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Executive Summary

The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources, neu-
tron sources and environmental sensors are producing large volumes of streaming data. The streaming data
needs to be analyzed in reactive real-time or near real-time processing to enable next-generation scientific
discoveries. Also, there has been an explosion of new research and technologies for stream analytics from
the academic and private sectors to address the growing data volumes from social media and other web
applications. However, there has been no effort in either documenting the critical research opportunities
or building a community that can create and foster productive collaborations across scientific disciplines,
government agencies and industry. The two-part workshop series, STREAM: Streaming Requirements, Ex-
perience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), were conducted to
bring the community together and identify gaps and future efforts needed across various funding agen-
cies.

This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Require-
ments, Experience, Applications and Middleware Workshop, the second of these workshops held on March
22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, com-
putational and experimental facilities, as well as software systems. The role of streaming and steering as
a critical mode of connecting the experimental and computing facilities was pervasive through the work-
shop. The workshop had significant presence from several innovative companies and major contributors,
given the overlap in interests and challenges faced by industry.

The workshop identified the importance of supporting streaming to meet the requirements of DOE science
applications. The rate and volume of data that is being produced indicates an urgent need to systematically
approach the gaps and challenges in managing and processing streaming data. We need to research and
develop tools and technologies that work across the scientific communities and that will go beyond ad hoc
solutions that are available today.

The proposed research directions identified to address the gaps, show an important opportunity for build-
ing competitive research and development programs around streaming data. The report discusses four
research directions driven by current and future application requirements reflecting the areas identified as
important by STREAM2016. The findings and recommendations of this report are consistent with vision
outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. Streaming
needs are expected to affect the entire scientific software ecosystem. The identified R&D areas include
(i) Algorithms, (ii) Programming Models, Languages and Runtime Systems (iii) Human-in-the-loop and
Steering in Scientific Workflow and (iv) Facilities. It was recognized that significant investments in re-
search and development were needed to expand the capabilities available today to support next-generation
DOE streaming applications. Additionally, the workshop identified a need for community development
activities including development of benchmarks, evaluation of existing industry solutions, education and
training and conferences/workshops to explore streaming challenges and R&D further.
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Findings & Recommendations

Findings

1. Many DOE facilities and projects have critical streaming and steering needs. The workshop iden-
tified many streaming and steering needs from the DOE Office of Science facilities and projects rep-
resented at the workshop. The time scale and data volumes of streaming and steering needs varied
across science domains and also with industry. Many large scale scientific experiments involve many
instruments or HPC simulations, large volumes of data, multiple data analysis steps and a distributed
set of collaborators. Thus, streaming and steering in DOE are often complex workflows with large
data movement and often involves a heterogeneous distributed set of resources and research special-
ists.

2. The requirements of DOE and other applications needs to be more systematically studied to en-
able generalized solutions in the future. We need to study the requirements of streaming appli-
cations and compare current domain specific, open-source and industry software environments and
identify gaps.

3. The advances in sensing technology and computing power that is available today, requires in-
novations in streaming algorithms, applied mathematics and statistics. Some work in streaming
algorithms, mathematics and statistics has been identified, but there are still a number of open chal-
lenges and improvements that are needed. In particular, there has been initial research in online
algorithms whose complexity is linear in number of data points, but algorithms need to be refined
and turned into usable libraries.

4. Addressing streaming challenges will require investigation into existing and new programming
models. The programming and runtime requirements of streaming applications are different from
the traditional MPI based applications that have dominated scientific computing. As such, there is
a gap in capabilities of existing programming models. There is a need for systematic evaluation of
existing and developing new programming models.

5. Managing the end-to-end workflow is critical to ensure innovations from streaming data. The
complexity of the end-to-end orchestration of real-time streaming data and processing imposes rigid
performance constraints and functional requirements. This necessitates revisiting the software stack
required to support next-generation streaming and steering, including human-in-the-loop scenarios.
The need to enable real-time steering and delegation of control to humans or automated processing
is critical in the DOE streaming and steering applications, but is currently not generally available.

6. Meeting the needs of the streaming and steering applications will require development of capa-
bilities and support from DOE High Performance Computing and Networking facilities. Histor-
ically, DOE HPC facilities have focused on batch queue jobs, and there is limited support for and
policies to facilitate streaming data and steering jobs. Similarly, the network is a critical part of the
streaming and steering dataflows but are not seamlessly integrated into user workflows.
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7. There is a need for community efforts and infrastructure to develop and support capabilities for
streaming. It was recognized at the workshop that organized community activities for streaming is
limited. There is a need for community building activities that include engagement across scientific
domains, academia and industry.

Recommendations

1. Develop new algorithms to support data streaming and steering needs.

(a) We need research into online algorithms, which use ideas such as sampling and sketches, to
support streaming and reduce the time complexity of solutions. Metrics are needed to quantify
the quality of these algorithms.

(b) Machine learning algorithms including deep learning, graph analytics and dimension reduction
need to be extended to and evaluated on a broad range of DOE applications.

(c) We need scalable parallel versions of existing streaming algorithms and frameworks that can
scale traditional algorithms (e.g., machine and deep learning) to large data sizes.

2. Evaluate, expand and develop new existing programming models that address hardware and ap-
plication challenges.

(a) We need to define and compare application requirements and existing programming models on
functionality, performance and usability for streaming applications.

(b) We need to explore the impact of emerging technologies such as new memory technologies, new
storage ideas such as object stories.

(c) We need to understand the relation of the flow of data and integration with workflow of stream-
ing programming models to address performance and programmability.

3. Enable support for end-to-end streaming dataflows while enabling human interactivity and steer-
ing.

(a) Engage with DOE facilities and projects using Human Computer Interaction methodologies to
build a deeper understanding of the usage models and gaps in the end-to-end workflow char-
acteristics. We need to develop classifications that can feed into models, benchmarks and mini-
application focused on streaming and steering needs of the applications.

(b) Develop capabilities and QoS metrics to evaluate the end-to-end workflows in data streaming to
address the usability, robustness and performance needs of streaming applications.

(c) Develop advanced methodologies to allow for composition and management of streaming pro-
cessing pipelines.

4. Adapt HPC computational and networking facilities services to include focus on the needs of the
streaming and steering.

(a) Investigate and develop scheduling policies and algorithms that enable stream processing con-
currently with with batch jobs, interactivity and co-scheduling of distributed resources.

(b) Explore existing and emerging data streaming technologies (e.g., Spark, Heron) in HPC facili-
ties and develop solutions that enable them to be integrated with existing software stacks and
infrastructure.

(c) Expand on the capabilities of ScienceDMZ to enable analytics and processing on the wire for
data streams.
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5. Develop and sustain a software ecosystem supporting the needs of the Office of Science applica-
tions.

(a) Develop benchmarks and mini-applications that can be used to evaluate applicability of existing
solutions.

(b) Identify community best practices and drive generalization across science needs by developing
common libraries.

(c) Develop techniques and methodologies that enable streaming solutions to be integrated into
existing domain specific software stacks and ensure long-term software sustainability.

(d) Need to bridge the research versus product tension, and allow for robust prototypes to be inte-
grated in existing application/domain specific software stacks.

6. Develop and build a community around streaming and steering within DOE and across federal
agencies.

(a) Create a community across federal funding agencies to develop, discuss and manage R&D asso-
ciated with streaming and steering.

(b) Facilitate demonstration projects that integrate Experimental-Observational facilities with HPC
systems for production streaming pipelines so as to “stress” test computational facilities and
existing software systems.

(c) Develop support for multi-source and possibly micro-streaming services in conjunction with
large-scale and single-source streaming requirements.
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1

Introduction

The national, energy, and economic interests of the United States are increasingly dependent on data from
experiments, observations and simulations of complex phenomena from DOE Office of Science facilities.
In the last few years, the volume and complexity of data being produced is growing exponentially and
there is an increasing need for real-time processing of the data as it is being produced. Thus, there is a
growing interest and urgent need to address streaming data and real-time steering and control from on-
line instruments, large-scale simulations, and distributed sensors.

The goal of the STREAM workshop series was to identify the applications, state of the art, and gaps and
challenges that need to be addressed by future R&D efforts. STREAM2015, held in Indianapolis, was the
first of two workshops and had a focus on NSF applications and infrastructure [1]. The goal of the second
workshop, STREAM2016, held in Tysons, VA, was to understand needs related to streaming and related
steering and control needs in DOE science applications. This report summarizes the findings from the
second workshop, STREAM2016, for Advanced Scientific Computing Research (ASCR) and the research
community.

STREAM2016 received 27 white papers. Given the importance of building a community and understand-
ing the broad range of viewpoints, we elected to invite all submitted white papers. The workshop had
49 attendees and consisted of invited talks, presentations of the white papers, discussions after each ses-
sion, and two breakout sessions. The presentation and breakout sessions were moderated by community
members. Reflecting the broad scope, the submitted white papers covered a mixture of applications, tech-
nologies, and state of practice in the science communities, academia, and industry.

STREAM2015 Summary. We summarize the STREAM2015 findings to set the context for the rest of this
report. STREAM2015 had 43 attendees, 17 workshop white papers (from call for participation) and 29
presentations (28 with slides; 23 with videos). The workshop covered the field broadly and there was a
consensus that it usefully brought together an interesting set of participants and there was enthusiasm for
continuing such activities. The workshop covered technology, applications and, education and included in-
dustry participation from Amazon, Google, and Microsoft (technologies) and Johnson Controls (Industrial
Internet of Things IIoT). Current technology solutions were reviewed with a plethora of local point solu-
tions but few end-to-end general streaming infrastructures were available in the non-commercial space.
There were a range of different open-sourced big data systems such as Apache Spark [2, 3], Flink [4],
Storm [5], Heron [6], Samza [7], Kinesis [8] and MillWheel [9]. However, the majority of these solutions
targeted different applications needs and fidelity. It was identified that current infrastructure was not opti-
mized for streaming data and streaming needs amplified considerations in distributed computing, such as
performance, fault-tolerance, and dynamic resource management. The interface of HPC and streaming was
extensively discussed. Novel algorithm issues including online and sampling methods and the reduction of
O(N2) algorithms to O(NlogN ) were highlighted. The importance of benchmarks, application collections
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and streaming software system and algorithm libraries were stressed, as was the need for infrastructure -
optimized for streaming applications.

Terminology. STREAM2016 workshop participants discussed the terminology to understand the scope of
streaming and steering and expanded on the definitions from STREAM2015.

Stream. We define a stream to be an unbounded sequence of events that needs reactive real-time or
near real-time processing and can possibly have multiple consumers and producers. As mentioned in
STREAM2015, successive events may or may not be correlated and each event may optionally include a
timestamp. It was agreed that streams didn’t include random access where you can go arbitrarily forward
or backward. Also, stream processing could not be driven by global metadata awareness. It was also noted
that files are inherently bound and could be processed in batch or stream mode.

Steering. Steering is defined as the ability to dynamically control the progression of a computational pro-
cess to enable decision support. As noted in STREAM2015, steering, which is inevitably real-time, might
include changing the progress of simulations, or realigning experimental sensors or instruments, or control
of autonomous vehicles. Streaming and steering often occur together, though that is not always necessary
as in the case of two coupled codes (e.g., two solvers). Steering is often also tightly driven by the human-in-
the-loop that modifies the variables. Also, it was noted that scale of steering might impact the process. For
example., microsecond scale may need fully automated methods, while 10s to 100s of seconds could have
a human in the loop.

The rest of this report is organized as follow. We summarize the use cases in Section 2, describe state of
the art in Section 3. We detail the R&D challenges identified at the workshop in Section 4 and community
activities in Section 5, and summarize the workshop in Section 6.
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2

Application Use Cases

Streaming and steering needs have grown rapidly in the last few years in the scientific domain. Many
streaming applications were presented and discussed at the workshop. In this chapter, we capture nu-
merous use cases from various DOE scientific domains that were represented in the workshop. Additional
DOE applications are also known to have similar streaming needs. In addition to the main DOE applica-
tions, workshop talks also covered sensor-controlled nanotube growth, control systems for aircrafts, video
streaming, urban population data, and stock market data. Building generalized solution, will require us to
understand the needs, gaps, and challenges.

2.1 High Energy Physics Experiments

High Energy Physics (HEP) experiments, such as ATLAS, Daya Bay, or LZ, routinely run in a steady-state,
data-taking mode over many years, collecting very large volumes of homogeneous data. This data consists
of a continuous or punctuated stream of discrete events associated with elementary particle interactions
and/or triggered detector data readouts which can be treated as an atomic data unit. The data streams are
handled and processed in near real-time for the purpose of validating detector health and data integrity.
Data streams are also saved to files and curated for subsequent offline calibration and processing to extract
the maximum scientific yield from the experiment.

The ATLAS LHC experiment has 3000 scientists and 1200 students from 38 countries [10]. It gathers 1
PB/sec of data filtered to 1-2GB/sec recorded. The experimental computing environment is instantiated
on 140 heterogeneous worldwide resources enabled by excellent networking. ATLAS data processing is
moving from classic file-based grids to an Event Service (ES) [11], which is operational today. The infras-
tructure supports quasi-continuous event streaming through worker nodes and exploiting opportunistic
resources and minimizing local storage demands. ATLAS uses the PanDA Distributed Workload Manager
(Yoda) [12] to manage processing on HPC systems. It features whole-node scheduling, remote I/O, and use
of object stores. The need for more real-time processing requires that the infrastructure is able to handle
real-time, time-sensitive stream processing.

Belle II at KEK in Japan gathers 25 PB/year of raw data [13]. Belle II has hierarchical scheduling to mitigate
contention and reduce power consumption. This uses a sophisticated analytical model to predict execution
time fed by a provenance engine to gather performance metrics. Today, data transfer is optimized by
prefetching. Future needs for BEll II indicate a need for stream processing.

HEP streaming data is mostly homogeneous which impacts the streaming processing requirements. An
HEP experiment with high-latency streaming analysis may be slow to detect and correct a developing
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problem with the detector. But, once corrected, can resume data taking with only a small loss of statistics
for most scientific questions. HEP experiments typically have higher throughput requirements for their
data streams than other experiments such as light sources.

