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Abstract. The information management requirements in systems based on Web 
Service Architecture principles include both the management of large amounts 
of relatively static services and associated semantic information as well as the 
management of multiple dynamic regions (sessions or subgrids) where the se-
mantic information is changing frequently. We design a hybrid Information 
Service supporting both the scalability of large amounts of relatively slowly 
varying data and a high performance rapidly updated Information Service for 
dynamic regions. We use the two Web Service standards: Universal Descrip-
tion, Discovery, and Integration (UDDI) and Web Services Context (WS-
Context). We report initial results from a prototype that is applied to sensor and 
collaboration grids.  

1 Introduction 

E-Science Semantic Grids can often be thought of as dynamic collection of semantic 
subgrids where each subgrid is a collection of modest number of services that assem-
bled for specific tasks such as forecasting earthquakes [1] or managing an au-
dio/video collaboration session [3]. We term an actively interacting (collaborating) 
set of managed services as a Gaggle where services are put together for particular 
functionality. Semantic Grid may consist of several Gaggles each featuring intense 
local activity with less intense inter-gaggle interactions. Each Gaggle maintains most 
dynamic information which is the session related metadata generated as result of 
interactions among Grid/Web Services. Gaggles are also called as Grid Processes in 
the China National Grid. They are sessions in the field of collaboration. An infra-
structure of the Semantic Grid is discussed in [2] where Grid Processes may be de-
fined as cooperative processes that support the definition, management and integra-
tion of business processes. We also note that Gaggles may be composed from other 
“sub” Gaggles hierarchically. 
 



Extensive metadata requirements of both the worldwide Grid and smaller sessions or 
“gaggles of grid services” that support local dynamic action may be investigated in 
diverse set of application domains such as sensor and collaboration grids. For exam-
ple, workflow-style Geographical Information Systems (GIS) Grids such as the Pat-
tern Informatics (PI) application [1] require information systems for storing both 
semi-static, stateless metadata and transitory metadata needed to describe distributed 
session state information. The PI application is an earthquake simulation and model-
ing code integrated with streaming data services as well as streaming map imaginary 
services for earthquake forecasting. Another example, collaborative streaming sys-
tems such as Global Multimedia Collaboration System (GlobalMMCS) [3] involve 
both large, mostly static information systems as well as much smaller, dynamic in-
formation systems. GlobalMMCS is a service-oriented collaboration system which 
integrates various services including videoconferencing, instant messaging and 
streaming, and is interoperable with multiple videoconferencing technologies. 
 
Handling information requirements of these applications requires high performance, 
fault tolerant information systems. These information systems must be decentralized, 
relocate metadata to nearby locations of interested entities and provide efficient ac-
cess, storage of the shared information, as the dynamic metadata needs to be deliv-
ered on tight time constraints within a Gaggle. Information Services support discov-
ery and handling of services through metadata and are vital components of Grids [4].  

1.1. Motivations 

We identify the following problems in Information Services supporting both tradi-
tional and Semantic Grids.  First, Grid Information Services need to be able to sup-
port dynamically assembled service collections gathered at any one time to solve a 
particular problem at hand such as calculating damages from disruptions at the time 
of a crisis. Most of the traditional Grid Information Services [5-6] however are not 
built along this model. Second, Information Services should scale in numbers and 
geographical area. Most existing solutions [5-6] however have centralized compo-
nents and do not address scalability and high performance issues. Third, Information 
Services need to be able to take into account user demand changes when making 
decisions on metadata access and storage. Fourth, Information Services need to be 
able to provide uniform interface for publishing and discovery of both dynamically 
generated and static information. Existing Grid Information Services however do not 
provide such capabilities. We therefore see this as an important area of investigation. 
This paper presents our design of an architecture and prototype to address the identi-
fied problems above. We describe a novel architecture for fault tolerant and high 
performance Information Services in order to manage distributed, dynamic session 
related metadata while providing consistent, uniform interface to both static and dy-
namic metadata. 



