
Streaming Parallel Implementation of
Rao-Blackwellized Particle Filtering SLAM in

the Cloud for Mobile Robots

Supun Kamburugamuve, Hengjing He, Geoffrey Fox, David Crandall

School of Informatics and Computing, Indiana University, Bloomington, USA

Abstract. The Simultaneous Localization and Mapping (SLAM) for a
mobile robot is a computationally expensive task. A robot capable of
SLAM needs a powerful onboard computer which can limit its mobility
because of the weight and power consumption. In this paper we propose a
cloud-based distributed architecture for real time computations of robots
and implement a Rao-Blackwellized Particle Filtering-based SLAM al-
gorithm in a multi-node cluster in the cloud. With our distributed im-
plementation, we obtained significant efficiency improvements in com-
putation time. This allows the algorithm to increase its complexity and
frequency of calculations which are factors for enhancing the accuracy of
the maps built. The onboard computer of the robot is free to do other
tasks while offloading the heavy computation to the cloud. Our method
for implementing particle filtering in the cloud is not specific to SLAM
and can be applied to other computationally intensive particle filtering
algorithms.

1 Introduction

Cloud Computing has long being identified as a key enabling technology for
Internet of Things applications, which connect everything ranging from such
simple devices as thermostats to complex industrial machinery, robots to the
Internet. Cloud services are used by IoT applications for doing large scale of-
fline and real time analytics on the data produced by these devices. There are
computationally intensive algorithms for processing device data that can benefit
from powerful resources in the cloud for real time response. The methods used
by these computationally expensive algorithms are powerful, but hard to run
near the devices due to high computational and specialized hardware require-
ments. At the same time these applications have to be scaled to support vast
numbers of devices and are inherently suitable for central data processing. This
paper investigates a computationally expensive robotics application to showcase
a means of achieving complex parallelism for real time applications in the cloud.

Parallel implementations of real time robotics algorithms mostly deal with
running on multicore machines using threads as the primary parallelization
mechanism. Scaling such applications using threads in multicore machines is
bounded by the number of CPU cores available and the amount of memory in

a single machine, which are often not enough for computationally expensive al-
gorithms to provide a real time response. Being able to execute computations
in parallel, in a distributed environment can be beneficial to these robotics ap-
plications requiring low latencies. Also these applications can be scaled up and
down depending on the processing requirements, making clouds a cost effective
solution.

Simultaneous Localization and Mapping (SLAM) is an important capability
for mobile robots that has been studied extensively in the relevant literature.
Computing the position of a robot in an unknown environment amidst measure-
ment errors while simultaneously computing a map of the environment can be a
computationally challenging task. SLAM algorithms can use various inputs like
distance readings from a laser rangefinder, images of the environment and im-
ages combined with distances. We have chosen a popular SLAM algorithm called
GMapping to implement in the cloud. GMapping builds a grid map and uses
distance measurements from a laser range finder and odometer measurements of
the robot for its calculations. It is a Rao-Blackwellized Particle Filtering(RBPF)
based SLAM algorithm [7] [8]. It is known to work well in practice and has been
integrated into robots like TurtleBot. The algorithm is computationally expen-
sive and can produce better results using more resources.

IoTCloud [4] is a framework which can transfer data from devices to a cloud
computing environment for scalable data processing with real time response. The
data from the devices is encapsulated into events and sent to cloud systems in real
time. IoTCloud employs a distributed stream processing framework (DSPF) [10]
for developing and executing scalable real time applications in the cloud. We
have implemented the GMappning algorithm to work in the cloud on top of
the IoTCloud platform. Laser scans and odometer readings are sent from the
robot to the cloud as a stream of events where they are processed by the SLAM
application and results are sent back to the robot immediately. The algorithm
runs in a fully distributed environment where different parts of it is run in
different machine. To reduce the time required, the most expensive computation
of the algorithm is run in parallel in a distributed set of nodes.

The main contribution of this paper is to propose a novel framework to com-
pute particle filtering-based algorithms, specifically RBPF-based SLAM in a
distributed cloud environment to achieve higher efficiency in computation time.
In the rest of the paper we will discuss the related work, then introduce the
IoTCloud framework. After this we examine how to develop the robotics ap-
plications using the SLAM algorithm followed by focusing on the design of the
parallel RBPF SLAM algorithm. Finally we will conclude with the results and
discussion.

