe mechanism as a
communication middleware for message exchanges between peers.

3.5. System Components

Our proposed architecture consists of various modules such as Query and Publishing,
Expeditor, Access, Storage and Sequencer Modules. Architectural design of our sys-
tem is illustrated in Figure 2.

Communication link between the IS and its consumers

Communication link among IS peers for metadata access

Communication link among IS peers for metadata storage

Communication links among internal modules of an IS peer

Communication link between IS and Extended UDDI Registry

JDBC Handlers

CONTEXT
QUERY

&
PUBLISHING

MODULE

ACCESS
MODULE

STORAGE
MODULE

EXPEDITOR
MODULE

ContextSpaces

Local Database
SEQUENCER

MODULE

EXTENDED
UDDI

wsdl

Fig.2. Architecture of an Information Service running on each peer

3.5.1. Context Query and Publishing Modules: These modules receive client re-
quests through a uniform service interface for publishing/discovering dynamic and
static metadata. The client query/publishing requests are processed and dynamic
metadata parts of the queries are extracted. Then, the request is forwarded to Expedi-
tor Module to find the results. Likewise, static metadata portion of the requests is
relayed to external UDDI Service to publish/discover services through static meta-
data.

3.5.2. Expediter Module: This is a generalized caching mechanism. Each node has a
particular expediter. One consults the expediter to find how to get (or set) information
about a dataset in an optimal fashion. The expediter is roughly equivalent to replica
catalog in classic Grids. Expeditor forms a built-in memory and it maintains Context
metadata objects in Context Spaces. A Context Space is an implementation of Tuple-
Spaces concept [24]. Context Spaces allow us to apply space based programming to
provide mutual exclusive access, associative lookup and persistence.

3.5.3. Access Module: This module runs the access algorithm mentioned above. It
support request distribution by publishing messages to topics in NB network. It also
receives messages (in respond to client request) coming from other peers and forward
these query messages to Expediter Module. The Access Module locates the nodes that
are closest in terms of network distance with lowest load balance from the node re-

questing access to the communal node in question. It also takes into account the load
balance of each responding data-system when choosing the right data-system.

3.5.4. Storage Module: This module runs the storage algorithm. It interacts with the
Expediter Module and applies the storage algorithm to all local Context metadata. If
the metadata is decided to be replicated, then the storage module advertises this repli-
cation by multicasting it to available peers through NB publish/subscribe mechanism.
The storage module also interacts with the Sequencer module in order to label each
incoming metadata with a time stamp.

3.5.5. Sequencer Module: This module ensures that an order is imposed on ac-
tions/events that take place in a session. The Sequencer Module interacts with the
Storage Module and labels each metadata which will be replicated in this replicated
metadata hosting environment. The Sequencer Module interacts with Network Time
Protocol (NTP) clients to achieve synchronized timestamps among the distributed
nodes.

When receiving a query, the Query Module first processes the query and extracts the
dynamic metadata portion of the query. Then, the Query Module forwards the query
to Expediter, where the Expeditor Module checks whether the requested data is in
Context Spaces. If the Expeditor Module can not find the result in Context Space or if
the requested metadata is expired, then the query is forwarded to the JDBC Handler
to query the data in local database. If the query asks for external metadata, then the
Expediter will forward the query to Access Module, where the Access Module multi-
cast a probe message to available Information Services through NB and communi-
cates with the Information Services that are the original data sources for this query.
The query is responded by an Information Service which may be the best qualified
Information Service is to handle this query.

4 System Status and Evaluation

Extended UDDI XML Metadata Services: We have implemented extended UDDI
XML Metadata Services [25] handling and discovery of static metadata based on the
WS-I standard Uniform Description, Discovery, and Integration (UDDI) Specifica-
tions. We base our implementation on jUDDI (version 0.9r3), a free, open source,
and java implementation of the specification. (More at http://www.juddi.org). jUDDI
has been architected to act as the UDDI front-end on top of existing databases.

In our design, we only use a portion of the jUDDI library as UDDI-front end in order
to implement extended version of UDDI XML API. We have discarded jUDDI serv-
let-based architecture and implemented Grid/Web Services interfaces as front access
to UDDI Registries. We have enhanced jUDDI in the following ways. First, we ex-
panded on UDDI XML Data Structure and implemented extensions to UDDI XML
API to associate metadata with service entries. Second, we implemented a leasing
capability. This solves a problem with UDDI repositories: information can become

outdated, so we automatically clean up entries by assigning them an expiration date.
Leases on metadata may be extended. Third, we implemented GIS-specific taxono-
mies to describe Open GIS Consortium (OGC) compatible services such as Web
Feature Services and their capabilities files. The “capabilities.xml” file is (in effect)
the standard metadata description of OGC services. Finally, we implemented a more
general purpose extension to the UDDI data model that allows us to insert arbitrary
XML metadata into the repository. This may be searched using XPATH queries, a
standard way for searching XML documents (http://www.w3.org/TR/xpath). This
allows us to support other XML-based metadata descriptions developed for other
classes of services besides GIS. The Web Services Resource Framework (WSRF), a
Globus/IBM-led effort, is an important example.

