

Service-Oriented Architecture for Building a Scalable Videoconferencing System

Ahmet Uyar1,2, Wenjun Wu2, Hasan Bulut2, Geoffrey Fox2

1Department of Electrical Eng. & Computer Sci. Syracuse Unv.
2Community Grids Lab, Indiana University
{auyar, wewu, hbulut, gcf}@indiana.edu

Abstract
The availability of increasing network bandwidth

and the computing power provides new opportunities for
videoconferencing systems over Internet. On one hand,
broadband Internet connections are spreading rapidly.
Even cell phones will have broadband internet access in
the near future with the implementations of 3G standards.
On the other hand, the usage of webcams and video
camera enabled PDAs and cell phones are increasing by
many millions every year. This requires universally
accessible and scalable videoconferencing systems that
can deliver thousands of concurrent audio and video
streams. In addition to audio and video delivery, such
systems should provide scalable media processing services
such as transcoding, audio mixing, video merging, etc. to
support increasingly diverse set of clients.

However, developing videoconferencing systems
over Internet is a challenging task, since audio and video
communications require high bandwidth and low latency.
In addition, the processing of audio and video streams is
computing intensive. Therefore, it is particularly difficult
to develop scalable systems that support high number of
users with various capabilities. Current videoconferencing
systems such as IP-Multicast and H.323 can not fully
address the problem of scalability and universal
accessibility. These systems designed to deliver the best
performance and lacks flexible service oriented
architecture to support increasingly diverse clients with
various network and device capabilities. We believe that
with the advancements in computing power and network
bandwidth, more flexible and service oriented systems
should be developed to manage audio and video
conferencing systems. In this paper, we propose a service
oriented architecture for videoconferencing,
GlobalMMCS, based on a publish/subscribe event
brokering network, NaradaBrokering.
Keywords: service oriented architecture,
videoconferencing, publish/subscribe systems.

1 Introduction

The availability of increasing network bandwidth and
the computing power provides new opportunities for
distant communications and collaborations over Internet.
On one hand, broadband internet connections are

spreading rapidly. Even cell phones will have broadband
internet access in the near future with the implementations
of 3G standards. On the other hand, the usage of webcams
and video camera enabled PDAs and cell phones are
increasing by many millions every year. Therefore, it is
not inconceivable to imagine that the trend in the
increasing usage of videoconferencing systems will
continue. This will require universally accessible and
scalable videoconferencing systems that can deliver
thousands or tens of thousands of concurrent audio and
video streams. In addition to audio and video delivery,
such systems should provide scalable media processing
services such as transcoding, audio mixing, video merging,
etc. to support increasingly diverse set of clients.

However, developing videoconferencing systems
over Internet is a challenging task, since audio and video
communications require high bandwidth and low latency.
In addition, the processing of audio and video streams is
computing intensive. Therefore, it is particularly difficult
to develop scalable systems that support high number of
users with various capabilities. Current videoconferencing
systems such as IP-Multicast [1] and H.323 [2] can not
fully address the problem of scalability and universal
accessibility. These systems designed to deliver the best
performance and lacks flexible service oriented
architecture to support increasingly diverse clients with
various network and device capabilities. We believe that
with the advancements in computing power and network
bandwidth, more flexible and service oriented systems
should be developed to manage audio and video
conferencing systems.

The first step when building a videoconferencing
system is to analyze and identify the tasks performed in
videoconferencing sessions. Then, independently scalable
components can be designed for each task. It is also
important to coordinate the interactions among these
components in an efficient and flexible manner to add new
services and computing power when necessary. We
identified that there are three main tasks performed in
videoconferencing sessions: audio/video distribution,
media processing and meeting management. We proposed
using a publish/subscribe event brokering system as the
audio and video distribution middleware [3]. In this paper,
we propose a service oriented architecture to develop a
videoconferencing system, GlobalMMCS [4], that is

scalable, flexible and universally accessible, based on a
publish/subscribe event brokering network,
NaradaBrokering [5, 6, 7].

The content of this paper is organized as follows.
First, we analyze the tasks performed in videoconferencing
sessions to determine the criteria to develop
videoconferencing systems. In the next two sections, we
give an overview of this architecture and a brief summary
of NaradaBrokering. In following sections, we provide the
details of messaging mechanisms and service distribution
framework in this system. We evaluate other
videoconferencing systems briefly in related work section
before we conclude the paper.

2 Task Analysis in Videoconferencing
Systems

There are three main tasks performed in
videoconferencing sessions on server side.

1. Audio/video distribution: This includes
transferring audio and video streams from source clients to
destinations in real-time. This is a challenging task, since
those streams require high bandwidth and low latency. ITU
recommends [8] that the mouth-to-ear delay of audio
should be less than 300ms for good quality
communication. Therefore, it is essential to provide an
efficient media distribution mechanism that will route
media streams through best possible routes from sources to
destinations. Otherwise, unnecessary network traffic might
be generated and additional transit delays might be added.
In addition, audio and video streams should be replicated
only when it is needed along the path from sources to
destinations. This saves significant bandwidth and
provides scalability. The sender publishes one copy of a
stream and the distribution network delivers it to all
participants by replicating it whenever necessary. Thirdly,
since audio and video streams are composed of many small
sized packages, minimum headers should be added to all
packages. Otherwise, there can be substantial increase in
the amount of data transferred. Lastly, users should be able
to receive a stream with various transport protocols.