1.2. Requirements 

We design our architecture to meet the following requirements:  
 
Uniformity: The types and update frequency of information may vary in both tradi-
tional and Semantic Grids. This requires a hybrid Information Service providing a 
uniform interface to dynamic/static metadata and supporting both the scalability of 
large amounts of relatively slowly varying information and a high performance rap-
idly updated Information Service for dynamic regions.  
 
Interoperability: Information should be accessible by diverse set of consumer ser-
vices through standard interfaces to increase usability. This requires leveraging exist-
ing Web Service standards for service discovery and communication to enable Infor-
mation Services and consumer services to operate effectively together. 
 
Persistence: Archival of session metadata may provide a metadata management sys-
tem enabling session failure recovery or replay/playback capabilities for collaboration 
grids. This requires persistent metadata storage capability.  
 
Dynamism: Dynamic metadata, i.e. rapidly updated and short-lived information need 
to be supported in both traditional and Semantic Grids. Furthermore, metadata need 
to be reallocated based on changing user demands and locations. This requires Infor-
mation Services that can support metadata for dynamic regions and that can provide 
discovery of data-systems hosting the metadata under consideration in a dynamic 
fashion.   
 
Performance: The update frequency on short-lived metadata may vary based on 
applications. Here, the system is required to support dynamic changes with a fine 
granularity time delay for the systems with a modest number of involved services 
(say, up to thousand services per session). 

1.3. Contributions and Organization                        

The main contributions of this paper are two-fold.  First, we present a novel architec-
ture for a WS-Context [20] complaint metadata catalog service supporting distributed 
or centralized paradigms. We use an extended version of UDDI [21] for slowly vary-
ing metadata and present a uniform and consistent interface to both short-lived dy-
namic and slowly varying quasi-static metadata.  We explore the application of con-
text (session-related dynamic metadata) management in Grid systems to correlate 
activities in workflow-style applications, by providing a novel approach for manage-
ment of widely distributed, shared session-related dynamic metadata. We investigate 
the problem of distributed session management in Grid applications, by providing an 
approach for distributed event (session metadata) management system enabling ses-
sion failure recovery or replay/playback capabilities. We also address lack of search 



capabilities in Grid Information Services, by providing uniform search interface to 
both interaction independent and conversation-based metadata enabling service dis-
covery through events. 
 
Our second contribution is the application of topic-based publish/subscribe methods 
to the problems of dynamic replication methodology to support dynamic metadata.  
We utilize a multi-publisher, multicast communication middleware and a topic-based 
publish/subscribe messaging system as a communication middleware to exchange 
messages between peers. 
 
This paper is organized as follows. Section 2 reviews the state of art in existing in-
formation services and replica hosting environments. Section 3 reviews our design for 
information systems to support Gaggles paying particular attention to distributed data 
management aspects of the system. We discuss the status and the evaluation of our 
prototype in Section 4. In Section 5, we summarize and discuss future work. 

2 Background 

Most existing decentralized solutions to Information Services can be broadly catego-
rized by the manner of in which decentralization is realized such as a) hierarchical, 
structured and b) unstructured, peer-to-peer (P2P). In structured architectures, com-
ponents of the system are strictly controlled and may depend on each other for pub-
lishing and discovery of information. For an example, Globus Monitoring and Dis-
covery System (MDS4) [5] has a hierarchical architecture where there is a single top-
level Information Service that presents a uniform interface to clients to access data, 
while the data is collected by lower-level information providers. Another example is 
the structured P2P systems where the nodes in the systems are equally enabled and 
controlled and service information is disseminated to all nodes [7, 8].  
 
Unstructured P2P architectures can be characterized as systems where there is lack of 
control on the capabilities of the system nodes and where there is no organizational 
structure. For an example, Relational Grid Monitoring Architecture (R-GMA) [6] 
presents a P2P architecture where consumers directly connect to information provid-
ers to retrieve the data without intermediary nodes. An extensive survey on Grid 
Information Services can be found at [9]. Architectures with pure decentralized stor-
age models have focused on the concept of distributed hash tables (DHT) [7, 8]. DHT 
approach assumes possession of an identifier such as hash table that identifies the 
service that need to be discovered. Each node forwards the incoming query to a 
neighbor based on the calculations made on DHT. Although the DHT approach pro-
vides good performance on routing messages to corresponding nodes, it has various 
limitations such as primitive query capabilities on the database operations. Here, we 
design an architecture which can be defined as an unstructured P2P approach to 
P2P/Grid environment. We use multi-publisher message broadcasting through a 
topic-based publish/subscribe messaging system, which support access and storage 
decisions among distributed nodes. 