HEP experiments’ data streams over months and years constitute a single dataset which is regularly revis-
ited for higher-statistic and better-calibrated analyses and, consequently, high-quality scientific results. In
this sense, the HEP data “stream” is replayed for offline analysis — but in a much shorter amount of time.
For example, the entirety of four years of Daya Bay [14] data is re-streamed through the data management,
processing, and analysis within a short one-month reprocessing campaign. Typical practice is to use the
same dataflow and workflow machinery to process the offline data stream as is used for online, real-time
streaming processing.

2.2 Light Sources

Light sources are facilities with scores of different beamline endstations (in the case of synchrotrons) that
serve thousands of researchers each year from many science domains (chemistry, biology, material science,
archaeology). These endstations provide the researchers a wide variety of capabilities and X-ray energies
suited to answering many different scientific questions of interest to the researchers. Hence, the facility
generates many independent streams of data, each with it’s own characteristics and scientific use. Each
endstation has a sequence of end users and experiments typically consisting of a number of related samples
being studied as an ensemble. The atomic data unit for a Light Source endstation is typically a single
sample. Though time-resolved, in situ experiments then aggregate those atomic units into a data time-
sequence.

X-ray light source data, once taken by a particular experimental team, is treated as discrete datasets and
analyzed independently without coordination with analysis of other datasets or experimenters. However,
an emerging concept of common data repositories has been developing at some light source facilities. In
this concept, datasets are not aggregated for analysis, but metadata searches and comparisons may yield
important correlations between experiments conducted by separate scientists.

Streaming processing is a goal of many light source software systems such as SPOT Suite at the Advanced
Light Source [15, 16]. Automated data management, processing, and curation are becoming a standard
demand of light source end-users. An X-ray light source data stream with slow streaming feedback may
invalidate an entire set of experiments, sending a researcher home with no analyzable data. This leads to
greater emphasis on near real-time, streaming analysis with low latency for light sources.

2.3 Ameriflux Network Management Project

The AmeriFlux network is a community of sites with sensors and scientists measuring ecosystem carbon,
water, and energy fluxes across the Americas. The datasets provide critical linkage between organisms,
ecosystems, and process-scale studies at climate-relevant scales of landscapes, regions, and continents,
which can be incorporated into biogeochemical and climate models. When viewed as a whole, the network
observations enable scaling of trace gas fluxes (CO2, water vapor) across a broad spectrum of times (hours,
days, seasons, years, and decades) and space. AmeriFlux observations have been instrumental in defining
the relationships between environmental drivers and responses of whole ecosystems, which can be spa-
tialized using machine learning methods like neural networks or genetic algorithms informed by remote
sensing products.

AmeriFlux is similar to an Internet of Things scenario, where there are many sensors out in the field that
create atmospheric measurement records of varying quality and heterogeneous formats. The goal is to
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move from sporadic data submissions from the site PIs responsible for one or more sensors to an automated
and streaming data collection, cleaning and analysis environment that would shorten the time from data
collection to data product delivery to the scientific researcher. Recently, the Ameriflux team has been
experimenting with using public cloud services including Amazon Kinesis and Lambda for collecting and
processing environmental data streams[P16-6].

2.4 Radiological Search

Sensors deployed on aircrafts (ARES) and trucks (RadMAP) collect ambient gamma-rays and neutron mea-
surements to detect, localize, and identify possible threats against a background of benign radioactivity.
ARES streaming algorithms have been developed to highlight spectral changes or matches to threat signa-
tures [17]. The greatest challenge in developing these algorithms is the low number of statistics available
and the naturally changing radiological environment. Current data rates include radiation sensors produce
500GB/hr after online processing and the Object tracking 7xHD video camera produce data at 2TB/hr.
RadMAP data is currently only processed after collection [18].

Investigations are now underway to see if the streaming analysis of this data could be improved, if infor-
mation from other contextual sensors, including high-definition video, Lidar, hyperspectral imagery, could
be integrated in real time, leading to a streaming multi-source, heterogeneous data type scenario. Further-
more, there is a desire to test if computationally steered measurements based on the streaming analysis
would lead to more efficient data gathering and more effective detection.

2.5 Combustion Science

The goal of combustion science experiments is to understand the dynamics of fuel mixes, speeds and acous-
tic interactions. Particles are injected into the combustion and sets of cameras capture images at time inter-
vals, allowing velocity fields to be calculated [P16-27,WP16-23]. The streaming data is the images which
are processed first to determine if the data is valid. If not, the experiment must be rerun. If it is determined
to be valid, the next step is usually to identify interesting features in physical parameter space that is of in-
terest. If not, then the experiment must be refined and the process is repeated. In addition to experimental
streaming data, cross-stream computations that relates the experiment to previous runs and simulations
are present. Additionally, collaboration between multiple sites with relevant data must be included in the
analysis. The current methods are traditionally based on ad hoc bespoke software that was designed to fit
the very specific needs of the experiments. There is a growing need in the space for generalized methods
to process the stream data.

2.6 High-End Electron Microscopy Experiments

More specifically, this involves the steering of high-end electron microscopy experiments where a beam of
electrons is transmitted through an ultra-thin specimen. These experiments can generate atomic resolution
diffraction patterns, images, and spectra under wide ranging environmental conditions. These experiments
generate from 10GB to 10s of TB (e.g., at Brookhaven National Laboratory) of data at rates ranging from 100
images/sec for basic instruments to 1600 images/sec for state-of-the-art systems[P16-13,WP16-13].

The current systems in use include the Analysis in Motion framework [19] developed by Pacific Northwest
National Laboratory. There are open challenges in reliably executing the workflow, that consist of com-
posite applications built from loosely coupled parts, running on a loosely connected set of distributed and
heterogeneous computational resources. Each workflow task may be designed for a different programming
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model and implemented in a different language, and most communicate via files sent over general purpose
networks.

To optimize the scientific outcome of the microscopy experiments, it is essential to analyze and interpret
the results as they are emerging. It is essential that the workflow system reliably deliver optimal perfor-
mance, especially in situations where time-critical decisions must be made or computing resources are
limited.

2.7 International Fusion Energy Projects

International fusion energy projects such as the International Thermonuclear Experimental Reactor (ITER),
Korea Superconducting Tokamak Advanced Research (KSTAR), and National Spherical Torus Experiment
(NSTX) have streaming needs[P16-12,WP16-12]. In these projects, teams of scientists are present at the
facilities to monitor the progress of the on going data collection, adjust the control settings, and prevent
catastrophic events, while most others access the data remotely. It is a collaborative data analysis challenge.
An important challenge is handling the growing data sizes over the network. There is a need for a software
system that allows scientists to quickly and conveniently compose complete analysis tasks, manage the
necessary data movement, execute the specified tasks, and provide timely feedback to the users.

2.8 Astronomy

The Sloan Digital Sky Survey (SDSS) produced 100TB of processed data from 1992 to 2008. Such large
data sets are just the hint of the future with more data from fewer telescopes and large simulations present-
ing additional challenges. It is important to realize that only O(NlogN) algorithms or better are realistic
to process current and future data sizes. Further statistics are not really really the issue – it is all about
systematic errors. The domain uses approaches based on streaming and sampling aiming at robust tech-
niques with a focus on dimensional reduction with a streaming PCA (Principal Component Analysis) with
random projections and importance sampling. Time domain data is of growing importance and requires
fast triggers. Streaming algorithms have already been shown to be beneficial in this community, e.g., halo-
finding (identification of a gravitationally bound objects) shows huge memory gains from use of streaming
algorithms.

2.9 Earth System Grid Federation

The Earth System Grid Federation (ESGF) is a coordinated multiagency, international collaboration of in-
stitutions that continually develop, deploy, and maintain software needed to facilitate and empower the
study of climate [20]. ESGF relies on real-time data movement across the sites. The immediate goal of the
collaboration is 4 Gbps (1 PB/month) of sustained disk-to-disk data transfer between ESGF primary data
centers. The stretch goal is to be able to sustain 16 Gbps (1 PB/week) of sustained disk -to-disk data trans-
fer between ESGF primary data centers. Stream processing in the ESGF and related collaborations focus on
visualization and analyses where data is remapped to common domain and in some cases large domains
might be down sampled. The community uses an interactive, view-dependent data loading method where
fast coarse resolution is used for quick results and user-directed high resolution visualization is produced.
The community also uses the IDX format where original data is reordered in a spatially coherent coarse to
fine resolution and loaded progressively. Data can also be reordered over temporal dimension.
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2.10 Cosmology

Streaming dataflows and associated analytics play an essential role in cosmology. Streaming data in cos-
mology come from various sources including CMB experiments, optical transients, radio surveys. Stream
processing in cosmology include in situ and co-scheduled data transformation in simulation pipelines and
analytics that include transient classification and imaging pipelines. Optical searches for transients (e.g.,
DES, LSST, PTF) can have cadences in the range of fractions of minutes to minutes and current data rates
are typically about 500 GB/ night. LSST can go up to 20TB/night, about 10K alerts/night.

There are major opportunities for online machine learning for filtering and classification of transient
sources. The major challenges for machine learning approaches are high levels of throughput and lack
of training datasets that are needed. Additionally, there is need for data access views that can go be-
yond streaming as “one-shot” only views, need for management of the complex software pipelines, and
on-demand allocation of resources.

2.11 Power Distribution Grid Monitoring

The power distribution grid monitoring uses high-resolution, micro-phasor measurement units (uPMUs) to
design and implement a measurement network, which can detect and report the resultant impact of cyber
security attacks on the distribution system network. The project is developing a framework to directly mea-
sure, in real time, the actual physical state of the distribution network at many points and then compare the
actual measured data from the distribution grid to the system’s state as reported by cyber monitoring. The
result will be a system that provides an independent, integrated picture of the distribution grids physical
state, which will be difficult for a cyber-attacker to subvert using data-spoofing techniques.

The data standards for power quality meters have existed for many years in agreed-upon communication
protocols and and data formats, and phasor measurement units (PMUs) in the power transmission grid use
IEEE C37.118-2005 for these elements. The standard is currently less useful in the power distribution grid
where data rates are significantly higher due to the increased measurement resolution and sample rate that
is needed to detect the causes of problems in the grid.

Regardless of detection of suspicious events or not, devices send the resulting data to a central location
for further analysis, either directly or via a tree structure that could also perform additional analytics at
each layer along the way depending on whether doing so would improve or hinder detection accuracy
and latency in the desired way. Currently, the project is leveraging combinations of RabbitMQ and the
Broker client communication framework that is part of the Bro Network Security Monitor for messaging,
as well as the Cassandra database to store the time series data. Thus, the power grid monitoring analysis
infrastructure requires a stream processing and storage framework that can scale and process thousands of
events.

2.12 Monitoring data at ASCR Facilities

Another important use case comes from monitoring data that needs to be processed in streaming mode
at ASCR Facilities. ASCR facilities including HPC centers and ESnet continuously monitor metrics on
thousands of devices. This data is processed as streaming time-series using the current state-of-the-art
technologies, and analyzed for both usage and utilization statistics as well as anomaly detection, debugging,
and performance tuning.

For example, NERSC has recently built up a cluster of over a dozen nodes to monitor many aspects of the
Edison and new Cori supercomputers. The infrastructure uses RabbitMQ for routing messages coming
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from multiple locations in the supercomputing center, and ElasticSearch for real-time indexing, reporting,
and data storage. Analysis functions such as streaming alerting can be built either on ElasticSearch or
directly on RabbitMQ queues. The system handles millions of individual data points per hour and is
built to move data from fast short-term storage, through spinning disk, to long-term archival. Also, ESnet
has several streaming monitoring systems currently collecting and handling a large volume of monitoring
data at all levels of the networking stack. For example, ESnet runs esmond software [21], a system for
collecting, storing, visualizing and analyzing large sets of timeseries data. Esmond stores raw data to
Cassandra while performing on-the-fly summarization, and puts descriptive metadata in SQL for easier ad
hoc querying. The ESxSNMP system [22] performs similar functions for ESnet SNMP counters from across
the network.

HPC Centers have built up experience collecting, analyzing, and storing large quantities of sometimes
heterogeneous streaming data. HPC centers have built up expertise in managing large and scalable de-
ployments of mainstream commercial streaming data technologies such as RabbitMQ, ElasticSearch, and
Cassandra, that will be critical as we build a streaming software ecosystem.
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3

State of the Art

In Chapter 2, we provided a summary of the key use cases in the DOE community and highlighted the role
of streaming and the future needs, gaps and challenges from a streaming perspective. In this section, we
provide a summary of the state of the art of the field across academia and industry.

Analysis of the applications in Section 2 yields several observations and areas of further examination.

• There is a range of experimental facilities and observational systems with a variety of data and com-
putational characteristics: National Synchrotron Light Source (NSLS-II), APS and ALS to name just a
few.

• There is a wide range of streaming data types: from a variety of experimental data in different formats
[P16-24], images [P16-27], and non-real time collision events [P16-25]

• Distributed resource management techniques are currently primitive, and are mostly carry-overs of
the existing HPC static resource management techniques. Further, there is a clear need for unified
model for batch and stream data processing, with many ongoing efforts, e.g., Apache Beam [P16-11],
Spark, Pilot Stream [P16-14].

• Current software solutions are based on ad hoc “bespoke” software that was designed to fit very
specific needs. Unification across semantic, syntactic, representational, and scale differences between
the different data streams is needed. There is a case to be made for the unification of HPC and
commercial stack [P16-1].

• There is a need for streaming versions of existing and new algorithms ranging from data compression,
sampling, and analysis on compressed/sampled data streams, as well as ML for anomaly detection
[P16-22].

• Requirements of the temporal response of the end-point processing vary:

– O(100000) seconds [Overnight] (e.g., telescopes, day shift experiments): Plan campaign for next
shift/day

– O(10000) seconds [Hourly] (e.g., stable, long-term HEP experiments): Detect problems; Main-
tain steady-state data taking

– O(100) seconds [Minutes] (e.g., time-resolved, in situ experiments): Follow experiment evolu-
tion; Verify data quality

– O(1) [Instantaneous] like a software microscope
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• Often there is a reduction in the volume of data streamed. For example, the scale (rate) of data that is
generated is not always the same as the rate of data that is streamed:

– ATLAS 1PB/sec filtered→ 1GB/sec

– Belle II 25PB/year→ smaller amount

– In future LSST will have ≈1GB/sec.