2. Media Processing: Media processing is another
very important task performed in videoconferencing
sessions on server side. Although in a homogenous
videoconferencing setting, where all users have high
network bandwidth and computing power, media
processing might not be necessary at server side, it is
crucial in videoconferencing sessions which have users
with various network and device capacities. For example,
AccessGrid [9] provides room based group-to-group
videoconferencing services to multicast enabled high
bandwidth sites that can receive/send/display tens of
audio/video streams concurrently. They do not provide any
media processing services. However, videoconferencing
systems that aim to support diverse set of users with

various network bandwidths and endpoint capabilities
must provide media processing services to customize the
streams according to the requirements of users. Some users
might have very limited network bandwidth. For those
users, multiple audio and video streams should be mixed
to save bandwidth, or some streams should be transcoded
to produce low bandwidth streams. Some other users
might have limited display or processing capacity. For
those users, multiple video streams can be merged or
larger size video streams can be downsized.

Media processing usually requires high computing
resources and real-time output. Therefore, they can limit
the scalability of a videoconferencing system severely
when implemented poorly. More importantly, they can
affect the quality of audio and video distribution if they
share the same computing resources with media
distribution units. Therefore, the media processing units
should be separated completely from the media
distribution units to provide scalability. In addition, it
should be possible to add new computing resources
dynamically to support high number of sessions with more
users. Moreover, a flexible media processing framework
should be designed to allow the implementation of new
media processing services.

3. Session management: Session management
includes starting/stopping/modifying videoconferencing
sessions. It also includes determining and assigning system
resources for these sessions. For example, it includes
finding out the right audio mixing unit to be used by a
meeting. In addition, it includes the mechanisms for
participants to discover/join/leave sessions. Contrary to the
media distribution and media processing tasks, session
management requires little bandwidth and computing
resources. However, it is very important to coordinate and
distribute the tasks in such sessions. Therefore, it is crucial
to design a flexible and scalable session management
mechanism.

3 GlobalMMCS Architecture

Global Multimedia Collaboration System
(GlobalMMCS) is designed to provide scalable
videoconferencing services to a diverse set of users. The
architecture is flexible enough to support users with
various network bandwidth requirements and endpoint
capabilities. It supports users behind firewalls, NATs, and
proxies. It also allows the system to grow or shrink
dynamically by adding or removing computing resources.

There are three main components of this architecture
(Figure 1): media and content distribution network, media
processing unit and meeting management unit.
NaradaBrokering event broker network is used to deliver
both media and data packages. It provides a unified
scalable middleware for all communications. We provided

the rationale to use a publish/subscribe middleware to use
for real-time audio/video delivery in [3]. We also give a
brief overview of NaradaBrokering in this paper. The
architecture separates media processing from media
distribution completely to provide a flexible and scalable
system.

There are many types of service providers in this
system. MediaServers provide media processing services
such as audio mixing, video mixing and image grabbing.
MeetingManagers provide meeting management services
such as starting and stopping audio and video sessions.

AudioSession and VideoSession components provide user
join and leave services to meeting participants. We provide
a unified framework to manage the interactions among
system components and distribute service providers. We
avoid centralized solutions to provide fault tolerance and
location independence. Addition and removal of service
providers are handled dynamically to allow the system to
grow or shrink. The service provider distribution
framework provides the mechanisms to discover and select
service providers, and execute tasks.

user
user user

user

RLM Broker 2RLM Broker 1

RLM Broker N

RTP Link Manager

Meeting Management Unit

Meeting
Schedulers

Meeting Managers

Video Session

Audio Session

NaradaBrokering Media and
Content Distribution Network

MediaServer
Manager

Media Processing Unit

Video Mixer
Servers

Image Grabber
Servers

Audio Mixer
Servers

MediaServers

Figure 1 GlobalMMCS Architecture

4 NaradaBrokering

NaradaBrokering [5, 6, 7] is a distributed
publish/subscribe messaging system that provides scalable
architecture and an efficient routing mechanism. It
organizes brokers in a cluster-based hierarchy. The
smallest unit of the messaging infrastructure is the broker.
Each broker is responsible for routing messages to their
next stops and handling subscriptions. In this architecture,
a broker is part of a base cluster that is part of a super-
cluster, which in turn part of a super-super-cluster and so
on. Clusters comprise strongly connected brokers with
multiple links to brokers in other clusters, ensuring
alternate communication routes. This organization scheme
results in the average communication “path lengths”
between brokers that increase logarithmically with
geometric increases in network size, as opposed to
exponential increases in uncontrolled settings.