Well-defined descriptions of resources, services and data constitute metadata. Meta-
data can be represented using varying metadata models such as XML Schema or 
Semantic Web languages (RDF, OWL, etc.). Here, we are mainly concerned with 
managing the metadata and delivering to clients, not with knowledge processing. We 
presume the metadata models to be application-specific and not defined by us. To this 
end, we are concentrating on distributed computing problems of managing metadata 
in the Semantic Grid.  See Section 4 of this paper for more discussion. 
 
An approach to solve the problem of locating services of interests is the UDDI Speci-
fications [21] from OASIS (http://www.oasis-open.org). The UDDI is WS-I compati-
ble and offers users a unified and systematic way to find service providers through a 
centralized registry of services.  We identify the following limitations in UDDI Speci-
fications. First, UDDI introduces keyword-based retrieval mechanism. It does not 
allow advanced metadata-oriented query capabilities on the registry. Second, UDDI 
does not take into account the volatile behavior of services. So, there may be stale 
data in registry entries. Third, UDDI does not support extensive metadata require-
ments of rich interacting systems. For instance, services may require an Information 
Service to publish and discover session metadata generated by one or more services 
as a result of their interactions. Fourth, since UDDI is domain-independent, it does 
not provide domain-specific query capabilities such as geo-spatial queries.  
 
There have been some solutions introduced to provide better retrieval mechanism by 
extending existing UDDI Specifications. UDDI-M [10] and UDDIe [11] projects 
introduce the idea of associating metadata (name-value pairs) and lifetime with UDDI 
Registry. UDDI-MT [12-13] improves this approach in several ways such as improv-
ing the metadata representation from attribute name-value pairs into RDF triples to 
provide semantically rich service descriptions and relevant information. The Gri-
moires registry project (http://twiki.grimoires.org/bin/view/Grimoires/WebHome) 
extends the UDDI-MT to provide a registry which can support multiple service de-
scription models by taking into account robustness, efficiency and security issues. 
Another approach to leverage UDDI Specifications was introduced by METEOR-S 
[14] project which also utilizes semantic web languages when describing a service  
(such as data, functionality, quality of service and executions) in order to provide 
more expressiveness power and better service match-making process.  
 
In our design, we too extend UDDI information model by providing an extension 
where we associate metadata with service descriptions. We use (name, value) pairs to 
describe characteristics of services similar to the UDDI-M and UDDIe projects. We 
expand on the capabilities that are supported by these projects, by providing domain-
specific query capabilities. An example for domain-specific query capability could be 
XPATH queries on the auxiliary and domain-specific metadata files stored in the 
UDDI Registry. Another distinguishing aspect of our design is the support for session 
metadata. Our design supports not only quasi-static, stateless metadata, but also more 
extensive metadata requirements of interacting systems. UDDI-MT and METEOR-S 
projects are example projects that utilize semantic web languages to provide better 
service matchmaking in retrieval process.  This research has been definitely investi-



gated [12-14] and so not covered in our design. We view dynamic and domain-
specific metadata requirements of sensor/GIS and collaboration Grids as higher prior-
ity. 
 
We use replication, a well-known and commonly used technique to improve the qual-
ity of metadata hosting environments, in our architecture. Sivasubramanian et al. [15] 
give an extensive survey on reviewing research efforts on designing and developing 
World Wide Web replica hosting environments, as does Robinovich in [16], paying 
particular attention to dynamic replication. As the nature of our target data is dy-
namic, we focus on data hosting systems that are handling with dynamic data.  These 
systems can be discussed under following important design issues: a) distribution of 
client requests among data replicas b) selection of hosting environments for replica 
placement c) consistency enforcement.  
 