Application Classes

We observe that although streaming applications differ widely in the type of science they support (simula-
tions versus experiments), a large fraction of them can be understood using a few common characteristics,
e.g., whether they are distributed or not, size and type of streamed data unit, whether they have real-time
constraints, as well as end-point resource requirements. This is illustrated in Table 3.1, which provides a
coarse-grained classification1 of streaming applications.

Using these criteria, four high-level application classes emerge. The primary features of these classes are
discussed in Table 3.1. These classes are not mutually exclusive; An application might have features that
are drawn from multiple classes.

Several characteristics are highlighted that could be used to develop a more detailed classification and to
derive requirements for processing system. These include the size of events; the use of control or steering;
the connection between events such as their ordering and stateful event processing; use of humans in the
loop for feedback; universality of interfaces; adaptive pipelines needed in research today; need to identify
the important information rapidly; access control; adaptive flow control; the challenge of real-time data
assimilation; complexity of data in individual events; need for fault tolerance; provenance especially in
adaptive applications where data comes from previous workflow; accuracy and use of sampled data; error
recovery problematic data will choke when passed through the algorithm again; what are data structures
and appropriate storage matching hardware and application needs.

It is critical to understand the characteristics of the data streaming aspects of the workflow: (i) What is
the role or need for streaming?; (ii) What type of data and information is streamed?; (iii) How do current
applications support streaming?; and (iv) Gaps, requirements, and state of streaming.

Application processing can be characterized by the complexity of processing, the possible need for a quick
turnaround, offline or online mode, closed loop or adaptive, etc. It is useful to understand the latency
that can be tolerated between data collection and processing. Coupled streams, multiple streams, and
interaction of streams with distributed data are important in some cases.

There is a need to respond to variable rates or load changes, such as between peak and non-peak hours.
This requires an elastic system capable of dynamic scalability based on the changing rates, which in turn
establishes the need for programming paradigms involving unbounded data with sliding windows with
the need to detect changes between windows. In most cases, the data is distributed, which affects synchro-
nization, parallelism, and algorithms. There is a need to characterize workflows better; for example where
are computations done, are they close to the source of the data, or does data stream to the cloud?

Existing Solutions

Streaming solutions have evolved in academic research and industry. Differences exist between industry
and research applications. One pertains to event size, which is often large in research use cases. Another

1The classification is not ”rigid” or ”exclusive” but mostly illustrative of primary properties.
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Application Class Application Features Details and Example Talks and White Papers
Data Assimilation One-way integration of typ-

ically distributed data, into
real-time computation pro-
cess.

Defined source and sink
endpoints.

WP 16-6

Computational Steering Integrate distributed data
with computation; deter-
mine next-steps of simula-
tions based upon results.
Typically a single control
loop.

Computational steering also
include in-* analysis (e.g., in
situ and in-transit). Exper-
iments can steer computa-
tion, and vice versa.

WP 16-20, WP 16-16

Distributed and Integrated
Computations and Experi-
ments (DICE)

High-performance and
distributed workflows com-
prised of many concurrent
execution paths. Data is
typically derived from a
single source even if there
are multiple points of
processing.

Currently solutions typically
integrate batch-stream and
processing. Large experi-
ments (e.g. Light and neu-
tron sources, etc) and ob-
servational systems (e.g, As-
tronomy).

P 16-25, P 16-5, P 16-24, P
16-29
WP 16-9, WP 16-12, WP 16-
13, WP16-23

Concurrent Multi-stream
Applications

Many streaming events, of-
ten with real-time response
needed. Typically, many
independent data sources.
Also, small independent
events and distributed
analysis.

Internet of things (IOT), Cy-
berphysical, DDDAS, and
Social Media, Satellite and
airborne monitors requiring
image analysis.

P 16-11 WP 16-12

Table 3.1: A high-level classification of the types of streaming applications.

difference relates to achieving needed performance; industry might “just” add more nodes to improve per-
formance; this is typically considered too costly for research applications. Not surprisingly these differences
have a knock-on effect on the design and implementation of tools.

Scientific Software Solutions. Modern scientific advanced tools such as light sources, detectors, and ac-
celerators are generating explosive volumes of data. Streaming services facilitate steering; for example,
experimental results are integrated with simulations so as to enable a comparison of simulation results to
those of ongoing experiments, which might possibly be used to determine convergence, or guide the next
steps of simulations. This is true of other experiments, many of which are not necessarily large-scale fa-
cilities, e.g., carbon nanotubes. There is a wide variety of tools and technologies that are currently used to
support the integration of data streams with computational tasks in the scientific domain.

For simulations where it is impractical to store every timestep, it may be necessary to do in situ analysis [23]
of critical indicators from each step, which can then be used to modify simulation parameters or context on
the fly. The resulting streams from the in situ analysis may constitute the final results from the simulation
in a manner similar to the way we use data from an instrument in a massive physics experiment. Most tools
and solutions are customized and often not easily extensible, nor interoperable with other tools.

Some scientific projects are building streaming services to handle streaming data. For example, the ATLAS
experiment generates 1PB of raw detector data (DI) which is filtered to 1GB/sec of event data. A streaming
service is being designed and implemented. The ability to stream data will significantly benefit the system
by processing on-demand requests rather than pre-existing data. Streaming of events will allow finer grain
resolution (per event) as opposed to clustering into 100 events.

Some scientific applications are exploring use of public clouds for managing and processing streaming
data. For example, Ameriflux utilizes production cloud based web services including Amazon Kinesis and
Lambda for collecting and processing environmental data. A challenge of the application is the creation of
domain-specific functionalities over the AWS cloud.
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However, the community is still missing a conceptual and comprehensive understanding of streaming
systems and applications. There is a similar need and effort for computational steering, with a spe-
cific requirement to support steering mediated by human-in-the-loop. This points to the need for mini-
apps/benchmarks/skeletons. Given the lack of clarity and certainty about the number and types of classes
of streaming applications and scenarios, there is an explicit urgency in the need for streaming and steering
mini-apps. The mini-apps will help to characterize some areas and facilitate a discussion on why things
are different.

There is a case to be made for building blocks as opposed to a single purpose general workflow system. For
example, [P16-27] provides the example of EVPATH, which integrates several such reusable components.
Additional specific examples of requirements include general solutions that integrate I/O and memory
subsystems; streaming systems that support adequate performance without over-provisioning of hardware
resources in response to problem, which is ultimately a non-scalable solution. There is a need to sup-
port unified analysis of multi-source data generation as this will become increasingly important with the
emergence of sensor-based streaming data

Industry Solutions

A number of streaming solutions have emerged in industry, including Apache Spark, Flink, Storm, Heron,
Samza, Kinesis and MillWheel. We provide a detailed description of the two solutions — Heron and Apache
Beam — that have emerged in as leading industry solutions.

Twitter - Heron: The analysis of user engagement, breakout moments, and many other similar use cases
requires analysis of a large volume of tweets. Streaming helps in the increased collection of data and anal-
ysis in real time. As this is a system upon which applications can be built, there are no a priori constraints
on the type of data that can be streamed. However, technological and implementation constraints impose
practical constraints: Heron is a real-time distributed stream processing engine which uses a DAG com-
prising two types of nodes – called the spouts and bolts – which are the sources of stream data and stream
processing centers respectively. Each spout and bolt in the topology runs multiple tasks to account for the
variations in the incoming data rate and processing capabilities. The volume, variety of tweets, and the
need to process about hundreds of millions of events per second motivates the design and implementation
of Heron.

Dataflow/Apache Beam: Apache Beam is a unified batch and streaming data processing model which
consists of data collection, processing, dataflow, and optimization. The unified system combines a stream
processing system which provides continuous updates to generate an approximate real-time model with
batch processing, which in turn periodically processes data to provide an exact historical model. This
provides a healthy balance between correctness and latency. The Google cloud dataflow aims to provide a
cloud and unified batch-stream data processing service mainly for data intensive applications.

Algorithms

Bloom Filter can be used to evaluate set memberships. The Bloom Filter may produce false positives on set
memberships, but will never produce a false negative [24]. The HyperLogLog algorithm is a probabilistic
estimator for approximating the cardinality of a dataset [25]. The Count-Min algorithm effectively approx-
imates the frequencies of elements within a dataset that has repeated elements [26]. In essence, the space
complexity (size of sketch) trade-off becomes a time-complexity versus accuracy trade-off. Frequent item-
set mining over data streams [27] [28] [29], stream classification [30] and streaming clustering algorithms
[31] [32] are well known but needs to be applied in massively parallel settings. Ego-net Sketching [WP16-
19] [P16-19] for Streaming Graph Analytics has been recently investigated but still has open challenges in
terms of parallel versions for multi-core CPU, GPU and MIC architectures

Previous work [P16-22] [WP15-1] [P15-5] [P15-7] describes streaming principal component analysis (PCA)
algorithms and the identification of heavy hitters (mass concentrations) corresponding to galaxy halos in
astrophysical simulations. Also, previous work [P15-13] describes parallel online clustering algorithms
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to find Twitter memes (information concentrations) using the Apache Storm environment [5]. Previous
work [WP15-10] [P15-11] described baseline methods for electrical grid data understanding and [P16-22]
stressed that in many cases systematic errors are much more that statistical errors.

Programming Models

A number of existing models explore the problem space. For example, Fresh Breeze [WP16-4] [P16-
3], a programming model and system architecture for real-time streaming applications, supports pro-
ducer/consumer parallelism for streaming computations and data parallel processing for classical HPC
applications. Previous work investigated application of reactive programming paradigm to distributed
stream processing [WP16-11] [P16-10], the steering of complex systems using a dynamic, data-driven mod-
eling approach (DDDAS) with a domain specific language (DSL) and a control system for aircraft flight
systems [WP16-22] [P16-26]. Streaming ideas in a compiler and runtime to manage time-dependent ef-
fects in a computer system, such as those from temperature variation which have an identified associated
time window, has been investigated [WP16-5] [P16-4]. Some recent work investigates big data techniques
such as MapReduce and combined them with HPC for analysis of data from simulations [WP16-1] [P16-1];
StreamMapReduce, [WP15-2] [P15-20] which allows event stream processing to work with MapReduce and
extends fine-grained event driven execution models for large-data volumes; and high-performance imple-
mentation of streaming models in MPI [WP15-11] [P15-23]. Neptune [P15-16] [33] and Twitter Heron [6]
address performance problems [WP15-17] in Apache Storm – in particular those associated with Apache
Kafka [34]. Other industry works include Amazon [P15-1], Google [P15-3,P16-11], Microsoft [P15-18]
and Twitter [P16-21] [WP16-21]. It is interesting to see the transition in Google from MapReduce to
Cloud DataFlow via FlumeJava and MillWheel. These are now available as open-source under Apache
Beam.
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4

Future Research & Development

In this section, we discuss challenges and R&D identified during the workshop. Some of the research
challenges identified might span more than one area of research. We identify future R&D in four main
areas:

• Algorithms: In Section 4.1, we identify the need for development of new algorithms to support
streaming data.

• Programming models, languages, runtime and streaming software system: In Section 4.2, we iden-
tify advances needed in the spectrum of programming models, languages, runtime and associated
software.

• Scientific streaming workflows: In section 4.3, we discuss the advances needed in methodologies to
support streaming and human-in-the-loop in end-to-end workflows.

• Facilities: In Section 4.4, we identify the advancement in capabilities that will be needed at ASCR
Facilities (HPC and networking) to address streaming and steering requirements of scientific appli-
cations.

Today, the basic models for either simulations or data analysis of scientific applications are well understood.
However, there is limited understanding of the capabilities needed in the software stack running across the
distributed and HPC systems to support the streaming use cases outlined in Section 2.

Traditionally, we have a hierarchical memory (from caches to disks), a highly efficient batch queue op-
eration that focuses on utilization of resources and a programming model that can be used to efficiently
support simulation and, more recently, analyses workloads like machine learning. However, streaming
workflows present different challenges that cannot be fulfilled with the software stacks that are on current
systems. Streaming operations are more interactive and can involve humans in the loop. The streamed
data may or may not be saved, but the online algorithm always keeps it around for a short time, perhaps
just looking at it once or having a moving time window holding recent data. This fundamentally changes
the current model of how scientific applications are composed and managed. First, the traditional iterative
batch algorithms must be changed as data is typically not kept across iterations. The use of files will typi-
cally only occur in saving data for later non-streaming processing. Fault-tolerance challenges, while present
as in the batch case, need different solutions as we cannot typically roll back. We need fault-tolerant algo-
rithms or systems that can recover essential information in real time.

As identified in Section 3, there are some point, and domain-specific solutions. However, there is no con-
sensus as to lessons learned, application requirements and methods to put this together to form modern,
effective streaming systems that can address the challenges of scale and time sensitivity that are expected
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in future systems. The volumes of data being generated by today’s instruments and the increasing need for
real-time processing requires a more systematic approach to address these challenges.

In this section, we identify some of the key research challenges that will need to be addressed to build the
streaming systems.

4.1 Algorithms, Applied Mathematics and Statistics

Many stream analytics problems are complex, and the scale of unbounded streams are such that they cannot be
analyzed at the rate they are produced with traditional batch algorithms. Consequently, we need different
algorithms that can reduce the complexity of the analysis. While there is some current work in online
algorithms, there is limited work tying the work to real applications. There are a number compelling
research topics, including adaptive sampling, online clustering [35] and sketching.

The NRC Frontiers in Massive Data Analysis report [36] identifies seven computational giants that are es-
sentially algorithmic challenges: Basic Statistics; Generalized N-Body Problems; Graph-Theoretic Compu-
tations; Linear Algebraic Computations; Optimizations; Integration; and Alignment Problems. The report
identifies that two of the most pervasive strategies for achieving computational efficiency are sampling and
parallel/distributed computing. Further, they identify four common themes:

1. State-of-the-art algorithms exist that can provide accelerations of major practical importance by sig-
nificantly changing the runtime order, for example, from O(N2) to O(NlogN ).

2. High dimensionality in the number of variables is a persistent challenge to obtaining computational
efficiency, and this demands ongoing research.