Each broker keeps a broker network map of its own
perspective to efficiently route the messages to their
destinations with a near optimal algorithm [6]. Messages
are routed only to those routers that have at least one

subscription for that topic. This prevents unnecessary
message traffic on the system. Messages are duplicated on
brokers when they are to be sent to more than one
destination. This saves significant bandwidth when
delivering audio and vide streams. Moreover, messages are
routed only to the intended destinations and they are
prevented from being routed back to the producers.

NaradaBrokering has a flexible transport mechanism
[10]. Its layered architecture supports addition of new
protocols easily. In addition, when a message traverses
through broker network, it can go through different
transport links in different parts of the system. A message
can be transported over HTTP while traversing a firewall
but later TCP or UDP can be used to deliver it to its final
destinations. Therefore, it provides a convenient
framework to go through firewalls and support clients with
differing transport needs.

Another important feature of NaradaBrokering is the
performance monitoring infrastructure [11]. The
performance of the links among brokers is monitored and
problems are reported on real-time. In addition,
NaradaBrokering supports dynamic broker and link

additions and removals, so that the broker network can
grow or shrink dynamically.

Since NaradaBrokering provides JMS compliant
publish/subscribe messaging service, it can also be used to
deliver the reliable messages among the distributed
components in the system. It can be used to deliver the
messages for real-time collaboration applications [12] such
as chat, file sharing, application sharing, display sharing,
etc. Therefore, NaradaBrokering provides a unified content
delivery mechanism that simplifies the design and
management of the videoconferencing system
significantly.

On the other hand, publish/subscribe systems in
general and NaradaBrokering in particular are not designed
to deliver real-time audio and video streams. Therefore, we
made some additions to better support audio and video
transfer [3].
A. We added an unreliable transport protocol (UDP) to

the transport layer.
B. We added a compact message type which adds 14

bytes headers to packages. This process entailed the
implementation of a distributed unique id generation
mechanism with 8 bytes long.

C. We implemented proxies for legacy RTP clients and
multicast groups.

D. We made some changes in the routing algorithm of
NaradaBrokering. We gave priority to audio package
delivery [13] since audio communication is the
fundamental part of a videoconferencing system. We
also modified the routing algorithm [14], so that
minimum delay is added to packages that are traveling
to other brokers in the system.

4.1 Performance Tests of NaradaBrokering

We conducted extensive tests to evaluate the
performance of NaradaBrokering broker network in the
context of audio and video stream delivery. We
investigated both the performance of a single broker and
the performance of the broker network. We presented the
results of the single broker tests in [13] and the results of
the broker network tests in [14]. These tests demonstrated
that a single broker can support up to 400 participants both
in single large size meetings and multiple smaller size
meetings with very good quality audio and video delivery.
Therefore, a small size organization can deploy this system
with one broker.

The broker network tests showed that the capacity
of the broker network can be increased significantly by
adding new brokers. Having multiple brokers increases the
quality of the stream delivery considerably by providing
smaller latency, jitter and loss rates. These performance
tests with multiple brokers demonstrated that the number
of supported participants can be increased linearly in large
size meetings by adding new brokers. While one broker

supported up to 400 participants in one large size meeting,
4 brokers supported up to 1600 participants. On the other
hand, the behavior of the broker network is more complex
when there are multiple concurrent meetings compared to
having a single meeting. Having multiple meetings
provide both opportunities and challenges. If the sizes of
meetings are very small and the clients in meetings are
scattered around the brokers, then the broker network can
be utilized poorly. Inter-broker stream delivery can reduce
the number of supported users. The best broker utilization
is achieved when there are multiple streams coming to a
broker and each incoming stream is delivered to many
receivers. If all brokers are utilized fully in this fashion,
multi broker network provides better services to higher
number of participants. Our tests showed that 4 brokers
can support up to 72 video meetings each having 20 users,
1440 users in total. A similar test with a larger size
meeting showed that the same four brokers can support 48
meetings each having 40 users, 1920 users in total.

In summary, the broker network provides very good
audio and video delivery services. It can be configured
both for small and large size organizations with brokers
distributed geographically.

5 Messaging Among System Components

We use NaradaBrokering-JMS [15] publish/subscribe
system to distribute the control messages exchanged
among various components in the system. This simplifies
building a scalable solution, since messages can be
delivered to multiple destinations without explicit
knowledge of the publisher. Service providers can be
added dynamically. Moreover, it provides location
independence for each component, since a component is
only connected to one broker and it exchanges all its data
and media messages through this broker. In addition, using
the same middleware for both data and media delivery
reduces the overall system complexity considerably.

JMS [16] provides a group communication medium.
It uses topics as the group address. When a message is
published on a topic, all subscribers of that topic receive
that message. In our system, while some messages are sent
to a group of destinations, some others are destined to one
target. Therefore, an efficient and scalable message
exchange mechanism should be designed among system
components. Messages should only be delivered to
intended destinations. In addition, topics should be
organized in an orderly fashion.

First, we will examine the various messaging types
that take place in our system. Then we will provide the
topic naming convention to handle these messaging types.