Distribution of client requests is the problem of redirecting a client to the most 
appropriate replica server. Most existing solutions to this problem are based on DNS-
Server such as in [17-18].  These solutions utilize a redirector/proxy server that ob-
tains physical location of collection of data-systems hosting a replica of the requested 
data, and choose one to redirect client’s request.  
 
Replica placement is another issue that deals with selecting data hosting environ-
ments for replica placement and deciding how many replicas to have in the system. 
Existing solutions, that apply dynamic replication, monitor various properties of the 
system when making replica placement decisions [18-19]. For instance, Radar [18] 
replicates/migrates dynamic content based on changing client demands. Spread [19] 
considers the path between the data-system and client and makes decisions to repli-
cate dynamic content on that path.  
 
The consistency enforcement issue has to do with ensuring all replicas of the same 
data to be the same. Various techniques have been introduced in consistency man-
agement. For instance, the Akamai project [17] introduces versioning where a version 
number is encoded to document identifier, so that client would only fetch the updated 
data from the corresponding data hosting system. Radar [18] applies primary-copy 
approach where an update can be done only on the primary-copy of the data.  
 
Our architecture differs from web replica hosting systems in the following ways. 
First, the intended use of our architecture is not to be a web-scale hosting environ-
ment. The scale of our target systems is in the order of a few dozen to at most a thou-
sand entities participating in a session. Our target domains range from collaboration 
systems such as GlobalMMCS project to geographical information systems such as 
Pattern Informatics GIS-Grid. The participant entities of these systems might dynami-
cally generate metadata during a session. Such metadata can be expected to be small 
in size and big in the volume depending on the Grid application. Second, existing 
solutions to dynamic replication assume all data-hosting servers to be ready and 
available for replica placement and ignore “dynamism” in the network topology. In 
reality, data-systems can fail anytime and may present volatile behavior. We use a 



pure Peer-to-Peer approach, which is based on multi-publisher multicast mechanism, 
when distributing access and storage requests to data-systems. 

3 Information Services  

We have designed a novel architecture to Information Services presenting a uniform 
interface to support handling and discovery of not only quasi-static, stateless meta-
data, but also session related metadata. In order to be compatible with existing 
Grid/Web Service standards, we based the interface of our system on the WS-Context 
[20] and UDDI [21] Specifications. We have extended and integrated both specifica-
tions to provide uniform and consistent service interface to both dynamic and static 
metadata as illustrated in Figure 1.  
 
Our approach is to utilize the existing state-of-art systems for handling and discover-
ing static metadata and address the problems of distributed management of dynamic 
metadata. To do this, on receiving querying/publishing metadata requests, the system 
applies following steps to process service metadata. First, the system separates dy-
namic and static portions of the metadata. For instance, static metadata could be 
throughput or location of a service whereas dynamic metadata could be session iden-
tifier pointing to a workflow session in which the service is participating. Second, the 
system delegates the task of handling and discovery of static portion of the metadata 
to UDDI. As we research UDDI Specifications to integrate with our system, we have 
encountered various limitations in its capabilities which we address in a separate 
paper [22]. Third, the system itself provides handling and discovery using dynamic 
portions of the metadata in the metadata replica hosting environment.  
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Fig.1. Our design integrates both UDDI and WS-Context Metadata  
Services to provide uniform programming interface to service metadata. 



The intended use of our approach is to support information in dynamically assembled 
Semantic Grids where “real-time” decisions are being made on which services to tie 
together in a dynamic workflow to solve a particular problem. One may think of WS-
Context complaint Information Services as the metadata catalog for semantic meta-
data as in an RDF triple store. The semantic metadata expresses the relationships 
between resources and the applications that access the metadata catalog deduct fur-
ther (inferred) information. In our design, the distinctive semantic richness comes 
from the highly dynamic architecture with metadata from more than two services (in 
contrast WS-Transfer, WS-Metadata Exchange Specifications that only easily get 
semantic enhancement from the two services that exchange metadata). We discuss 
various research issues in building Information Services for dynamically assembled 
Semantic Grids in the following section. 