3. The non-default settings (default is sequential in memory algorithms) - streaming, disk-based, dis-
tributed, multi-threaded are quite important, yet mostly under-explored in terms of research effort.

4. Most of the best fast algorithms described in the NRC report[36] have only been demonstrated in
research implementations. This includes, for example, the O(N logN) algorithms mentioned earlier.
More work is required to create robust and reliable software before these algorithms can be used
widely in practice.

The key future R&D efforts recommended for the area of algorithms include a) developing online algorithms to
support streaming towards reducing time complexity of the solutions; b) developing machine learning algorithms
to support DOE applications; c) Developing parallel algorithms that can leverage multicore and future parallel
computing systems.

Research Area 1: Online algorithms to support streaming towards reducing time complexity of the
solutions.

Streaming and online algorithms are essential to satisfy compute/time complexity constraints of stream-
ing applications. These algorithms are characterized by using the data only once, whereas typical iterative
batch algorithms go over the data many times. Online algorithms do not require the whole dataset in ad-
vance, but they can process the input data as it arrives. There is an urgent need to extend and develop online
algorithms to address the streaming requirements identified by streaming applications (Section 2).

Sampling can go further than traditional streaming algorithms and only use a subset of the data once (or
in a batch sampling many times). The concept of training is not clear in the sampling algorithms. There
are a number of challenges in sampling algorithms that are important to address. These include improving
sampling performance; the sketch concept, which is a smaller but representative dataset; the general issues
of approximation and accuracy and the trade-off between accuracy and time complexity; socially coupled
systems that have intrinsic inaccuracy; where, when and what to sample; error bounds with sampling;
and the need for users to understand algorithms with approximations and be able to make good choices.
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Incremental accuracy was discussed, with initial sample results being improved as the data increases in
size.

Sketch algorithms provide approximate results for queries performed over voluminous datasets. This is
achieved by using data structures that serve as a surrogate (or a sketch) for the actual dataset, and then
using this data structure to evaluate queries. More importantly, the space-complexity or memory footprint
of this data structure is independent of the underlying voluminous dataset. Examples of such algorithms
include the well-known Bloom Filter.

Online anomaly detection [37] introduces a new robust random cut tree data structure to sketch (summa-
rize) data. This allows it to be used to determine how anomalous a point is, by measuring its effect on the
size of this tree. Further it is an online algorithm that can be efficiently updated when either new points
arrive or old points depart. This algorithm has been made available in Kinesis [38].

Thus, there is a need to systematically evaluate existing algorithms and build on existing work to develop
online algorithms to support streaming towards reducing time complexity of the solutions.

Research Area 2: Machine learning algorithms to support DOE applications.

As the volume and scale of streaming data grows, it is going to be important to identify patterns in the
data. Classical batch algorithms such as probabilistic models, classifiers, Bayesian, Markov, classical EnKF
(Ensemble Kalman Filtering in Data Assimilation), umbrella sampling, importance sampling, Monte Carlo
and other data-mining and machine learning algorithms should be applied to streaming scenarios. A num-
ber of key research questions need to be answered in this context. Is there a streaming version of every
batch algorithm? When is it difficult or impossible to generate the streaming version? What are the typi-
cal performance and accuracy comparisons of streaming versus batch algorithms? How much processing
should be done online and how much offline (batch)? How do the three Vs impact the appropriate al-
gorithms for streaming? Compression algorithms and analysis techniques for compressed data are also
important.

Learning methods are also critical. Manifold learning [WP16-25] implements an advanced dimensional-
ity reduction approach, and online methods for this are being developed. They are being applied to the
detection of material morphology and structural changes in Transmission Electron Microscopy data, cli-
mate simulation visualization and clustering for metagenomics. Deep learning naturally trains (on GPU
enhanced clusters) in batch but classifies in an online algorithm. Deep learning for streaming data from
the National Synchrotron Light Source II at Brookhaven National Laboratory is being developed [WP16-
26] [P16-31]. Reducing precision (down even to one bit) is an interesting research area for speeding up
deep learning. Further, we need to research steering scenarios involving active learning: for example, a
set of molecular dynamics simulations that drive towards rare events or machine learning classification
algorithms that can take streams to improve (adaptively) their accuracy.

Research Area 3: Parallel algorithms that can leverage multicore and future parallel computing sys-
tems.

In addition to developing new algorithms to handle the scale of data, there is also a critical need for scalable
parallel algorithms covering multicore and parallel computing.

Information visualization and dimension reduction (e.g., [WP15-5] is critical. Dimension reduction is lin-
ear (e.g., PCA) or nonlinear (e.g., MDS) and comparison of these approaches is needed for streaming data.
In previous work [WP16-7] [P16-7], streaming analysis of financial data was performed and found that di-
mension reduction can be applied to individual items in a time series. However, a principle can be needed
to align the reduced dimensions results for different time values. Visualization of the data is also critical,
e.g., [WP16-18][P16-18].

Quantification and reduction of uncertainty are critical to DOE applications. As streaming analysis works
on incomplete data and usually only has one pass through the data, there are varying levels of uncertainty
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associated with the analysis results throughout the process runtime. Currently, no methods are available
to sufficiently quantify this uncertainty or propose strategies to reduce it if required perhaps through
the introduction of additional data sources. In particular, there is a need to provide a common basis to
evaluate solutions, which in turn requires conceptual advances to determine which metrics must be evalu-
ated.

4.2 Programming Models, Languages, Runtime and Streaming Soft-
ware Systems

Streaming systems present a number of challenges in the areas of programming models, languages, runtime
and associated software. Recently, there has been extensive analysis of streaming data requirements in the
research community, but typically not with an architecture and system optimized for the streaming aspects
of the problem. Programming models and software solutions have evolved in the commercial space of big
data systems. However, their applicability to science applications is still unclear.

Today, programming models for streaming are still exemplified by point solutions and not abstracted. The
programming and runtime requirements of streaming applications are different from the traditional simulations.
There is an urgent need to evaluate existing commercial programming models and develop new abstractions that
meet the needs of DOE streaming applications.

Science use cases exhibit complex workflow management problems, where data moves from tasks to task
and often involve a heterogeneous set of resources and research specialists. Sometimes the data is pack-
etized so that it is never at rest, but more often the quantum of information today is a file object. The
commercial applications (such as those handling IoT or e-commerce) tend to involve smaller events but
more of them. It is necessary to understand the differences that impact the needed streaming system and
programming model. It is important to understand if there are lessons learned from complex event pro-
cessing that can be applied to next-generation streaming system design.

Thus, it is critical to evaluate, expand and develop new existing programming models that address hard-
ware and application challenges. We identify three research areas that needs to be explored further a) We need
to evaluate existing programming models on functionality, performance and usability for streaming applications.
b) We need to explore the impact of emerging technologies such as new memory technologies and new storage
ideas such as object stories c) We need to develop streaming programming models to address performance and
programmability.

Research Area 1: Programming models for streaming applications.

Current practice in programming models and runtime can be divided into three types: commercial so-
lutions, open source (Apache) and domain-specific solutions. These different areas lead to tremendous
diversity and rapid evolution in stream analytics programming models and systems. Furthermore, there is
no common understanding of application requirements and programming models, making them impracti-
cal to compare authoritatively. There is a need to identify best practices and computational paradigms that
can raise the level of abstraction to simplify the programming tasks for end users, removing the require-
ments of expertise in distributed computing, ad hoc analytics and integrating diverse software packages.
We expect that a few major software and hardware architectures will emerge covering the range of appli-
cations and that one will then need to design and build sustainable ecosystems including core middleware
and libraries.

There are a number of existing industry solutins (e.g., Apache Beam, Storm, Heron) systems that need to
be evaluated in the context of DOE applications, and approaches should be compared to existing solutions
to both workflow and streaming
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Thus, there is a need to evaluate existing programming models and identify gaps and challenges in their use
for streaming applications. Subsequently, appropriate programming abstractions that address the needs of
streaming applications need to be developed. Domain-specific languages are a popular feature in many
parallel computing areas. They do not seem to have been explored deeply for streaming systems. We need
abstractions for streaming systems and implementations that lower the programming burden.

Research Area 2: Hardware and software architecture on distributed and HPC systems to support
stream and dataflow scenarios.

There is a need for systematic rethinking of the hardware and software architecture to support stream
and dataflow scenarios. We need to study the impact of disruptive innovations (such as new memory
technology) on programming models. Additionally, there is a need to understand if technologies such as
distributed object stores are a useful abstraction for streaming.

Streaming will always give rise to data movement, which needs to be integrated with processing efficiently.
We certainly need data movement in parallel, and that has often been hard to express and implement
when linking parallelism with dataflow. There is no consensus as to data placement and programming
models. Traditional science computing models are based on batch executables, but that is not appropriate
for always-on event streams. Event and stream queries need novel data management and computing in-
frastructure that matches the application requirements, and we expect application-driven choices for what
and how much data to store and how to store it. We need the ability to dynamically convert streams into
scientific and analytical data types within workflows and make automated processing of such data possible
at the rates that the data is being produced. Open challenges that have been identified include efficient
parallel data management and evaluation of the abstractions provided by Spark RDD [3], AsterixDB [39]
and Tachyon [40]. There are a number of research questions in this space, including: Can one adapt ideas
from adaptive meshing to handle key partitioning and sharding? Is MPI-IO. and/or lessons from it useful?
There is an urgent need to move away from file-based solutions and to develop the ability to dynamically
process streams.

In the hardware, we need a rethinking of the balance between bandwidth, storage and compute. Further
use of modern network hardware to support reservations and science DMZs will also be important (more
discussion in Facilities Section 4.4). It is also necessary to evaluate the use of software designed for exascale
runtimes in streaming systems. For example, there is a need to support of dynamic inhomogeneous threads
that could be very useful in streaming.

Research Area 3: Programming abstractions that address performance and programmability.

Performance is a critical issue both for streaming and batch systems. Recent work [41] has compared
reduction operations in MPI, Spark and Flink. The dataflow model of the Apache systems is attractive
but leads to performance degradation. What are the (acceptable) costs of layers of abstraction and what
is the relationship of programmability and performance? Practical programmers tend to think in terms
of conventional abstractions, which are complex to map to streaming and dataflow concepts. However, it
should be explored to see if there may be benefit in doing so if it opens the field to a much broader range
of users.

There is a need for programming abstractions and runtime support for adaptive and steered applications
in large-scale simulation science. Programming abstractions need the ability to represent and track time,
that is missing in today’s batch processing, since that is an important in stream processing.

The performance of two big data languages – Python and Java [41] – could be significantly improved if
their compilers and runtime were approached in a way that is well understood for simulation languages
C++ and Fortran. More understanding is needed of the Google concepts of bounded or unbounded and the
relationship to batch and streaming programming [P15-3].

An interesting abstraction is map streaming [42] which is a high-level description of systems like Apache
Storm that describes parts of the system but not all; for example, Storm supports pub-sub and dataflow but
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not the full parallel computation useful in some applications such as SLAM [WP17]. The relation of these
abstractions to workflow and its abstractions needs further study.

Similarly, there are other areas that provide potentially interesting and relevant approaches, e.g., SQL query
optimization [WP15-16] hasn’t been fully exploited for distributed systems, although this has been studied
in the context of data streams [43] [44]; the Apache Flink project with its dataflow architecture is looking
into this [4]. Actor models – natural for events – should also be studied.

Scheduling processing streams on HPC systems is difficult compared to traditional batch jobs. Optimal
stream scheduling where you also try to maximize a performance measure such as latency or throughput is
NP-hard. There are, however, possible stochastic solutions to the problem and heuristics based on previous
runs can be used to efficiently find good approximate solutions [45]. Further research on this could be
of benefit to many streaming applications. There is also the trade-off between latency and throughput in
stream processing settings. Further research is needed to better understand this and other stream optimiza-
tions [46]. In particular, there is a need to develop methods for scheduling and placement of processing
and its relations to in situ solutions for HPC and the cloud-fog-device model for IOT use cases.

4.3 Scientific Streaming Workflows

Streaming workflows are increasingly becoming critical components of the scientific software ecosystem
since it provides a convenient way to represent and orchestrate distributed and high performance compu-
tation and related data dependencies. Workflows can be used to capture and orchestrate the distributed set
of resources, data and collaborators that might be involved in the end-to-end streaming application. There
is a critical need and a gap in current methodologies and tools that enable human-in-the-loop and interactivity in
scientific workflows.

Human-in-the-loop is a requirement across many applications including light sources, materials design and
analysis. For example, scientists using light sources such as the Advanced Light Source (ALS) or Advanced
Photon Source (APS) often would use coarse-grained analyses during the course of the experiment, with
the human-in-the-loop that is used to make decisions about experiment setup.

The NRC Frontiers in Massive Data Analysis report [36] has also addressed “Human Interaction with Data”
and mentions a number of topics including data visualization and exploration, crowdsourcing and hybrid
human/computer data analysis. Tools such as IPython [47]/Jupyter [48] and pandas [49] provide interac-
tive data analysis capabilities. However, interactive data capabilities on streams of data at supercomputing
scale processing is still relatively unexplored.

Previous DOE ASCR workshops, “The Future of Scientific Workflows” [50] and “Management, Analysis,
and Visualization of Experimental and Observational Data” [23] have looked at a broader scope of work-
flows from the simulation and for experimental and observational data. In this section, we highlight the
capabilities specifically needed to support streaming and steering.

We identify three core research areas in scientific workflows: a) developing a classification of streaming application
to understand the needs; b) developing QoS metrics for end-to-end data streaming pipelines; c) automated, semi-
automated and manual steering.

Research Area 1: Classification of streaming applications.

We need a thorough understanding of the end-to-end streaming workflows to understand the complexity
and breadth of requirements. The classification can influence research and development in a number of
key areas including programming models, system software and development of benchmarks for evaluating
existing and new solutions.
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Streaming applications can be classified by various dimensions. Size of data and rate of data are often
considered. Streaming problems might be also be classified by the processing delay tolerated: overnight
to plan future experiments (e.g., telescopes, day-shift experiments); hourly to detect problems (e.g., stable,
long-term HEP experiments) or minutes to maintain steady-state data follow experiment evolution (e.g.,
time-resolved, in situ experiments).