5.1 Messaging Semantics

There are three different messaging types in this
videoconferencing system:

1. Request/Response messaging: This messaging
semantic is used when a consumer requests a service from
a service provider in the system. It sends a request message
to the service provider to execute a service. The service
provider processes the received message and sends a
response message back to the sender. Since both the
request and response messages are destined to one entity, it
is important not to deliver these messages to unrelated
components. Therefore, all service providers and
consumers should have unique topics to receive messages
destined to them only.

2. Group messaging: This messaging semantic is
used when an entity wants to send a message to a group of
entities in the system. It publishes a message to a shared
topic and all group members receive it. In some cases,
receiving components send a response message back to the
sender. In some other cases, no response message is
assumed. There are two types of applications of this
messaging semantic in our system. First one is to discover
service providers. An entity sends a request message to the
group address of some service providers. Then, each one
of them sends a reply message including the information
asked. Another application is to execute a service on a
group of service providers. In this case, an entity sends a
service execution request message to the group address,
and all service providers in that group execute that service.

3. Event based messaging: Event based messaging
is used when an entity wants to receive messages from
another entity regarding the events happening on that
component during a period of time, such as over the course
of a meeting. All interested entities subscribe to the event
topic and receive messages as the publisher posts them. A
typical application of this event based messaging in our
system is to deliver events related to audio and video
streams. All participants subscribe to the event topic and
monitoring service publishes the events as they happen.

5.2 Topic Naming Conventions

To meet the requirements of the messaging semantics
explained above, two types of topics are needed; group
topics and unique component topics. We use a string based
directory style topic naming convention to create topic
names in an orderly and easy to understand fashion. All
topic names start with a common root. We use our project
name as the root name GlobalMMCS. However, it is
possible for an institution to change this root name and all
topic names change accordingly. This lets installing more
than one copy of this system on the same broker network.
Group topic names are constructed by adding the
component name to the root by separating with a forward

slash. Groups are formed by the multiple instances of the
same components. For example, all instances of
MediaServers running in the system belong to the same
group.

• GlobalMMCS/MeetingManager
• GlobalMMCS/AudioSession
• GlobalMMCS/VideoSession
• GlobalMMCS/MediaServer
• GlobalMMCS/RtpLinkManager

These strings are used as the component group

addresses. For example, all AudioSession objects listen on
GlobalMMCS/AudioSession topic to receive messages
which are destined to all AudioSession objects. Similarly,
all other objects listen on their group addresses to receive
group messages.

Unique component topic names are constructed by
adding a unique id to these component group addresses:

• GlobalMMCS/AudioSession/<sessionID>
• GlobalMMCS/VideoSession/<sessionID>
• GlobalMMCS/MediaServer/<serverID>
• GlobalMMCS/RtpLinkManager/<brokerID>

These unique topic names are used to communicate

directly with a component. The messages sent to these
topics are only received by the component which has that
id. When an instance of a component is initiated, it gets an
id from the broker it is connected. Then it constructs its
private topic name by following the above structure and
starts listening on that topic for the messages destined to it.
In addition to using the component id for constructing a
private topic name, this id is also used to identify
components from others in the system.

One of the additions which we made to
NaradaBrokering is the mechanism to generate unique ids
on time and space[17]. A unique id generator runs in every
broker and it can generate an id for every millisecond. This
id will be unique for 557 years. Each broker generates
unique ids without interacting with any other broker.

Sometimes a component communicates with many
different components; in that case, we use extra one more
layer to distinguish these communication channels:

• GlobalMMCS/AudioSession/<id>/RtpLinkManager
• GlobalMMCS/AudioSession/<id>/AudioMixerServer
• GlobalMMCS/AudioSession/<id>/RtpEventMonitor

In the above example, an AudioSession component
communicates with three different entities:
RtpLinkManager, AudioMixerServer and
RtpEventMonitor. It uses different topics for each
component. Using different topics simplifies logging and
detecting the problems. It also simplifies developing codes
to handle various types of messages exchanged with each
component.

With this naming convention, we provide a unified
mechanism to generate group and individual component
topic names. It is easy to understand and debug.

6 Service Distribution Framework

In our system, we support multiple copies of the
same service providers in a distributed fashion. Since,
there are many types of service providers; we provide a
unified framework (Figure 2) for distributing them. We
assume that distributed copies should be able to run both in
a local network and in geographically distant locations.

Broker Network

Service
Provider 1Consumer 1

Consumer 2

Consumer M

Consumer 3

Service
Provider 2

Service
Provider 3

Service
Provider N

Figure 2 Service distribution model

As we mentioned above, each service provider and
the consumer is assigned a unique id. This id is used both
to identify an instance of this component from others and
to generate its unique topic name to communicate with
others in the system. A service provider listens on two
topics. One is the service provider group topic on which it
receives messages destined to all service providers.
Another is its private topic on which it receives messages
sent only to itself.

6.1 Service Discovery

Instead of using a centralized service registry for
announcing and discovering services, we use a distributed
dynamic mechanism. One problem with centralized
registry is the failure susceptibility. Another difficulty is
that since in our system the status of the service providers
change dynamically, it is not reasonable to update a
centralized registry frequently.