3.1. Fault Tolerant High Performance Information Services 

We have considered two application domains from sensor/GIS and collaboration 
grids to demonstrate the use of our system: GlobalMMCS and PI GIS-Grid. 
GlobalMMCS is a peer to peer collaboration environment where videoconferencing 
sessions can take place. Any number of widely distributed services can attend to a 
collaboration session. GlobalMMCS requires persistent archival of session metadata 
to provide replay/playback and session failure recovery capabilities. The PI GIS-Grid 
is a workflow-style Grid application which requires storage of transitory metadata 
needed to correlate activities of participant entities. Both application domains require 
a decentralized metadata hosting environment which can support both scalability (of 
large amounts of information) and performance requirements (of rapidly updated 
dynamic information). To this end, we identify two important research issues that 
need to be answered in our design: fault tolerance and high performance. 
 
We use replication technique to provide fault tolerance and high performance which 
improves the quality of our data hosting environment. If one of the redundant storage 
elements goes down, it automatically consults remaining elements to restore itself. 
The replication technique can also lead into high performance by reducing the time 
between a client issuing a request and receiving the corresponding response. As the 
nature of our data is very dynamic, we use dynamic data replication technique, where 
data replicas may be created, deleted, or migrated among hosting data-systems based 
on changing user demands [16]. Two important aspects of dynamic replication are 
access and storage algorithms. 

3.2. Access Algorithm 

The access algorithm distributes client requests to appropriate replica hosting data-
systems. Our model is based on pure Peer-to-Peer approach where each node can 
probe all other nodes in the network to look up metadata. A primary role of the access 
algorithm is the discovery of one or more data-systems hosting the requested meta-
data. This discovery process consists of two steps: data-system discovery and access. 



The first step concerns with selection of data-systems that can answer the client re-
quests. The second step is to inform the data-system that is most appropriate for han-
dling the request. In the first step, to find metadata, a node sends a probe message to 
all other nodes through a software multicast mechanism; target data-systems that host 
the metadata matching the probe send a response directly to requestor node. Here, 
response message consists of information regarding how well the data-system can 
handle this query. For instance, such information may include proximity information 
between the client and the data-system. On receiving response messages, the re-
questor node chooses the most appropriate data-system that can handle the request. In 
the second step, the requestor node sends the client request to the chosen data-system 
particularly asking to handle the request.  

3.3. Storage Algorithm 

Storage algorithm selects data-systems for replica placement and decides how many 
replicas to have in the system. In our design, storage decisions are made autono-
mously at each node without any knowledge of other replicas of the same metadata. 
The storage decision is made based on the client requests served by that node. Storage 
process consists of two separate steps such as metadata placement and metadata crea-
tion. The first step has to do with selection of data-systems that should hold the rep-
lica and the second step has to do with metadata replica creation. In the first step, 
each node (data-system) runs the storage algorithm which defines client request 
thresholds for replica creation and deletion. If a metadata entry is in high demand 
which is above a pre-defined threshold, then the metadata is replicated. If a metadata 
entry is in low demand which is below a pre-defined threshold, it will be deleted. To 
replicate metadata, a node sends a “storage” message to all other nodes through a 
software multicast mechanism; target data-systems, that have available space, send a 
respond to directly requestor node. Here, the response message consists of various 
decision metrics such as client proximity information. On receiving the response 
messages, replica placement algorithm chooses the most appropriate data-system to 
replicate the metadata. In the second step, the requestor node sends a replica creation 
message directly to the chosen data-system asking to store a replica of metadata in 
consideration. This process creates a dynamic metadata storage in which metadata is 
moved based on changing client demands.  

3.4. Multi-publisher Multicasting Communication Middleware 

An importing aspect of our system is that we utilize software multicasting capability 
which is an important communication medium supporting the ability to send out ac-
cess and storage requests to the all nodes of the system. Any node can publish and 
subscribe to topics which in turn create a multi-publisher multicast broker network as 
communication middleware. Here, the publisher does not need to know the location 
and identities of receivers. It publishes a message to a topic to which all nodes sub-
scribe. We use NaradaBrokering’s (NB) [23] publish/subscribe mechanism as a 
communication middleware for message exchanges between peers.  