2 Related Work

To the best of our knowledge, using distributed cloud infrastructure to execute
particle filtering-based SLAM algorithms has not been studied in the literature.
Recent work in[4] has exploited multicore and GPU architectures to speed up

the particle filtering-based computations and [3] has used multicore architec-
ture to create a parallel implementation of the GMapping algorithm with good
performance gains. Our approach depends on a distributed environment where
multicore architecture of individual machines and multiple such nodes are being
exploited by the algorithm. [13] is a framework developed to move some of the
expensive computations of a SLAM algorithm into a cloud environment for pro-
cessing. The SLAM algorithm in C2TAM is different from the version used in
this work and has different computation requirements. Also our work proposes a
generic scalable real time framework for computing the maps online with signif-
icant gains in the processing time. C2TAM does not provide such a framework.
Zhang et al [15] describe an approach where CUDA API is used to run the scan
matching step of GMapping algorithm in GPUs to improve the performance of
the algorithm.

Distributed streaming algorithms have been deployed for tasks like cluster-
ing social data in stream [6] with excellent performance enhancements. The
algorithm we developed is different from those implementations because of the
nature of the parallelism and the real time constraints. Those applications are
mostly data parallel, whereas we focus on a computationally parallel application.

3 Background

3.1 IoTCloud framework

IoTCloud [4] is an open source framework developed at Indiana University to
connect IoT devices to cloud services. It consists of a set of distributed nodes
running close to the devices to gather data, a set of publish-subscribe brokers
to relay the information to the cloud services, and a distributed stream process-
ing framework (DSPF) coupled with batch processing engines in the cloud to
process the data and return (control) information to the IoT devices. Real time
applications execute data analytics at the DSPF layer, achieving streaming real-
time processing. The IoTCloud platform uses Apache Storm [2] as the DSPF,
RabbitMQ [14] or Kafka [11] as the message broker and an OpenStack academic
cloud [5] (or bare-metal cluster) as the platform. To scale the applications with
number of devices we need distributed coordination among parallel tasks and
discovery of devices; both are achieved with a ZooKeeper [9] based coordination
and discovery service.

In general, a real time application running in a DSPF can be modeled as
a directed acyclic graph (DAG) consisting of streams and stream processing
tasks. Stream tasks are at the nodes of the graph and streams are the edges
connecting the nodes. A stream is an unbounded sequence of events flowing
through the edges of the graph and each such event consists of data represented
in some format. The processing tasks at the nodes consume input streams and
produce output streams. A DSPF provides the necessary API and infrastructure
to develop and execute such applications in a cluster of computation nodes. In
general DSPF allows the same task to be executed in parallel and provides rich
communication channels among the tasks. To connect a device to the cloud

services, a user develops a gateway application that connects to the devices data
stream. Underlying details of the communication between the gateway and the
cloud services is abstracted and a simple API is provided to communicate with
cloud applications. Once an application is deployed in an IoTCloud gateway the
cloud applications can discover those applications and connect to them for data
processing using the discovery service.

Fig. 1: IoTCloud Architecture
Fig. 2: GMapping Robotics application

3.2 Design of GMapping application

The design of the GMapping application with connection to a real robot is shown
in Figure 2. In this end-to-end application we have connected TurtleBot [1] by
Willow Garage to the GMapping algorithm running in the cloud using the IOT-
Cloud platform. TurtleBot is an off-the-shelf differential drive robot equipped
with a Microsoft Kinect sensor. It has a ROS [12] driver and a supporting soft-
ware stack which can be used to retrieve information such as odometer and laser
scans, as well as controlling its movement.

The application that connects to the ROS-based API of the robot is deployed
in an IoTCloud Gateway running in a desktop machine, where it subscribes to
laser scans coming from the IR sensor of the Kinect and odometer readings of
the TurtleBot. It converts the ROS messages to a format that suits the cloud
application and sends transformed data to the application running in the Fu-
tureGrid OpenStack [5] VMs using the message brokering layer. The application
running in the cloud generates a map according to the information it receives
and sends this back to the workstation running the Gateway, which saves and
publishes it back to ROS for viewing.