In this approach, a consumer sends an Inquiry
message to the service provider group address. In this
message, it includes its own topic name, so that service
providers can send the response message back to it only.
When service providers receive this message, they respond
by sending a ServiceDescription message, in which they
include the current status of that service provider. The
information provided in this ServiceDescription message
depends on the nature of the service being provided. But, it

must be helpful for the consumer to select the service
provider to ask for the service. The consumer waits for a
period of time for responses to arrive, and evaluates the
received messages. Since a consumer does not know the
current number of the service providers in the system, after
waiting for a while it assumes that it received responses
from all the service providers.

6.2 Service Selection

When a consumer receives ServiceDescription
messages from service providers, it compares the service
providers according to the service selection criteria set by
user. This criteria can be as simple as checking the CPU
loads on host machines and choosing the least loaded one
or it can take into account more information and
complicated logic. For example, users can be given an
option to set the preferences over the geographical location
of the service providers. This can be particularly useful for
systems that are deployed worldwide.

6.3 Service Execution

When the consumer selects the service provider on
which it intends to run its service, it sends a Request
message to the service provider for the execution of the
service. If the service provider can handle this request, it
sends an Ok message as the response. Otherwise, it sends a
Fail message. In the case of failure, the consumer either
starts this process from the beginning or tries the second
best option. A service can be terminated by the consumer
by sending a Stop message.

In our system, a service is usually provided for a
period of time, such as during a meeting. Therefore, the
consumer and the service provider should be aware of each
others continues existence during this time period. Each of
them sends periodic KeepAlive messages to the other. If
either of them fails to receive a number of KeepAlive
messages, it assumes that the other party is dead. If the
consumer is assumed dead, then the service provider
deletes that service. If the service provider is assumed
dead, then consumer looks for another alternative.

In our system, each service provider is totally
independent of other service providers. Namely, service
providers do not share any resources. Therefore, there is
no need to coordinate the service providers among
themselves. This simplifies the distribution and
management of service providers significantly.

6.4 Advantages of this Framework

Fault tolerance: There is no single point of failure
in the system. Even though some components may fail,
others continue to provide services.

Scalability: This model provides a scalable
solution. There is no limit on the number of consumers to

support as long as there are service providers to serve
them. The fact that initially a consumer sends a message to
all service providers, and they all respond back to the
consumer, may limit the number of the supported service
providers. However, this can be eliminated by limiting the
number of service providers who respond to an Inquiry
message. This selection can be based on the location of the
service providers or some other criteria depending on the
nature of the services provided. For example, already fully
loaded service providers might ignore inquiry messages.

Location independence: All service providers are
totally independent of other service providers and all
consumers are also independent of other consumers.
Therefore, a service provider or a consumer can run
anywhere as long as they are connected to a broker.

7 Media Processing

We provide media processing services at server side
to support a diverse set of clients. Some clients have
limited network bandwidth, processing and display
capacity. Either they can not receive multiple audio and
video streams or they can not process and display them.
Therefore, server side components should generate
combined streams for them. The services which we have
implemented include audio mixing, video mixing and
image grabbing. We also have an RTP stream monitoring
service. All these services require real-time processing and
usually high computing resources.

NaradaBrokering
Broker Network

JMS Messages

SP: ServiceProvider

MediaServer
Manager 2

SP 1 SP 2

SP N

MediaServer K

MediaServer
Manager M

MediaServer
Manager 1

JMS Messages

SP 1 SP 2

SP N

MediaServer 1

SP 1 SP 2

SP N

MediaServer 2

Figure 3 Media Processing Framework

Media processing framework (Figure 3) is
designed to support addition and removal of new
computing resources dynamically. A server container,
MediaServer, runs in every machine that is dedicated for
media processing. It acts as a factory for service providers.
It starts and stops them. In addition, it advertises these
service providers and reports the status information

regarding the load on that machine. All service providers
implement the interface required by the server container to
be able to run inside. Each MediaServer is independent of
other MediaServers and new ones can be added
dynamically.

Currently, there are three types of service providers
for media processing: AudioMixerServer,
VideoMixerServer, and ImageGrabberServer. More
service providers can be added by following the guidelines
and implementing the relevant interfaces. These service
providers can either be started from command line when
starting the service container, or they can be started by
using the MediaServerManager. MediaServerManager
implements the semantics to talk to MediaServers.

7.1 Audio Mixing

AudioMixerServer provides audio mixing services
for a meeting, AudioMixerSession. An AudioMixerServer
can have any number of audio mixers as long as the host
machine can handle. Each speaker is added to the mixer as
they join the meeting, and special mixed streams are
constructed for them. An audio mixer receives the streams
from the broker network and publishes the mixed streams
back on the broker network. Clients receive the mixed
streams by subscribing to the mixed stream topics.