3.5. System Components 

Our proposed architecture consists of various modules such as Query and Publishing, 
Expeditor, Access, Storage and Sequencer Modules. Architectural design of our sys-
tem is illustrated in Figure 2. 
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Fig.2. Architecture of an Information Service running on each peer  
 

3.5.1. Context Query and Publishing Modules: These modules receive client re-
quests through a uniform service interface for publishing/discovering dynamic and 
static metadata. The client query/publishing requests are processed and dynamic 
metadata parts of the queries are extracted. Then, the request is forwarded to Expedi-
tor Module to find the results. Likewise, static metadata portion of the requests is 
relayed to external UDDI Service to publish/discover services through static meta-
data. 
 
3.5.2. Expediter Module: This is a generalized caching mechanism. Each node has a 
particular expediter. One consults the expediter to find how to get (or set) information 
about a dataset in an optimal fashion. The expediter is roughly equivalent to replica 
catalog in classic Grids. Expeditor forms a built-in memory and it maintains Context 
metadata objects in Context Spaces. A Context Space is an implementation of Tuple-
Spaces concept [24].  Context Spaces allow us to apply space based programming to 
provide mutual exclusive access, associative lookup and persistence. 
 
3.5.3. Access Module: This module runs the access algorithm mentioned above. It 
support request distribution by publishing messages to topics in NB network. It also 
receives messages (in respond to client request) coming from other peers and forward 
these query messages to Expediter Module. The Access Module locates the nodes that 
are closest in terms of network distance with lowest load balance from the node re-



questing access to the communal node in question. It also takes into account the load 
balance of each responding data-system when choosing the right data-system. 
 
3.5.4. Storage Module: This module runs the storage algorithm. It interacts with the 
Expediter Module and applies the storage algorithm to all local Context metadata. If 
the metadata is decided to be replicated, then the storage module advertises this repli-
cation by multicasting it to available peers through NB publish/subscribe mechanism. 
The storage module also interacts with the Sequencer module in order to label each 
incoming metadata with a time stamp. 
 
3.5.5. Sequencer Module: This module ensures that an order is imposed on ac-
tions/events that take place in a session. The Sequencer Module interacts with the 
Storage Module and labels each metadata which will be replicated in this replicated 
metadata hosting environment. The Sequencer Module interacts with Network Time 
Protocol (NTP) clients to achieve synchronized timestamps among the distributed 
nodes. 
 
When receiving a query, the Query Module first processes the query and extracts the 
dynamic metadata portion of the query. Then, the Query Module forwards the query 
to Expediter, where the Expeditor Module checks whether the requested data is in 
Context Spaces. If the Expeditor Module can not find the result in Context Space or if 
the requested metadata is expired, then the query is forwarded to the JDBC Handler 
to query the data in local database. If the query asks for external metadata, then the 
Expediter will forward the query to Access Module, where the Access Module multi-
cast a probe message to available Information Services through NB and communi-
cates with the Information Services that are the original data sources for this query. 
The query is responded by an Information Service which may be the best qualified 
Information Service is to handle this query. 

4 System Status and Evaluation 

Extended UDDI XML Metadata Services: We have implemented extended UDDI 
XML Metadata Services [25] handling and discovery of static metadata based on the 
WS-I standard Uniform Description, Discovery, and Integration (UDDI) Specifica-
tions.  We base our implementation on jUDDI (version 0.9r3), a free, open source, 
and java implementation of the specification. (More at http://www.juddi.org). jUDDI 
has been architected to act as the UDDI front-end on top of existing databases.  
 