3.3 RBPF SLAM Algorithm

As described in [7] [8] Rao-Blacwellized particle filter for SLAM is estimating
the posterior p(x1:t,m|z1:t, u1:t−1) where x1:t = x1, ..., xt is the trajectory of the
robot and m is the map. z1:t = z1, ..., zt are the laser readings observed and are
the odometer measurements.

p(x1:t,m|z1:t, u1:t−1) = p(x1:t,m|z1:t, u1:t−1) (1)

The above factorization first estimates the position of the robot given the ob-
servations, and then calculates the map using the trajectory of the robot. Map
calculation can be done efficiently if the trajectory is known. To estimate the
position of the robot over possible trajectories, it uses a particle filter. The par-
ticle filter maintains a set of particles, with each one containing a probable map
of the environment and a possible trajectory of the robot. The map associated
with the particle is built using the robots trajectory associated with the particle
and the laser readings observed. To calculate the trajectory of the robot a new
reading zt, ut−1 is used. A standard implementation of the algorithm executes
the following steps for each particle i using that its information:

1. Make an initial guess x
′i
t = x

′i
t−1⊕ut−1, where ⊕ is standard pose compound-

ing operator. The algorithm incorporates the motion model parameters of
the robot when calculating the initial guess.

2. Use the ScanMatching algorithm shown in Algorithm 1 with cutoff of ∞ to
optimize initial guess x

′i
t using the map mi

t−1 and laser reading zt. If the
ScanMatching fails, use the previous guess.

3. Update the weight of the particle
4. The map mi

t of the particle is updated with the new position xi
t and zt.

After updating each particle, the algorithm calculates Neff = 1∑n

i=1
(w(i))2

us-

ing the weight of each particle and does resampling according to the calculated
value. When resampling happens the algorithm draws particles with replace-
ments from the set according to their weights. Resampled particles are used
with the next reading. At each reading the algorithm takes the map associated
with the particle of highest weight as the correct map. The computation time of
the algorithm depends on the number of particles used, size of the environment,
and the number of points in the distance reading. In general by increasing the
number of particles, the accuracy of the algorithm can be improved.

4 Streaming parallel algorithm design

Profiling has shown that RBPF SLAM algorithm spends nearly 98% of its com-
putation time on the Scan Matching step, which is done for each particle inde-
pendently of the others. Because the computation on a particle is independent
of other particles, this algorithm is well suited for parallel execution. In a dis-
tributed environment the particles can be moved to different computation nodes

input : pose u and laser reading z
output: bestPose and l

1 steps← 0; l← −∞; bestPose← u; delta← InitDelta;
2 currentL← likelihood(u, z);
3 for i← 1 to nrefinements do
4 delta← delta/2; pose← bestPose; l← currentL;
5 repeat
6 for d← 1 to K do
7 xd← deterministicsample(pose, delta);
8 localL← likelihood(xd, z);
9 steps+ = 1;

10 if currentL < localL then
11 currentL← localL; bestPose← xd;
12 end

13 end

14 until l < currentL and steps < cutoff ;

15 end
Algorithm 1: Scan Matching

Fig. 3: Storm Streaming Work Flow for Parallel RBPF SLAM

and computation on particles can be executed in parallel. Even though the Scan-
Matching computations can be easily made parallel, resampling (which requires
information about all the particles) needs to be executed serially and must gather
results from the parallel execution of particles. The resampling removes some of
the existing particles and duplicates them in the system. Because of this, some
of the particles have to be redistributed over the cluster after resampling.

The stream workflow of the algorithm is shown in Figure 3 implemented
as an Apache Storm topology. The topology defines the data flow graph of the
application with Java-based task implementations at the nodes and communi-
cation links defining the edges. The different components of this workflow run
in a cluster of nodes in the cloud. The arrows in the diagram show the com-
munication between these components as it occurs through TCP. As we can
see, the main tasks of the algorithm are divided into ScanMatcherBolt, ReSam-
plingBolt and MapBuilding bolt. The LaserScanBolt receives the data from the
robot and sends it to the rest of the application. The BestParticleSend bolt and
MapSend bolt send the results back to the robot. The MapBuilding bolt builds
a renderable map expected by the robot and is not a part of the core algorithm.