There is a need to engage with DOE facilities and projects using human computer interaction (HCI) method-
ologies to build a deeper understanding of the usage models and gaps in the end-to-end workflow character-
istics and understand how scientists interact with streams and use steering. These studies can inform where
existing software might be used and identify gaps that are specific to scientific needs. The classification can
also inform other activities, such as modeling and development of benchmarks and mini-apps.

Research Area 2: QoS metrics for end-to-end data streaming pipelines.

Streaming data is tied to time-critical experiments where success of the experiments depends on the reliable
performance of the overall system. As scientists deal with the instruments, they need workflow tools that
can help them meet the performance guarantees while being easy to use and manage.

It will be necessary to determine the right QoS metrics that are applicable for streaming and steering appli-
cations and to develop capabilities in tools that let users orchestrate their complex flows while meeting the
needs of the users. We need to develop advanced capabilities in tools and libraries to allow for composition
and execution of streaming data and processing.

Streaming data and processing requires specific workflow capabilities. For example, streaming data can
often be a multi-source or multi-subscriber data analysis infrastructure. This needs the ability to han-
dle geographically distributed data streams and resources effectively and synchronize with the analysis
pipeline. The middleware for streaming systems is important and needs to efficiently move data in and out
of different services running on potentially different enclaves.

Effective interaction of humans and computers is key in all the systems, but in particular in those with
increased autonomy, such as streaming systems. The researcher needs to be able to effectively express goals
and constraints that need to be enforced by the system. The system needs to communicate when it is unable
to meet the original goals set by the user. Similarly, streaming needs abstractions for data-at-rest and data-
in-motion that are not widely considered in scientific computing focused on high performance computing.
Similarly, we need visualization capabilities to allow users to interact with the resulting data. Capturing
provenance through the end-to-end workflow is also important.

Research Area 3: Automated, semi-automated and manual steering.

Steering is an essential capability that is increasingly needed at multiple levels and parts of the systems. We
need to develop capabilities for enabling steering at the user level and system level. It might be necessary
to steer the simulations, the sensors or experiments or to steer the data stream itself. Additionally, it is
important to understand and evaluate the thresholds and timescales at which human and automated inter-
vention might be practical and necessary. For example, scientists might prefer manual intervention when
handling expensive instrument time and may not wish to rely entirely on a machine learning algorithm.
It is necessary to build the capabilities to allow controls for both scenarios and the transition between the
human and the machine.

4.4 Facilities

Given the volumes and rates of streamed data, experimental and observational facilities will require HPC/leadership
capabilities, but not without R&D into the software systems and capabilities that these systems provide.
There are at least two important reasons of change. The first is based upon the observation that HPC/leadership
facilities historically have been net producers of data. With HPC resources becoming datastream endpoints
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they will become equal producers as well as consumers of data. Second, HPC systems and their software
have been mostly designed to support the efficient execution of monolithic applications to be executed
in essentially batch mode. The batch mode of execution is fundamentally at odds with the requirements
of streaming applications. Furthermore, human-in-the-loop and real-time constraints will stress the ca-
pabilities of networks, as will its integration with core computational facilities. The needs of streaming
are important and require invasive changes to the software and middleware stack deployed on HPC/leadership
resources.

Several opportunities spanning research, development and operational aspects will need to be considered
for next-generation streaming systems supported through DOE computing facilities. Specifically, the pro-
posed R&D includes: a) We need to develop abstractions and solutions that integrate stream and batch-queue
systems. b) Policies and technologies for co-scheduling of heterogeneous distributed components. c) Infrastructure
support for online and machine learning algorithms needed by streaming applications.

Many of the challenges in this section have similar roots as those in earlier sections (such as algorithms),
but the nature of the solutions are more to do with deployment and production, as opposed to core re-
search.

Research Area 1: Abstractions and solutions that integrate stream and batch-queue systems

HPC facilities and ESnet will need to consider the impact of streaming applications on the abstractions
and solutions provided at the center. Careful consideration of the following research questions will be
needed. What changes will be required to the (i) architecture and design and (ii) middleware and software
environment of leadership class and other facilities if they are to support streaming science workloads
effectively? What is the role of deep-memory hierarchies and advances in data storage? How can recent
advances in existing abstractions for fine-grained resource management in HPC systems (such as the pilot-
job abstraction) be extended, both in concept and as software implementations, to support the ingest of
real-time data without a fundamental re-evaluation of the existing landscape?

As highlighted earlier, there is a plethora of streaming systems solutions that provide local solutions that
are not adequately general or extensible. As performance and functional requirements of streaming sys-
tems increase, the complexity and challenges of providing a versatile software ecosystem will increase. This
requires design studies leading to conceptual frameworks that support comparative analysis of functional-
ity and performance of streaming systems in the production settings in which they will ultimately operate.
A versatile software ecosystem comprising well designed building blocks reiterates the need for mini-apps
and benchmarks for streaming and steering applications.

Research Area 2: Policies and technologies for co-scheduling of heterogeneous distributed compo-
nents.

Streaming applications bring the need for concurrent utilization of resource types that have semantically
and syntactically heterogeneous interfaces, different measures of successful utilization, policies and dif-
ferent administration organizations. There is a need to evaluate how they can be provisioned so as to
support the requirements of the distributed workflows arising from streaming and steered applications.
How can compute resources be scheduled in anticipation of experiments and observational data becoming
available?

Current operational objectives promote total resource utilization over all other metrics. There is a need to
examine the policies and operational objectives of HPC and to exploit advances in hardware and better de-
signed software environments to support streaming and steering applications. Supporting and responding
to real-time workloads will require resource management approaches that are not tuned for maximizing
resource utilization but prioritize user- and application-level metrics. Further, in order to support the
burstiness of the applications that involve streaming data, policies related to the number and duration of
jobs, as well as queues that support a wider range of priority definitions, are needed. What changes will
be required to the scheduling policies if they are to support streaming science workloads effectively? What
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kind of allocation and charging policies are suitable to accommodate real-time jobs? How can network
hardware and architecture support reservations and science DMZs?

Research Area 3: Infrastructure support for online algorithms and machine learning for data reduc-
tion.

The facilities of the future must provide the basic infrastructure, as well as the algorithms available on
those infrastructure, such that the velocity of processing must be commensurate with that of data genera-
tion. Ingesting data rates of 100GB/s successfully into the computational workflow is going to be a major
challenge on the middleware and workflow systems. Facilities will need to provide appropriate methods
to access hardware advances (e.g., burst buffer [51]) that can help manage these challenges.

Where the applications and middleware cannot successfully manage data rates and volumes, there is a
critical need for middleware services that are built upon research advances in online machine-learning
algorithms and approaches for data reduction (as discussed in Section 4.1). These production services
should become a critical component of the infrastructure.
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5

Community Activities

Participants at both STREAM2015 and STREAM2016 identified that the streaming community is still
nascent. It was recognized that, in addition to the R&D efforts, community building activities are essential
to create and grow the research areas in streaming. Community building activities that include engagement
across scientific domains, academia and industry are needed.

The workshop participants identified key areas of recommendation for community-building activities across
various federal agencies:

• Building and growing the community through meetings, a clearinghouse of community information
and activities.

• Build a community consensus around application benchmarks to evaluate existing and new solutions
for streaming and steering.

• Develop streaming software libraries that enable streaming solutions to be widely adopted.

• Build community-wide education and training efforts towards workforce development.

We discuss these recommendations in detail in the sections below.

Building and growing the community

Efforts need to be made to build and grow the community around streaming that spans government labs,
academia and industry. The community identified a need for a clearinghouse of community information
and activities, and it was suggested that the STREAM workshop website [52] could serve as this clearing-
house.

Additional efforts will be required to organize community activities, including application surveys, special
issues, workshops and industry engagement through advisory committees. There is a need to identify and
form multiple subgroups covering topics we identified in the two STREAM meetings and reports. The
community would benefit from a survey of existing software systems (highlighting those in open source)
and a survey of applications - existing and potential. Another useful consideration would be to consider
streaming data challenges following either the successful provenance challenge [53] or those popularized
by Kaggle [54]. Streaming software developers should consider working with foundations such as Apache
to improve support of scientific applications [55].
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While there are definitions of streaming and steering, there is a recognition that this terminology needs to
be refined and will evolve with time as the community around the topic matures.

Several existing conference and meeting venues were discussed to grow the community. A BoF or workshop
at the Supercomputing conference was seen as promising. Journal special issues and edited books should
also be explored by the community.

Efforts to engage additional key people and activities that could not make it to the workshops should con-
tinue. This includes industry representatives from GE, IBM, Facebook and the financial sector. Strategic
partnerships between academia and industry will be key to enabling next-generation streaming. Summer
internships can pave the way for engaging students, faculty and staff, and strategic partnerships and pro-
grams that fund projects across industry and academia will help move the field.

Benchmarks and Application Collections and Scenarios

We require an understanding of the true complexity and breadth of application requirements to make sub-
stantive progress on algorithms, programming models and software systems for streaming data analytics
and steering. Similar to grand challenges in domain sciences, the development of a series of representative
streaming and steering examples will be of enormous value. These should include representative data sets
at scale. Linear road is an early benchmark developed around the Aurora streaming system focusing on
one application [56]. There may be a need for benchmark suites like TPC or HPCC that foster collaboration
between industry and the research community, but we need benchmarks that cover the complexity of the
distributed streaming area. There is a clear need to investigate the performance of streaming applications
and software on clouds and HPC systems. This need is covered in this subsection for the applications and
in the next subsection for software.

Initial candidate benchmarks were considered at STREAM2015, e.g., [WP15-2] [P15-20] (taxicab data),
[WP15-11] [P15-23] (based on STREAM memory benchmark), [WP16] (LinkedIn monitoring data) and
[WP15-17] [P15-19] (SLAM robotic planning). Many of the other STREAM2015 talks implicitly defined
possible benchmarks, e.g., [WP15-1] [P15-5] [P15-7] with streaming PCA, [P15-13] with online clustering
algorithms and [WP15-10] [P15-11] with smart electrical grids. Zheng has compiled several interesting
open datasets for urban studies [57]. Other examples were given at STREAM2015, including ATLAS-LHC
analysis, avionics, drug discovery and Galaxy Zoo [58]. The 2016 SPIDAL report presents many open ap-
plications with data analytics that could be made in benchmarks [55]. The rich application discussion in
Section 2 of the STREAM2016 report is particularly relevant. The inspiration for many of the benchmarks
must come from industry and must involve interesting unrestricted datasets. Further, we need to include
benchmarks that present real-time data from real-time sources. A simple initial task is to agree on a Hello
Streaming World example. Many recent data science classes include lists of available open datasets; exam-
ple, an Indiana big data class involved 45 student projects with 39 datasets and 91 technologies[59].

We need a more comprehensive understanding and classification of streaming applications to scope a
benchmark set. An initial classification was provided in STREAM2015 report[1]. This could build on the
Dwarfs [60] for parallel computing and the Ogres [61] [62] for big data applications. Some of the streaming
characteristics include the type of events, the size of events and the lifetime of events.

Validation and verification implies a need for providing test environments in which analysis algorithms
can be evaluated against existing solutions in terms of speed, accuracy and added value. Such a test range
would be useful to demonstrate and quantify the impact of different data streams on the accuracy and
value of the analysis result for the subsequent decision-making process. In addition, however, there is
a need to validate the analytical and decision models at runtime; are they still correct or do they need
adjustment?
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There is a need for number N (e.g., between 6 and 20) of exemplar problems that identify use cases clearly
and are well described. From this collection, challenges, abstractions, scaling, theory, stream operators,
algorithms, languages and tools should be extracted. The use cases can then be implemented with current
software on current hardware and what works and what doesnt can be identified. This process will generate
a robust benchmark set. Note some examples can involve actual streaming data and others a repository of
data that can be used to generate streams.

Streaming Software System and Algorithm Library

There is a need to assemble a general-purpose, high-utility, open source scientific streaming software li-
brary that can be used by the community. It should be carefully integrated with the Apache Foundation
software. It would hold enhancements to Apache software (for example, Apache Storm and Mahout [5]) as
well as standalone software. It would contain systems (middleware) and algorithms and would be stream-
ing analog to SPIDAL and MIDAS [63] [55]. It would need to have broadly applicable functions, support
data reuse, and implement a suite of algorithms exploiting key streaming ideas, such data sketches and
certainly the challenges highlighted in NRC’s computational giants. It would also need to have core capa-
bilities, such as state-of-the-art tools to allow Java and Python to run at high performance.

We need to aim for a toolkit that will support the stringent requirements of the major streaming science
applications but that is architected so it can be used across domains, including LHC analysis, light sources,
astronomy and simulation data. The development of a community toolkit should not occur before the
primary set of requirements are in place, research has been conducted and system support is understood
and has stabilized.

Education and Training

Streaming data applications are seen as critical to economic growth and development, and they present
a tremendous opportunity for workforce development. In addition, a growing number of scientific and
engineering disciplines are being inundated with streaming data, either from observational facilities or
through simulations. As a result, an understanding of the emerging tools and environments for streaming
data will become increasingly important for future skilled workers. Understanding the best practices and
developing curriculum support was universally regarded as essential at the workshop. Industry partici-
pants agreed there is tremendous, and growing, demand for these skills and were supportive of exploring
internships and partnership programs.

The stream workshop talks highlighted a number of current and future education and training efforts
and needs. Brunner [P15-8] stressed the relationship between a streaming systems curriculum and the
broader area of data science and discussed an interesting link to a data science incubator at UIUC. Braver-
man at John Hopkins, has already integrated a discussion on new algorithms needed for streaming data
into courses [64]. The workshop participants widely agreed that data science education, and in particular
education in streaming data applications, requires realistic datasets—in particular from industry.
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6

Summary

This workshop report summarizes the discussions, findings and recommendations from STREAM 2016:
Streaming Requirements, Experience, Applications and Middleware Workshop; held in Tysons, Virginia in
March 2016. The workshop surveyed a large number of applications from the Department of Energy Office
of Science as well as others identifying requirements, gaps and challenges.