In our design, we only use a portion of the jUDDI library as UDDI-front end in order 
to implement extended version of UDDI XML API. We have discarded jUDDI serv-
let-based architecture and implemented Grid/Web Services interfaces as front access 
to UDDI Registries. We have enhanced jUDDI in the following ways. First, we ex-
panded on UDDI XML Data Structure and implemented extensions to UDDI XML 
API to associate metadata with service entries. Second, we implemented a leasing 
capability. This solves a problem with UDDI repositories: information can become 



outdated, so we automatically clean up entries by assigning them an expiration date.  
Leases on metadata may be extended. Third, we implemented GIS-specific taxono-
mies to describe Open GIS Consortium (OGC) compatible services such as Web 
Feature Services and their capabilities files.  The “capabilities.xml” file is (in effect) 
the standard metadata description of OGC services. Finally, we implemented a more 
general purpose extension to the UDDI data model that allows us to insert arbitrary 
XML metadata into the repository.  This may be searched using XPATH queries, a 
standard way for searching XML documents (http://www.w3.org/TR/xpath).   This 
allows us to support other XML-based metadata descriptions developed for other 
classes of services besides GIS.  The Web Services Resource Framework (WSRF), a 
Globus/IBM-led effort, is an important example.  
 
Our approach allows users to insert both user-defined and arbitrary metadata into the 
UDDI XML metadata repository. Our work on UDDI is for a specific type of meta-
data: semi-static and context-free.  UDDI is appropriate for data that is long-lived (i.e. 
should be true for months or years) and that is independent of the client interaction 
(i.e. all clients issuing the same requests get the same responses).  We discuss the 
parts of our architecture that supports dynamic information in the short-lived service 
collections in the following section.  
 
WS-Context complaint XML Metadata Services: We have implemented a centralized 
version of WS-Context complaint XML Metadata Services [25] handling discovery 
of dynamic, session related metadata. Here, session related metadata is short-lived 
and dependent on the client [26]. The WS-Context metadata service keeps track of 
context information shared between multiple participants in Web Service interactions.  
The context here has information such as unique ID and shared data. It allows a col-
lection of action to take place for a common outcome. We utilize WS-Context Speci-
fication to maintain user profiles and preferences, application specific metadata, in-
formation regarding sessions and state of entities in these sessions. Each session is 
started by the coordinator of an activity. The coordinator service publishes the session 
metadata to Information Service and gets a unique identifier in return. The uniqueness 
of the session-id is ensured by the Information Service. Sessions can obviously be 
composed from other “sub” sessions hierarchically. Here, each session is associated 
with the participant services of that session. Dynamic session information, i.e. con-
text, travels within the SOAP header blocks among the participant entities within the 
same activity. Our implementations of UDDI and WS-Context Metadata Services do 
not use XML databases but for efficiency convert the XML to SQL and store in 
MySQL database.  
 
Evaluation: We have done preliminary testing [1] on the centralized version of the 
WS-Context XML Metadata Service’s primary operations which are GetContext and 
SetContext. Three measurement sets were made using a 50 byte string for GetCon-
text.  Each of the three sets consisted of 100 individual measurements. We also per-
formed 3 sets of 100 measurements on the SetContext method. In average, we meas-
ure ~116 ms for GetContext and ~125 ms for SetContext functions to be performed. 
Both of these measurements are internal timings to process requests.  We note that 



these were subject to very large variations.  We conclude from this that the actual 
internal processing time for small metadata pieces is typically smaller than the net-
work invocation time and does not create an actual overhead.   A more extensive 
evaluation regimen is being developed to determine the limits of our implementation. 

5 Conclusions and Future Work 

In this paper, we have identified an important gap in Information Services for Grids 
that is lack of support for dynamic information in dynamically assembled Semantic 
Grids. We have presented an architecture that addresses key issues of managing dy-
namic metadata such as a) providing an efficient metadata access and storage meth-
odology by taking into account changes in user demands and b) providing a P2P 
approach for access/storage request distribution among the peers of the system to 
capture the dynamic behavior both in metadata and the network topology. We have 
discussed status of our implementation and report initial performance results from a 
prototype that is applied to sensor and collaboration grids.  

 
Work remains to further develop a distributed metadata hosting environment by em-
ploying novel dynamic replication techniques and to evaluate the system as whole 
through extensive performance tests. 
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