A key idea behind our distributed implementation is to scatter the particles
across a set of tasks running in parallel across a cluster of nodes and do the
expensive Scan Matching operation in parallel. This particle specific code (steps
1, 2, 3 and 4 of the algorithm) is encapsulated in the ScanMatcher bolt of the
workflow and we can configure how many instances of that bolt are running
in parallel which defines the parallelism of the algorithm. The resampling bolt
requires the result of the ScanMatcher bolts running in parallel, so it waits
until it receives them from the ScanMatcher bolts. After a resampling happens,
algorithm can remove some existing particles and duplicate others. Because of
this the particles assigned to ScanMatcher tasks have to be rearranged after a
resample. The directed communication required among the parallel ScanMatcher
tasks to do the reassignment is not well supported by Apache Storm, so we use
an external RabbitMQ message broker for such communications. All the data
flowing through the various communication channels are in byte format and
the algorithm uses Kryo to serialize the objects to bytes. The dataflow steps as
shown in Figure 3 are described below.

1. Laser scans and odometry readings are received by the LaserScan spout
through the message broker layer. 2. Laser scans are sent to a Dispatcher bolt
that controls the parallel algorithm. The bolt broadcasts the same Laser Scan to
the parallel tasks. When the parallel ScanMatcher tasks complete, they send a
message confirming this back to the Dispatcher bolt, which sends the next read-
ing to the parallel tasks. It always uses the latest readings and drops the readings
it receives while the parallel tasks are running. 3. Each parallel ScanMatcher task
receives the same laser reading and does calculations with the particles assigned.
After this it sends the updated particle values to the Resampling bolt. 5. After
resampling, the resampling bolt calculates new particle assignments to the Scan-
Matcher bolts. This reassignment is done considering the old assignments and
relocating costs using the Hungarian algorithm. Afterwards new particle assign-

ment is broadcast to all the ScanMatcher instances. 6. In parallel to Step 5, the
resampling bolt sends the resampled particle values to their new destinations
according to the assignment. This uses RabbitMQ queues to directly send the
messages to the tasks. A task is identified by an id and this id is used as a routing
key in the messages. 7. After the parallel tasks of ScanMatcher bolt receive the
new assignment, they distribute the maps associated with the resampled parti-
cles to their correct destination. All the task instances of the ScanMatcher bolts
do this simultaneously. 8. The ScanMatcher bolt with the best valued particle
outputs its values and the map. 9. ScanMatcher bolts send messages indicating
their willingness to accept the next reading to the dispatcher bolt.

The parallel version exploits the algorithms ability to loose readings and
drops the messages at a Dispatcher bolt that are coming while a computation
is ongoing to avoid memory overflow of the system. Owing to the design of
the GMapping algorithm, only a few resampling steps are needed during map
building. This reduces the number of times the algorithm has to distribute par-
ticle maps among the tasks. An open source serial version of the algorithm
implemented in C++ language is available through OpenSlam.org. This imple-
mentation is not suitable for our platform, which mainly focuses on Java-based
applications. The algorithm described above was implemented in Java with the
API provided by the DSPF.

5 Results and Discussion

The goal of our experiments was to verify the correctness of our approach and
its practical use in addition to measuring the scalability of the algorithm. We
conducted experiments with the real robot and a robot simulator as well as a
SLAM benchmark dataset. The experiments with the real robot were conducted
in small indoor environments and the results are not shown here. All the experi-
ments ran in [5] OpenStack VMs. The OpenStack experiments used 5 large VM
instances for Apache Storm Workers, 1 large instance for RabbitMQ message
broker and 1 large instance for ZooKeeper and Storm master (Nimbus) node.
A FutureGrid Large instance VM has 8GB memory and 4 CPU cores running
at 2.8 GHz. For all the tests the gateway node was running in another large
instance VM of FutureGrid. Each instance of the Storm worker nodes runs 4
Storm worker processes with 1.5GB of memory allocated.