While some audio codecs are computing intensive,
some others are not. Therefore the computing resources
needed for audio mixing change accordingly. Audio
mixing units need to have prompt access to CPU when
they need to process received packages. Otherwise, some
audio packages can be dropped and result in the breaks in
audio communications. Therefore, the load on audio
mixing machines should be kept at as low as possible.

Table 1. Audio mixer performance test
Number
of mixers

CPU
usage %

Memory
usage (MB) Quality

5 12 36 No loss
10 24 55 No loss
15 34 73 No loss

20 46 93
Negligible

loss

We have tested the performance of an
AudioMixerServer for different number of mixers on it.
There were 6 speakers in each mixer. Two of these
speakers were continually talking and the rest of them
were silent. There were also one more audio stream
constructed which had the mixed stream of all speakers.
Therefore, 6 streams were coming into the mixer and 7
streams were going out. All streams were 64kbps ULAW.
Mixers were receiving the streams from a broker and
publishing the output streams back on the broker. The
machine that was hosting the mixer server was a winXP

machine with 512 MB memory and 2.5 GHz Intel Pentium
4 CPU. The broker was running on another machine in the
same subnet.

Table 1 shows that a machine can support around
20 mixing sessions. But we should note that, in this test all
streams are ULAW. This is not a computing intensive
codec. When we had the same test with another more
computing intensive codec, G.723, one machine supported
only 5 mixing sessions.

7.2 Video Mixing

There are a number of ways to mix multiple video
streams into one video stream. One option is to implement
a picture-in-picture mechanism. One stream is dedicated as
the main stream and it is placed in the background of the
full picture. Other streams are imposed over this stream in
relatively small sizes. Another option is to place the main
stream in a relatively larger area than other streams. For
example, if the picture area is divided into 9 equal regions,
main one can take 4 consecutive regions and remaining
regions can be filled with other streams. In our case, we
choose a simpler mechanism. We divide the picture area
into four equal regions and place a video stream into each
region. This lets a low end client to display four different
video streams by receiving only one stream.
VideoMixerServer can start any number of VideoMixers.
Each video mixer can mix up to 4 video streams.
Therefore, in large meetings more than one video mixing
can be performed.

Table 2. Video mixer performance test
Number of
Video mixers

CPU
usage %

Memory
usage (MB)

1 20 42
2 42 54
3 68 68
4 94 80

Video mixing is a computing intensive process.

One video mixer decodes four received video streams and
encodes one video stream as the output. Table 2 shows that
a Linux machine with 1 GB memory and 1.8GHz Dual
Intel Xeon CPU, can serve 3 video mixers comfortably and
4 at maximum. Therefore, video mixing is a very
computing intensive process. In this test, we used the same
incoming video stream for all mixers. The incoming video
stream was an H.261 stream with an average bandwidth of
150kbps. The mixed video stream was an H.263 stream
with 18fps.

7.3 Image Grabbing

The purpose of image grabbing is to provide users
with a meaningful video stream list in a session. Without

the snapshots of the video streams, users are often
confused to choose the right video stream for them.
Snapshots provide a user friendly environment by helping
them to make informed decisions about the video streams
they want to receive. Therefore, it saves a lot of frustration
and time by eliminating the need for trying multiple video
streams before finding the right one.

An image grabber is started for each video stream
in a meeting. This image grabber subscribes to a video
stream and gets the snapshots of this stream regularly. It
first decodes the stream, then reduces its size to save CPU
time when encoding and transferring the image. Then it
encodes the picture in JPEG format. Either the newly
constructed image can be saved in a file and served by a
web server, or published on the broker network and
accessed by subscribing to relevant topics.

Table 3. Image grabber performance test
Number of
image
grabbers

CPU
usage %

Memory
usage (MB)

10 15 66
20 35 110
30 50 148
40 60 192
50 70 232

Image grabbing is also a computing intensive task.

Each image grabbing includes decoding, resizing and
encoding of a video stream. However, resizing and
encoding do not have to be done continually. They can be
performed only when it is time to get the snapshot. Table 3
shows the performance tests for image grabbers. All image
grabbers subscribed to the same video stream on a broker.
That video stream was in H.261 format with an average
bandwidth of 150kbps. Image grabbers saved a snapshot
every 60sec to the disk in JPEG format. The host machine
was a Linux machine with 1 GB memory and 1.8GHz
Dual Intel Xeon CPU. These results show that 50 image
grabbers can be supported on one machine. However, the
number of supported image grabbers can change
depending on the bandwidth of the video streams and the
computing power of the underlying machine.

7.4 RTP Stream Monitoring

Stream monitoring service monitors the status of
audio and video streams in a meeting, and publishes the
events happening on dedicated topics. The entities
interested in these events subscribe to these topics and
receive them as the monitoring service publishes them. For
example, all participants in a meeting subscribe to audio
and video stream events to receive them. This allows them
to know the identities of the current participants in the
meeting and their status. Currently, there are four types of

events: StreamReceivedEvent, ByeEvent,
ActiveToPassiveEvent and PassiveToActiveEvent.