The workshop discussions identified future R&D in four key areas Algorithms; Programming Models, Lan-
guages and Runtime Systems; Human-in-the-loop and Steering in Scientific Workflow; and Facilities. There
was also a recognition for a need to build a community and associated activities around streaming and
steering for science applications across the agencies.
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8:45 AM - 9:30 AM 
Opening Session 
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● Stream 2016 Goals      [ 10 mins ] 
● Open Discussion 
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Application [ 15 mins per talk + 15 mins discussion]   
Moderator: Geoffrey Fox 

● Craig Tull (TBD)  
● Vakhtang Tsulaia  (TBD: Streaming in ATLAS) 
● Nathan Tallent (Processing large scale streaming data from high energy physics 

workflows) 
● Open Discussion 
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Moderator: Kerstin Kleese Van Dam  

● Marty Humphrey (Leveraging Public Clouds for DOE Environmental Streaming 
Data) 

● Brian Quitter ( Radiological Search – A Long-standing Streaming Application) 
● Benji Maruyama and Rahul Rao (Autonomous Experimentation Applied to 

Carbon Nanotube Synthesis) 
● Open Discussion 
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analytics) 
● Raj Kettimuthu (Computing and networking challenges in supporting streaming 
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● Open Discussion 
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Framework) 
● Geoffrey Fox (WebPlotViz: Browser Visualization of High Dimensional Streaming Data 
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Appendix: Session Summaries  

Day 1 March 23 2016 
8:45 AM - 9:30 AM Opening Session 
Geoffrey Fox:  Summary of Streaming Data Workshop STREAM2015 October 27-28 2015 
 
Slides: http://dsc.soic.indiana.edu/presentations/STREAM2015-Overview-Mar22-2016.pptx  
This talk reviewed the earlier workshop held October 27-28 2015 in Indianapolis. This had 43 attendees, 
17 Workshop white papers (from call for participation) and 29 Presentations (28 with slides; 23 with 
videos). The workshop website http://streamingsystems.org/ has background material plus STREAM2015 
resources and the final Report of STREAM2015 workshop at 
http://streamingsystems.org/stream2015finalreport.html. This workshop covered the field broadly and 
there was a consensus that it usefully brought together an unusual interesting set of participants and there 
was enthusiasm for continuing such activities. The workshop covered a different set of topics to 
STREAM2016 with technology, applications and education. Industry was covered with Amazon, Google 
and Microsoft from technology side and Johnson Controls from the “Industrial Internet of Things IIoT”. 
A classification of algorithms into 8 categories with different characteristics such as event size, 
synchronicity, time & length scales, was given 

1. Industrial Internet of Things, Cyberphysical Systems, DDDAS, Control 
2. Internet of People: wearables 
3. Social media, Twitter, cell phones, blogs, e-commerce and financial transactions 
4. Satellite and airborne monitors, National Security: Justice, Military 
5. Astronomy, Light and Neutron Sources, TEM, Instruments like LHC, Sequencers 
6. Data Assimilation 
7. Analysis of Simulation Results 
8. Steering and Control 

The final report reviewed current technology solutions with a plethora of “local point” solutions but few 
end-to-end general streaming infrastructures outside open sourced big data systems such as Apache 
Spark, Flink, Storm, Heron and Samza, whilst in their application class, commercial solutions such as 
Kinesis and MillWheel were most advanced. Issues identified included that current XSEDE and DoE 
infrastructure not optimized for streaming data and the importance of issues in distributed computing, 
such as performance, fault-tolerance, and dynamic resource management. The interface of HPC and 
streaming was extensively discussed. Novel algorithm issues including online and sampling methods and 
the reduction of O(N2) algorithms to O(NlogN) were highlighted. The importance of benchmarks, 
application collections and streaming software system and algorithm libraries were stressed as was the 
need for infrastructure optimized for streaming applications. Near term collection and prototyping 
activities in these areas were identified. 
 
Shantenu Jha: Goals of STREAM2016 Meeting 
 
This talk provided some background about participation numbers, technical organization of the workshop 
and design of sessions The talk also highlighted the main focus and objectives of the workshop and 
compared them to STREAM2015. 



 
https://docs.google.com/presentation/d/12CWX6vOae2DGRvGJc157YBz-LHhRU2F76txkf0yZNEM/edit 
 
9:30 AM -10:30 AM Applications  
Craig Tull: Real-time Streaming Analysis for BES User Facilities 
Slides: http://streamingsystems.org/Slides/cet20160322-stream2016.pptx.pdf 

Tull described use of NERSC for analysis of interesting different cases: ALS Advanced Light Source at LBNL with 
remote experiment control enabled, material science with grazing-incidence small-angle X-ray scattering, GISAXS 
and Daya Bay neutrino experiment in China. The technology highlighted was SPADE developed in IceCube, and 
used in Daya Bay and ALS data movement while XSWAP managed complex DAG-based workflows with around 
50 nodes. Publish-subscribe technology RabbitMQ improved schedul- ing. Tull divided streaming problems by the 
processing delay tolerated: 

● Overnight (eg. telescopes, day shift experiments): Plan campaign for next shift/day 
● Hourly (eg. stable, long-term HEP experiments): Detect problems; Maintain steady-state data taking 
● Minutes (eg. time-resolved, in-situ experiments): Follow experiment evolution; Verify data quality 
● Instantaneous like a “software” microscope 

 
Vakhtang Tsulaia: Streaming in ATLAS 
Slides: http://streamingsystems.org/Slides/ATLASStreaming.pdf (STREAM2016) 
Slides: http://streamingsystems.org/Presentations/Torre%20Wenaus.pdf (STREAM2015) 
Paper: http://streamingsystems.org/WP/ScienceAware.pdf (STREAM2015) 
Tsulaia described the ATLAS LHC experiment with 3000 scientists and 1200 students from 38 countries. It gathers 
1 PB/sec of data filtered to 1-2GB/sec recorded. The experimental computing environment is instantiated on 140 
heterogeneous worldwide resources enabled by excellent networking. ATLAS data processing is moving from 
classic file based grids to an Event Service (ES), which is operational today, with quasi-continuous event streaming 
through worker nodes and exploiting opportunistic resources and minimizing local storage demands. They use the 
PanDA Distributed Workload Manager optimized (Yoda) for use on HPC systems. It features whole-node 
scheduling, remote I/O, and use of object stores. A next step is to enhance the event service ES to ESS or Event 
Streaming Service. 

 
Nathan Tallent: Processing Streaming Data In High Energy Physics Workflows 

Slides: http://streamingsystems.org/Slides/stream-2016-slides.pdf 

Tallent described Belle 2 at KEK in Japan, which gathers 25 PB/year raw data. They have developed hierarchical 
scheduling to mitigate contention, and reduce power consumption. This uses a sophisticated, analytical model to 
predict execution time fed by a provenance engine to gather performance metrics. Further data transfer is optimized 
by prefetching. 

 
11:00 AM - 11:45 AM Applications/Middleware 
Marty Humphrey: Leveraging Public Clouds for DOE Environmental Streaming Data 
Paper: http://streamingsystems.org/Papers/Humphrey.pdf 
Slides: http://streamingsystems.org/Slides/Humphrey%20Stream%202016.pdf 
Combined summary given below 
 
Brian Quiter: Radiological Search – A Long-standing Streaming Application 



Paper: http://streamingsystems.org/Papers/Quiter.pdf 
Slides: http://streamingsystems.org/Slides/Quiter_STREAM2016-noVideo.pdf  
Combined summary given below 
 
Benji Maruyama and Rahul Rao: Autonomous Experimentation Applied to Carbon Nanotube 
Synthesis 
Paper: http://streamingsystems.org/Papers/Maruyama.pdf 
No slides available. Combined summary given below 
 
a) 3 Use Cases 

The use cases presented in this session explored streaming data analysis in multi-source data environments, with 
varying levels of geographic distribution and heterogeneity of data types and formats. They furthermore explored to 
varying degrees the possibility to utilize the results of the streaming analysis for autonomous decision making and 
steering (of the data collection) by the system. 

AmeriFlux and FLUXNET (Humphrey) represent an Internet of Things scenario, where there are many sensors out 
in the field that create atmospheric measurement records of varying quality and heterogeneous formats. There is a 
desire to move from sporadic data submissions from the site PIs responsible for one or more sensors, to an 
automated and streaming data collection, cleaning and analysis environment that would shorten the time from data 
collection to data product delivery to the scientific researcher. The Radiological search (Quiter) is similar in nature. 
Sensors deployed on aircrafts (ARES) and trucks (RadMAP) collect ambient gamma-rays and neutron 
measurements to detect, localize and identify possible threats against a background of benign radioactivity. 
Investigations are now underway to see if the streaming analysis of this data could be improved, if information from 
other contextual sensors (incl. high-definition video, Lidar, hyperspectral imagery etc.) could be integrated in real 
time, leading to a streaming multi-source, heterogeneous data type scenario. Furthermore there is a desire to test if 
computationally steered measurements based on the streaming analysis would lead to more efficient data gathering 
and more effective detection. The Air Force Research Laboratory (Maruyama) presented a variation on this theme. 
Multi-sensor measurements from a single instrument are used in an autonomous research system to design, execute 
and analyze experiments. The system is currently applied to understand and control the synthesis of single wall 
carbon nanotubes, to optimize their growth rate. 

b) Current Methods - what is being done now, what is available   

All projects are only starting out on their path to streaming data analysis, most data analysis today is still done post 
hoc on static data. The more established projects such as the advanced research system at the Air Force Research 
Laboratory and initial work at RadMAP are based on complete custom solutions, whereas later efforts such as those 
around AmeriFlux aim to leverage commercial solutions such as Amazon Kinesis and Lambda for their research 
infrastructure. 

ARES and RadMap 

For ARES streaming algorithms have been developed to highlight spectral changes or matches to threat signatures. 
The greatest challenge in developing these algorithms is the low statistics available and the naturally changing 
radiological environment. Data rates: Radiation sensors 500GB/hr after online processing and Object tracking 7xHD 
video camera – 2TB/hr. RadMAP data is currently only processed after collection. 

c) Future Challenges/R&D needs   



Multi-source data analysis infrastructure – Needed ability to handle geographically distributed data streams 
effectively and in sync through the analysis pipeline. When are public cloud infrastructures the right solution, when 
are custom build infrastructures needed?  

Multi-source, multi-data type analysis algorithms and frameworks – multi-source heterogeneous data analysis is a 
research challenge in its own right, today most of these analytics projects (even post hoc) are one off hero efforts, 
due to the need to overcome semantic, syntactic, representational and scale differences between the different data 
streams, as well as the need to provide mappings between the varying information contents based on the specific 
scientific scenario.   

Validation and Verification – There is a need to provide test environments in which analysis algorithms 
can be evaluated against existing solutions in terms of speed, accuracy and added value. Furthermore such a test 
range would be useful to demonstrate and quantify the impact of different data streams on the accuracy and value of 
the analysis result for the subsequent decision making process. In addition however there is a need to validate the 
analytical and decision model’s at runtime, are they still correct or do they need adjustment/ retraining. 

Quantifying and Reducing Uncertainty – as streaming analysis works on incomplete data and usually 
only has one pass through the data, there are varying levels of uncertainty associated with the analysis results 
throughout the process runtime. To date there are no methods available to sufficiently quantify this uncertainty or 
strategies proposed to reduce it were required e.g. through introduction of additional data sources. 

Human-Machine partnering – Effective interaction of human and computers is key in all the systems, but 
in particular in those with increased autonomy, here the researcher needs to be able to effectively express research 
goals, the system needs to be able to communicate results and request for additional information effectively and both 
have to be able to iterate on future strategies. 

12: 30 PM - 1:10 PM: Remote Talks 
Salman Habib: Streaming Data in Cosmology 
Slides: http://streamingsystems.org/Slides/streaming_data_cosmology_habib_stream_2016.pdf 
 
This remote presentation described and contrasted the challenges of analyzing cosmologically oriented 
simulation and observation data examined for “interesting” events. A mix of online (in situ for 
simulations) and offline analysis is needed with complex workflows. The observational data comes from 
Cosmic Microwave Background, Optical and Radio sources. Projects include PTF (Palomar Transient 
Facility), DES (Dark Energy Survey) and the future LSST (Large Synoptic Survey Telescope) with 
current data rates at about 500 GB/night while the future LSST (2022 operation) can go up to 20TB/night, 
with about 10K alerts/night. Machine learning to identify events is an active research area. Today 
Cosmological simulation offline data flows already require ~PB/week capability, The talk concluded with 
the Extreme-Scale Analytics Systems (EASy) Project . This combines aspects of High Performance 
Computing, Data-Intensive Computing, and High Throughput Computing with an initial focus on 
cosmological simulations and surveys. Key elements of this project are: 

● Software Stack: Run complex software stacks on demand (containers and virtual machines). Are 
clouds useful? 

● Resilience: Handle job stream failures and restarts 
● Resource Flexibility: Run complex workflows with dynamic resource requirements 
● Wide-Area Data Awareness: Seamlessly move computing to data and vice versa; access to 

remote databases and data consistency 



● Automated Workloads: Run automated production workflows 
● End-to-End Simulation-Based Analyses: Run analysis workflows on 
● simulations and data using a combination of in situ and offline/coscheduling approaches 

 
Dean Williams: The Earth System Grid Federation (ESGF) 
Slides: http://streamingsystems.org/Slides/ESGF_2016_STREAM_Presentation.pdf 
 
The Earth System Grid Federation (ESGF) is a multi-agency collaboration of around 40 organizations to 
facilitate and empower the study of climate using data management, stewardship and curation. One 
important collection is CMIP5 -- the Coupled Model Intercomparison Project  ESGF maintains a software 
infrastructure for management, dissemination, and analysis of simulation and observational climate data. 
There is a streaming project for looking at multi-resolution climate simulation ensembles. ESGF sets 
networking best practices into place to effectively transport tens of petabytes of climate data supporting 
1PB/month (rising to 4PB) of sustained disk-to-disk data transfer between ESGF primary data centers. 
 
3:15 PM - 4:00 PM Streaming Systems for Collaborative Science: 
Matt Wolf: Rethinking streaming system construction for next-generation collaborative science 
Paper: http://streamingsystems.org/Papers/Wolf.pdf 
Slides: http://streamingsystems.org/Slides/STREAM_2016_MWolf.pdf 
 
Matthew Wolf described the work Georgia Tech has done with Oak Ridge and other collaborators on middleware 
support for scientific data stream analysis.  