To verify the accuracy of the algorithm, we use the ACES building SLAM
benchmark data set described in [11]. We used the ROS rviz to visualize the
maps being built by the application. The obtained map is shown in Figure 9.
GMapping is a well-known and well-tested algorithm. We did not try to ex-
tensively verify the accuracy of the algorithm on different datasets due to that
fact and instead focused on the parallel behavior of the algorithm in our exper-
iments. Parallel speedup of an algorithm is defined as (Time Serial Algorithm
takes)/(Time parallel algorithm takes), i.e Ts/Tp. The speedup of the algorithm
was measured by recording the time required to compute each laser reading and
getting the average of these individual times. For ACES data set we use a map

of size 80x80m with a .05 resolution and for Simbad the map was 30x30m with
.05 resolution. We tested the algorithm with 20, 60 and 100 particles for both
data sets. The serial time was measured in a FutureGrid machine that we used
for running the parallel version. In the DSPF cluster we had 5 worker nodes
with total 20 CPUs, hence each worker utilized a single CPU core. To test the
parallel behavior of the algorithm we used 4, 8, 12, 16 and 20 parallel tasks.

The parallel speedup gained for ACES building dataset and Simbad dataset
is shown Figure 4. For ACES, the number of laser reading are relatively low
and because of this computation at the ScanMatcher bolts is correspondingly
less, making the increase in speedup low after 12 particles. On the other hand,
Simbad dataset has about 4 times more distance measurements per reading and
produces higher speed gains.

Ideally the parallel speedup should be close to 20 when we have 20 parallel
tasks and we investigated any factors that could drag the speedup down. Only
the scan matching step of the algorithm is executed in parallel; the resampling
step is done serially. Because this serial computation is relatively less expensive
than the Scan Matching computation, the speedup loss is not significant at this
step. The main factor for reducing the distributed parallel computations is the
I/O time. I/O time is not present in the serial version of the algorithm and is a
totally new addition to the computation time. Because our computation is done
in Java, Java garbage collection also can have an effect on the performance.
Figure 5a shows the I/O time, GC time and computation time for different
parallel tasks and particle sizes. As clearly seen from these results, there is a
nearly a constant average I/O overhead in the parallel algorithm. When the
number of parallel tasks increases, the time decreases, and because of the I/O
overhead the speedup reduces. The average GC time was negligible but we have
seen instances where it increases the individual computation times.

Another factor that affects parallel computation is the computation time
difference among parallel tasks. Lets assume we have n parallel ScanMatcher
tasks taking t1, ..., tm, ..., tn times and take tm as the maximum time among
those times. In the serial case the total time for Scan Matching procedure will
be t1 + ... + tm + ... + tn . For the parallel case the time will be tm because
the Resampling has to wait for all the parallel tasks to complete. The ideal
case for parallel is when all the times in parallel tasks are equal. The overhead
introduced because of the difference in times will be toverhead = tm − (t1 + ... +
tm + ... + tn)/n. When the difference between the maximum time and average
time increases, parallel overhead increases. Figure 5b shows the average overhead
calculated for the Simbad dataset against the total time. The calculations are
done for cases where particles are distributed equally among the parallel tasks.
The average overhead remained constant and the total time decreases as parallel
tasks increase, producing less speedup.To further investigate the behavior of the algorithm we drew the individual
times as shown in Figure 6a and 6b. There are high peaks in the individual
times in both serial and parallel algorithms. The while loop ending in line 18 of
Algorithm 1 can execute an arbitrary number of steps. Sometimes this results in
large loops compared to the average. Figure 5c shows the average steps count and

4 8 12 16 20
0

200

400

600

800

1000

1200

ti
m

e
 (

m
s)

640 Laser Readings

20

60

100

4 8 12 16 20
Parallel Tasks

3

4

5

6

7

8

9

10

11

12

T
s/

T
p

20

60

100

4 8 12 16 20
Parallel Tasks

2

3

4

5

6

7

8

9

10

T
s/

T
p

20

60

100

4 8 12 16 20
50

100

150

200

250

ti
m

e
 (

m
s)

180 Laser Readings

20

60

100

Fig. 4: Parallel behavior of the algorithm for 180 and 640 laser readings. The two

graphs at the top show the actual time and bottom graphs show the speedup

4 8 12 16 20
Parallel Tasks

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

ti
m

e
 (

m
s)

20 Particles

Compute

IO

GC

4 8 12 16 20
Parallel Tasks

60 Particles

Compute

IO

GC

4 8 12 16 20
Parallel Tasks

100 Particles

Compute

IO

GC

(a) IO, GC and Compute time for 640
readings

4 20
Parallel Tasks

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

ti
m

e
 (

m
s)