Contrary to other media processing services, stream
monitoring is not implemented as a stand alone
application. Instead, audio stream monitoring is
implemented along with audio mixing service and video
stream monitoring is implemented along with image
grabbing service. Since all audio streams in a meeting are
received by the audio mixer, and all video streams are
received by image grabbers, we embedded the stream
monitoring services into them to avoid extra audio and
video stream delivery.

7.5 Media Processing Service Distribution

Media processing unit can be configured according
to the needs of both small and large size organizations. For
small organizations that will have only one or two
concurrent meetings, one machine can be sufficient to run
all media processing units. However, larger organizations
need to run media processing servers on multiple
machines. When distributing the servers, each machine can
be dedicated to run one type of media processing service
such as audio mixing. It is particularly important to run
audio mixer servers on separate machines, since audio
mixing is very sensitive and they should have prompt
access to computing resources to provide best quality.

We use the previously explained service distribution
model to distribute the media processing tasks.
MediaServerManager implements the logic to talk to
server containers and select the best available service
providers. Currently, we use simple distribution logic for
small number of settings. However, we plan to develop
more complete scalable algorithms.

8 Meeting Management

Meeting management unit handles
starting/stopping/modifying videoconferencing sessions. It
also manages the media processing unit resources by using
MediaServerManagers. In addition, it manages participant
joins and leaves.

A videoconferencing session has two independent
parts: an audio and a video session. AudioSession object
manages the audio sessions and VideoSession object
manages the video sessions. This management includes
two main functions. First one is to manage the topics used
for a meeting. They keep the list of users and the topics
they publish their media. The second one is to provide
session management services to participants, such as user
joins and leaves. While handling these requests, they
usually talk to other system components, such as media
processing units and RTP link managers.
MediaServerManagers are used by MeetingManagers to

locate and to start/stop media processing servers. On the
other hand, MeetingSchedulers are used to initiate and to
end AudioSession and VideoSession instances.
MeetingSchedulers can run either as independent
applications or as embedded components in web servers.
When they are used with web servers, an administrator or
a privileged user initiates meetings through a web browser.

Although, session management components are
lightweight entities and they can handle a large number of
concurrent users, we still distribute AudioSession and
VideoSession objects to provide fault tolerance. We use the
service distribution model outlined in the previous section.
MeetingManagers act as service providers and
MeetingSchedulers act as consumers.

Here we explain the message exchanges that take
place when creating a videoconferencing session. A
MeetingScheduler sends an Inquiry message to
MeetingManagers in the system. After receiving the
responses, it selects a MeetingManager to ask for the
service. It sends two request messages to the selected
manager: CreatAudioSession and CreateVideoSession.
This MeetingManager uses a MediaServerManager to
locate an AudioMixerServer and an ImageGrabberServer.
Then, it starts an AudioSession instance while providing
the selected AudioMixerServer. This AudioSession object
asks the given AudioMixerServer to start an
AudioMixerSession to be used during this meeting.
MeetingManager also initiate a VideoSession instance
while providing the identified ImageGrabberServer. This
VideoSession also asks the given ImageGrabberServer to
start an ImageGrabberSession to be used during this
meeting. This completes the initialization of the session.
Users can join the session by sending Join messages
directly to AudioSession and VideoSession components. A
VideoMixer can also be added by exchanging messages
with the VideoSession object. Usually administrators have
the right to add and remove video mixers. We should also
note that MeetingManager accesses MediaServerManager
directly by calling its methods.

Here we also would like to explain briefly the
messaging that takes place when users join meetings.
When a speaker joins an AudioSession, a topic number is
assigned for this user to publish its audio stream. Another
topic number is also assigned to publish the mixed audio
stream for this user by the audio mixer component. This
user is also added to the AudioMixerSession. The mixer
constructs a new stream for this user and publishes it in the
given topic number. The interaction between the
AudioSession and AudioMixerSession components are
transparent to the user. If the joining user is a listener, in
that case it is only given the mixed stream topic number to
receive the audio of all speakers in the session. Since it
will not publish any audio, it is neither assigned a topic
number, nor added to the mixer.

When a speaker joins a VideoSession, it is assigned a
topic number to publish its video stream. Then, an image
grabber is also started to construct the snapshots of its
video stream. This user is also given the list of available
video streams in the meeting. He/she can subscribe to
these streams by sending subscribe/unsubscribe messages
to the VideoSession object.

9 Related Work

Currently, there are videoconferencing systems based
on two main standards: IP-Multicast [1] and H.323 [2]. SIP
[18] is another standard which is used to establish real-
time sessions. It can also be used to implement
videoconferencing systems, but it does not propose any
architecture for building video conferencing systems.

IP-Multicast is a set of transport level protocols
which provide group communications over the Internet. It
provides services such as group formations and
management, package delivery mechanisms, inter-domain
interactions, etc. All these protocols are implemented on
routers. Multicast has two main advantages. First one is its
minimal usage of bandwidth. A sender sends one copy of a
stream and it is duplicated along the way from sources to
destinations when necessary. It avoids sending multiple
copies of the same stream on the same link. Another
advantage of multicast is its ease-of-use. A group of users
need to know only the group address to start a meeting.
This simplifies the management of meetings significantly.
On the other hand, multicast tries to provide a group
communication infrastructure for all Internet users. That
results in the scalability and manageability problems [1].
In addition, it lacks widespread support from Internet
routers and its traffic is blocked by almost all firewalls.
Broadband service providers to homes and small offices
usually do not provide Multicast support. Therefore, it is
not suitable for systems that serve all internet users.