Our approach allows users to insert both user-defined and arbitrary metadata into the
UDDI XML metadata repository. Our work on UDDI is for a specific type of meta-
data: semi-static and context-free. UDDI is appropriate for data that is long-lived (i.e.
should be true for months or years) and that is independent of the client interaction
(i.e. all clients issuing the same requests get the same responses). We discuss the
parts of our architecture that supports dynamic information in the short-lived service
collections in the following section.

WS-Context complaint XML Metadata Services: We have implemented a centralized
version of WS-Context complaint XML Metadata Services [25] handling discovery
of dynamic, session related metadata. Here, session related metadata is short-lived
and dependent on the client [26]. The WS-Context metadata service keeps track of
context information shared between multiple participants in Web Service interactions.
The context here has information such as unique ID and shared data. It allows a col-
lection of action to take place for a common outcome. We utilize WS-Context Speci-
fication to maintain user profiles and preferences, application specific metadata, in-
formation regarding sessions and state of entities in these sessions. Each session is
started by the coordinator of an activity. The coordinator service publishes the session
metadata to Information Service and gets a unique identifier in return. The uniqueness
of the session-id is ensured by the Information Service. Sessions can obviously be
composed from other “sub” sessions hierarchically. Here, each session is associated
with the participant services of that session. Dynamic session information, i.e. con-
text, travels within the SOAP header blocks among the participant entities within the
same activity. Our implementations of UDDI and WS-Context Metadata Services do
not use XML databases but for efficiency convert the XML to SQL and store in
MySQL database.

Evaluation: We have done preliminary testing [1] on the centralized version of the
WS-Context XML Metadata Service’s primary operations which are GetContext and
SetContext. Three measurement sets were made using a 50 byte string for GetCon-
text. Each of the three sets consisted of 100 individual measurements. We also per-
formed 3 sets of 100 measurements on the SetContext method. In average, we meas-
ure ~116 ms for GetContext and ~125 ms for SetContext functions to be performed.
Both of these measurements are internal timings to process requests. We note that

these were subject to very large variations. We conclude from this that the actual
internal processing time for small metadata pieces is typically smaller than the net-
work invocation time and does not create an actual overhead. A more extensive
evaluation regimen is being developed to determine the limits of our implementation.

5 Conclusions and Future Work

In this paper, we have identified an important gap in Information Services for Grids
that is lack of support for dynamic information in dynamically assembled Semantic
Grids. We have presented an architecture that addresses key issues of managing dy-
namic metadata such as a) providing an efficient metadata access and storage meth-
odology by taking into account changes in user demands and b) providing a P2P
approach for access/storage request distribution among the peers of the system to
capture the dynamic behavior both in metadata and the network topology. We have
discussed status of our implementation and report initial performance results from a
prototype that is applied to sensor and collaboration grids.

Work remains to further develop a distributed metadata hosting environment by em-
ploying novel dynamic replication techniques and to evaluate the system as whole
through extensive performance tests.

Acknowledgement: This work is supported by the Advanced Information Systems
Technology Program of NASA's Earth-Sun System Technology Office.

References

1. Galip Aydin, Mehmet S. Aktas, Geoffrey C. Fox, Harshawardhan Gadgil, Marlon Pierce,
Ahmet Sayar. SERVOGrid Complexity Computational Environments(CCE) Integrated
Performance Analysis, Accepted as poster and short paper in Grid2005, Seattle, USA

2. H. Zhuge. Semantic Grid: Scientific Issues, Infrastructure, and Methodology, Communi-
cations of the ACM. 48 (4) (2005)117-119.

3. Wenjun Wu, Geoffrey Fox, Hasan Bulut, Ahmet Uyar, Harun Altay “Design and Imple-
mentation of A Collaboration Web-services system”, Journal of Neural, Parallel & Scien-
tific Computations (NPSC), Volume 12, 2004.

4. B. Plale, P. Dinda, and G. Von Laszewski. Key Concepts and Services of a Grid Informa-
tion Service. In Proceedings of the 15th International Conference on Parallel and Distrib-
uted Computing Systems (PDCS 2002), 2002.