20 Particles

Overhead

Total Time

4 8 12
Parallel Tasks

60 Particles

Overhead

Total Time

4 20
Parallel Tasks

100 Particles

Overhead

Total Time

(b) Overhead of imbalanced parallel com-
putation

Fig. 5: Overheads with random variations in parallel tasks

standard deviation of steps executed by the ScanMatching algorithm for Simbad
dataset. The standard deviation can be large and sometimes we have seen 2 to 3
times more steps than the average. This is especially problematic for the parallel
case because one or two particles can significantly increase the response time.
Since we have a large number of particles, cutting off the optimization for one
or two of them prematurely shouldnt affect the algorithm. Also we can easily
increase the number of particles if needed to compensate for the premature cutoff
of the optimization in the parallel case. Another observation was that these large
numbers of steps occur at later refinements in the ScanMatching algorithm with
small delta values. So the corrections gained executing many loops is minimal
in most cases. Considering these factors, we changed the original algorithm as
shown in Algorithm 1 with a configurable cutoff for the number of steps and
performed experiments by setting the max number of steps to 140, which is close
to the average. The changed ScanMatching algorithm is shown in Algorithm .
Any maps built by the algorithm were of comparable quality to the previous
algorithm. The resulting time variations for two tests are shown in Figure 6c
and 6d. Now we no longer see some of the big peaks and variations we saw
in Figure 6b. The relatively high peaks are due to minor garbage collections
occurring. Figure 7a shows the average time reduction and speedup after the
cutoff. As expected, we see an improvement in speedup as well, because the
parallel overhead is now reduced as shown in 7. This demonstrates that the
cutoff is an important configuration parameter for parallel versions that can be
tuned case by case to obtain optimum performance and correctness.

Even though the resampling only happens occasionally in the GMapping al-
gorithm it can introduce a large overhead to the parallel algorithm because of
the I/O requirements for redistributing the particles and the maps associated
with them. Also the stream processing engines are not optimized for group com-
munications required among the parallel tasks. In our case we were relying on an
external broker. Figure 8 shows the difference in calculations when we conducted
the resampling step for each operation with the Simbad dataset.The original serial algorithm for Turtlebot runs every 5 seconds. Because
the parallel algorithm runs much faster than the serial version, it can be used
to build a map for a fast-moving robot. Also the accuracy of the maps built is
increased due to the increased number of readings our algorithm is able to use
for calculations. One of the biggest challenges in particle filtering-based methods
is that time required for the computation increases with the number of particles.
By distributing the particles across machines, an application can utilize a high
number of particles, improving the accuracy of the algorithm.

6 Conclusion & Future Work

We discussed how to develop distributed parallel robotics applications in the
cloud using a generic framework. The results show some significant improve-
ments in the performance gains, and the system can be extended for many such
applications. Because the algorithm runs on a distributed cloud infrastructure,
it has access to a large amount of memory and CPU power. For map building in

(a) Serial time (b) Without cut-off

(c) Cutoff 140 steps (d) Cutoff 140 steps

Fig. 6: Time variations of individual times for 60 particles with 4 and 20 parallel tasks,
mean and max of parallel times along with total time is shown

4 8 12 16 20
Parallel Tasks

0

200

400

600

800

1000

1200

ti
m

e
 (

m
s)

640 Laser Readings

20

60

100

20-cut

60-cut

100-cut

4 8 12 16 20
Parallel Tasks

2

4

6

8

10

12

14

T
s/

T
p

640 Laser Readings

20

60

100

(a) Parallel behavior of the algorithm for
640 laser readings with cutoff at 140

4 20
Parallel Tasks

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

ti
m

e
 (

m
s)

20 Particles

Overhead

Total Time

4 8 12
Parallel Tasks

60 Particles

Overhead

Total Time

4 20
Parallel Tasks

100 Particles

Overhead

Total Time

(b) Parallel overhead

Fig. 7: Overheads after cutoff at 140 steps

4 8 12 16 20
Parallel Tasks

0

200

400

600

800

1000

1200

1400

1600

ti
m

e
 (

m
s)

640 Laser Readings

20

60

100

20-resample

60-resample

100-resample

Fig. 8: Resampling overhead Fig. 9: Map of ACES

large environments where the algorithm needs an increased number of particles
or for cases where robots have dense laser readings, the methods introduced in
the paper can be used effectively. Also when the robot is equipped with a low
end computer it can offload the SLAM to cloud using our method.