The use case described here is from combustion science.   The experimental framework is  a combustion scenario 
designed to understand the dynamics of fuel mixes, speeds and acoustic interactions.   Particles are injected into the 
combustion and sets of cameras capture images at time intervals allowing velocity fields to be calculated.  The 
streaming data is the images which are processed first to determine if the data is valid.   If not, the experiment must 
be rerun.  If it is valid is it interesting?  Does it address the part of the physical parameter space that is of interest?  If 
not, then the experiment must be refined and the process is repeated.   There is another level of streaming data here.  
This includes cross-stream computations that relates the experiment to previous runs and simulations as well as 
collaboration between multiple sites with relevant data that must be included in the analysis.  

The current methods are traditionally based on ad hoc “bespoke” software that was designed to fit the very specific 
needs of the experiments.   Wolf makes the case that a general stream analysis system is not going to exist that will 
cover this case as well as others.   A better solution is to deploy a reusable toolkit of components that can be 
assembled to build application-level overlay networks with embedded computation.   The toolkit they use is EVPath  
http://evpath.net.   Key concepts from EVPath are embedded in ADIOS as FlexPath, a high performance I/O library 
from Oak Ridge.  ADIOS facilitates some basic workflow capabilities for managing the processing of data from 
HPC systems experiments and FlexPath provides a basic publish/subscribe capability to the ADIOS workflow 
model.  

The research challenge they identify is that interactivity involves more than human-in-the-loop.  Advanced 
middleware must enable delegation of control. Change management is also becoming more critical as the 
technology is evolving very rapidly. 

 
Kerstin Kleese Van Dam (Reliable Performance for Streaming Analysis Workflows)  
Paper: http://streamingsystems.org/Papers/Kleese%20van%20Dam.pdf 
Slides: http://streamingsystems.org/Slides/Kleese%20-%20STREAM%202016%20-%20IPPD.pdf  



 
Kerstin Kleese Van Dam makes the important observation that that the workflow systems managing the stream 
analytics of time-critical experiments can be complex and success of the experiment depends upon reliable 
performance of the overall system.  

The use case is “In Operando catalysis experiments”.   More specifically, this involves the steering of high end 
electron microscopy experiments where a beam of electrons is transmitted through an ultra-thin specimen, 
interacting with the specimen as it passes through. These experiments can generate atomic resolution diffraction 
patterns, images and spectra under wide ranging environmental conditions. In-situ observations with these 
instruments, were physical, chemical or biological processes and phenomena are observed as they evolve.  These 
experiments generate from 10GB-10’s of TB (e.g. at BNL) of data per at rates ranging from 100 images/sec for 
basic instruments to 1600 images/sec for state of the art systems. To optimize the scientific outcome of such 
experiments it is essential to analyze and interpret the results as they are emerging.  It is essential that the workflow 
system reliably deliver optimal performance, especially in situations where time-critical decisions must be made or 
computing resources are limited. 

The current systems in use include the Analysis in Motion framework developed by PNNL, but the challenge that is 
presented here is to enact the workflow in a way that yields reliable performance when the execution of the 
workflows, frequently composite applications built from loosely coupled parts, running on a loosely connected set of 
distributed and heterogeneous computational resources. Each workflow task may be designed for a different 
programming model and implemented in a different language, and most communicate via files sent over general 
purpose networks. 

The DOE ASCR funded Integrated End-to-End Performance Prediction and Diagnosis for Extreme Scientific 
Workflows (IPPD) project address this performance reliability project on a number of fronts.  They are exploring a 
combination of empirical studies and performance modeling.   In addition they are looking at the challenge of 
optimizing the file I/O and data transfers.   The result will be a toolkit that will optimize workflow performance 
through improved scheduling that will reduce contention on shared, distributed resources. 

 

Scott Klasky: Stream Processing for Remote Collaborative Data Analysis 
Paper: http://streamingsystems.org/Papers/Klasky.pdf 
Slides: http://streamingsystems.org/Slides/Stream-2016-klasky.pdf  
 
The use case is the set of international fusion energy projects such as the International Thermonuclear Experimental 
Reactor (ITER), Korea Superconducting Tokamak Advanced Research (KSTAR), and National Spherical Torus 
Experiment (NSTX).  In these projects a team of scientists have to be present at the facilities to monitor the progress 
of the on-going data collection, adjust the control settings, and prevent catastrophic events, while most others access 
the data remotely.  It is truly a collaborative data analysis challenge.   The most difficult part is handling the growing 
data sizes over the network.  What is lacking is a software system that allows scientists to quickly and conveniently 
compose complete analysis tasks, manage the necessary data movement, execute the specified tasks, and provide 
timely feedback to the users. 

The technology used is a new system called ICEE which is composed of the ADIOS I/O and EVPath. The key 
contribution of ICEE is the addition of memory-to-memory data streaming over a wide variety of underlying 
protocols.    ICEE presents a uniform abstraction for build the data analysis workflow using another tool called 
DataSpaces.  

The greatest research challenge is defining the abstractions that characterize a reasonable subset of use cases that can 
be used to create a toolkit that can be used to build efficient, high performance solutions.  The papers in this section 
describe several such efforts.    It is clear that the scientific use cases will depend more heavily on workflow 



management capabilities and data management that is both file and stream based.   Another challenge is the ability 
for collaboration.  This takes two forms.   One case is allowing multiple teams of researchers to tap into the “stream” 
to do different experimental analyses.  The other case is when one team of specialists depends upon the work of 
another “upstream” team who have been responsible for various preprocessing steps.   In both cases the participants 
may be very geographically distributed.   

 
4:00 PM - 5:15 PM Streaming in Industry  
Karthik Ramasamy: Streaming in Practice 

Paper: http://streamingsystems.org/Papers/Ramasamy.pdf  

Slides: http://streamingsystems.org/Slides/heron-stream-2016-workshop.pdf 

The presentation by Dr. Karthik Ramasamy, focused on the newest middleware from Twitter, called Heron. Twitter 
is synonymous with real time, and Twitter generates tens of billions of events per hour with over 315 million 
monthly active users. With the requirement of processing this very large scale real time data, Twitter saw the need to 
develop an entire new distributed stream processing engine. Heron is the next generation of streaming systems at 
Twitter. Heron was initiated by Ramasamy, who also oversaw its development. The language of development, C++, 
is more likely to promote a strong developer community as compared to the language used for its predecessor 
(Storm), which was Clojure. Heron is designed to provide: ease of development and troubleshooting, efficiency and 
performance, scalability and reliability, compatibility with Storm, a simplified and responsive user interface, and 
capacity allocation and management. The talk described the data model, which is based on a directed acyclic graph 
for representing real time computing. The talk also described mechanisms in the middleware, such as back pressure 
and load shedding, which reduce data loss while keeping the data rate high. The talk included results from 
experimental testing. Heron has been in production use in Twitter, has been highly optimized, and will become open 
source. A lively discussion about the type of applications and data most suited for Heron ensued. 

Eugene Kirpichov: Dataflow / Apache Beam - A Unified Model for Batch and Streaming Data 
Processing 

Slides: http://streamingsystems.org/Slides/Eugene%20Kirpichov%20-
%20STREAM%202016%20Dataflow%20and%20Apache%20Beam.pdf 

The Apache Beam presentation by Eugene Kirpichov, centered around four critical questions that all data processing 
practitioners must attempt to answer when building data pipelines: What results are calculated? Where in event time 
are results calculated? When in processing time are results materialized? How do refinement of results relate? The 
talk provided the historical and technical foundation for the current unified model for batch and stream data 
processing, and discussed some earlier data processing tools and methods, including MapReduce, Spark, and Google 
Cloud Dataflow. Spark provides a unified batch and streaming engine and supports answer for the four questions. 
However, Spark lacks a formal notion of event-time windowing, which forces the intermingling 

Day 2 March 23 2016 
8:30 AM - 9:30 AM Network/Facility  
Dantong Yu (Deep learning for analyzing NSLS-II data stream)  
Paper: http://streamingsystems.org/Papers/Yu.pdf 
Slides: http://streamingsystems.org/Slides/DantongYu_Deep_learn_Data_Streaming.pdf 
The National Synchrotron Light Source (NSLS-II) provides extremely bright x-rays for basic and applied research in 
biology and medicine, materials and chemical sciences, geosciences and environmental sciences, and nanoscience; it 
is up to 10,000 as powerful as its predecessor. It produces large volumes of complex data. The objective is be able to 
provide deep learning approaches to provide a first-line of analysis on the diffraction images made available. 
Further, there is a need to provide automated materials discovery across many synchrotron beamlines (referred to as 
Multimodal Analysis). There are multiple levels at which deep-learning approaches can play a role: at the finest 



level there is the need to determine/detect features; further up, there is a need to extract physical 
process/phenomenon from a sequence of images. At the highest-level, there is a need to determine physically 
meaningful trends. The infrastructure and algorithms must be such that the velocity of processing must be 
commensurate with that of data generation, so that machine-learning can become a critical component of automated 
materials discovery. 

John Wu: Connecting large experimental facility and computing facility with streaming analytics 
Paper: http://streamingsystems.org/Papers/Wu.pdf 
Slides: http://streamingsystems.org/Slides/Wu-TechnologySamples.pdf 
 

This talk focussed on the technology need to support a range of distributed streaming analytics. Use cases ranging 
from near-real time feature detection, to segmenting microscopy images so as to identify cancerous cells in tissue 
images were presented. Requirements along the 5Vs were provided: (i) velocity: reduce data access latency, (ii) 
volume: reduce data volumes transferred by moving analysis smartly, (iii) variety: enable multiple streams of data 
concurrently, (iv) veracity: trade-offs between accuracy and performance, and (v) value: support interactive analysis. 
Some partial and existing technology solutions to these requirements were discussed – ranging from novel data 
reduction approaches based on statistical similarity to using indexing to locate distributed data efficiently. The talk 
presented some open questions and issues pertaining to algorithms, systems and networking needs to support the use 
cases discussed. 

 
Raj Kettimuthu: Computing and networking challenges in supporting streaming applications 
Paper: http://streamingsystems.org/Papers/Kettimuthu.pdf 
Slides: http://streamingsystems.org/Slides/160323-Stream2016-Kettimuthu.pdf 
 
Data streaming applications require compute resources at a specific time, for a specific period with a high degree of 
reliability. Such requirements are hard to meet on current HPC systems, which are typically batch-scheduled under 
policies in which an arriving job is run immediately only if enough resources are available, and is queued otherwise. 
Although cloud systems address some of these challenges, the use of leadership class computing facilities remains 
an important requirement. The talk proposed a series of considerations associated with the question: What changes 
will be required to the scheduling policies, architecture, and implementation of next-generation (and current) 
supercomputers if they are to support streaming science workloads effectively? What kind of allocation and 
charging policies are suitable to accommodate real-time jobs? From a network perspective, in order to overcome the 
limitations of the batch-queue systems, a congestion-free network path is required to stream data from data source to 
compute resource at a rate that is same as the data generation rate. 

 
Dimitrios Katramatos: Streaming Data Analysis on the Wire  
Paper: http://streamingsystems.org/Papers/Katramatos.pdf 
Slides: http://streamingsystems.org/Slides/Katramatos-STREAM2016.pdf 
 
As data volumes and distribution increase, the proportion of data that is in transit increases. Thus, early processing 
could in principle provides real- time/near real-time information that can be used to speed up the decision processes, 
which motivates the question: Is it feasible to devise a framework for data analytics on the wire, i.e., utilizing 
capabilities of the network infrastructure? Whereas this question has been asked in the past, both the scale of data 
and the sophistication of networks provide a new urgency and case to revisit the possibilities. For example, 
nowadays, network infrastructure includes mechanisms that can be programmed to recognize specific data flows 
based on given criteria. Can this be utilized to intercept and seamless redirect flows to processing sub-systems where 
data is subjected to desired processing. 



 
9:30 AM - 10:45 AM Programming Model/DDDAS Session 
Jack Dennis: Programming Model and Architecture for Real Time Streaming 
Paper: http://streamingsystems.org/Papers/Dennis.pdf 
Slides: http://streamingsystems.org/Slides/Fresh%20Breeze%20Streams.pdf 
 
This presentation/whitepaper described the Fresh Breeze project, which is developing a programming model and 
system architecture for real time streaming applications. Fresh Breeze supports producer/consumer parallelism for 
streaming computations and data parallel processing for classical HPC applications. User programs are written in 
funJava, a functional variant of Java; the Fresh Breeze com- piler converts funJava programs into codelets for 
execution by a simulated Fresh Breeze multi-core pro- cessor. The Fresh Breeze multi-core architecture uses an 
instruction set that directly supports operations on trees of chunks and the scheduling of tasks for codelet execution. 
The presentation noted that there is no operating system or runtime software to add to overhead and increase energy 
consumption. A simula- tion model of a multi-core Fresh Breeze processor has demonstrated linear speedup for up 
to at least 256 processing cores for matrix multiplication. The team is exploring applications of funJava and the 
Fresh Breeze system architecture. The presentation was followed by a lively discussion about the architecture 
(particularly the memory structure) and its applicability to various data streaming scenarios. Distributed  

 
Shweta Khare: Distributed Reactive Stream Processing 
Paper: http://streamingsystems.org/Papers/Khare.pdf 
 
This presentation/whitepaper explored open challenges in extending the reactive programming paradigm to 
distributed stream processing. This talk/whitepaper explored the challenges of the Internet of Things (IoT) paradigm 
and the resulting data streams, and the role of distributed Streams Processing Systems (DSPS) and Data Distribution 
Services (DDS). It identified resilience, responsiveness and elasticity as key attributes of a DSPS system. It also 
described a DSPS system that integrates a DDS with a reactive programming library and discussed the advantages of 
reactive programming for stream processing. Finally, the talk/whitepaper presented a research roadmap for reactive 
programming based DSPS as well as the state of the art in this space. The talk was followed by a discussion about 
many of the concept explored in the talk as well as about current practices.  