5. Monitoring & Discovery System (MDS4) Web Site is available at
http://www.globus.org-/toolkit/mds

6. A. Cooke, A.Gray, L. Ma, W. Nutt, J. Magowan, P. Taylor, R. Byrom, L. Field, S. Hicks,
and J. Leake. R-GMA: An Information Integration System for Grid Monitoring. Proceed-
ings of the 11th International Conference on Cooperative Information Systems, 2003.

7. Ratnasamy, Sylvia et al. A Scalable Content-Addressable Network. Proc. ACM
SIGCOMM, pp 161-172, August 2001.

8. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan. Chord:
A Scalable Peer-to-Peer Lookup Protocol for Internet Applications. IEEE/ACM Trans. on
Networking, 11 (1): 17-32, February 2003.

9. Serafeim Zanikolas and Rizos Sakellariou. A Taxonomy of Grid Monitoring Systems.
Future Generation Computer Systems, 21(1), January 2005, pp. 163--188.

10. V. Dialani. UDDI-M Version 1.0 API Specification. University of Southampton – UK.
02.

11. Ali ShaikhAli, Omer Rana, Rashid Al-Ali and David W. Walker. UDDIe: An Extended
Registry for Web Services. Proceedings of the Service Oriented Computing: Models, Ar-
chitectures and Applications, SAINT-2003 IEEE Computer Society Press. Orlando Flor-
ida, USA, January 2003.

12. Simon Miles, Juri Papay, Terry Payne, Keith Decker, and Luc Moreau. Towards a Proto-
col for the Attachment of Semantic Descriptions to Grid Services. In The Second Euro-
pean across Grids Conference, Nicosia, Cyprus, pages 10, January 2004.

13. Miles, S., Papay, J., Dialani, V., Luck, M., Decker, K., Payne, T., and Moreau, L. Person-
alized Grid Service Discovery. Nineteenth Annual UK Performance Engineering Work-
shop (UKPEW'03), University of Warwick, Coventry, England, 2003.

14. Verma, K., Sivashanmugam, K. , Sheth, A., Patil, A., Oundhakar, S. and Miller, J.
METEOR–S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication
and Discovery of Web Services, Journal of Information Technology and Management.

15. Sivansubramanian S., Szymaniak M., Pierre G., Steen M.V. Replication for Web Hosting
Systems. ACM Computing Surveys. Vol. 6, No. 3, September 2004, pp. 291-334.

16. M. Rabinovich. Issues in Web Content Replication. Bulleting of the IEEE Computer
Society Technical Committee on Data Engineering, 1998.

17. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B. Globally dis-
tributed content delivery. IEEE Internet Computing 6, 5 (Sept.), 50-58. 2002

18. M. Rabinovich, I. Rabinovich, R. Rajaraman, and A. Aggarwal. A Dynamic Object Rep-
lication and Migration Protocol for an Internet Hosting Service. Proc. 19th Int'l Conf. Dis-
tributed Computing Systems, pp. 101-113, June 1999.

19. P. Rodriguez, and S. Sibal. SPREAD: Scalable Platform for Reliable and Efficient Auto-
mated Distribution Computer Networks, vol. 33, nos. 1-6, pp. 33-49, June 2000.

20. Bunting, B., Chapman, M., Hurley, O., Little M,, Mischinkinky, J., Newcomer, E., Web-
ber, J., and Swenson, K. Web Services Context (WS-Context), available from
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf

21. Bellwood, T., Clement, L., and von Riegen, C. UDDI Version 3.0.1: UDDI Spec Techni-
cal Committee Specification. Available from http://uddi.org/pubs/uddi-v3.0.1-
20031014.htm.

22. Mehmet S. Aktas, Galip Aydin, Geoffrey C. Fox, Harshawardhan Gadgil, Marlon Pierce,
Ahmet Sayar, Information Services for Grid/Web Service Oriented Architecture (SOA)
Based Geospatial Applications, Technical Report, June, 2005

23. Shrideep Pallickara and Geoffrey Fox NaradaBrokering: A Distributed Middleware
Framework and Architecture for Enabling Durable Peer-to-Peer Grids in Proceedings of
ACM/IFIP/USENIX International Middleware Conference Middleware-2003, Rio Ja-
neiro, Brazil June 2003. See also: http://www.naradabrokering.org

24. N. Carriero and D. Gelernter. Linda in Context. Commun. ACM, 32(4): 444-458, 1989.
25. Extended UDDI and Fault Tolerant and High Performance Context Service Research is

available at http://www.opengrids.org
26. Mehmet S. Aktas, Geoffrey C. Fox and Marlon Pierce. Managing Dynamic Metadata as

Context. The 2005 Istanbul International Computational Science and Engineering Con-
ference (ICCSE2005), Istanbul, Turkey.