H.323 [2] is a videoconferencing recommendation
from International Telecommunications Union (ITU) for
package based multimedia communications systems. It
defines a complete videoconferencing system including
audio and video transmission, data collaboration and
session management. It is heavily influenced by telephony
industry and provides a binary protocol. Many h.323 based
systems are hardware based such as Polycom, the most
dominant player in the market. The scalability of h.323
based systems is very limited, since media processing and
media distribution are not separated. They recommend
MCU cascading for large scale conferences, but it is a very
limited approach to support high number of users. An
MCU connects to another MCU as a client. Therefore,
multiple concurrent meetings can not utilize the same
MCUs. Moreover, it is very difficult for H.323 based
systems to go through firewalls. Each client uses many
ports and they can not be changed.

VRVS [19] is another videoconferencing system that
uses software routers to deliver audio and video streams.
They have routers across United States and Europe.
However, they are not an open source project and we do
not know the details of their system.

10 Conclusion

In this paper, we proposed a service oriented
architecture to implement scalable videoconferencing
systems. This system utilizes a publish/subscribe
messaging middleware to transfer both multimedia and
data traffic. It implements a service oriented framework to
manage and distribute system components efficiently. It
allows new computing resources to be added dynamically
and provides guidelines to add new services easily. Our
performance tests show that this approach can deliver
significant performance. However, we still need to develop
algorithms that would allow global distribution of various
media processing components.

11 References

[1] K. Almeroth, “The Evolution of Multicast: From the MBone
to Inter-Domain Multicast to Internet2 Deployment”, IEEE
Network, Jan 2000, Volume 14.

[2] ITU-T Recommendation H.323, “Packet based multimedia
communication systems”, Geneva, Switzerland, Feb. 1998.

[3] A. Uyar, S. Pallickara, G. Fox, “Towards an Architecture
for Audio/Video Conferencing in Distributed Brokering
Systems”, The proceedings of The IC on Communications
in Computing, June 2003, Las Vegas, Nevada, USA.

[4] Global Multimedia Collaboration System. globalmmcs.org
[5] http://www.naradabrokering.org.
[6] S. Pallickara and G. Fox. NaradaBrokering: A Middleware

Framework and Architecture for Enabling Durable Peer-to-
Peer Grids. Proceedings of ACM/IFIP/USENIX
International Middleware Conference Middleware-2003.

[7] G. Fox and S. Pallickara. An Event Service to Support Grid
Computational Environments. Journal of Concurrency and
Computation: Practice & Experience. Volume 14(13-15) pp
1097-1129.

[8] ITU-T Recommendation G.114, One Way Transmission
Time. (05/2003).

[9] The Access Grid Project. http://www.accessgrid.org/
[10] S. Pallickara, G. Fox, J. Yin, G. Gunduz, H. Liu, A. Uyar,

M. Varank. A Transport Framework for Distributed
Brokering Systems. Proceedings of PDPTA. June 2003, Las
Vegas, Nevada, USA.

[11] G. Gunduz, S. Pallickara and G. Fox. A Framework for
Aggregating Network Performance in Distributed Brokering
Systems. Proceedings of the 9th International Conference on
Computer, Communication and Control Technologies.
Volume IV pp 57-63.

[12] Geoffrey Fox et al. “Grid Services For Earthquake Science”.
Concurrency & Computation: Practice and Experience.
Special Issue on Grid Computing Envronments. Volume
14:371-393.

[13] A. Uyar, G. Fox. Investigating the Performance of
Audio/Video Service Architecture II: Single Broker. The
International Symposium on Collaborative Technologies
and Systems. May 2005, Missouri, USA.

[14] A. Uyar, G. Fox. Investigating the Performance of
Audio/Video Service Architecture II: Broker Network. The
International Symposium on Collaborative Technologies
and Systems. May 2005, Missouri, USA.

[15] G. Fox and S. Pallickara. “JMS Compliance in the Narada
Event Brokering System”. Proceedings of the International
Conference on Internet Computing. June 2002. pp 391-402.

[16] Mark Happner, Rich Burridge and Rahul Sharma. Sun
Microsystems. Java Message Service Specification. 2000.
http://java.sun.com/products/jms

[17] Ahmet Uyar. Scalable Service Oriented Architecture for
Audio/Video Conferencing. Ph.D. Thesis. Syracuse
University. March 23 2005.

[18] J. Rosenberg et al., “SIP: Session Initiation Protocol”, RFC
3261, Internet Engineering Task Force, June 2002,
http://www.ietf.org/rfc/rfc3261.txt

[19] Virtual Rooms VideoConferencing System.
http://www.vrvs.org/