Nina Mishra: Robust Random Cut Forest Based Anomaly Detection On Streams   

Slides and Paper: not made public 

This presentation/whitepaper explored anomaly detection in fast-moving data streams. The presentation/whitepaper 
noted that while anomaly detection has be explore extensively in the past, applying it to the vast quantities of data 
streaming from sensors, devices and the internet of things requires a different way of thinking about anomalies, 
which was the focus of the talk. The presented approach proposed the Robust Random Cut Tree data structure as an 
effective synopsis of a dataset, and developed a methodology for efficiently maintaining this data structure on a 
stream – a point is considered an anomaly if it has a large effect on the size of the robust random cut tree structure. 
The presentation/whitepaper presented an empirical study of the presented approach using two publicly available 
datasets. The first was the Washington DC daily bike rental dataset integrated with weather information such as 
windspeed/humidity/precipitation, as well as national holidays. In this study, anomalies corresponded to days with 
good weather where there are peaks in rentals, as well as windy and rainy days where there are lulls in rentals. The 
second used taxi ridership data from the NYC Taxi Commission, and considered a stream of the total number of 
passengers aggregated over a 30-minute time window. Anomalies in this data included holidays and snowstorms 
where ridership typically drops, as well as the NYC marathon and New Year's Eve when ridership typically peaks. 
The results suggested that the presented method not only has higher positive precision and positive recall, but also 
can detect anomalous time periods more quickly than isolation forest. The following discussion explored the 



scalability of the approach to larger data sets.  

Carlos Varela: Steering Complex Systems using a Dynamic, Data-Driven Modeling Approach 

Paper: http://streamingsystems.org/Papers/Varela.pdf 

Slides: http://streamingsystems.org/Slides/STREAM-PILOTS-DISTILL-March-23-2016-public.pdf 

The research presented in this presentation/whitepaper was motived by dynamic data-driven applications and 
systems (DDDAS) that use models to control systems using a feedback loop, and where the data acquisition process 
itself may be controlled by steering the system resources allowing the modification of the models dynamically to 
incorporate recent observations. Motivating applications scenarios include online failure modeling and control in 
aircrafts, fire hazard monitoring and management, Internet of planes, etc. The presentation specifically explored a 
flight assistant system that incorporated dynamic data, for example to avoid bad weather while avoiding collisions 
and staying within capacity constraints. The talk discussed the Air France Flight 447 scenario and used it to motivate 
Dynamic Data-Driven Avionic, which uses a data-driven feedback loop to continuously analyze spatio-temporal 
data streams from airplane sensors, identify potential failure modes, and correct erroneous data, providing a new 
layer of logical redundancy in addition to existing physical redundancy for safer flight systems. A research program 
composed of a new mathematical formulation as well as the PILOTS programming language was presented. 
PILOTS enables declarative (high-level) definition of DDDAS data streaming application models (input-output 
relationships between data streams), error signatures, and error correction functions, and the PILOTS software 
detects specific (e.g., failure-induced) data errors based on signatures and corrects data before processing according 
to the application model. The evaluation presented using the AF447 data confirmed the effectiveness of the PILOTS 
approach and demonstrated how it could successfully detect and correct the airspeed sensor failure in this case after 
5 seconds from beginning of the failure, with an overall error mode detection accuracy of 96.31 

Mohsen Amini: HLSAAS: High-level Live Video Streaming as a Service  
Paper: http://streamingsystems.org/Papers/Amini.pdf 

Slides: http://streamingsystems.org/Slides/Mohsen-Amini-Streaming2016.pdf 

This presentation/whitepaper focused on live video streaming services that are enabled by high-speed networks, and 
addresses the lack of high-level services and support for qualities demanded by the viewers and video providers. 
Specifically the talk addressed two challenges, the computational requirements of video processing services, and the 
real-time nature of video processing and the related QoS demands of live streaming viewers. To address these 
challenges and support a flexible range of high-level live video streaming services, the presentation/whitepaper 
described the High- level Live Streaming as a Service (HLSaaS) cloud-based architecture. HLSaaS can apply any 
high-level video-processing request on live video streams. Based on the request, it allocates computational resource 
from cloud to minimize the incurred cost while respecting the QoS demands of the viewers. The 
presentation/whitepaper also explored high-level live streaming services that can take advantage of the HLSaaS 
architecture, and described two such services, privacy aware live video streaming and live video transcoding. The 
presentation/whitepaper then presented an experimental evaluation of the scheduling of HLSaaS and demonstrated 
its effectiveness in reducing startup delay. The presentation concluded by outlining future research directions, 
including matching video types with heterogeneous cloud services, and integrating HLSaaS with content delivery 
networks and video on demand services. The presentation was followed by questions further exploring the details of 
the architecture as well as its broader applicability.  

11:00 AM - 12:00 PM Applied Maths-Statistics/Algorithms 
Chen Ding: Timescale Stream Statistics for Hierarchical Management 
Paper: http://streamingsystems.org/Papers/Ding.pdf 
Slides: http://streamingsystems.org/Slides/Chen-Ding-slides.pdf 
 



This paper explores the consequence of computer system variations characterized by a time window. This 
could either be determined by user program needs or by external factors such as temperature. An example 
is given of in-memory key-value store Memcached hierarchical memory management optimization. A 
challenge is that the total number of windows is quadratic in the length of a stream. Linear time 
algorithms have been found and successfully used for online optimization. 
Klaus Mueller: Mining Behavior Patterns in Streaming Multivariate Data 
Paper:http://streamingsystems.org/Papers/Mueller.pdf 
Slides: http://streamingsystems.org/Slides/STREAM2016.pdf 
 
A behavior is defined as a time-varying pattern of a single variable seen in subsequences. Behaviors are 
used to determine dependencies, correlations, and possibly causations between multiple variables with 
possible use of subsequences or motifs. The visual analytics package StreamVis is applied to  urban 
pollution data, so as to enable domain experts to mine, hypothesize, and validate multivariate behavior 
relationships. Issues raised include: 

● What is appropriate distance or similarity metric that can be used to correlate data? Beyond 
Euclidean distance, can structural similarity, dynamic time warping, auto regression, or other 
distance metrics provide more powerful analytics?? 

● How to model concept drift -- —the evolution of data over time? 
● How to deal with memory constraints that may enable only one-pass processing over massive 

data streams? 
● How to use behaviors to summarize massive data, so that key multi-variate relationships can be 

visualized, discovered, stored, and evolved over time? 
● What is the ideal (perhaps inherent) periodicity in the (potentially multi-scale) data? Can 

frequency and wavelet analyses be used to help data analytics? 
Shinjae Yoo: Streaming Manifold Learning and DOE Applications 
Paper: http://streamingsystems.org/Papers/Yoo.pdf 
 
Three major use cases are introduced: materials science, climate science, and biology. In material 
sciences, Transmission Electron Microscopy (TEM) at the Center for Functional Nanomaterials (CFN) 
generates 3GB/s raw video streams (up to 1600 fps). Manifold learning can be used to detect a material 
morphology and structural changes over the video data. In climate science, Large Eddy Simulation (LES) 
and Direct Numerical Simulation (DNS) will generate exascale data from simulation outputs. Simulation 
output analyses on the fly can help steer simulation parameters to generate more meaningful data. In 
biology, clustering analysis of metagenomics data can be applicable to assembly quality improvement and 
abundance profile analysis, among others. General questions include Can dimensionality reduction 
techniques (such as manifold learning) be used to recognize actionable patterns from large volumes of 
high-dimensional data? 
 
This presentation looks at approximate manifold learning algorithms such as MCFS (Multi-cluster 
Feature Selection) and Spectral Clustering (SC) and moves them into streaming environment to obtain 
better performance. Speeding up O(N2) distance calculation and O(N3) eigenvalue algorithms are 
addressed. 
 
Srini Parthasarthy : Ego-net Sketching for Streaming Graph Analytics 



Paper: http://streamingsystems.org/Papers/Parthasarathy.pdf 
Slides: http://streamingsystems.org/Slides/parthasarathy-STREAMS16.pdf 
 
Large-scale graph and network problems include graph sparsification, community detection, dense 
subgraph detection, and link prediction. Other applications include computing various measures of 
interest like local triangle count. Social networks generate large scale graphs, for example, Twitter 
generates about 500 million tweets per day, for an average of 5800 tweets per second. 
 
Ego-net sketching keeps a L-hop (L>=1) neighborhood of each node and uses O(n) memory instead of 
O(e), for a graph with n nodes and e edges, which is particularly useful for graphs where e >> n. It 
maintains an in-memory neighbor sampled subgraph, bounded by a user configurable memory limit. 
Symmetrization and similarity-based techniques can recover a significant portion of the original graph. 
Therefore, quality of results is competitive with often significantly better computational performance than 
other methods. A future challenge is parallelization to use multi-core CPU, GPU and MIC architectures 
 
12:40 - 1:00 Applications 
Alex Szalay: Streaming in Astronomy 
Slides: http://streamingsystems.org/Slides/szalay-stream2016.pptx (STREAM2016) 
Slides: http://streamingsystems.org/Presentations/alex%20szalay%20stream-2015.pptx (STREAM2015) 
Video: http://streamingsystems.org/Videos/Speaker%205%20Alex%20Szalay.mp4 (STREAM2015) 
 
This talk describes the Sloan Digital Sky Survey SDSS, started in 1992 and finished in 2008 with 100TB 
of processed data. Such large data sets are just the hint of the future with more data from fewer telescopes 
and large simulations present additional challenges. It is important to realize that only O(NlogN) 
algorithms or better are realistic to process current and future data sizes. Further statistics are not really 
really the issue -- it’s all about systematic errors. Szalay described approaches based on streaming and 
sampling aiming at robust techniques with a focus on dimensional reduction  with a streaming PCA 
(Principal Component Analysis) with random projections and importance sampling. Time domain data is 
of growing importance and requires fast triggers. The emergence of numerical laboratories to examine 
results of simulations was discussed in areas like turbulence/CFD, cosmology, ocean circulation and 
materials science. The example of halo-finding (identification of a gravitationally bound objects) was 
given with the huge memory gains from use of streaming algorithms. 
 
1:00 PM - 2:00 PM Middleware and Software Systems 
Gagan Agrawal: Can Commercial Big Data Ideas Benefit Analysis of Instrument Data 
Paper: http://streamingsystems.org/Papers/Agrawal.pdf 
Slides: http://streamingsystems.org/Slides/streamingsystems-doe-2016.pdf 
 
This presentation focused on analyzing simulation outputs, and not instrument data analysis. Current in situ analytics 
research falls into two categories: 1) application-level in situ algorithms including indexing, compression, 
visualization, and other analytics; and 2) system-level in-situ resource scheduling platforms that aim to enhance 
resource utilization and simplify the management of co-located analytics code. These in situ middleware systems 
target scheduling underlying tasks such as cycle stealing and asynchronous I/O. The emphasis is that there would be 
work on programming models for in situ algorithms. Resource scheduling can enhance the resource utilization; for 
example, systems such as FlexPath, DataSpaces, Glean, ADIOS, etc. achieve this. Can in situ algorithms be 



seamlessly combined with systems level resource scheduling? Prior work has explored use of MapReduce in an in 
situ environment: which is the subject of F. Zheng, et al., PreDatA- Preparatory data analytics on peta-scale 
machines, http://www.cercs.gatech.edu/tech-reports/tr2010/git-cercs-10-01.pdf. The work developed in this study 
comprises a series of middleware systems providing MapReduce link APIs in HPC and was applied to APS data at 
ANL. 

  

Andre Martin: Elastic and Secure Energy Forecasting in Cloud Environments 
Paper: http://streamingsystems.org/Papers/Martin.pdf 
Slides: http://streamingsystems.org/Slides/Stream-2016-Martin.pdf 
 
This presentation focused on creating an elastic and secure processing of streaming data, based on 
STREAMMINE3G, an elastic event stream processing system using Intel’s Safe Guard eXtensions (SGX) 
technology. SGX allows for a trusted enclave, where the enclave memory can NOT be accessed from non-enclave 
code; enclave code, on the other hand, has access to outside code and data. Intel SGX only deals with 128MB of 
data this is based on their page cache. A challenge here is dealing with large operator data and efficiently passing 
data between the two worlds (one enclave to another)? 

 
Andre Luckow: Pilot-Streaming: Design Considerations for a HPC Stream Processing Framework 
Paper: http://streamingsystems.org/Papers/Luckow.pdf 
Slides: http://streamingsystems.org/Slides/20160323_PilotStream.pdf 
 
The thought is that there is a need to couple data sources from HPC, analytics, experiments, etc. and this is a 
difficult problem for streaming data. The data can be extremely high velocity and we must be able to look for 
anomalies, for outlier detection, etc. and running on batch systems is not possible for this type of analysis. This 
study looked at different usage models for stream processing: coordination, real-time analytics, and analytics model 
update. Coordination connects a data source with the data analysis phase. Real-time analytics utilizes machine 
learning on incoming data for classification, etc. Analytics is where stream processing is combined with other forms 
of processing for real-time scoring or classification. Pilot addresses the gap in unifying streaming and batch 
processing for HPC applications coupling streaming data with task parallel applications. 

 

Geoffrey Fox: WebPlotViz: Browser Visualization of High Dimensional Streaming Data with 
HTML5 

Paper: http://streamingsystems.org/Papers/Kamburugamuve.pdf 

Slides: http://streamingsystems.org/Slides/Fox-WebPlotVizSTREAM2016-Mar23-2016.pdf 

High dimensional data visualization is highly valuable for scientific discovery in many fields of data mining and 
information retrieval. PlotViz is a 3D data point browser that visualizes large volume of 2- or 3-dimensional data as 
points in a virtual space on a computer screen and enable users to explore the virtual space interactively. PlotViz 
was initially designed to consume outputs of dimension reduction algorithms for visualizing high-dimensional data 
in a lower-dimensional space, such as Multi-Dimensional Scaling (MDS) and Generative Topographic Mapping 
(GTM). Used together with such dimension reduction algorithms, PlotViz can help users discover the intrinsic 
structures of high- dimensional data and browse large volumes of data points interactively and efficiently in a virtual 
3D space. WebPlotViz is based on HTML5 and thus can be widely deployed. Furthermore, it supports visualization 
of 3D point sets (from mapping from abstract spaces) for streaming and non-streaming cases. It uses MongDB, 
JSON, WebGL, etc. and is open source. 
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