Random increases in the number of iterations for a particle can produce
computation time imbalances between the parallel workers and reduce the re-
sponse time, as well as hurt the overall parallel speedup. For this application
we addressed the problem by introducing an upper bound to the number of
steps, which works perfectly well in practice for this scenario. Another factor for
speedup reduction is the I/O time. We have observed that the broadcast and
gathering of results in the streaming tasks takes considerable I/O time.

Complex programming is required to develop and scale intricate IoT applica-
tions with modern distributed stream processing engines, mainly due to the low
level APIs exposed. High level APIs are required in order to handle such complex
interactions by abstracting out the underlying details. Our work has identified
difficulties in meeting real time constraints in cloud controlled IoT due to the
intrinsic time needed to process events or fluctuations in processing time caused
by virtualization, multi-stream interference and messaging fluctuations. In the
future we would like to address these fluctuations in computation time. Dupli-
cate computations for such applications can be a more generic method that can
be applied irrespective of the application at the expense of more resources. At
the moment the state distribution between the parallel workers requires a third
node, such as an external broker or another streaming task acting as an interme-
diary. A group communication API between the parallel tasks can be a worthy
addition to a DSPF. The algorithm implementation is specific to SLAM but the
methods used can be easily generalized to any particle filtering algorithm. Ex-
tending this work to extract out a generic API to develop any particle filtering
algorithm in a distributed environment can be a worthy experiment.

Acknowledgments

The authors would like to thank the Indiana University FutureGrid team for
their support in setting up the system in FutureGrid NSF award OCI-0910812.
This work was partially supported by AFOSR award FA9550-13-1-0225 Cloud-
Based Perception and Control of Sensor Nets and Robot Swarms.

References

1. Turtlebot (2014), http://wiki.ros.org/Robots/TurtleBot
2. Anderson, Q.: Storm Real-time Processing Cookbook. Packt Publishing Ltd (2013)
3. Chitchian, M., van Amesfoort, A.S., Simonetto, A., Keviczky, T., Sips, H.J.: Par-

ticle filters on multi-core processors. Dept. Comput. Sci., Delft Univ. Technology,
Delft, The Netherlands, Tech. Rep. PDS-2012-001,(Feb. 2012)[Online]. Available:
http://www. pds. ewi. tudelft. nl/fileadmin/pds/reports/2012/PDS-2012-001. pdf.
Code available at: https://github. com/alxames/esthera (2012)

4. Community Grids Lab, I.U.: Iotcloud (2015), http://iotcloud.github.io/
5. Fox, G., von Laszewski, G., Diaz, J., Keahey, K., Fortes, J., Figueiredo, R., Smallen,

S., Smith, W., Grimshaw, A.: Futuregrida reconfigurable testbed for cloud, hpc
and grid computing. Contemporary High Performance Computing: From Petascale
toward Exascale, Computational Science. Chapman and Hall/CRC (2013)

6. Gao, X., Ferrara, E., Qiu, J.: Parallel clustering of high-dimensional social media
data streams

7. Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based slam with rao-
blackwellized particle filters by adaptive proposals and selective resampling. In:
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE Inter-
national Conference on. pp. 2432–2437. IEEE

8. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping
with rao-blackwellized particle filters. Robotics, IEEE Transactions on 23(1), 34–
46 (2007)

9. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: Wait-free coordination
for internet-scale systems. In: USENIX Annual Technical Conference. vol. 8, p. 9

10. Kamburugamuve, S., Fox, G., Leake, D., Qiu, J.: Survey of distributed stream
processing for large stream sources

11. Kreps, J., Narkhede, N., Rao, J.: Kafka: A distributed messaging system for log
processing. In: Proceedings of the NetDB

12. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA workshop on
open source software. vol. 3, p. 5

13. Riazuelo, L., Civera, J., Montiel, J.: C 2 tam: A cloud framework for cooperative
tracking and mapping. Robotics and Autonomous Systems 62(4), 401–413 (2014)

14. Videla, A., Williams, J.J.: RabbitMQ in action. Manning (2012)
15. Zhang, H., Martin, F.: Cuda accelerated robot localization and mapping. In: Tech-

nologies for Practical Robot Applications (TePRA), 2013 IEEE International Con-
ference on. pp. 1–6. IEEE

